材料力学教案
材料力学性能教案
材料力学性能教案一、教学目标1. 让学生了解材料力学性能的基本概念,理解材料在不同受力状态下的力学性能表现。
2. 使学生掌握材料强度、塑性、弹性、韧性等力学性能指标的定义及计算方法。
3. 培养学生运用力学性能知识解决实际工程问题的能力。
二、教学内容1. 材料力学性能概述介绍材料力学性能的概念、分类及意义。
2. 材料强度讲解强度、屈服强度、极限强度的定义及计算方法。
3. 材料塑性讲解塑性的概念、测定方法及塑性指标的应用。
4. 材料弹性讲解弹性的概念、胡克定律及弹性模量的计算。
5. 材料韧性讲解韧性的概念、测定方法及韧性指标的应用。
三、教学方法1. 采用讲授法,讲解材料力学性能的基本概念、计算方法和应用实例。
2. 利用图形、表格等形式,直观展示各种力学性能指标之间的关系。
3. 开展小组讨论,让学生分享实际工程中应用力学性能知识的经验。
4. 布置课后习题,巩固所学知识。
四、教学准备1. 教材或教案。
2. 投影仪、幻灯片等教学设备。
3. 相关图表、案例资料。
五、教学过程1. 导入新课:简要介绍材料力学性能在工程中的应用及其重要性。
2. 讲解材料力学性能的基本概念:强度、塑性、弹性、韧性等。
3. 讲解材料强度、塑性、弹性、韧性等指标的计算方法。
4. 分析实际案例,展示材料力学性能在工程中的具体应用。
5. 开展小组讨论:让学生分享实际工程中应用力学性能知识的经验。
6. 总结本节课的重点内容,布置课后习题。
7. 课堂互动:回答学生提出的问题,解答学生的疑惑。
8. 课后作业:巩固所学知识,提高实际应用能力。
六、教学评估1. 课后习题完成情况:检查学生对课堂所学知识的掌握程度。
2. 小组讨论参与度:评估学生在小组讨论中的表现,了解学生对材料力学性能知识的理解和应用能力。
3. 课堂互动表现:观察学生在课堂上的提问和回答问题的情况,评估学生的学习兴趣和主动性。
七、教学拓展1. 介绍其他材料力学性能指标,如疲劳强度、硬度等。
32学时《材料力学》教案
目录
第1次课 (1)
第2次课 (4)
第3次课 (7)
第4次课 (9)
第5次课 (13)
第6次课 (16)
第7次课 (19)
第8次课 (22)
第9次课 (24)
第10次课 (27)
第11次课 (30)
第12次课 (33)
第13次课 (36)
第14次课 (39)
第15次课 (42)
第16次课 (45)
第1次课
第2次课
第3次课
第4次课
第5次课
第6次课
第7次课
第8次课
第9次课
第10次课
第11次课
第12次课
第13次课
第14次课
第15次课
第16次课
教学内容及要求:课程重难点分析、考试重难点分析、题型分析及考点分析、答疑。
要求学生按照重难点及考点进行复习。
教学重难点:教学重点是对课程重点及考试重点内容进行复习。
教学难点是弯曲内力、弯曲应力和弯曲变形的掌握以及重要知识点的理解。
教学组织:向学生说明考试的题型及分值分布情况,题型主要包含填空题、选择题、分析论述题、作图题和计算题等题型,其中填空题等客观题型主要考查学生对一些基本的概念及原理的理解和掌握情况,分析论述题、作图题和计算题主要考查学生对知识的掌握以及独立思考设计的能力。
课程思政:让学生理清重难点,制定好复习计划,培养学生分清主次关系,做事要有条有理、精益求精、自主学习和勇于进取的精神。
材料力学教案(全套)
第一章绪论一、教学目标和教学内容1、教学目标⑴了解材料力学的任务和研究内容;(2) 了解变形固体的基本假设;(3) 构件分类,知道材料力学主要研究等直杆;(4)具有截面法和应力、应变的概念。
2、教学内容(1) 构件的强度、刚度和稳定性概念,安全性和经济性,材料力学的任务;(2)变形固体的连续性、均匀性和各向同性假设,材料的弹性假设,小变形假设;(3)构件的形式,杆的概念,杆件变形的基本形式;(4)截面法,应力和应变。
二、重点与难点重点同教学内容,基本上无难点。
三、教学方式讲解,用多媒体显示工程图片资料,提出问题,引导学生思考,讨论。
四、建议学时1~2学时五、实施学时六、讲课提纲1、由结构与构件的工作条件引出构件的强度、刚度和稳定性问题。
强度:构件抵抗破坏的能力;刚度:构件抵抗变形的能力;稳定性:构件保持自身的平衡状态为。
2、安全性和经济性是一对矛盾,由此引出材料力学的任务。
3、引入变形固体基本假设的必要性和可能性连续性假设:材料连续地、不间断地充满了变形固体所占据的空间;均匀性假设:材料性质在变形固体内处处相同;各向同性假设:材料性质在各个方向都是相同的。
弹性假设:材料在弹性范围内工作。
所谓弹性,是指作用在构件上的荷载撤消后,构件的变形全部小时的这种性质;小变形假设:构件的变形与构件尺寸相比非常小。
4、构件分类杆,板与壳,块体。
它们的几何特征。
5、杆件变形的基本形式基本变形:轴向拉伸与压缩,剪切,扭转,弯曲。
各种基本变形的定义、特征。
几种基本变形的组合。
6、截面法,应力和应变截面法的定义和用法;为什么要引入应力,应力的定义,正应力,切应力;为什么要引入应变,应变的定义,正应变,切应变。
第二章轴向拉伸与压缩一、教学目标和教学内容1、教学目标⑴掌握轴向拉伸与压缩基本概念;⑵熟练掌握用截面法求轴向内力及内力图的绘制;⑶熟练掌握横截面上的应力计算方法,掌握斜截面上的应力计算方法;⑷具有胡克定律,弹性模量与泊松比的概念,能熟练地计算轴向拉压情况下杆的变形;⑸了解低碳钢和铸铁,作为两种典型的材料,在拉伸和压缩试验时的性质。
材料力学教案
第一篇 力学基础§2.2 材料的力学性能教学目标:通过学习材料力学性能使学生能够从各种机械零件或构件最常见的服役条件和失效现象出发,了解时效现象的微观机制,提出衡量材料时效抗力的力学性能指标;掌握各种指标的物理概念、实用意义和测试方法;明确它们之间的相互关系;分析各种因素对力学性能指标的影响,为机械设计与制造过程中正确选择和合理使用材料提供依据, 重点:单向静拉伸力学性能;冲击载荷下的力学性能;应力腐蚀和氢脆。
难点:单向静拉伸力学性能;金属的断裂韧度;复合材料的力学性能。
