二次函数销售问题
二次函数的应用大题专练(七大类型)-2023年中考数学压轴题(解析版)
二次函数的应用大题专练(七大类型)题型一:考向分析1类型一、销售问题1(2023·浙江湖州·统考一模)为鼓励大学毕业生自主创业,某市政府出台相关政策,本市企业提供产品给大学毕业生自主销售,政府还给予大学毕业生一定补贴.已知某种品牌服装的成本价为每件100元,每件政府补贴20元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=-3x+900.(1)若第一个月将销售单价定为160元,政府这个月补贴多少元?(2)设获得的销售利润(不含政府补贴)为w(元),当销售单价为多少元时,每月可获得最大销售利润?(3)若每月获得的总收益(每月总收益=每月销售利润+每月政府补贴)不低于28800元,求该月销售单价的最小值.【答案】(1)8400元(2)200元(3)140元【解析】(1)解:在y=-3x+900中,令x=160,则y=420,∴政府这个月补贴420×20=8400元;(2)由题意可得:w=-3x+9002+30000,x-100=-3x-200∵a=-3<0,∴当x=200时,w有最大值30000.即当销售单价定为200元时,每月可获得最大利润30000元.(3)设每月获得的总收益为w ,由题意可得:w =-3x+9002+36300,=-3x-190x-100+20-3x+900令w =28800,则-3x-1902+36300=28800,解得:x=140或x=240,∵a=-3<0,则抛物线开口向下,对称轴为直线x=190,∴当140≤x≤240时,w≥28800,∴该月销售单价的最小值为140元.2类型二、图形面积问题2(2023春·湖北武汉·九年级校联考期中)春回大地,万物复苏,又是一年花季到.某花圃基地计划将如图所示的一块长40m,宽20m的矩形空地划分成五块小矩形区域.其中一块正方形空地为育苗区,另一块空地为活动区,其余空地为种植区,分别种植A,B,C三种花卉.活动区一边与育苗区等宽,另一边长是10m.A,B,C三种花卉每平方米的产值分别是2百元、3百元、4百元.(1)设育苗区的边长为x m,用含x的代数式表示下列各量:花卉A的种植面积是_____m2,花卉B的种植面积是______m2,花卉C的种植面积是_______m2.(2)育苗区的边长为多少时,A,B两种花卉的总产值相等?(3)若花卉A与B的种植面积之和不超过560m2,求A,B,C三种花卉的总产值之和的最大值.【答案】(1)(x2-60x+800);(-x2+30x);(-x2+20x),(2)32m或10m,(3)168000元【解析】(1)解:∵育苗区的边长为x m,活动区的边长为10m,∴花卉A的面积为:40-x20-x=(x2-60x+800)m2,花卉B的面积为:x40-x-10=(-x2+30x)m2,花卉C的面积为:x20-x=(-x2+20x)m2,故答案为:(x2-60x+800);(-x2+30x);(-x2+20x);(2)解:∵A,B花卉每平方米的产值分别是2百元、3百元,∴A,B两种花卉的总产值分别为2×x2-60x+800百元和3×-x2+30x百元,∵A,B两种花卉的总产值相等,∴200×x2-60x+800=300×-x2+30x,∴x2-42x+320=0,解方程得x=32或x=10,∴当育苗区的边长为32m或10m时,A,B两种花卉的总产值相等;(3)解:∵花卉A与B的种植面积之和为:x2-60x+800+-x2+30x=(-30x+800)m2,∴-30x+800≤560,∴x≥8,∵设A,B,C三种花卉的总产值之和y百元,∴y=2x2-60x+800+3-x2+30x,+4-x2+20x∴y=-5x2+50x+1600,∴y=-5(x-5)2+1725,∴当x≥8时,y随x的增加而减小,∴当x=8时,y最大,且y=-5(8-5)2+1725=1680(百元),故A,B,C三种花卉的总产值之和的最大值168000元.3类型三、拱桥问题3(2023·安徽黄山·统考一模)如图,国家会展中心大门的截面图是由抛物线ADB 和矩形OABC 构成.矩形OABC 的边OA =34米,OC =9米,以OC 所在的直线为x 轴,以OA 所在的直线为y 轴建立平面直角坐标系,抛物线顶点D 的坐标为92,245.(1)求此抛物线对应的函数表达式;(2)近期需对大门进行粉刷,工人师傅搭建一木板OM ,点M 正好在抛物线上,支撑MN ⊥x 轴,ON =7.5米,点E 是OM 上方抛物线上一动点,且点E 的横坐标为m ,过点E 作x 轴的垂线,交OM 于点F .①求EF 的最大值.②某工人师傅站在木板OM 上,他能刷到的最大垂直高度是125米,求他不能刷到大门顶部的对应点的横坐标的范围.【答案】(1)y =-15x -92 2+245;(2)①当m =72时,EF 有最大值165;②32<m <112.【解析】(1)解:由题意知,抛物线顶点D 的坐标为92,245,设抛物线的表达式为y =a x -92 2+245,将点A 0,34 代入抛物线解析式得34=a 0-92 2+245,解得a =-15,∴抛物线对应的函数的表达式为y =-15x -92 2+245;(2)解:①将x =7.5代入y =-15x -92 2+245中,得y =3,∴点M 152,3 ,∴设直线OM 的解析式为y =kx k ≠0 ,将点M 152,3 代入得152k =3,∴k =25,∴直线OM 的解析式为y =25x ,∴EF =-15m -92 2+245-25m =-15m 2+75m +34=-15m -72 2+165,∵-15<0,∴当m =72时,EF 有最大值,为165;②∵师傅能刷到的最大垂直高度是125米,∴当EF >125时,他就不能刷到大门顶部,令EF =125,即-15m -72 2+165=125,解得m 1=32,m 2=112,又∵EF 是关于m 的二次函数,且图象开口向下,∴他不能刷到大门顶部的对应点的横坐标m 的范围是32<m <112.4类型四、投球问题4(2023·浙江丽水·统考一模)某天,小明在足球场上练习“落叶球”(如图1),足球运动轨迹是抛物线的一部分,如图2,足球起点在A 处,正对一门柱CD ,距离AC =12m ,足球运动到B 的正上方,到达最高点2.5m ,此时AB =10m .球门宽DE =5m ,高CD =2m .(1)以水平方向为x 轴,A 为原点建立坐标系,求足球运动轨迹抛物线的函数表达式.(2)请判断足球能否进球网?并说明理由.(3)小明改变踢球方向,踢球时,保持足球运动轨迹抛物线形状不变的前提下,足球恰好在点E 处进入球网.若离A 点8m 处有人墙GH ,且GH ∥CF ,人起跳后最大高度为2.2m ,请探求此时足球能否越过人墙,并说明理由.【答案】(1)足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5(2)足球不能进球网,理由见解析(3)足球能越过人墙,理由见解析【解析】(1)解:由题意得抛物线的顶点坐标为-10,2.5 ,设抛物线的函数表达式为y =a x +10 2+2.5,将0,0 代入得,0=100a +2.5,解得a =-140,∴足球运动轨迹抛物线的函数表达式为y =-140x +10 2+2.5;(2)解:足球不能进球网,理由如下:当x =-12时,y =-140-12+10 2+2.5=2.4,∵2.4>2,∴足球不能进球网.(3)解:足球能越过人墙,理由如下:∵足球运动轨迹抛物线形状不变,并经过点0,0 ,∴设抛物线的函数表达式为y =-140x 2+bx .如图,由题意知,四边形CDEF 是矩形,则CF =DE =5,在Rt △ACF 中,由勾股定理得AF =AC 2+CF 2=13,∵足球恰好在点E 处进入球网,∴抛物线经过点-13,2 ,将-13,2 代入得,2=-140×-13 2-13b ,解得b =-249520,∴y =-140x 2-249520x ,∵GH ∥CF ,∴△AGH ∽△ACF ,∴AH AF =AG AC ,即AH 13=812,解得AH =263,把x =-263代入得,y =-140×-263 2-249520×-263 =409180,∵409180>2.2,∴足球能越过人墙.5类型五、喷水问题5(2023·山东潍坊·统考一模)如图①,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度OH =1.5米.如图②,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图象;把绿化带横截面抽象为矩形DEFG ,其水平宽度DE =2米,竖直高度EF =1米.下边缘抛物线可以看作由上边缘抛物线向左平移得到,上边缘抛物线最高点A 离喷水口的水平距离为2米,高出喷水口0.5米,灌溉车到l 的距离OD 为d 米.(1)求上边缘抛物线的函数表达式,并求喷出水的最大射程OC ;(2)求下边缘抛物线与x 轴的正半轴交点B 的坐标;(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带(即矩形DEFC 位于上边缘抛物线和下边缘抛物线所夹区域内),求d 的取值范围.【答案】(1)6米(2)y=-18x+22+2,2,0(3)2≤d≤22【解析】(1)解:如图,由题意得A2,2是上边缘抛物线的顶点,则设y=a x-22+2.又∵抛物线经过点0,1.5,∴4a+2=1.5,∴a=-18.∴上边缘抛物线的函数解析式为y=-18x-22+2.当y=0时,-18x-22+2=0,∴x1=6,x2=-2(舍去).∴喷出水的最大射程OC为6m.(2)法一:∵上边缘抛物线对称轴为直线x=2,∴点0,1.5的对称点为4,1.5,∴下边缘抛物线是由上边缘抛物线向左平移4m得到的,∴将点C向左平移4m得到点B的坐标为2,0法二:∵下边缘抛物线可以看做是上边缘抛物线向左平移t个单位长度得到的,∴可设y=-18x+t-22+2,将点0,1.5代入得t1=4,t2=0(舍去)∴下边缘抛物线的关系式为y=-18x+22+2,∴当y=0时,0=-18x+22+2,解得x1=2,x2=-6(舍去),∴点B的坐标为2,0;(3)解:如图,先看上边缘抛物线,∵EF=1,∴点F的纵坐标为1.当抛物线恰好经过点F时,-18x-22+2=1.解得x=2±22,∵x>0,∴x=2+22.当x>0时,y随着x的增大而减小,∴当2≤x≤6时,要使y≥1,则x≤2+22.∵当0≤x<2时,y随x的增大而增大,且x=0时,y=1.5>0.5,∴当0≤x≤6时,要使y≥0.5,则0≤x≤2+22.∵DE=2,灌溉车喷出的水要浇灌到整个绿化带,∴d的最大值为2+22-2=22.再看下边缘抛物线,喷出的水能浇灌到绿化带底部的条件是OB ≤d ,∴d 的最小值为2.综上所述,d 的取值范围是2≤d ≤22.6类型六、几何动点问题1例6.(2023·山东青岛·统考一模)如图,在四边形ABCD 中,AB ∥CD ,∠ABC =90°,AB =8cm ,BC =6cm ,AD =10cm ,点P 、Q 分别是线段CD 和AD 上的动点.点P 以2cm/s 的速度从点D 向点C 运动,同时点Q 以1cm s 的速度从点A 向点D 运动,当其中一点到达终点时,两点停止运动,将PQ 沿AD 翻折得到QP ,连接PP 交直线AD 于点E ,连接AC 、BQ .设运动时间为t s ,回答下列问题:(1)当t 为何值时,PQ ∥AC ?(2)求四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式;(3)是否存在某时刻t ,使点Q 在∠PP D 平分线上?