北师大版八年级下册数学1.1《等腰三角形》 教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《等腰三角形》教学设计

等腰三角形是义务教育课程标准实验教科书(北师版)《数学》八年级下册第一章第一节内容,本章主要是有关命题的证明及三角形的性质;本节要求理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。所以本节的重点是①等边三角形判定定理的发现与证明,②含30°角的直角三角形的性质定理的发现与证明。

本节课,学生将探究等边三角形判定定理和含30°角的直角三角形的性质定理,应该说,这两个定理的证明和探索相对而言,并不复杂,更多的是前面定理的直接运用,因此,本节课可以更多地让学生自主探索。但第一个定理证明中,需要分类讨论,因此注意揭示其中的分类思想;第2个定理结论比较特殊,直接从定理条件出发,学生一般难能得到这个结论,因此,教科书中设计了一个学生活动,在活动的基础上“无意”中发现了其特殊的结论,这实际上也是一种数学发现的方法,因此也应注意让学生体会。为此,确定本节课的教学目标:

【知识与能力目标】

理解等边三角形的判别条件及其证明,理解含有30º角的直角三角形性质及其证明,并能利用这两个定理解决一些简单的问题。

【过程与方法目标】

①经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维.

②经历实际操作,探索含有30º角的直角三角形性质及其推理证明过程,发展合情推理能力和初步的演绎推理的能力;

③在具体问题的证明过程中,有意识地渗透分类讨论、逆向思维的思想,提高学生的

能力。

【情感态度价值观目标】

①积极参与数学学习活动,对数学有好奇心和求知欲.

②在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.

【教学重点】

①等边三角形判定定理的发现与证明.

②含30°角的直角三角形的性质定理的发现与证明.

【教学难点】

①含30°角的直角三角形性质定理的探索与证明.

②引导学生全面、周到地思考问题.

教师准备

课件、多媒体;

学生准备;

练习本;

第一环节:提问问题,引入新课

活动内容:教师回顾前面等腰三角形的性质和判定定理的基础上,直接提出问题:等

边三角形作为一种特殊的等腰三角形,具有哪些性质呢?又如何判别一个三角形是等腰三角形呢?从而引入新课。

活动目的:开门见山,引入新课,同时回顾,也为后续探索提供了铺垫。

活动效果:在老师的引导下,一般学生都能得出等边三角形的性质;对于等边三角形的判别,学生可能会出现多种情况,如直接从等边三角形性质出发,当然也可能有学生考虑分步进行,现确定它是等腰三角形,再增补条件,确定它是等边三角形。这是教师可以适时提出问题:如果已知一个三角形是等边三角形的基础上,如何确定它是等边三角形呢?

下面是实际教学中的部分师生活动实况:

[生]等腰三角形已经有两边分别相等,所以我认为只要腰和底相等,等腰三角形就成了等边三角形.

[生]等边三角形的三个内角都相等,且分别都等于60°.我认为等腰三角形的三个内角都等于60°,等腰三角形就是等边三角形了.

(此时,部分同学同意此生的看法,部分同学不同意此生的看法,引起激烈地争论.教师可让同学代表充分发表自己的看法.)

[生]我不同意这位同学的看法.因为任何一个三角形满足这个条件都是等边三角形.根据等角对等边,三个内角都是60°,所以它们所对的边一定相等.但这一问题中“已知是等腰三角形,满足什么条件时便是等边三角形”,我觉得他给的条件太多,浪费!

[师]给三个角都是60°,这个条件的确有点浪费,那么给什么条件不浪费呢?下面同学们可在小组内交流自己的看法.

(2)你认为有一个角等于60°的等腰三角形是等边三角形吗?你能证明你的结论吗?把你的证明思路与同伴交流.

(教师应给学生自主探索、思考的时间)

第二环节:自主探索

活动内容:学生自主探究等腰三角形成为等边三角形的条件,并交流汇报各自的结论,教师适时要求学生给出相对规范的证明,概括出等边三角形的判别条件,并引导学生总结出下表:

活动目的:经历定理的探究过程,即明确有关定理,同时提高学生的自主探究能力。

活动注意事项与效果:由于有了第1环节的铺垫,学生多能探究出:

顶角是60°的等腰三角形是等边三角形;

底角是60°的等腰三角形是等边三角形;

三个角都相等的三角形是等边三角形;

三条边都相等的三角形是等边三角形。

对于前两个定理的形式相近,教师可以进一步提出要求:能否用更简捷的语言描述这个结论吗?从而引导学生得出:有一个角是60°的等腰三角形是等边三角形。

在学生得出这些结论的基础上,教师注意引导学生说明道理,给出证明的思路,选择部分命题,给与严格的证明,由于“有一个角是60°的等腰三角形是等边三角形”的证明需要分类讨论,因此,可以以此问题作为对学生证明的要求,并与同伴交流证明思路.并要求学生思考证明中的注意事项,从而点明其中的分类思想,提请学生注意:思考问题要全面、周到.

第三环节:实际操作 提出问题

活动内容:教师直接提出问题:我们还学习过直角三角形,今天我们研究一个特殊的直角三角形:含30°角的直角三角形。拿出三角板,做一做:

用含30°角的两个三角尺,你能拼成一个怎样的三角形?能拼出一个等边三角形吗? 在你所拼得的等边三角形中,有哪些线段存在相等关系,有哪些线段存在倍数关系,你能得到什么结论?说说你的理由.

活动目的:让学生经历拼摆三角尺

的活动,发现结论:在直角三角形中,

如果一个锐角等于30°,那么它所对的

直角边等于斜边的一半.

活动注意事项与效果:学生一般可

以得出下面两种图形:其中第1个图形

是等边三角形,对于该图学生也可以得出BD=12

AB ,从而得出:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

注意,教学过程中,教师应注意引导学生说明为什么所得到的三角形是等边三角形。具体的说明过程可以如下:

方法1:因为△ABD ≌ACD ,所以AB=AC .又因为Rt △ABD 中,∠BAD=60°,所以∠ABD=60°,有一个角是60°的等腰三角形是等边三角形.

方法2:图(1)中,∠B=∠C=60,∠BAC=∠BAD+∠CAD=30°+30°=60°,所以∠B=∠C=∠BAC=60°,即△ABC 是等边三角形.

如果学生不能很快得出30度所对直角边是斜边一半,教师可以在图上标出各个字母,并要求学生思考其中哪些线段直接存在倍数关系,并在将三角板分开,思考从中可以得到什么结论。然后在学生得到该结论的基础上,再证明该定理。

定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

相关文档
最新文档