教学课时:4教学内容:材料的性能包括:物理性能,力学性能,化学性能,和加工工艺性能。
材料的力学性能:指材料在外力作用下在强度和变形方面所表现出的性能。
材料的力学性能是通过力学实验得到的。
四种力学实验:拉伸(压缩)实验;金属的缺口冲击实验;硬度实验;弯曲实验; 1. 低碳钢拉伸时的力学性能含碳量从0.10%至0.30%低碳钢易于接受各种加工如锻造, 焊接和切削, 常用於制造链条, 铆钉, 螺栓, 轴等。
碳含量低于0.25%的碳素钢,因其强度低、硬度低而软,故又称软钢。
GB/T228.1-2010:《金属材料 拉伸试验 第1部分:室温试验方法》代替了GB/T228 测量对象:金属、非金属、高分子材料的拉伸、压缩、弯曲、剪切等曲线:力-位移、力-时间、位移-时间、应力-应变曲线低碳钢是指含碳量在0.3%以下的碳素钢。
两端粗—便于装夹、防止在装夹部分破坏。
试验段—中间较细等截面部分。
标准试件圆截面试件: 标距l 与直径d 的比例为,L =10d ,L=5d ; d=10mm矩形截面: 标距l 与横截面面积A 的比例为,实验过程:将试件装到试验机上,开动机器,使之受到从零开始逐渐增加的拉力P ,自动绘图仪便绘出P —ΔL 曲线:拉伸曲线或拉伸图。
1)拉伸图(P -ΔL )由于P —ΔL 曲线与试样的尺寸有关,为了消除试件尺寸的影响,采用应力应变曲线,即σ-ε曲线来代替P —ΔL 曲线。
材料力学教案
材料力学教案材料力学是工程学和材料科学中的重要基础学科,它研究材料在外力作用下的力学性能和变形规律。
本教案将介绍材料力学的基本概念、理论模型和应用技术,帮助学生全面理解材料力学的基本原理和应用方法。
一、材料力学基本概念。
材料力学是研究材料在外力作用下的力学性能和变形规律的学科。
它包括静力学、动力学和弹性力学等内容,主要研究材料的应力、应变、弹性模量、屈服强度、断裂韧性等力学性能。
二、材料力学理论模型。
1. 应力分析。
材料在外力作用下会产生内部应力,主要包括拉伸应力、压缩应力、剪切应力等。
应力分析是材料力学的重要内容,通过分析应力分布规律可以预测材料的破坏形式和破坏条件。
2. 应变分析。
材料在外力作用下会发生变形,主要包括弹性变形和塑性变形。
应变分析是材料力学研究的重点之一,通过分析应变规律可以评估材料的变形能力和变形稳定性。
3. 弹性模量。
材料在受力时会产生弹性变形,弹性模量是衡量材料抗弹性变形能力的重要参数。
不同材料的弹性模量不同,可以通过弹性模量来评估材料的弹性性能。
4. 屈服强度。
材料在受力时会产生塑性变形,屈服强度是衡量材料抗塑性变形能力的重要参数。
不同材料的屈服强度不同,可以通过屈服强度来评估材料的塑性性能。
5. 断裂韧性。
材料在受力时会产生断裂现象,断裂韧性是衡量材料抗断裂能力的重要参数。
不同材料的断裂韧性不同,可以通过断裂韧性来评估材料的断裂性能。
三、材料力学应用技术。
1. 材料力学测试。
材料力学测试是评估材料力学性能的重要手段,包括拉伸试验、压缩试验、弯曲试验、冲击试验等。
通过测试可以获取材料的应力-应变曲线和力学性能参数,为材料设计和选择提供依据。
2. 材料力学模拟。
材料力学模拟是预测材料力学性能的重要手段,包括有限元分析、分子动力学模拟、离散元法等。
通过模拟可以预测材料的应力分布、应变分布和破坏形式,为材料设计和优化提供参考。
3. 材料力学设计。
材料力学设计是根据材料力学性能进行工程设计的重要手段,包括材料选择、结构设计、寿命评估等。
材料力学基础教案
材料力学基础教案一、课程目标本课程旨在为学生提供材料力学的基础知识,使学生理解材料在受力情况下的行为和性能,掌握材料力学的基本理论和分析方法,能够解决简单的工程力学问题,并为后续的专业课程和实际工程应用打下坚实的基础。
二、课程内容(一)绪论1、材料力学的任务和研究对象介绍材料力学在工程中的地位和作用明确研究对象为杆件2、基本假设连续性假设均匀性假设各向同性假设(二)轴向拉伸与压缩1、内力与截面法介绍内力的概念详细讲解截面法求内力的步骤2、轴力图绘制轴力图的方法和要点通过实例进行练习3、应力正应力和切应力的概念应力的计算方法4、胡克定律胡克定律的表达式弹性模量和泊松比的概念(三)剪切与挤压1、剪切的实用计算剪切面和剪力的确定剪切强度条件2、挤压的实用计算挤压面和挤压力的确定挤压强度条件(四)扭转1、外力偶矩的计算功率、转速与外力偶矩的关系2、扭矩与扭矩图扭矩的计算扭矩图的绘制3、圆轴扭转时的应力和变形横截面上的切应力分布规律扭转角的计算(五)弯曲内力1、梁的分类和受力特点简支梁、悬臂梁、外伸梁集中力、集中力偶、分布载荷2、剪力和弯矩剪力和弯矩的计算剪力方程和弯矩方程3、剪力图和弯矩图绘制剪力图和弯矩图的方法和规律(六)弯曲应力1、纯弯曲时的正应力正应力的分布规律和计算公式2、横力弯曲时的正应力考虑切应力影响的修正3、弯曲切应力切应力的分布规律和计算公式(七)弯曲变形1、挠曲线方程挠曲线的近似微分方程2、用叠加法求梁的变形常见简单载荷下梁的变形叠加原理的应用(八)应力状态与强度理论1、一点的应力状态主应力和主平面的概念2、平面应力状态分析解析法和图解法3、强度理论四种常用强度理论及其应用(九)组合变形1、组合变形的概念和类型拉伸(压缩)与弯曲的组合扭转与弯曲的组合2、组合变形的强度计算分别计算各基本变形下的应力,然后进行叠加(十)压杆稳定1、压杆稳定的概念失稳现象和临界压力2、细长压杆的临界压力欧拉公式3、压杆的稳定性计算安全系数法三、教学方法1、课堂讲授讲解基本概念、原理和公式,通过实例加深学生的理解。
材料力学性能教案
材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。
2. 掌握材料力学性能的主要指标。
3. 了解不同材料的力学性能特点。
教学内容:1. 材料力学性能的概念:定义、重要性。
2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。