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)t =409(2)S =35t 2-425t +72(3)存在,t =5【解析】(1)解:过点A 作AK ⊥CD 于点K ,∵∠ABC =90°,AB =8,BC =6,∴由勾股定理得AC =AB 2+BC 2=10,∵AD =10cm ,∴AC =AD ,∴△ACD 是等腰三角形,∴CD =2CK ,又∵AB ∥CD ,∴∠ABC =∠BCD =∠AKC =90°,∴四边形ABCK 是矩形,∴CK =AB =8,∴CD =16,若PQ ∥AC ,∴DP DC =DQ DA,由题意得,DP =2t ,AQ =t 则DQ =10-t ,∴2t 16=10-t 10,解得t =409,所以,t =409时,PQ ∥AC ;(2)过点Q 作QT ⊥CD ,交CD 于点T ,交AB 于点H ,∴AK =HT =BC =6,由(1)知CK =DK =8,AD =10,∴cos ∠D =DK AD =45,∴sin ∠D =AK AD=35=QT DQ =QT 10-t ,∴QT =6-35t ,∴QH =6-6-35t =35t ,∵四边形BCPQ 的面积=S ΔABC +S ΔACD -S ΔPQD -S ΔABQ =12⋅AB ⋅BC +12⋅CD ⋅AK -12⋅DP ⋅QT -12⋅AB ⋅QH ∴S =12×8×6+12×16×6-12⋅2t ⋅6-35t -12×8⋅35t ,整理得S =35t 2-425t +72,即四边形BCPQ 的面积S cm 2 关于时间t s 的函数关系式为S =35t 2-425t +72;(3)如图,设PP 交AD 于点E ,过点Q 作QF ⊥DP 于点F ,由折叠的性质得∠ADP =∠ADP ,PP ⊥AD ,∵AD 平分∠PDP ,QT ⊥PD ,QF ⊥P D ,∴QT =QF =6-35t ,∵点Q 在∠PP D 平分线上,PP ⊥AD ,QF ⊥P D ,∴QF =QE =6-35t ,∴DE =DQ +EQ =10-t +6-35t =16-85t ,∵cos ∠EDP =DE DP=45,即16-85t 2t =45,解得t =5,经检验t =5是分式方程的解且符合题意,所以t =5时,点Q 在∠PP D 平分线上.7类型七、图形运动问题7(2023·天津·校联考一模)在平面直角坐标系中,O 为原点,四边形AOBC 是正方形,顶点A -4,0 ,点B 在y 轴正半轴上,点C 在第二象限,△MON 的顶点M 0,5 ,点N 5,0 .(1)如图①,求点B ,C 的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形A O B C ,点A ,O ,B ,C 的对应点分别为A ,O ,B ,C .设OO =t ,正方形A O B C 与△MON 重合部分的面积为S .①如图②,当1<t ≤4时,正方形A O B C 与△MON 重合部分为五边形,直线B C 分别与y 轴,MN 交于点E ,F ,O B 与MN 交于点H ,试用含t 的式子表示S ;②若平移后重合部分的面积为92,则t 的值是_______(请直接写出结果即可).【答案】【答案】(1)B 0,4 ,C -4,4(2)①S =-12t 2+5t -12;②5-15或6【解析】(1)解:由A -4,0 ,得AO =4,∵四边形AOBC 正方形,∴OB =BC =4.∴B 0,4 ,C -4,4 ;(2)解:①∵M 0,5 ,N 5,0 ,∠MON =90°,∴OM =ON =5,∠OMN =∠ONM =45°.由平移知,四边形A O B C 是正方形,得B C =4,∠B =∠B O O =90°.∴四边形OO B E 是矩形.∴B E =OO =t ,OE =B O =4,∠B EM =90°.∴∠EFM =45°,∴EF =ME =1,B F =t -1.∵∠B FH =∠EFM =45°,∴∠B HF =45°.∴B H =B F =t -1.当1<t ≤4时,S =OO ⋅OE -12B H ⋅B F =4t -12(t -1)2=-12t 2+5t -12.②当1<t ≤4时,由题意得S =-12t 2+5t -12=92,解得t=5-15或5+15(舍去);当t=5时,点O 与点N重合,此时S=12×4×4=8>92,∴5<t<9,∴A N=A F=9-t,由题意得129-t2=92,解得t=6或t=12(舍去);综上,t的值是5-15或6.故答案为:5-15或6.题型二:压轴题速练1一.解答题(共24小题)1(2023•宁波一模)抗击疫情期间,某商店购进了一种消毒用品,进价为每件8元,销售过程中发现,该商品每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数),部分对应值如下表:每件售价(元)91113每天的销售量(件)1059585(1)求y与x的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元.(3)设该商店销售这种消毒用品每天获利w(元),问:当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【答案】(1)y=-5x+150(8≤x≤15);(2)13元;(3)当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.【解析】解:(1)设y与x的函数关系式为y=kx+b,(8≤x≤15),将(9,105),(11,95)代入得105=9k+b95=11k+b,解得k=-5b=150,∴y=-5x+150,∴y与x的函数关系式为y=-5x+150(8≤x≤15);(2)由题意知,利润w=(x-8)(-5x+150)=-5(x-19)2+605,令w=425,则-5(x-19)2+605=425,解得x=13或x=25(不合题意,舍去),∴每件消毒用品的售价为13元;(3)由(2)知w=-5(x-19)2+605(8≤x≤15),∵-5<0,∴当8≤x≤15时,w随着x的增大而增大,∴当x=15时,w=525,此时利润最大,∴当每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.2(2023•莱西市一模)某公司电商平台经销一种益智玩具,先用3000元购进一批.售完后,第二次购进时,每件的进价提高了20%,同样用3000元购进益智玩具的数量比第一次少了25件.销售时经市场调查发现,该种益智玩具的周销售量y(件)是关于售价x(元/件)的一次函数,如表仅列出了该商品的售价x(元/件),周销售量y(件)的三组对应值数据.x407090y1809030(1)求第一次每件玩具的进价;(2)求y关于x的函数解析式;(3)售价x为多少时,第一周的销售利润W最大?并求出此时的最大利润.【答案】(1)第一次每件玩具的进价为20元(2)y=-3x+300(3)当x=60时,第一周的销售利润W最大,此时的最大利润为4800元【解析】解:(1)设第一次每件玩具的进价为m元,则第二次每件玩具的进价为(1+20%)m元,由题意得,3000 m -3000(1+20%)m=25,解得m=20,经检验m=20是原方程的解且符合题意,答:第一次每件玩具的进价为20元;(2)设y=kx+b,把x=40,y=180;x=70,y=9分别代入得,40k+b=180 70k+b=90,解得k=-3b=300,∴y=-3x+300,即y关于x的函数解析式是y=-3x+300;(3)W=y(x-20)=(-3x+300)(x-20)=-3x2+360x-6000=-3(x-60)2+4800,∵a=-3<0,抛物线开口向下,∴当x=60时,第一周的销售利润W最大,此时的最大利润为4800.3(2023•天山区一模)一名高校毕业生响应国家创业号召,回乡承包了一个果园,并引进先进技术种植一种优质水果,经核算这批水果的种植成本为16元/千克、设销售时间为x(天),通过一个月(30天)的试销,该种水果的售价P(元/千克)与销售时间x(天)满足如图所示的函数关系(其中0≤x≤30,且x为整数).已知该种水果第一天销量为60千克,以后每天比前一天多售出4千克.(1)直接写出售价P(元/千克)与销售时间x(天)的函数关系式;(2)求试销第几天时,当天所获利润最大,最大利润是多少?【答案】(1)P=-12x+3424(20<x≤30) ;(2)试销第30天时,当天所获利润最大,最大利润是1408元.【解析】解:(1)当0≤x≤20时,设售价P(元/千克)与销售时间x(天)的函数关系式为P=kx+b,把(0,34),(20,24)代入得20k+b=24b=34,j解得k=-12b=34,∴P=-12x+34;由函数图象可知当20<x≤30时,P=24;综上所述,P=-12x+3424(20<x≤30) ;(2)设第x天的利润为W,∵该种水果第一天销量为60千克,以后每天比前一天多售出4千克,∴第x天的销售量为60+4(x-1)=(4x+56)千克,当0≤x≤20时,∴W=-12x+34-16(4x+56)=-2x2+72x-28x+1008=-2x2+44x+1008=-2(x-11)2+1250∵-2<0,∴当x=11时,W最大,最大为1250;当20<x≤30时,W=(24-16)(4x+56)=32x+448,∵32>0,∴当x=30时,W最大,最大为32×30+448=1408;∵1408>1250,∴试销第30天时,当天所获利润最大,最大利润是1408元.4(2023•武汉模拟)某市新建了一座室内滑雪场,该滑雪场地面积雪厚达40cm,整个赛道长150m,全天共可容纳约3300人滑雪嬉戏.小明和小华相约去体验滑雪,小明从赛道顶端A处下滑,测得小明离A处的距离s(单位:m)随运动时间x(单位:s)变化的数据,整理得下表.滑行时间x/s01234滑行距离s/m06142436经验证小明离A 处的距离s 与运动时间x 之间是二次函数关系.小明出发的同时,小华在距赛道终点30m 的B 处操控一个无人机沿着赛道方向以2m/s 的速度飞向小明,无人机离A 处的距离y (单位:m )与运动时间x (单位:s )之间是一次函数关系.(1)直接写出s 关于x 的函数解析式和y 关于x 的函数解析式(不要求写出自变量的取值范围);(2)小明滑完整个赛道需要耗时多久?(3)小明出发多久后与无人机相遇?【答案】(1)s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)小明滑完整个赛道需要耗时10s ;(3)小明出发8s 与无人机相遇.【解析】解:(1)设s 关于x 的函数解析式为s =ax 2+bx +c ,将(0,0),(1,6),(2,14)代入得:c =0a +b +c =64a +2b +c =14 ,解得a =1b =5c =0,∴s =x 2+5x ;根据题意得y =150-30-2x =-2x +120,∴s 关于x 的函数解析式为s =x 2+5x ,y 关于x 的函数解析式为y =-2x +120;(2)在s =x 2+5x 中,令s =150得:150=x 2+5x ,解得x =10或x =-15(舍去),∴小明滑完整个赛道需要耗时10s ;(3)由x 2+5x =-2x +120得:x =8或x =-15,∴小明出发8s 与无人机相遇.5(2023•邯郸模拟)将小球(看作一点)以速度v 1竖直上抛,上升速度随时间推移逐渐减少直至为0,此时小球达到最大高度,小球相对于抛出点的高度y (m )与时间t (s )的函数解析式为两部分之和,其中一部分为速度v 1(m/s )与时间t (s )的积,另一部分与时间t (s )的平方成正比.若上升的初始速度v 1=10m/s ,且当t =1s 时,小球达到最大高度.(1)求小球上升的高度y 与时间t 的函数关系式(不必写范围),并写出小球上升的最大高度;(2)如图,平面直角坐标系中,y 轴表示小球相对于抛出点的高度,x 轴表示小球距抛出点的水平距离,向上抛出小球时再给小球一个水平向前的均匀速度v 2(m/s ),发现小球运动的路线为一抛物线,其相对于抛出点的高度y (m )与时间t (s )的函数解析式与(1)中的解析式相同.①若v 2=5m/s ,当t =32s 时,小球的坐标为 152,154 ,小球上升的最高点坐标为(5,5);求小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式;②在小球的正前方的墙上有一高3536m 的小窗户PQ ,其上沿P 的坐标为6,154,若小球恰好能从窗户中穿过(不包括恰好去中点P ,Q ,墙厚度不计),请直接写出小球的水平速度v 2的取值范围.【答案】(1)y =-5t 2+10t ,小球上升的最大高度是5m ;(2)①152,154 ;(5,5);y =-15x 2+2x ;②185<v 2<4.【解析】解:(1)根据题意可设y =at 2+10t ,∵当t =1s 时,小球达到最大高度,∴抛物线y =at 2+10t 的对称轴为直线t =1,即-102a=1,解得a =-5,∴上升的高度y 与时间t 的函数关系式为y =-5t 2+10t ,在y =-5t 2+10t 中,令t =1得y =5,∴小球上升的最大高度是5m ;(2)①当t =32s 时,y =-5×32 2+10×32=154,x =v 2t =5×32=152,∴小球的坐标为152,154;由(1)可知,t =1s 时,取得最大高度,x =v 2t =5×1=5,∴小球上升的最高点坐标为(5,5);由题意可知,x =v 2t ,∴t =x v 2=x 5,∴y =-5×x 5 2+10×x 5=-15x 2+2x ;∴小球上升的高度y 与小球距抛出点的水平距离x 之间的函数关系式是y =-15x 2+2x ;故答案为:152,154 ;(5,5);②∵PQ =3536m ,P 的坐标为6,154 ,∴Q 6,259;当小球刚好击中P 点时,-5t 2+10t =154,解得t =1.5或t =0.5,∵t >1,∴t =1.5,此时v 2=6t=4m/s ,当小球刚好击中Q 点时,-5t 2+10t =259,解得t =53或t =13,∵t >1,∴t =53,此时v 2=6t =185m/s ,∴v 2的取值范围为:185<v 2<4.6(2023•崂山区一模)跳台滑雪简称“跳雪”,选手不借助任何外力、从起滑台P 处起滑,在助滑道PE 上加速,从跳台E 处起跳,最后落在山坡MN 或者水平地面上.运动员从P 点起滑,沿滑道加速,到达高度OE =42m 的E 点后起跳,运动员在空中的运动轨迹是一条抛物线.建立如图所示平面直角坐标系,OM =38m ,ON =114m ,设MN 所在直线关系式为y =kx +b .甲运动员起跳后,与跳台OE 水平距离xm 、竖直高度ym 之间的几组对应数据如下:水平距离x /m 010203040竖直高度y /m4248504842(1)求甲运动员空中运动轨迹抛物线的关系式;(2)运动员得分由距离得分+动作分+风速得分组成距离得分:运动员着陆点到跳台OE 水平距离为50m ,即得到60分,每比50m 远1米多得2分;反之,当运动员着陆点每比50m 近1米扣2分.距离分计算采取“2舍3入法”,如60.2米计为60米,60.3米则计为60.5米.动作得分:由裁判根据运动员空中动作的优美程度打分.风速得分:由逆风或者顺风决定.甲运动员动作分、风速加分如下表:距离分动作分风速加分50-2.5请你计算甲运动员本次比赛得分.【答案】(1)y =-150x 2+45x +42;(2)甲运动员本次比赛得分为147.5分.【解析】解:(1)∵抛物线经过点(10,48),(30,48),∴对称轴是:直线x =10+302=20,∴顶点坐标为(20,50),设甲运动员空中运动轨迹抛物线的关系式为:y =a (x -20)2+50,将(0,42)代入得:a (0-20)2+50=42,∴a =-150,∴甲运动员空中运动轨迹抛物线的关系式为:y =-150(x -20)2+50=-150x 2+45x +42;(2)根据题意可得,当y =0时,即-150(x -20)2+50=0,解得:x 1=70,x 2=-30(舍),则60+2×(70-50)+50+(-2.5)=147.5,所以甲运动员本次比赛得分为147.5分.7(2023•镇平县模拟)为培养学生劳动实践能力,某学校在校西南角开辟出一块劳动实践基地.如图①是其中蔬菜大棚的横截面,它由抛物线AED 和矩形ABCD 构成.已知矩形的长BC =12米,宽AB =3米,抛物线最高点E 到地面BC 的距离为6米.(1)按图①所示建立平面直角坐标系,求抛物线AED 的解析式;(2)冬季到来,为防止大雪对大棚造成损坏,学校决定在大棚两侧安装两根垂直于地面且关于y 轴对称的支撑柱PQ 和NM ,如图②所示.①若两根支撑柱的高度均为5.25米,求两根支撑柱之间的水平距离;②为了进一步固定大棚,准备在两根支撑柱上架横梁PN ,搭建成一个矩形“脚手架”PQMN ,为了筹备材料,需求出“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值,请你帮管理处计算一下.【答案】(1)抛物线AED 的解析式为:y =-112x 2+6;(2)①两根支撑柱之间的水平距离为6米;②“脚手架”三根支杆PQ ,PN ,MN 的长度之和w 的最大值为18米.【解析】解:(1)∵四边形ABCD 是矩形,∴AD =BC =12(米),∴点A (-6,3),点D (6,3),根据题意和图象可得,顶点E 的坐标为(0,6),∴可设抛物线AED 的解析式为:y =ax 2+6,把点A (-6,3)代入解析式可得:36a +6=3,解得:a =-112,∴抛物线AED 的解析式为:y =-112x 2+6;(2)①当y =5.25时,-112x 2+6=5.25,解得x =±3,3-(-3)=3+3=6(米),∴两根支撑柱之间的水平距离为6米;②设N点坐标为m,-112m2+6,则MQ=2m,MN=-112m2+6,∴w=2m+2-112m2+6=-16m2+2m+12=-16(m-6)2+18,∵-16<0,∴当m=6时,w有最大值,最大值为18,∴“脚手架”三根支杆PQ,PN,MN的长度之和w的最大值为18米.8(2023•宝应县一模)科学研究表明:一般情况下,在一节45分钟的课堂中,学生的注意力随教师讲课的时间变化而变化.经过实验分析,在0≤x≤8时,学生的注意力呈直线上升,学生的注意力指数y与时间x(分钟)满足关系y=2x+68,8分钟以后,学生的注意力指数y与时间x(分钟)的图象呈抛物线形,到第16分钟时学生的注意力指数y达到最大值92,而后学生的注意力开始分散,直至下课结束.(1)当x=8时,注意力指数y为84,8分钟以后,学生的注意力指数y与时间x(分钟)的函数关系式是y=-18x2+4x+60;(2)若学生的注意力指数不低于80,称为“理想听课状态”,则在一节45分钟的课中学生处于“理想听课状态”所持续的时间有多长?(精确到1分钟)(3)现有一道数学压轴题,教师必须持续讲解24分钟,为了使效果更好,要求学生的注意力指数在这24分钟内的最低值达到最大,则该教师上课后从第几分钟开始讲解这道题?(精确到1分钟)(参考数据:6≈2.449)【答案】(1)84,y=-18x2+4x+60;(2)在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.【解析】解:(1)根据题意,把x=8代入y=2x+68可得:y=84,由题意可知,抛物线的顶点坐标为(16,92),∴可设抛物线的解析式为:y=a(x-16)2+92,把(8,84)代入可得:64a+92=84,解得:a=-1 8,∴y=-18(x-16)2+92=-18x2+4x+60,故答案为:84,y=-18x2+4x+60;(2)由学生的注意力指数不低于80,即y≥80,当0≤x≤8时,由2x+68≥80可得:6≤x≤8;当8<x≤45是,则-18x2+4x+60≥80,即-18(x-16)2+92≥80,整理得:(x-16)2≤96,解得:8<x≤16+46,∴16+46-6=10+46≈20(分钟),答:在一节45分钟的课中学生处于“理想听课状态”所持续的时间约有20分钟;(3)设教师上课后从第t分钟开始讲解这道题,∵10+46<24,∴0≤t<6,要使学生的注意力指数在这24分钟内的最低值达到最大,则当x=t和当x=t+24时对应的函数值相同,即2t+68=-18(t+24-16)2+92,整理得:(t+16)2=384,解得:t1=86-16,t2=-86-16(舍),∴t≈4,答:教师上课后从第4分钟开始讲解这道题,能使学生的注意力指数在这24分钟内的最低值达到最大.9(2023•昭阳区一模)新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?【答案】(1)y=-2x2+20x+400;(2)若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.【解析】解:(1)由题意可得:销售量=(20+2x)套,则y=(20+2x)(140-x-100)=(2x+20)(40-x)=-2x2+60x+800,∴y与x的函数关系式为:y=-2x2+60x+800;(2)由题意可得:当y=1200时,即-2x2+60x+800=1200,解得:x1=10,x2=20,∴140-10=130(元),140-20=120(元),答:若要书店每天盈利1200元,则每套书销售定价应为130元或120元;(3)由(1)可知:y=-2x2+60x+800=-2(x-15)2+1250,∵-2<0,∴当x=15时,y有最大值,最大值为1250,此时,售价=140-15=125(元),答:当每套书销售定价为125元时,书店一天可获得最大利润,最大利润为1250元.10(2023•大丰区一模)比萨斜塔是意大利的一座著名斜塔,据说物理学家伽利略曾在塔顶上做过著名的自由落体试验:在地球上同一地点,不同质量的物体从同一高度同时下落,如果除地球引力外不考虑其他外力的作用,那么它们的落地时间相同.已知:某建筑OA的高度为44.1m,将一个小铁球P(看成一个点)从A处向右水平抛出,在水平方向小铁球移动的距离d(m)与运动时间t(s)之间的函数表达式是:d=7t,在竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2.以点O为坐标原点,水平向右为x轴,OA所在直线为y轴,取1m为单位长度,建立如图所示平面直角坐标系,已知小铁球运动形成的轨迹为抛物线.(1)求小铁球从抛出到落地所需的时间;(2)当t=1时,求小铁球P此时的坐标;(3)求抛物线的函数表达式,并写出自变量x的取值范围.【答案】(1)小铁球从抛出到落地所需的时间为3秒;(2)(7,39.2);(3)y=-110x2+44.1(0≤x≤21).【解析】解:(1)根据题意可得,OA的高度为44.1m,且竖直方向物体的下落距离h(m)与下落时间t(s)之间的函数表达式为h=4.9t2,∴当h=44.1时,小铁球落到地面,∴4.9t2=44.1,解得:t1=3,t2=-3(舍),答:小铁球从抛出到落地所需的时间为3秒;(2)当t=1时,则d=7×1=7,h=4.9×12=4.9,∴y p=44.1-4.9=39.2,∴小铁球P此时的坐标为(7,39.2);(3)由(1)可知小铁球从抛出到落地所需的时间为3秒,∴d=7×3=21,∴OB=21(m),即B(21,0),根据题意可得,顶点坐标为A(0,44.1),∴可设抛物线解析式为:y=ax2+44.1,将点B(21,0)代入得:441a+44.1=0,解得:a=-1 10,∴抛物线的函数表达式为:y=-110x2+44.1(0≤x≤21).11(2023•南昌模拟)一个运动员跳起投篮,球的运行路线可以看做是一条抛物线,如图1所示,图2是它的示意图,球的出手点D到地面EB的距离为2.25m(即DE=2.25m,当球运行至F处时,水平距离为2.5m(即F到DE的距离为2.5m),达到最大高度为3.5m,已知篮圈中心A到地面EB的距离为3.05m,篮球架AB可以在直线EB上水平移动.(1)请建立恰当的平面直角坐标系,求该抛物线的解析式;(2)若篮球架离人的水平距离EB为4.5m,问该运动员能否将篮球投入篮圈?若能,说明理由;若不能,算一算将篮球架往哪个方向移动,移动多少距离,该运动员此次所投的篮球才能投入篮圈.。