3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。
教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。
3. 通过示例介绍不同材料的力学性能特点。
4. 练习计算材料力学性能指标。
作业:1. 复习材料力学性能的主要指标及其计算方法。
2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。
第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。
2. 掌握弹性模量的计算方法。
3. 了解弹性模量在不同材料中的变化规律。
教学内容:1. 弹性模量的概念:定义、物理意义。
2. 弹性模量的计算方法:胡克定律、应力-应变关系。
3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入弹性模量的概念。
2. 讲解弹性模量的计算方法,并通过示例进行演示。
3. 通过实验或示例观察不同材料的弹性模量变化规律。
作业:1. 复习弹性模量的概念及其计算方法。
2. 完成弹性模量的计算练习题。
第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。
2. 掌握屈服强度与抗拉强度的计算方法。
3. 了解屈服强度与抗拉强度在不同材料中的变化规律。
教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。
2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。
3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。
材料力学电子教案
材料力学电子教案第一章:材料力学概述1.1 材料力学的定义和研究对象1.2 材料力学的发展简史1.3 材料力学的研究方法1.4 材料力学的应用领域第二章:内力、截面法和剪切力2.1 内力的概念及其计算2.2 截面法的基本原理与应用2.3 剪切力的概念及其计算2.4 剪切强度计算及剪切失效分析第三章:弯曲和扭转3.1 弯曲的基本概念3.2 纯弯曲梁的应力和应变3.3 弯曲强度计算3.4 扭转的基本概念3.5 扭转应力计算及扭转失效分析第四章:材料的基本力学性能4.1 弹性变形与弹性模量4.2 塑性变形与塑性极限4.3 材料的其他力学性能4.4 材料力学性能的测定方法第五章:应力-应变关系与胡克定律5.1 应力与应变的定义及关系5.2 胡克定律的表述及应用5.3 非线性材料的应力-应变关系5.4 弹性模量的测定方法及应用第六章:材料力学中的能量原理6.1 能量原理概述6.2 势能和弹性势能6.3 能量原理在材料力学中的应用6.4 能量原理在弹性问题求解中的应用第七章:材料力学中的强度理论7.1 强度理论概述7.2 强度条件及其应用7.3 安全系数的概念及其计算7.4 材料力学中的失效准则及应用第八章:梁的弯曲与扭转组合8.1 梁的弯曲与扭转组合问题概述8.2 纯弯曲梁的扭转应力8.3 扭转梁的弯曲应力8.4 弯曲与扭转组合问题的求解方法第九章:壳体力学9.1 壳体力学概述9.2 壳体的基本方程及其求解9.3 壳体的弯曲与轴向变形9.4 壳体的稳定性问题及其求解方法第十章:材料力学在工程中的应用10.1 材料力学在结构设计中的应用10.2 材料力学在机械设计中的应用10.3 材料力学在材料加工中的应用10.4 材料力学在其他工程领域的应用重点和难点解析1. 第一章中“材料力学的研究方法”是重点内容,因为它涉及到材料力学的基本研究方法和思维方式。
补充和说明:材料力学的研究方法包括实验研究、理论分析和数值模拟等。
材料力学电子教案
材料力学电子教案一、课程简介1.1 课程性质与目的材料力学是工程技术类专业的一门重要基础课程,主要研究材料在外力作用下的力学行为,包括弹性、塑性、断裂等现象。
通过本课程的学习,使学生掌握材料力学的基本理论、基本知识和基本技能,为后续专业课程的学习以及工程实践打下坚实基础。
1.2 教学内容本课程主要内容包括:绪论、拉伸与压缩、弯曲、剪切与扭转、弹性基础、塑性基础、断裂力学、材料力学性能、复合材料力学和有限元法在材料力学中的应用等。
二、教学目标2.1 知识与技能(1)掌握材料力学的基本概念、基本理论和基本方法;(2)能够运用材料力学知识分析实际工程问题;(3)了解材料力学发展的趋势和新技术。
2.2 过程与方法(1)通过理论教学,使学生掌握材料力学的基本理论;(2)通过实验教学,培养学生的动手能力和实验技能;(3)通过课堂讨论和课后作业,提高学生的分析和解决问题的能力。
2.3 情感、态度与价值观(1)培养学生的科学精神,提高学生的创新能力;(2)培养学生勤奋学习、刻苦钻研的学习态度;(3)培养学生团结协作、积极向上的团队精神。
三、教学方法与手段3.1 教学方法(1)采用启发式教学,引导学生主动思考、积极参与;(2)采用案例教学,使学生更好地理解材料力学的应用;(3)采用互动式教学,促进学生与教师、同学之间的交流。
3.2 教学手段(1)利用多媒体课件,提高教学效果;(2)使用模型和实验设备,增强学生的直观感受;(3)运用网络资源,拓宽学生的知识视野。
四、教学评价4.1 评价方法采用过程评价与终结评价相结合的方法,全面评价学生的知识、技能和素质。
4.2 评价内容(1)课堂表现:发言、提问、讨论等;(2)作业与实验:作业完成情况、实验报告等;(3)考试成绩:期末考试、考查等。
五、教学计划5.1 课时安排本课程共计48课时,其中包括32课时理论教学,16课时实验教学。
5.2 教学进度(1)第1-8周:绪论、拉伸与压缩、弯曲、剪切与扭转等基本内容;(2)第9-12周:弹性基础、塑性基础、材料力学性能等内容;(3)第13-16周:断裂力学、复合材料力学和有限元法在材料力学中的应用等内容。
材料力学教案范文