沪科版九年级上册二次函数应用第讲销售利润问题
(1)当第5天和第35天该商品的销售单价为35元/件
(2)第21天时所获利润最大,最大利润为725元;
(3)2≤m≤5
(1)请计算第几天该商品的销售单价为35元/件;
(2)这40天中该加盟店第几天获得的利润最大?最大利润是多少?
(3)在实际销售的前20天中,公司为鼓励加盟店接收大学生参加实践活动决定每销售一件
【答案】(1)൝
1
=3
= 2700
(2)1 = 54, 2 = 36
(3)当生产135吨时,所获最大利润是3375万元
1-2、销售利润问题-图表信息
2-3(202X·东营模拟)某文具店经营某种品牌的文具盒,购进时的单价是30元,根据统计调查:在一段
时间内,销售单价是40元时,文具盒销售量是600个,而销售单价每涨2元,就会少售出20个文具盒.
商品就发给该加盟店m(m≥2)元嘉奖.通过该加盟店的销售记录发现,前10天中,每天获
得嘉奖后的利润随时间x(天)的增大而增大,求m的取值范围.
【分析】(1)分情况讨论,当1≤x≤20时和当21≤x≤40时的函数值为35,然后求得对应的x的值即可;
(2)分为当1≤x≤20时和当21≤x≤40时两种情况,列出与天数的函数关系式,然后利用二次函数和反比例函
值,
1
又函数图像的对称轴为 = 16 + 2 ∵a<4,
1
1
当 = 16 + 2 时,获利最大值为42100元,将 = 16 + 2 代入得,
解得a=1.2或a=37.4(舍)∴.a=1.2
1-2、销售利润问题-图表信息
2-2(202X·馆陶模拟)某公司把一种原料加工成产品进行销售,已知某月共加工原料x吨,恰好能生产相同吨数的
二次函数应用题-销售问题
二次函数应用题-销售问题1.(2013•孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?2.(2012•舟山)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为_________元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?3.(2012•茂名)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?4.(2013•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?5.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)6.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?7.(2008•凉山州)我州有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售.(1)设x天后每千克该野生菌的市场价格为y元,试写出y与x之间的函数关系式.(2)若存放x天后,将这批野生菌一次性出售,设这批野生菌的销售总额为P元,试写出P与x之间的函数关系式.(3)李经理将这批野生茵存放多少天后出售可获得最大利润W元?8.(2009•西藏)有一种葡萄:从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨0.2元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)设x天后每千克鲜葡萄的市场价为P元,写出P关于x的函数关系式;(2)若存放x天后将鲜葡萄一次性出售,设鲜葡萄的销售金额为y元,写出y关于x的函数关系式;(3)问个体户将这批葡萄存放多少天后出售,可获得最大利润,最大利润q是多少?9.(2010•青岛)某市政府大力扶持大学生创业,李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)10.(2013•鄂州)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?11.(2013•乌鲁木齐)某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y (万个)与x(元/个)的函数解析式.(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?12.(2013•铁岭)某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y的函数关系式:_________(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?13.(2012•朝阳)某商家经销一种绿茶,用于装修门面已投资3000元,已知绿茶每千克成本50元,在第一个月的(1)请根据上表,写出w与x之间的函数关系式(不必写出自变量x的取值范围);(2)求y与x之间的函数关系式(不必写出自变量x的取值范围).并求出x为何值时,y的值最大?(3)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?14.(2012•菏泽)牡丹花会前夕,我市某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销.经过调查,y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)菏泽市物价部门规定,该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?15.(2012•河北)某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长在(单位:cm)在5~50之间.每张薄板的成本价(单位:元)与它的面积(单位:cm2)成正比例,每张薄板的出厂价(单位:元)有基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的.浮动价与薄板的边长成正比例.在(2)已知出厂一张边长为40cm的薄板,获得的利润为26元(利润=出厂价﹣成本价),①求一张薄板的利润与边长之间满足的函数关系式.②当边长为多少时,出厂一张薄板所获得的利润最大?最大利润是多少?16.(2012•西藏)为了落实国家的惠农政策,某地政府制定了农户投资购买收割机的补贴办法,其中购买Ⅰ、Ⅱ型(1)分别求出y1和y2的函数解析式;(2)旺叔准备投资10万元购买Ⅰ、Ⅱ两型收割机.请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的补贴金额.17.(2012•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:(1)试判断y与x之间的函数关系,并求出函数关系式;(2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;(3)在(2)的条件下,若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.18.(2012•淮安)国家和地方政府为了提高农民种粮的积极性,每亩地每年发放种粮补贴120元.种粮大户老王今年种了150亩地,计划明年再承租50~150亩土地种粮以增加收入,考虑各种因素,预计明年每亩种粮成本y(元)与种粮面积x(亩)之间的函数关系如图所示:(1)今年老王种粮可获得补贴多少元?(2)根据图象,求y与x之间的函数关系式;(3)若明年每亩的售粮收入能达到2140元,求老王明年种粮总收入W(元)与种粮面积x(亩)之间的函数关系式.当种粮面积为多少亩时,总收入最高?并求出最高总收入.19.(2013•随州)某公司投资700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣投资成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.20.(2013•本溪)某蔬菜经销商到蔬菜种植基地采购一种蔬菜,经销商一次性采购蔬菜的采购单价y(元/千克)与采购量x(千克)之间的函数关系图象如图中折线AB﹣﹣BC﹣﹣CD所示(不包括端点A).(1)当100<x<200时,直接写y与x之间的函数关系式:_________.(2)蔬菜的种植成本为2元/千克,某经销商一次性采购蔬菜的采购量不超过200千克,当采购量是多少时,蔬菜种植基地获利最大,最大利润是多少元?(3)在(2)的条件下,求经销商一次性采购的蔬菜是多少千克时,蔬菜种植基地能获得418元的利润?21.(2013•朝阳)甲、乙两企业去年末都有利润积累,甲企业利润为300万元,甲企业认为:企业要可持续发展,必须进行自主创新和技术改造,由于投资更新等原因,甲企业的利润积累y甲(万元)与时间x(年)之间的函数图象呈抛物线(如图)乙企业的利润积累y乙(万元)每年增加50万元,预计第一年末(今年末)利润积累150万元.(1)乙企业去年末的利润积累是_________万元,乙企业利润积累y乙(万元)与时间x(年)之间的函数关系式为_________(不必写出自变量x的取值范围).(2)到第几年末,甲企业的利润积累重新达到去年末与乙企业利润积累的倍数关系?(3)改造初期,甲企业的利润积累逐渐减少,甚至会低于乙企业的利润积累.随着甲企业进入改造成长期,甲企业的利润积累重新高于乙企业的利润积累,试问第几年(保留整数位.参考数据:≈3.6)甲企业开始进入改造成长期?5年后(含5年)甲企业进入改造成熟期,效益将显现出来.改造成熟期,甲企业的利润积累最少会高于乙企业的利润积累多少万元?22.(2011•恩施州)宜万铁路开通后,给恩施州带来了很大方便.恩施某工厂拟用一节容积是90立方米、最大载重量为50吨的火车皮运输购进的A、B两种材料共50箱.已知A种材料一箱的体积是1.8立方米、重量是0.4吨;B种材料一箱的体积是1立方米、重量是1.2吨;不计箱子之间的空隙,设A种材料进了x箱.(1)求厂家共有多少种进货方案(不要求列举方案)?(2)若工厂用这两种材料生产出来的产品的总利润y(万元)与x(箱)的函数关系大致如下表,请先根据下表画出简图,猜想函数类型,求出函数解析式(求函数解析式不取近似值),确定采用哪种进货方案能让厂家获得最大23.(2012•重庆)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为.其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a﹣30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)24.(2013•沈阳)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x (小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为_________,其中自变量x的取值范围是_________;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.25.(2008•青海)王亮同学善于改进学习方法,他发现对解题过程进行回顾反思,效果会更好.某一天他利用30分钟时间进行自主学习.假设他用于解题的时间x(单位:分钟)与学习收益量y的关系如图甲所示,用于回顾反思的时间x(单位:分钟)与学习收益量y的关系如图乙所示(其中OA是抛物线的一部分,A为抛物线的顶点),且用于回顾反思的时间不超过用于解题的时间.(学习收益总量=解题的学习收益量+回顾反思的学习收益量)(1)求王亮解题的学习收益量y与用于解题的时间x之间的函数关系式,并写出自变量x的取值范围;(2)求王亮回顾反思的学习收益量y与用于回顾反思的时间x之间的函数关系式;(3)王亮如何分配解题和回顾反思的时间,才能使这30分钟的学习收益总量最大?26.(2009•荆州)由于国家重点扶持节能环保产业,某种节能产品的销售市场逐渐回暖,某经销商销售这种产品,年初与生产厂家签订了一份进货合同,约定一年内进价为0.1万元/台,并预付了5万元押金.他计划一年内要达到一定的销售量,且完成此销售量所用的进货总金额加上押金控制在不低于34万元,但不高于40万元.若一年内该产品的售价y(万元/台)与月次x(1≤x≤12且为整数)满足关系式:y=,一年后发现实际每月的销售量p(台)与月次x之间存在如图所示的变化趋势.(1)直接写出实际每月的销售量p(台)与月次x之间的函数关系式;(2)求前三个月中每月的实际销售利润w(万元)与月次x之间的函数关系式;(3)试判断全年哪一个月的售价最高,并指出最高售价;(4)请通过计算说明他这一年是否完成了年初计划的销售量.参考答案与试题解析一.解答题(共26小题)1.(2013•孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?2.(2012•舟山)某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出x辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为(1400﹣50x)元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?3.(2012•茂名)每年六七月份我市荔枝大量上市,今年某水果商以5元/千克的价格购进一批荔枝进行销售,运输过程中质量损耗5%,运输费用是0.7元/千克,假设不计其他费用.(1)水果商要把荔枝售价至少定为多少才不会亏本?(2)在销售过程中,水果商发现每天荔枝的销售量m(千克)与销售单价x(元/千克)之间满足关系:m=﹣10x+120,那么当销售单价定为多少时,每天获得的利润w最大?4.(2013•营口)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式.(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?5.(2012•黄冈)某科技开发公司研制出一种新型的产品,每件产品的成本为2400元,销售单价定为3000元,在该产品的试销期间,为了促销,鼓励商家购买该新型产品,公司决定商家一次购买这种新型产品不超过10件时,每件按3000元销售;若一次购买该种产品超过10件时,每多购买一件,所购买的全部产品的销售单价均降低10元,但销售单价均不低于2600元.(1)商家一次购买这种产品多少件时,销售单价恰好为2600元?(2)设商家一次购买这种产品x件,开发公司所获得的利润为y元,求y(元)与x(件)之间的函数关系式,并写出自变量x的取值范围.(3)该公司的销售人员发现:当商家一次购买产品的件数超过某一数量时,会出现随着一次购买的数量的增多,公司所获得的利润反而减少这一情况.为使商家一次购买的数量越多,公司所获得的利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)=356.(2013•咸宁)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?。
二次函数应用题含答案
二次函数应用题1、某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价5元,每星期可多卖出20件.1求商家降价前每星期的销售利润为多少元2降价后,商家要使每星期的销售利润最大,应将售价定为多少元最大销售利润是多少2、某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.1假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;不要求写自变量的取值范围2商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元3每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高最高利润是多少3、张大爷要围成一个矩形花圃.花圃的一边利用足够长的墙另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米.矩形ABCD 的面积为S 平方米.1求S 与x 之间的函数关系式不要求写出自变量x 的取值范围.2当x 为何值时,S 有最大值并求出最大值.参考公式:二次函数2y ax bx c =++0a ≠,当2b x a =-时,244ac b y a -=最大(小)值 4、某电视机生产厂家去年销往农村的某品牌电视机每台的售价y 元与月份x 之间满足函数关系502600y x =-+,去年的月销售量p 万台与月份x 之间成一次函数关系,其中两个月的销售情况如下表:月份 1月 5月销售量 万台 万台1求该品牌电视机在去年哪个月销往农村的销售金额最大最大是多少2由于受国际金融危机的影响,今年1、2月份该品牌电视机销往农村的售价都比去年12月份下降了%m ,且每月的销售量都比去年12月份下降了1.5m%.国家实施“家电下乡”政策,即对农村家庭购买新的家电产品,国家按该产品售价的13%给予财政补贴.受此政策的影响,今年3至5月份,该厂家销往农村的这种电视机在保持今年2月份的售价不变的情况下,平均每月的销售量比今年2月份增加了万台.若今年3至5月份国家对这种电视机的销售共给予了财政补贴936万元,求m 的值保留一位小数. 34 5.83135 5.91637 6.08338 6.1645、某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y 件与销售单价x 元符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.1求一次函数y kx b =+的表达式;2若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元3若该商场获得利润不低于500元,试确定销售单价x 的范围.6、某商场在销售旺季临近时 ,某品牌的童装销售价格呈上升趋势,假如这种童装开始时的售价为每件20元,并且每周7天涨价2元,从第6周开始,保持每件30元的稳定价格销售,直到11周结束,该童装不再销售;1请建立销售价格y 元与周次x 之间的函数关系;2若该品牌童装于进货当周售完,且这种童装每件进价z 元与周次x 之间的关系为12)8(812+--=x z , 1≤ x ≤11,且x 为整数,那么该品牌童装在第几周售出后,每件获得利润最大并求最大利润为多少71设该车间每月生产甲、乙两种塑料各x 吨,利润分别为1y 元和2y 元,分别求1y 和2y 与x 的函数关系式注:利润=总收入-总支出;2已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大最大利润是多少8、某水产品养殖企业为指导该企业某种水产品的养殖和销售,对历年市场行情和水产品养殖情况进行了调查.调查发现这种水产品的每千克售价1y 元与销售月份x 月满足关系式3368y x =-+,而其每千克成本2y 元与销售月份x 月满足的函数关系如图所示. 1试确定b c 、的值;2求出这种水产品每千克的利润y 元与销售月份x 月之间的函数关系式;3“五·一”之前,几月份出售这种水产品每千克的利润最大最大利润是多少二次函数应用题答案1、解:1 130-100×80=2400元2设应将售价定为x 元,则销售利润 130(100)(8020)5x y x -=-+⨯ 24100060000x x =-+-24(125)2500x =--+.y 2元月当125x =时,y 有最大值2500. ∴应将售价定为125元,最大销售利润是2500元.2、解:1(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭,即2224320025y x x =-++. 2由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. 3对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, 150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值. 所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.3、4、解:1设p 与x 的函数关系为(0)p kx b k =+≠,根据题意,得3.954.3.k b k b +=⎧⎨+=⎩,解得0.13.8.k b =⎧⎨=⎩,所以,0.1 3.8p x =+. 设月销售金额为w 万元,则(0.1 3.8)(502600)w py x x ==+-+.化简,得25709800w x x =-++,所以,25(7)10125w x =--+. 当7x =时,w 取得最大值,最大值为10125.答:该品牌电视机在去年7月份销往农村的销售金额最大,最大是10125万元.2去年12月份每台的售价为501226002000-⨯+=元,去年12月份的销售量为0.112 3.85⨯+=万台,根据题意,得2000(1%)[5(1 1.5%) 1.5]13%3936m m -⨯-+⨯⨯=.令%m t =,原方程可化为27.514 5.30t t -+=.t ∴==.10.528t ∴≈,2 1.339t ≈舍去 答:m 的值约为.5、解:1根据题意得65557545.k b k b +=⎧⎨+=⎩,解得1120k b =-=,. 所求一次函数的表达式为120y x =-+.2(60)(120)W x x =--+ 21807200x x =-+- 2(90)900x =--+, 抛物线的开口向下,∴当90x <时,W 随x 的增大而增大,而6087x ≤≤,∴当87x =时,2(8790)900891W =--+=.∴当销售单价定为87元时,商场可获得最大利润,最大利润是891元.3由500W =,得25001807200x x =-+-,整理得,218077000x x -+=,解得,1270110x x ==,. 