材料力学教案范文一、教学目标:1.认识材料力学的基本概念和基本原理;2.理解材料力学与工程实践的关系;3.掌握材料的力学性质,如强度、刚度、韧性等;4.培养学生分析和解决材料力学问题的能力;5.提高学生的实验能力和数据处理能力。
二、教学内容:1.材料力学的基本概念和基本原理:(1)材料的概念、分类及其应用;(2)力学的基本概念和基本原理;(3)材料力学与工程实践的关系。
2.材料的力学性质:(1)应力与应变的概念和计算方法;(2)材料的强度、刚度、韧性、脆性等性质;(3)材料静力学与动力学的基本原理。
3.材料力学问题的分析和解决方法:(1)材料力学问题的基本分析方法;(2)材料力学问题的解决方法;(3)材料力学问题的实例分析。
4.实验与实践:(1)材料力学实验的基本原理和方法;(2)实验数据的处理和分析。
三、教学方法:1.教师讲授+学生自主学习的方法;2.理论与实验相结合的方法;3.个案研究和问题驱动的教学方法。
四、教学过程:1.导入(10分钟)引导学生回顾前一堂课的内容,并通过一个实例引出本堂课的主题,以激发学生的兴趣。
2.理论授课(30分钟)根据教学内容,向学生讲授材料力学的基本概念和基本原理,并结合实例进行讲解。
重点讲解应力、应变、刚度、强度、韧性等概念,并介绍计算方法和相关公式。
3.问题分析与解决(30分钟)向学生提供一些材料力学问题的案例,并引导学生运用所学知识进行分析和解决。
鼓励学生提出自己的想法和解决方法,并进行讨论和交流。
4.实验操作(40分钟)组织学生进行材料力学实验操作,引导学生掌握实验方法和数据处理技巧。
教师和助教全程指导学生,确保实验安全和数据准确。
5.实验报告和讨论(30分钟)学生撰写实验报告,包括实验目的、原理、方法、数据和结果的分析。
学生向全班展示自己的实验结果,并进行讨论和评价。
六、课堂作业(10分钟)布置与本课内容相关的课堂作业,鼓励学生独立思考和解决问题。
并要求学生在下一次上课前完成作业,并准备分享自己的思考结果。
西南交大材料力学教案
西南交大材料力学教案第一章:材料力学基本概念1.1 材料力学的定义1.2 材料力学的研究对象和内容1.3 材料力学的发展历程及现状1.4 材料力学在工程技术中的应用第二章:内力、应力与应变2.1 内力的概念及其计算2.2 应力的概念及其计算2.3 应变速率与应变的关系2.4 材料的弹性模量与泊松比第三章:材料的力学性能3.1 材料的拉伸性能3.2 材料的压缩性能3.3 材料的剪切性能3.4 材料的其他力学性能第四章:弹性理论基础4.1 弹性方程及其求解方法4.2 弹性问题的基本解法4.3 弹性位移与应变的关系4.4 弹性能量原理及应用第五章:塑性理论基础5.1 塑性的概念及其判据5.2 塑性方程及其求解方法5.3 塑性问题的基本解法5.4 塑性失稳与极限分析第六章:材料力学中的能量方法6.1 能量原理概述6.2 弹性势能与应变能密度6.3 单位体积应变能与弹性模量6.4 能量方法在材料力学中的应用案例第七章:疲劳与断裂力学基础7.1 疲劳现象及其分类7.2 疲劳裂纹的扩展规律7.3 断裂力学的的基本概念7.4 材料韧性、脆性及断裂韧性评价第八章:材料力学在结构分析中的应用8.1 杆件受力分析基础8.2 梁的弯曲与扭转8.3 壳体结构力学分析8.4 结构强度校核与优化设计第九章:材料力学实验9.1 概述9.2 拉伸实验与压缩实验9.3 剪切实验与摩擦实验9.4 弹性模量与泊松比测定实验第十章:现代材料力学研究进展10.1 概述10.2 高温材料力学性能研究10.3 纳米材料力学行为研究10.4 新型复合材料力学性能研究重点和难点解析一、内力、应力与应变:重点关注内力、应力和应变的概念及其计算。
补充说明内力是物体内部由于外力作用而产生的相互抵消的力,应力是单位面积上的内力,应变是物体在受力后形状和尺寸的变化。
二、材料的力学性能:重点关注材料的拉伸性能、压缩性能和剪切性能。
补充说明拉伸性能是指材料在拉伸过程中的性能表现,包括抗拉强度、伸长率等;压缩性能是指材料在压缩过程中的性能表现,包括抗压强度等;剪切性能是指材料在剪切过程中的性能表现,包括剪切强度等。
《材料力学实验》大班科学教案
《材料力学实验》大班科学教案大班科学教案一、教学目标1.理解材料力学基础知识,学会常见材料的力学行为和性质测试方法;2.掌握实验数据的处理和分析方法,进一步提高实验设计和报告撰写能力;3.培养实验操作技能和团队合作精神,提高实验认真细致及实验安全意识。
二、教学内容1.材料的机械试验方法和设备介绍;2.实验中常见材料的力学行为与性质测试;3.实验数据处理和分析方法;4.实验设计和报告撰写规范。
三、教学过程1.材料机械试验方法和设备介绍了解试验设备的构成、原理和工作方式,熟悉实验室的安全操作规程,了解实验中的常见安全事故及对策。
2.实验中常见材料的力学行为与性质测试通过对材料的拉伸、压缩、剪切等力学行为的测试,了解材料破坏机理的基本规律和特征。
在实验中,可以使用的材料包括金属材料、塑料、橡胶、混凝土等。
3.实验数据处理和分析方法在实验过程中,需要认真记录实验数据,并用计算机对数据进行处理和分析。
需要学习使用常用的计算机统计和分析软件,如Excel、Matlab等,并掌握数据的可视化展示方法。
4.实验设计和报告撰写规范在实验前,需要认真制定实验设计方案,并根据实验结果和分析撰写实验报告。
需要掌握实验报告的格式规范、内容要求和论证方式。
四、教学方法1.讲授与实验相结合的教学方法;2.学生自主探究与教师指导相结合的教学方法。
五、教学效果评估1.实验操作技能和实验数据分析与处理能力方面:根据实验成果和报告,进行评分,同时将实验和分析报告与教学大纲和教学目标进行对比,评估学生的水平;2.实验认真细致及实验安全意识方面:评估学生在实验过程中的纪律性、负责任性和安全意识。
六、教材推荐1.《现代力学实验》;2.《材料力学实验》;3.《大学物理实验指导》。
七、结语通过材料力学实验的学习,不仅可以学到知识,还可以锻炼技能和培养素质。