由图象可知,要使该商场获得利润不低于500元,销售单价应在70元到110元之间,而6087x ≤≤,所以,销售单价x 的范围是7087x ≤≤.6、 解:1202(1)218(16)()......(2)30 (611)()......(4)x x x x y x x +-=+≤<⎧=⎨≤≤⎩为整数分为整数分 2设利润为w综上知:在第11周进货并售出后,所获利润最大且为每件1198元…10分 7.解: 1依题意得:1(2100800200)1100y x x =--=,2(24001100100)20000120020000y x x =---=-,2设该月生产甲种塑料x 吨,则乙种塑料(700)x -吨,总利润为W 元,依题意得:11001200(700)20000100820000W x x x =+--=-+. ∵400700400x x ⎧⎨-⎩≤,≤,解得:300400x ≤≤. ∵1000-<,∴W 随着x 的增大而减小,∴当300x =时,W 最大=790000元此时,700400x -=吨.因此,生产甲、乙塑料分别为300吨和400吨时总利润最大,最大利润为790000元.8、解:1由题意:22125338124448b c b c ⎧=⨯++⎪⎪⎨⎪=⨯++⎪⎩解得7181292b c ⎧=-⎪⎪⎨⎪=⎪⎩212y y y =-23115136298882x x x ⎛⎫=-+--+ ⎪⎝⎭21316822x x =-++; 321316822y x x =-++2111(1236)46822x x =--+++21(6)118x =--+ ∵108a =-<,∴抛物线开口向下.在对称轴6x =左侧y 随x 的增大而增大.由题意5x <,所以在4月份出售这种水产品每千克的利润最大. 最大利润211(46)111082=--+=元.。
2023年二轮复习解答题专题十七:二次函数的应用(销售利润问题)(原卷版)
2023年二轮复习解答题专题十七:二次函数的应用——销售利润问题方法点睛二次函数解决销售问题是我们生活中经常遇到的问题,这类问题通常是根据实际条件建立二次函数关系式,然后利用二次函数的最值或自变量在实际问题中的取值解决利润最大问题.典例分析例1:(2022青岛中考)李大爷每天到批发市场购进某种水果进行销售,这种水果每箱10千克,批发商规定:整箱购买,一箱起售,每人一天购买不超过10箱;当购买1箱时,批发价为8.2元/千克,每多购买1箱,批发价每千克降低0.2元.根据李大爷的销售经验,这种水果售价为12元/千克时,每天可销售1箱;售价每千克降低0.5元,每天可多销售1箱.(1)请求出这种水果批发价y(元/千克)与购进数量x(箱)之间的函数关系式;(2)若每天购进的这种水果需当天全部售完,请你计算,李大爷每天应购进这种水果多少箱,才能使每天所获利润最大?最大利润是多少?专题过关1. (2022鄂尔多斯中考)(10分)某超市采购了两批同样的冰墩墩挂件,第一批花了6600元,第二批花了8000元,第一批每个挂件的进价是第二批的1.1倍,且第二批比第一批多购进50个.(1)求第二批每个挂件的进价;(2)两批挂件售完后,该超市以第二批每个挂件的进价又采购一批同样的挂件,经市场调查发现,当售价为每个60元时,每周能卖出40个,若每降价1元,每周多卖10个,由于货源紧缺,每周最多能卖90个,求每个挂件售价定为多少元时,每周可获得最大利润,最大利润是多少?2.(2022荆门中考)(10分)某商场销售一种进价为30元/个的商品,当销售价格x(元/个)满足40<x <80时,其销售量y (万个)与x 之间的关系式为y =﹣x +9.同时销售过程中的其它开支为50万元.(1)求出商场销售这种商品的净利润z (万元)与销售价格x 函数解析式,销售价格x 定为多少时净利润最大,最大净利润是多少?(2)若净利润预期不低于17.5万元,试求出销售价格x 的取值范围;若还需考虑销售量尽可能大,销售价格x 应定为多少元?3. (2022宁波中考)为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ££,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克.(1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大产量?最大产量为多少千克?4. (2022广元中考)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?4. (2022滨州中考)某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件.假定每月的销售件数y 是销售价格x (单位:元)的一次函数.(1)求y 关于x 的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润.5. (2022营口中考)某文具店最近有A ,B 两款纪念册比较畅销,该店购进A 款纪念册5本和B 款纪念册4本共需156元,购进A 款纪念册3本和B 款纪念册5本共需130元.在销售中发现:A 款纪念册售价为32元/本时,每天的销售量为40本,每降低1元可多售出2本;B 款纪念册售价为22元/本时,每天的销售量为80本,B款纪念册每天的销售量与售价的之间满足一次函数关系,其部分对应数据如下表所示:售价(元/本)…22232425…每天销售量(本)…80787674…(1)求A ,B 两款纪念册每本的进价分别为多少元;(2)该店准备降低每本A 款纪念册的利润,同时提高每本B 款纪念册的利润,且这两款纪念册每天销售总数不变,设A 款纪念册每本降价m 元.①直接写出B 款纪念册每天的销售量(用含m 的代数式表示);②当A 款纪念册售价为多少元时,该店每天所获利润最大,最大利润多少?6. (2022盘锦中考)某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现.,日销售量y (个)与销售单价x (元)之间满足如图所示的一次函数关系.(1)求y 与x 的函数关系式(不要求写出自变量x 的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w 元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?7. (2022抚顺中考) 某超市以每件13元的价格购进一种商品,销售时该商品的销售单价不低于进价且不高于18元.经过市场调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足如图所示的一次函数关系.是(1)求y 与x 之间的函数关系式;(2)销售单价定为多少时,该超市每天销售这种商品所获的利润最大?最大利润是多少?8.(2022葫芦岛中考)(12分)某蔬菜批发商以每千克18元的价格购进一批山野菜,市场监督部门规定其售价每千克不高于28元.经市场调查发现,山野菜的日销售量y (千克)与每千克售价x (元)之间满足一次函数关系,部分数据如表:每千克售价x (元)……202224……日销售量y (千克)……666054……(1)求y 与x 之间的函数关系式;(2)当每千克山野菜的售价定为多少元时,批发商每日销售这批山野菜所获得的利润最大?最大利润为多少元?9. (2022铜仁中考)为实施“乡村振兴”计划,某村产业合作社种植了“千亩桃园”.2022年该村桃子丰收,销售前对本地市场进行调查发现:当批发价为4千元/吨时,每天可售出12吨,每吨涨1千元,每天销量将减少2吨,据测算,每吨平均投入成本2千元,为了抢占市场,薄利多销,该村产业合作社决定,批发价每吨不低于4千元,不高于5.5千元.请解答以下问题:(1)求每天销量y (吨)与批发价x (千元/吨)之间的函数关系式,并直接写出自变量x 的取值范围;(2)当批发价定为多少时,每天所获利润最大?最大利润是多少?10.(2022天门中考)(10分)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y (千克)与销售单价x (元/千克)有如下表所示的关系:销售单价x (元/千…2022.52537.540…克)销售量y (千克)…3027.52512.510…(1)根据表中的数据在如图中描点(x ,y ),并用平滑曲线连接这些点,请用所学知识求出y 关于x 的函数关系式;(2)设该超市每天销售这种商品的利润为w (元)(不计其它成本).①求出w 关于x 的函数关系式,并求出获得最大利润时,销售单价为多少;②超市本着“尽量让顾客享受实惠”的销售原则,求w =240(元)时的销售单价.11. (2022荆州中考)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y (万件)与售价x (元/件)之间满足函数关系式y =24-x ,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w (万元)与售价x 之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?12. (2022十堰中考)某商户购进一批童装,40天销售完毕.根据所记录的数据发现,日销售量y (件)与销售时间x (天)之间的关系式是203062403040x x y x x <£ì=í-+<£î,,,销售单价p (元/件)与销售时间x (天)之间的函数关系如图所示.(1)第15天的日销售量为_________件;(2)当030x <£时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?13 .(2022大庆中考) 果园有果树60棵,现准备多种一些果树提高果园产量.如果多种树,那么树之间的距离和每棵果树所受光照就会减少,每棵果树的平均产量随之降低.根据经验,增种10棵果树时,果园内的每棵果树平均产量为75kg .在确保每棵果树平均产量不低于40kg 的前提下,设增种果树x (0x >且x 为整数)棵,该果园每棵果树平均产量为kg y ,它们之间的函数关系满足如图所示的图象.(1)图中点P 所表示的实际意义是________________________,每增种1棵果树时,每棵果树平均产量减少____________kg ;(2)求y 与x 之间的函数关系式,并直接写出自变量x 的取值范围;(3)当增种果树多少棵时,果园的总产量(kg)w 最大?最大产量是多少?14. (2022贺州中考) 2022年在中国举办的冬奥会和残奥会令世界瞩目,冬奥会和残奥会的吉祥物冰墩墩和雪容融家喻户晓,成为热销产品,某商家以每套34元的价格购进一批冰墩墩和雪容融套件,若该产品每套的售价是48元时,每天可售出200套;若每套售价提高2元,则每天少卖4套.(1)设冰墩墩和雪容融套件每套售价定为x 元时,求该商品销售量y 与x 之间的函数关系式;(2)求每套售价定为多少元时,每天销售套件所获利润W 最大,最大利润是多少元?15. (2022北部湾中考) 打油茶是广西少数民族特有的一种民俗,某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y (盒)与销售单价x (元)之间的函数图像如图所示.(1)求y 与x 的函数解析式,并写出自变量x 的取值范围;(2)当销售单价定为多少元时,该种油茶月销售利润最大求出最大利润.16.(2022郑州一模) 某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入,试销的30天中,该村第一天卖出土特产42千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出6千克,第x 天的售价为y 元/千克,y 关于x 的函数解析式为y =()()821202030mx m x n x ì-£<ïí££ïî,x 为正整数,且第14天的售价为34元/千克,第27天的售价为27元/千克.