学生需要具备合理的实验设计和操作,能够准确地搜集和分析数据,制定符合规范的实验报告,掌握实验安全规范,以及团队合作精神。
材料力学电子教案
材料力学电子教案第一章:材料力学概述1.1 课程介绍介绍材料力学的基本概念、研究对象和内容强调材料力学在工程领域的重要性1.2 材料的力学性能介绍材料的弹性、塑性、韧性、硬度等力学性能解释各种力学性能指标的定义和意义1.3 应力与应变定义应力、应变、泊松比等基本概念解释应力-应变关系的图形和特点第二章:弹性变形2.1 弹性理论基础介绍弹性模量、剪切模量等基本弹性参数解释弹性矩阵和弹性方程的定义和应用2.2 拉伸和压缩分析拉伸和压缩试验的应力-应变关系计算拉伸强度、压缩强度等指标2.3 弯曲和扭转分析弯曲和扭转试验的应力-应变关系计算弯曲强度、扭转刚度等指标第三章:塑性变形3.1 塑性理论基础介绍塑性变形的基本概念和特点解释塑性极限、塑性应变等参数的定义和计算方法3.2 拉伸和压缩塑性变形分析拉伸和压缩试验的应力-应变关系计算屈服强度、伸长率等指标3.3 弯曲和扭转塑性变形分析弯曲和扭转试验的应力-应变关系计算屈服强度、挠度等指标第四章:材料的高温力学性能4.1 高温弹性变形介绍高温下材料的弹性性能变化分析高温下弹性模量的变化规律和影响因素4.2 高温塑性变形介绍高温下材料的塑性性能变化分析高温下塑性极限、屈服强度等指标的变化规律和影响因素4.3 高温韧性介绍高温下材料的韧性变化分析高温下韧性的评价方法和指标第五章:材料的疲劳与断裂5.1 疲劳基础介绍疲劳现象和疲劳寿命的概念解释疲劳循环应力、疲劳极限等参数的定义和意义5.2 疲劳强度计算介绍疲劳强度的计算方法和疲劳寿命的预测模型分析影响疲劳寿命的因素和提高疲劳强度的方法5.3 断裂力学基础介绍断裂力学的基本概念和断裂韧性解释应力强度因子、裂纹扩展速率等参数的定义和计算方法第六章:材料力学在结构分析中的应用6.1 梁的弯曲介绍梁的弯曲理论,包括剪力、弯矩和曲率的关系分析梁的弯曲强度和稳定性问题6.2 杆件的拉伸和压缩分析杆件在拉伸和压缩状态下的应力分布计算杆件的拉伸强度和压缩强度6.3 平面应力问题和空间应力问题解释平面应力问题和空间应力问题的概念分析应力转换和应力解的基本原理第七章:材料力学在材料设计中的应用7.1 材料设计的基本原则介绍材料设计的目标和基本原则解释材料设计的基本流程和方法7.2 材料的力学性能设计分析材料的力学性能对材料设计的影响介绍提高材料力学性能的设计方法和策略7.3 新型材料的力学性能研究介绍新型材料的研究和发展趋势分析新型材料在材料力学性能方面的优势和应用前景第八章:实验技能与数据分析8.1 实验设备与方法介绍材料力学实验设备的使用和操作方法解释实验数据的采集和处理流程8.2 材料力学实验项目分析常见的材料力学实验项目及其目的和意义介绍实验结果的评估和分析方法8.3 数据分析与处理介绍数据分析的基本方法和技巧解释数据处理在材料力学研究中的应用和重要性第九章:材料力学在工程中的应用9.1 土木工程中的应用分析材料力学在土木工程中的应用案例介绍材料力学在结构设计、桥梁工程等方面的应用9.2 机械工程中的应用分析材料力学在机械工程中的应用案例介绍材料力学在机械零件设计、材料选择等方面的应用9.3 航空航天工程中的应用分析材料力学在航空航天工程中的应用案例介绍材料力学在飞行器结构设计、航天材料选择等方面的应用第十章:材料力学的未来发展10.1 新型材料的研究与发展介绍新型材料的研究方向和发展趋势分析新型材料在材料力学性能方面的创新和突破10.2 材料力学与其他学科的交叉研究介绍材料力学与其他学科的交叉研究领域分析交叉研究对材料力学发展的影响和意义10.3 材料力学的挑战与机遇分析材料力学面临的挑战和问题探讨材料力学的未来机遇和发展方向重点和难点解析1. 弹性变形和塑性变形的理解和区分。
材料力学电子教案(第一版)
02
材料力学基础
材料力学的定义与重要性
总结词:基本概念
详细描述:材料力学是研究材料在各种力和力矩作用下的行为的科学,它涉及到 材料的强度、刚度、稳定性和疲劳等特性。材料力学在工程领域中具有非常重要 的地位,是许多工程学科的基础。
材料力学的基本假设和基本概念
实例
在桥梁设计中,通过对不同材料的力学性能进行分析,选择合适的材料和结构形式,以满 足桥梁的承载要求和使用寿命;在高层建筑设计中,利用材料力学分析对建筑的抗风、抗 震性能进行评估,提高建筑的稳定性和安全性。
机械零件的材料力学分析
总结词
详细描述
实例
机械零件的强度、刚度和耐久性是决 定机械性能的关键因素,通过材料力 学分析可以优化零件的设计和制造。
$sigma$是应力,$F$是作用在杆件上的力,$A$是杆件的横截面积。
03
应变的计算公式
应变的计算公式是$epsilon = frac{Delta L}{L}$,其中$epsilon$是应
变,$Delta L$是杆件在受力后的伸长或缩短量,$L$是杆件的原长度。
拉伸与压缩的应力分布
均匀分布的应力
总结词
基本假设和基本概念
详细描述
材料力学的基本假设包括连续性假设、均匀性假设、各向同性假设和线性弹性假设。这些假设为材料力学的研究 提供了基础。基本概念包括应力和应变、弹性模量、泊松比等,这些概念是描述材料力学行为的基本参数。
材料力学的基本定理和公式
总结词
基本定理和公式
详细描述
材料力学中有很多重要的定理和公式,如胡克定律、弹性力学基本方程、圣维南原理等。这些定理和 公式是描述材料力学行为的基础,也是解决工程问题的重要工具。
材料力学大学教案
教学目标:1. 理解材料力学的基本概念和理论;2. 掌握材料力学的基本计算方法和应用;3. 培养学生的创新思维和实际操作能力;4. 提高学生的团队协作能力和沟通能力。
教学内容:一、绪论1. 材料力学的定义和发展历程;2. 材料力学的研究内容和应用领域;3. 材料力学的基本假设和模型。
二、材料力学基本理论1. 材料的应力-应变关系;2. 材料的强度理论;3. 材料的疲劳与断裂。
三、材料力学基本计算方法1. 材料的弹性力学分析;2. 材料的塑性力学分析;3. 材料的断裂力学分析。