已知土特产的成本是21元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m = ,n = ;(2)求每天的利润W 元与销售的天数x (天)之间的函数关系式;(3)在销售土特产的30天中,当天利润不低于1224元的共有多少天?17. (2022河南天一大联考)某体育用品专卖店新进一批篮球和足球,已知每个篮球的进的价比每个足球的进价多30元,用6000元购进篮球的数量与用4800元购进足球的数量相同.(1)求篮球、足球每个进价分别为多少元?(2)专卖店准备在进价基础上,篮球加价60%作为售价,足球加价50%作为售价.该专卖店平均每天卖出篮球120个,足球100个.为回馈顾客,减少库存,专卖店准备搞活动促销.经调查发现,篮球、足球的销售单价每降低10元,这两种商品每天都可多销售20个,为了使每天获取更大的利润,该专卖店决定把篮球、足球的销售单价都下降a 元.请通过计算说明,如何定价,专卖店才能获取最大利润.18. (2022河南商水二模)小强经营的网店以特色小吃为主,其中一品牌茶饼的进价为6元/袋,拟采取线上和线下两种方式进行销售.调查发现,线下的月销量y (单位:袋)与线下的售价x (单位:元/袋,1016x ££,且x 为整数)满足一次函数的关系,部分数据如下表所示.x (元/袋)1011121314y (袋)10090807060(1)求y 与x 的函数关系式.(2)若线上的售价始终比线下的售价每袋便宜1元,且线上的月销量固定为60袋.问当x 为多少时,线上和线下的月利润总和达到最大?并求出此时的最大利润.19.(2022河南虞城二模) 铁棍山药上有像铁锈一样的痕迹.故得名铁棍山药.某网店购进铁根山药若干箱.物价部门规定其销售单价不高于80元/箱,经市场调查发现:销件单价定为80元/箱时,每日销售20箱;如调整价格,每降价1元/箱,每日可多销售2箱.(1)已知某天售出铁棍山药70箱,则当天的销售单价为______元/箱.(2)该网店现有员工2名.每天支付员工的工资为每人每天100元,每天平均支付运费及其他费用250元,当某天的销售价为45元/箱时,收支恰好平衡.①铁棍山药的进价;②若网店每天的纯利润(收入-支出)全部用来偿还一笔15000元的贷款,则至少需多少天才能还清贷款?20. (2022平顶山一模)基商场以30元/台的价格购进500台新型电子产品,在销售过程中发现,其日销售量y (单位∶台)与销售单价x (单位∶元)之间存在如图所示的函数关系.(1)求y 与x 的函数关系式;(2)按物价部门规定,产品的利润率不得超过 80%,该电子产品每台最高售价为 元,此时的日销售量为台 ;(3)若按照日销售获得最大利润时的售价,计算商场销售完这批电子产品获得的总利润.21. (2022开封二模)“慈母手中线,游子身上衣”,为感恩母亲,许多子女选择用康乃馨这种鲜花来表达对母亲的祝福.某花店采购了一批康乃馨,进价是每支8元.当每支售价为12元时,可销售30支;当每支售价为10元时,可销售40支.在销售过程中,发现这种康乃馨的销售量y (支)是每支售价x (元)的一次函数()030x £<.(1)求y 与x 之间的函数关系式;(2)设此花店这种康乃馨的销售利润是w 元,根据题意:当销售单价为多少元时,商家获得利润最大.22. (2022河南安阳县一模)疫情期间,为满足市民防护需求,某药店想要购进A 、B 两种口罩,B 型口罩的每盒进价是A 型口罩的两倍少10元.用6000元购进A 型口罩的盒数与用10000元购进B 型口罩盒数相同.(1)A 、B 型口罩每盒进价分别为多少元?(2)经市场调查表明,B 型口罩受欢迎,当每盒B 型口罩售价为60元时,日均销量为100盒,B 型口罩每盒售价每增加1元,日均销量减少5盒.当B 型口罩每盒售价多少元时,销售B 型口罩所得日均总利润最大?最大日均总利润为多少元?23. (2022河南汝州一模)小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆.已知2盆盆景与1盆花卉的利润共330元,1盆盆景与3盆花卉的利润共240元.(1)求1盆盆景和1盆花卉的利润各为多少元?(2)调研发现:盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为1W ,2W (单位:元).①含x 的代数式分别表示1W ,2W ;②当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少元?。
二次函数销售问题讲解技巧
二次函数销售问题讲解技巧二次函数销售问题是一种常见的数学问题,主要涉及到二次函数的最值计算和实际应用。
为了更好地讲解这类问题,你可以遵循以下步骤:1. 引入问题:首先,选择一个与销售相关的实际问题,例如:如何确定销售价格以最大化利润。
这种问题容易引起学生的兴趣。
2. 建立数学模型:引导学生将实际问题转化为数学模型。
例如,如果成本是固定的,售价和数量之间的关系可以表示为二次函数。
让学生理解“变量”和“自变量”、“因变量”的概念。
3. 分析二次函数的性质:解释二次函数的开口方向、顶点、对称轴等基本性质。
这些性质对于找到最大值或最小值至关重要。
4. 求解最值:利用二次函数的性质,如顶点公式或配方法,找到使利润最大的销售价格。
解释如何通过计算确定最值。
5. 解释实际意义:将计算出的最值解释为实际销售策略。
例如,如果计算结果显示最大利润出现在某个特定的售价,那么这个售价就是最佳销售策略。
6. 案例分析:选择几个与销售相关的实际问题,让学生自行建立模型并求解最值。
通过案例分析,让学生更好地理解二次函数在销售问题中的应用。
7. 总结与反思:回顾整个解题过程,强调二次函数在解决实际问题中的重要性。
同时,引导学生思考如何将这种方法应用于其他类似的销售问题。
8. 互动环节:鼓励学生提问,并就他们的问题进行讨论。
这有助于巩固学生的理解,并激发他们对这个话题的进一步兴趣。
9. 布置作业:提供一些相关的练习题,让学生在课后进行练习,以巩固他们对二次函数销售问题的理解。
10. 反馈与调整:根据学生的反馈和作业完成情况,及时调整教学方法和进度,确保学生能够充分理解和掌握这个主题。
在整个讲解过程中,保持与学生的互动是非常重要的。
通过问答、讨论和案例分析,你可以更好地了解学生的理解程度,并作出相应的调整。
此外,结合实际例子和情境可以帮助学生更好地理解和应用二次函数销售问题的解决方案。
二次函数与商品销售中利润问题
二次函数与商品销售中利润问题例1 某商店经营一种成本为每千克40元的水产品.据市场分析,若按每千克50元销售,一个月能销售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和月销售利润;(2)设销售单价定为每千克x元,月销售利润为y元,求y与x之间的函数关系式(不必写出x的取值范围);(3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?练习:某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?例2某产品每件成本10元,试销阶段每件产品的销售价x (元)与产品的日销售量y (件)之间的关系如下表:若日销售量y 是销售价x 的一次函数.⑴求出日销售量y (件)与销售价x (元)的函数关系式; ⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?练习 :某工厂在生产过程中要消耗大量电能,消耗每千度电产生的利润与电价是一次函数关系,经过测算工厂每千度电产生的利润y (元/千度)与电价x (元/千度)的函数图象如图:(1)当电价为600元/千度时,工厂消耗每千度电产生的利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x (元/千度)与每天 用电量m (千度)的函数关系为x =10m +500,且该工厂每天用电量不超过60千度.为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生的利润最大是多少元?x (元) 15 20 30 … y (件) 25 20 10 …例3某蔬菜基地种植西红柿,由历年市场行情知,从2月1日起的200天内,西红柿市场售价P与上市时间t的关系用图甲的一条线段表示;西红柿的种植成本Q与上市时间t的关系用图乙中的抛物线表示.(其中,市场售价和种植成本的单位为:元/100千克,时间单位为:天) (1)写出图甲表示的市场售价P与时间t的函数关系式; (2)写出图乙表示的种植成本Q与时间t的函数关系式; (3)如果市场售价减去种植成本为纯收益,那么何时上市的西红柿纯收益最大(可借助配方或草图观察)?},巩固提升:(2010年重庆)今年我国多个省市遭受严重干旱.受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,进入5 2.8 元/千克下降至第2周的2.4 元/千克,且y 与周数x 的变化情况满足二次函数c bx x y ++-=2201. (1)请观察题中的表格,用所学过的一次函数或二次函数的有关知识直接写出4月份y 与x 所满足的函数关系式,并求出5月份y 与x 所满足的二次函数关系式; (2)若4月份此种蔬菜的进价m (元/千克)与周数x 所满足的函数关系为2.141+=x m ,5月份的进价m (元/千克)与周数x 所满足的函数关系为251+-=x m .试问4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜.从5月的第3周起,由于受暴雨的影响,此种蔬菜的可销售量将在第2周销量的基础上每周减少%a ,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的销售价格比第2周仅上涨%8.0a .若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出a 的整数值.图甲 图乙。
二次函数--销售问题
∴当x=5时,y最大值=6250
在降价的情况下,最大利润是多少?请你参考(1) 的过程得出答案。
解:设降价a元时利润最大,则每星期可多卖20a件,实 际卖出(300+20a)件,每件利润为(60-40-a)元,因 此,得利润
b=(300+20a)(60-40-a)
想一想
(1)题目中有几种调整价格的方法?
(2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发 生了变化?
某商品现在的售价为每件60元,每星期可卖
出300件,市场调查反映:每涨价1元,每星
期少卖出10件;每降价1元,每星期可多卖
出20件,已知商品的进价为每件40元,如何
定价才能使利润最大?
分析: 调整价格包括涨价和降价两种情况
=-20(a²-5a+6.25)+6150 =-20(a-2.5)²+6150(0<a<20)
∴a=2.5时,b极大值=6150
你能回答了吧!
怎样确定 a的取值
范围
由(1)(2)的讨论及现在的销售 情况,你知道应该如何定价能
使利润最大了吗?
某商品现在的售价为每件60元,每星期 可卖出300件,市场调查反映:如调整价 格,每涨价1元,每星期少卖出10件;每 降价1元,每星期可多卖出20件,已知商 品的进价为每件40元,(商店规定加价不得 超过进价的60﹪,不得少于进价的40﹪) 如何定价才能使利润最大?