四、材料力学应用实例1. 梁的弯曲变形与强度计算;2. 圆轴的扭转变形与强度计算;3. 材料的疲劳与断裂分析。
教学过程:一、导入1. 通过实际工程案例,让学生了解材料力学在实际工程中的应用;2. 引导学生思考材料力学的基本问题,激发学习兴趣。
二、基本理论讲解1. 讲解材料力学的定义、研究内容和应用领域;2. 讲解材料力学的基本假设和模型;3. 讲解材料的应力-应变关系、强度理论和疲劳与断裂。
三、基本计算方法讲解1. 讲解弹性力学分析、塑性力学分析和断裂力学分析的基本方法;2. 通过例题讲解,让学生掌握计算方法和步骤。
四、应用实例讲解1. 讲解梁的弯曲变形与强度计算、圆轴的扭转变形与强度计算、材料的疲劳与断裂分析;2. 通过实例分析,让学生了解材料力学在实际工程中的应用。
五、课堂练习与讨论1. 学生进行课堂练习,巩固所学知识;2. 学生分组讨论,提出问题并解答,提高团队协作能力和沟通能力。
教学评价:1. 课堂表现:观察学生在课堂上的学习态度、积极参与程度;2. 作业完成情况:检查学生作业的完成质量,了解学生的学习效果;3. 期末考试:通过考试检验学生对材料力学的掌握程度。
教学反思:1. 教师要关注学生的学习需求,及时调整教学内容和方法;2. 注重培养学生的创新思维和实际操作能力,提高学生的综合素质;3. 加强与学生的沟通,关注学生的心理需求,营造良好的学习氛围。
材料力学教案【范本模板】
第一章绪论及基本概念一、教学目标和教学内容教学目标:明确材料力学的任务,理解变形体的的基本假设,掌握杆件变形的基本形式. 教学内容:错误!材料力学的特点○,2 材料力学的任务错误!材料力学的研究对象错误!变形体的基本假设错误!材料力学的基本变形形式二、重点难点构件的强度、刚度、稳定性的概念;杆件变形的基本形式、变形体的基本假设。
三、教学方式采用启发式教学,通过提问,引导学生思考,让学生回答问题。
四、建议学时0。
5学时五、讲课提纲1、材料力学的任务材料力学是研究构件强度、刚度和稳定性计算的学科。
工程中各种机械和结构都是由许多构件和零件组成的。
为了保证机械和结构能安全正常地工作,必须要求全部构件和零件在外力作用时具有一定的承载能力,承载能力表现为1.1强度是指构件抵抗破坏的能力。
构件在外力作用下不被破坏,表明构件具有足够的强度。
1。
2刚度是指构件抵抗变形的能力.构件在外力作用下发生的变形不超过某一规定值,表明构件具有足够的刚度.1。
3稳定性是指构件承受在外力作用下,保持原有平衡状态的能力,构件在外力作用下,能保持原有的平衡形态,表明构件具有足够的稳定性。
1.4材料力学的任务:以最经济为代价,保证构件具有足够的承载能力。
通过研究构件的强度、刚度、稳定性,为构件选择合适的材料、确定合理的截面形状和尺寸提供计算理论。
2、材料力学的研究对象:可变形固体♦均匀连续性假设: 假设变形固体内连续不断地充满着均匀的物质,且体内各点处的力学性质相同.♦各向同性假设: 假设变形固体在各个方向上具有相同的力学性质。
♦小变形假设: 假设变形固体在外力作用下产生的变形与构件原有尺寸相比是很微小的,称“小变形”。
在列平衡方程时,可以不考虑外力作用点处的微小位移,而按变形前的位置和尺寸进行计算。
3、杆件的几何特征3。
1轴线:截面形心的连线3。
2横截面:垂直于轴线的截面3。
3杆的分类:4、杆件变形的基本形式杆件在不同受力情况下,将产生各种不同的变形,但是,不管变形如何复杂,常常是四种基本变形(轴向拉压、剪切、扭转、弯曲)或是它们的组合。
材料力学教案
第一章 绪论及基本概念§1−1 材料力学的任务要想使结构物或机械正常地工作,必须保证每一构件在荷载作用下能够安全、正常地工作。
因此,在力学上对构件有一定的要求:1. 强度,即材料或构件抵抗破坏的能力; 2. 刚度,即抵抗变性的能力;3. 稳定性,承受荷载时,构件在其原有形态下的平衡应保持为稳定平衡§1−2 可变性固体的性质及基本假设可变性固体:理学弹性体、小变性 基本假设:1. 连续、均匀性;2. 各项同性假设。
§1−3 内力、截面法、应力⎪⎪⎩⎪⎪⎨⎧===∑∑000z y x F F F ⎪⎪⎩⎪⎪⎨⎧===∑∑∑000z y x M MM§1−4 位移和应变的概念x u x x ∆∆=→∆0limε称为K 点处沿x 方向的线应变 直角的改变量γ称为切应变。
§1−5 杆件变性的基本形式1.轴向拉伸或轴向压缩2.剪切3.扭转4.弯曲第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。
§ 2−2 内力²截面法²轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。
按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。
对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。
由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。
根据保留部分的平衡条件得 F F F F Fx==-=∑N N ,0,0 (2−1)F N F N(a )(b ) (c )图2−5ⅡⅠ图2−1图2−2图2-4式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。
材料力学性能教案
材料力学性能教案一、教学目标1. 让学生了解材料力学性能的概念及其重要性。
2. 使学生掌握材料拉伸、压缩、弯曲等基本力学性能的测试方法。
3. 培养学生分析、解决材料力学性能问题的能力。
二、教学内容1. 材料力学性能的概念与分类2. 材料拉伸性能测试方法及设备3. 材料压缩性能测试方法及设备4. 材料弯曲性能测试方法及设备5. 材料力学性能测试数据的处理与分析三、教学重点与难点1. 教学重点:材料力学性能的概念、分类、测试方法及设备。
2. 教学难点:材料力学性能测试数据的处理与分析。
四、教学方法1. 采用讲授法、实验法、讨论法相结合的教学方法。
2. 以实物、模型、图片等为辅助教学手段,增强学生对力学性能测试设备的认知。
3. 组织学生进行实验操作,培养学生的动手能力。
五、教学安排1. 第一课时:介绍材料力学性能的概念与分类。
2. 第二课时:讲解材料拉伸性能测试方法及设备。
3. 第三课时:讲解材料压缩性能测试方法及设备。
4. 第四课时:讲解材料弯曲性能测试方法及设备。
5. 第五课时:讲解材料力学性能测试数据的处理与分析。
六、教学评估1. 课堂提问:检查学生对材料力学性能概念的理解和掌握。
2. 实验报告:评估学生在实验中对力学性能测试方法的运用和数据处理能力。
3. 课后作业:巩固学生对材料力学性能测试方法的记忆和理解。
七、教学资源1. 教材:提供相关章节,供学生预习和复习。
2. 实验设备:确保实验课时,学生能够亲身体验力学性能测试过程。
3. 网络资源:为学生提供额外的学习资料和研究工具。
八、教学拓展1. 邀请行业专家进行讲座,分享实际工作中的材料力学性能应用案例。
2. 组织学生参观实验室或相关企业,加深对材料力学性能测试方法的了解。
3. 鼓励学生参与学术研究,提高对材料力学性能研究的兴趣。
九、教学反思1. 课后收集学生反馈,了解教学效果,及时调整教学方法和内容。
3. 关注学生的学习进度和需求,不断优化教学策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械性能(硬度)实验教案一、【实验教学目标】知识目标:1、了解硬度测定的基本原理及应用范围。
2、了解布氏、洛氏硬度试验机的主要结构及操作方法。
3、掌握布氏和洛氏硬度的测量范围及其测量步骤和方法;4、掌握数据处理的方法能力目标;根据被检测材料正确选用标尺,掌握读数显微放大仪的读数方法情感目标:1、通过材料硬度的检测,培养认真严谨的工作精神。
2、通过材料硬度的检测,培养学生规范的操作习惯。
安全目标:(1)确保人身安全。
(2)确保在试验过程中按照操作规程操作,确保人身、设备完好无损。
二、【教学重点】布氏硬度与洛氏硬度的检测标尺选择方法三、【教学难点】读数显微镜读取布氏硬度的压痕尺寸及数据处理方法四、【教学设计】(1)通过对材料机械性能的知识回顾,引出材料硬度检测的途径。
(2)示范引导学生掌握硬度检测过程中应注意事项,硬度机的正确操作使用方法。
(3)学生分组4人一组进行试验,对试件试验数据学会查表确定硬度值。
(4)教师巡堂指导,及时发现问题,解决问题。
(5)归纳总结,促进学生对知识的掌握。
五、【实验仪器】HB-3000B布氏硬度计,XRH-1500洛氏硬度计六、【课时安排】七、【教学过程】实验引入(5分钟)1、实验学习内容①硬度试验的物理意义和工程意义;②布氏硬度和洛氏硬度的原理,适用范围;设备操作使用。
2、概述金属的硬度可以认为是金属材料表面在接触应力作用下抵抗局部塑性变形、压痕或划痕的一种能力。
硬度测量能够给出金属材料软硬程度的数量概念。
硬度值越高,表明金属抵抗塑性变形的能力越大,其耐磨性越高,材料产生塑性变形就越困难。
另外硬度与其他机械性能(如强度指标σ b及塑性指标ψ和δ)之间有着一定的内在联系。
所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义,故通常将硬度值作为衡量材料耐磨性的重要指标之一。
测量硬度值的方法很多,在机械工业中广泛采用静压入法来测定硬度,压入法又分为布氏硬度、洛氏硬度、维氏硬度等。
压入法硬度试验的主要特点是:①实验时应力状态最软,(即最大切应力远远大于最大正应力)因而不论是塑性材料还是脆性材料均能发生塑性变形。
②金属的硬度与强度指标之间存在如下近似关系:σ b=K*HB式中:σ b ——材料的抗拉强度值;HB——布氏硬度值K——系数退火状态的碳钢K=0.34~0.36合金调质钢K=0.33~0.35有色金属合金K=0.33~0.53③硬度值对材料的耐磨性、疲劳强度等性能也有一定的参考价值,通常硬度值高,这些性能也就好。
在机械零件设计图纸上对机械性能的技术要求,往往只标注硬度值,其原因就在于此。
④硬度测量后由于仅在金属表面局部体积内产生很小压痕,并不损坏零件,因而适合于成品检验。
⑤ 设备简单,操作迅速方便。
一、布氏硬度(一)布氏硬度试验的基本原理布氏硬度实验方法(GB/T231.1-2009)是施加一定大小的载荷F ,将直径为D(10mm ,5mm ,2.5mm ,1mm)的硬质合金球(通常为碳化钨)压入被测金属表面(如图一所示)保持一定时间,然后卸除载荷,根据硬质合金球在金属表面上所压出的凹痕面积A 凹 求出平均应力值,以此作为硬度值的计量指标,并用符号HB 表示。
图1 布氏硬度试验原理图 其计算公式如下:HBw =F/A 凹 (1) 式中: HB ——布氏硬度值; F ——载荷(Kgf );(1 Kgf =9.8N ) A 凹——凹痕面积(mm 2)。
根据压痕面积和球面之比等于压痕深度和钢球直径之比的几何关系,可知压痕部分的球面积为:Dh A π= (2)式中:D ——钢球直径(mm ); h ——压痕深度(mm )由于测量压痕直径d 要比测定压痕深度h 容易,故可将(1)式中h 改换成d 来表示,这可根据图1(b) 中△Oab 的关系求出。
2222)()(21d D h D -=- )(2122d D D h --= (3)将式(2)和(3)代入式(1)即得:)(222d D D D PDh P HB --==ππ (4) 式中只有d 是变数,故只需测出压痕直径d ,根据已知D 和P 值就可计算出HB 值。
在实际测量时,可由测出之压痕直径d 直接查表得到HBW 值。
由于金属材料有硬有软,所测工件有厚有薄,若只采用同一种载荷(如3000kgf )和钢球直径(如10mm )时,则对硬的金属适合,而对极软的金属就不适合,会发生整个钢球陷入金属中的现象;若对于厚的工件适合,则对于薄件会出现压透的可能,所以在测定不同材料的布氏硬度值时就要求有不同的载荷F 和钢球直径D 。
为了得到统一的、可以相互进行比较的数值,必须使F 和D 之间维持某一比值关系,以保证所得到的压痕形状的几何相似关系,其必要条件就是压入角ϕ保持不变。
根据相似原理由图1(b )中可知d 和ϕ的关系是:2sin 22sin 2ϕϕD d d D ==或 (5) 以此代入式(4)得:⎥⎥⎦⎤⎢⎢⎣⎡--=)sin 11(2222ϕπD P HB (6) 式(6)说明,当ϕ值为常数时,为使HBW 值相同,2D P也就保持为一定值。
因此对同一材料而言,不论采用何种大小的载荷和钢球直径,只要能满足2DP=常数,所得的HBW 值是一样的。
对不同材料来说,所得的HBW 值也是可以进行比较的。
按照GB231-63规定,2DF比值有30、10和2.5三种,具体试验数据和适用范围可参考表1。
(二)布氏硬度试验机的结构和操作1、HB-3000型布氏硬度试验机的外形结构如图2所示。
其主要部件及作用如下:(1)机体与工作台:硬度机有铸铁机体,在机体前台面上安装了丝杠座,其中装有丝杠,丝杠上装立柱和工作台,可上下移动。
(2)杠杆机构:杠杆系统通过电动机可将载荷自动加在试样上。
(3)压轴部分:用以保证工作时试样与压头中心对准。
(4)减速器部分:带动曲柄及曲柄连杆,在电机转动及反转时,将载荷加到压轴上或从压轴上卸除。
(5)换向开关系统:是控制电机回转方向的装置,使加、卸载荷自动进行。
图2 HB-3000布氏硬度试验机外形结构图1—指示灯;2—压头;3—工作台;4—立柱;5—丝杠;6—手轮;7—载荷砝码;8—压紧螺钉;9—时间定位器;10—加载按钮2、操作前的准备工作:(1)根据表1选择压头,且将压头擦拭干净,装入主轴衬套中。
(2)根据表1选定载荷,加上相应的砝码。
(3)安装工作台。
当试样高度<120mm时,应将立柱安装在升降螺杆上,然后安装好工作台进行试验。
(4)根据表1确定持续时间T,然后将压紧螺钉拧松,把圆盘上的时间定位器(红色指示点)转到与持续时间相符的位置上。
(5)接通电源,打开指示灯,证明通电正常。
3、操作程序:(1)将试样放在工作台上,顺时针方向旋转手轮,工作台上升,使压头压向试样表面直到手轮与下面螺母产生相对滑动为止。
(2)按动加载按钮,启动电动机,即开始加载荷。
此时因压紧螺钉已拧松,圆盘并不转动,当红色指示灯闪亮时,迅速拧紧压紧螺钉,使圆盘转动。
达到所要求的持续时间后,转动自动停止。
(3)逆时针方向旋转手轮,使工作台降下。
取下试样用读数显微镜测量压痕直径d值,并查表确定硬度HBW数值。
4、注意事项(1)安装砝码时,一定将吊杆的本身重量187.5公斤加进去。
(2)试样厚度应不小于压痕直径的10倍。
试验后,试样背面及边缘呈显变形痕迹时,则试验无效。
(3)压痕直径d应在以下范围内,否则无效。
0.24D<d<0.6D(4)压痕中心至试样边缘应大于D,两压痕中心大于2D。
(5)试样表面必须平整光洁无氧化皮,以使压痕边缘清晰,保证精确测量压痕直径d。
(6)用显微镜测量压痕直径d时,应从相互垂直的两个方向上读取,取其平均值。
HB-3000B、HB-3000C是在HB-3000基础上改进的,具有比HB-3000硬度计操作更方便、测量更精确等特点。
二、、洛氏硬度(一) 洛氏硬度试验的基本原理洛氏硬度同布氏硬度一样也属于压入硬度法,但它不是测定压痕面积,而是根据压痕深度来确定硬度值指标。
其试验原理如图3所示。
图3 洛氏硬度试验原理图洛氏硬度试验所用压头有两种:一种是顶角为120°的金刚石圆锥,另一种是直径为1/16"(1.588mm)的淬火钢球。
根据金属材料软硬程度不一,可选用不同的压头和载荷配合使用,最常用的是HRA、HRB和HRC。
这三种洛氏硬度的压头、负荷及使用范围列于表2。
表2 常见洛氏硬度的试验规范及使用范围标尺所用符号/压头总负荷kgf表盘上刻度颜色测量范围相当维氏硬度值应用范围HRA金刚石圆锥60 黑色70-85 390-900碳化物、硬质合金、淬火工具钢、浅层表面硬化层HRB 1/16"钢球100 红色25-100 60-240软钢(退火态、低碳钢正火态)、铝合金HRC金刚石圆锥150 黑色20-67 249-900淬火钢、调质钢、深层表面硬化层表注:(1)金刚石圆锥的顶角为120°+30',顶角圆弧半径为0.21±0.01mm(2)初负荷均为10公斤洛氏硬度测定时,需要先后两次施加载荷(初载荷及主载荷),预加载荷的目的是使压头与试样表面接触良好,以保证测量结果准确。
图3中0-0位置为未加载荷时的压头位置,1-1位置为加上10 Kgf预加载荷后的位置,此时压入深度为h1,2-2位置为加上主载荷后的位置,此时压入深度为h2,h2包括由加载所引起的弹性变形和塑性变形,卸除主载荷后,由于弹性变形恢复而稍提高到3-3位置,此时压头的实际压入深度为h3。
洛氏硬度就是以主载荷所引起的残余压入深度(h=h3-h1)来表示。
但这样直接以压入深度的大小表示硬度,将会出现硬的金属硬度值小,而软的金属硬度值大的现象,这与布氏硬度所标志的硬度值大小的概念相矛盾。
为了与习惯上数值越大硬度越高的概念相一致,采用一常数(K)减去(h3-h1)的差值表示硬度值。
为简便起见又规定每0.002mm压入深度作为一个硬度单位(即刻度盘上一小格)。
洛氏硬度值的计算公式如下:002.0)(13h h K HR --=式中:h 1——预加载荷压入试样的深度(mm );h 3——卸除主载荷后压入试样的深度(mm );K ——常数,采用金刚石圆锥时K =0.2(用于HRA 、HRC );采用钢球时K =0.26(用于HRB )。
因此上式可改为: HRC (或HRA )=002.010013h h --HRB =002.013013h h --(二)洛氏硬度试验机的结构和操作1、H-100型杠杆式洛氏硬度试验机的结构 如图4所示,其主要部分及作用如下:(1)机体及工作台:试验机有坚固的铸铁机体,在机体前面安装有不同形状的工作台,通过手轮的转动,借助螺杆的上下移动而使工作台上升或下降。