先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y
也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星
期少卖10x件,实际卖出(300-10x)件,每件利润为 (60+x-40) 元,
销售问题(二次函数的应用)
二次函数的应用——销售问题知识回顾: 1.抛物线21(2)12y x =++的顶点坐标是 ,当x = 时,y 有最 值为 。
2.抛物线()2254y x =--+的顶点坐标是 ,当x = 时,y 有最 值为 。
3.抛物线2247y x x =-++的顶点坐标是 ,当x = 时,y 有最 值为 。
例1:某超市销售一种商品,成本是每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查发现:每天销售量y (千克)与每千克售价x (元)满足一次函数关系,部分数据如下表:⑴求y 与x 之间的函数关系式:⑵设商品每天的总利润为W (元),求W 与x 之间的函数关系式:⑶试说明⑵中总利润W 随售价x 的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少 练习:1.汽车城销售某种型号的汽车,每辆进货价为25万元,经市场调研表明:当销售价为29万元时,平均每周售出8辆,而当销售价每降低万元时,平均每周能多售出4辆,如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元。
(销售利润=销售价-进货价) ⑴求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; ⑵假设这种汽车平均每周的销售利润为Z 万元,试写出Z 与x 的函数关系式; ⑶当每辆汽车的定价为多少万元时,平均每周的销售利润最大最大利润是多少2.李经理按市场价格30元/千克收购了一种可食用的野生菌1000千克存入冷库中,据预测,该野生菌的市场价将以每天每千克上涨1元;但冷库存放这种野生菌时每天需要支付各种费用合计310元,而且这类野生菌在冷库中最多可保存160天,同时,平均每天有3千克的野生菌损坏而不能出售。
⑴设x天后每千克该野生菌的市场价为y元,试写出y与x的函数关系式及x的取值范围;⑵若存放x天后,将这批野生菌一次性出售,设出售这批野生菌获得的利润为W元,试写出W与x的函数关系式;(利润=销售额-收购成本-各种费用)⑶将这批野生菌存放多少天后出售可获得最大利润最大利润是多少3.某商店经营一组小商品,规定销售单价不得低于成本单价,且获利不得高于100%。
二次函数应用——销售问题
题型四:二次函数应用-销售问题例题解析例1.襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为{mx−76m(1≤x<20,x为整数)n(20≤x≤30,x为整数)且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成木是18元/千克,每天的利润是W 元(利润=销售收入﹣成本).(1)m=________,n=________;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?例2. 为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?习题精练1.绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?2.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y= {2x+20(1≤x<10,且x为整数) 40(10≤x≤15,且x为整数),设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?3.某大学生利用暑假40天社会实践进行创业,他在网上开了一家微店,销售推广一种成本为25元/件的新型商品.在40天内,其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时,n=36+12x;当21≤x≤40时,n=25+630x.这40天中的日销售量m(件)与时间x(天)符合函数关系,具体情况记录如下表(天数为整数):(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元,试写出日销售利润w(元)与时间x (天)的函数关系式;(3)求这40天中该同学微店日销售利润不低于640元有多少天?4.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P= 120t+4(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q= {2t+8,0<t≤12−t+44,12<t≤24(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.5.某商场经销一种商品,已知其每件进价为40元。
二次函数的应用于销售业问题
二次函数的应用于销售业问题销售业作为商业领域的重要一环,对于销售额的预测和分析非常重要。
而二次函数作为数学中的一种函数类型,在销售业的应用中具有广泛的应用价值。
本文将结合实际案例,探讨二次函数在销售业问题中的应用。
一、销售业问题的背景以某公司某产品的销售业绩为例,假设该产品销售量与售价之间存在着一定的关系。
随着售价的不同,销售量也会发生相应的变化。
我们希望通过建立二次函数模型,来预测销售量与售价参数的关系,并进一步分析其在销售业中的应用。
二、建立二次函数模型假设销售量用x表示,售价用p表示,可以假设销售量与售价之间存在以下二次函数关系:x = ap^2 + bp + c其中,a、b、c为待确定的常数。
三、数据采集和拟合为了建立二次函数模型,我们首先需要采集一定数量的销售数据。
根据实际情况,可以收集到一组售价和销售量的数据,并通过线性回归等方法对二次函数模型进行参数的拟合。
通过最小二乘法等统计方法,可以求解出模型中的常数a、b、c,从而确定二次函数模型。
四、模型分析与应用1. 预测销售量通过建立的二次函数模型,可以根据给定的售价参数,预测销售量的数值。
例如,当提供一个售价参数时,根据二次函数模型,即可计算出对应的预测销售量。
这对于企业决策和市场战略的制定具有重要的参考价值。
2. 销售业绩分析基于建立的二次函数模型,可以对销售业绩进行深入分析。
通过对模型中的常数a、b、c进行解释和理解,可以得到销售业绩受售价的影响程度以及对应的变化规律。
这有助于企业优化定价、促销策略等,以提升销售业绩。
3. 销售预测与决策支持二次函数模型可以进一步用于销售预测和决策支持。
通过对模型的扩展和参数调整,可以建立更加复杂的销售预测模型,辅助企业进行市场规划、销售策略的制定等决策过程,帮助企业提高销售效益。
五、案例分析为了更好地说明二次函数在销售业中的应用,我们以某电子产品的销售为例进行案例分析。
根据历史销售数据,我们建立了二次函数模型,并通过参数拟合得到了三个常数的值。
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题(附答案)1. 某网店经营一种品牌水果, 其进价为10元/千克, 保鲜期为25天, 每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式;(2)当该品牌水果定价为多少元时, 每天销售所获得的利润最大?(3)若该网店一次性购进该品牌水果3000千克, 根据(2)中每天获得最大利润的方式进行销售, 发现在保鲜期内不能及时销售完毕, 于是决定在保鲜期的最后5天一次性降价销售, 求最后5天每千克至少降价多少元才能全部售完?2. 特产店销售一种水果, 其进价每千克40元, 按60元出售, 平均每天可售100千克, 后来经过市场调查发现, 单价每降低2元, 则平均每天可增加20千克销量.(1)若该专卖店销售这种核桃要想平均每天获利2240元, 每千克水果应降多少元?(2)若该专卖店销售这种核桃要想平均每天获利最大, 每千克水果应降多少元?3.某文具店购进A, B两种钢笔, 若购进A种钢笔2支, B种钢笔3支, 共需90元;购进A种钢笔3支, B种钢笔5支, 共需145元.(1)求该文具店购进A.B两种钢笔每支各多少元?(2)经统计, B种钢笔售价为30元时, 每月可卖64支;每涨价3元, 每月将少卖12支, 求该文具店B种钢笔销售单价定为多少元时, 每月获利最大?最大利润是多少元?4.某公司可投入研发费用80万元(80万元只计入第一年成本), 成功研发出一种产品, 公司按订单生产(产量=销售量), 第一年该产品正式投产后, 生产成本为8元/件, 此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+28.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元, 那么该产品第一年的售价是多少?(3)第二年, 该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发, 使产品的生产成本降为6元/件, 为保持市场占有率, 公司规定第二年产品售价不超过第一年的售价, 另外受产能限制, 销售量无法超过14万件, 请计算该公司第二年的利润W2至少为多少万元.5.某实验器材专营店为迎接我市理化生实验的到来, 购进一批电学实验盒子, 一台电学实验盒的成本是30元, 当售价定为每盒50元时, 每天可以卖出20盒.但由于电学实验盒是特殊时期的销售产品, 专营店准备对它进行降价销售.根据以往经验, 售价每降低3元, 销量增加6盒.设售价降低了x(元), 每天销量为y(盒).(1)求y与x之间的函数表达式;日销售利润w875 1875 1875 875(元)(注: 日销售利润=日销售量×(销售单价﹣成本单价))(1)求y与x的函数关系式;(2)当销售单价x为多少元时, 日销售利润w最大?最大利润是多少元?(3)当销售单价x为多少元时, 日销售利润w在1500元以上?(请直接写出x的范围)7. 某公司销售一批产品, 进价每件50元, 经市场调研, 发现售价为60元时, 可销售800件, 售价每提高1元, 销售量将减少25件.公司规定:售价不超过70元.(1)若公司在这次销售中要获得利润10800元, 问这批产品的售价每件应提高多少元?(2)若公司要在这次销售中获得利润最大, 问这批产品售价每件应定为多少元?8.某公司开发了一种新型的家电产品, 又适逢“家电下乡”的优惠政策.现投资万元用于该产品的广告促销, 已知该产品的本地销售量(万台)与本地的广告费用(万元)之间的函数关系满足.该产品的外地销售量(万台)与外地广告费用(万元)之间的函数关系可用如图所示的抛物线和线段来表示.其中点为抛物线的顶点.结合图象, 求出(万台)与外地广告费用(万元)之间的函数关系式;()2求该产品的销售总量y(万台)与本地广告费用x(万元)之间的函数关系式;如何安排广告费用才能使销售总量最大?9.某电子厂生产一种新型电子产品, 每件制造成本为20元, 试销过程中发现, 每月销售量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.(利润=售价﹣制造成本)(1)写出每月的利润z(万元)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时, 厂商每月获得的利润为400万元?(3)根据相关部门规定, 这种电子产品的销售单价不能高于40元, 如果厂商每月的制造成本不超过520万元, 那么当销售单价为多少元时, 厂商每月获得的利润最大?最大利润为多少万元?10.某灯具厂生产并销售A, B两种型号的智能台灯共100盏, 生产并销售一盏A型智能台灯可以获利30元;如果生产并销售不超过20盏B型台灯, 则每盏B型台灯可以获利90元, 如果超出20盏B型台灯, 则每超出1盏, 每盏B型台灯获利将均减少2元.设生产并销售B型台灯x盏.(其中x>20)(2)当A型台灯所获得的利润比B型台灯所获得利润少200元时, 求生产并销售A, B 两种台灯各多少盏?(3)如何设计生产销售方案可以获得最大利润, 最大的利润为多少元?11.某商场销售一批名牌衬衫:平均每天可售出20件, 每件盈利40元, 为了扩大销售量, 增加盈利, 尽快减少库存, 商场决定采取适当的降价促销措施, 经市场调查发现:如果每件衬衫降价1元, 那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(1)请直接写出a的值为;(2)从第21天到第40天中, 求q与x满足的关系式;(3)若该网店第x天获得的利润y元, 并且已知这40天里前20天中y与x的函数关系式为y=﹣x2+15x+500i请直接写出这40天中p与x的关系式为: ;ii求这40天里该网店第几天获得的利润最大?13. 某工厂生产甲、乙两种产品, 已知生产1吨产品甲需要2吨原材料A;生产1吨产品乙需要3吨原材料A. 根据市场调研, 产品甲、乙所获利润y(万元)与其产量x(吨)之间分别满足函数关系:产品甲:y=ax2+bx且x=2时, y=2.6;x=3时, y=3.6产品乙: y=0.3x(1)求产品甲所获利润y(万元)与其产量x(吨)之间满足的函数关系;(2)若现原材料A共有20吨, 请设计方案, 应怎样分配给甲、乙两种产品组织生产, 才能使得最终两种产品的所获利润最大.14. 某商场销售一批衬衫, 平均每天可售出20件, 每件盈利40元. 为了扩大销售, 增加盈利, 商场采取了降价措施. 假设在一定范围内, 衬衫的单价每降1元, 商场平均每天可多售出2件, 设衬衫的单价降x元, 每天获利y元.(1)如果商场里这批衬衫的库存只有44件, 那么衬衫的单价应降多少元, 才能使得这批衬衫一天内售完, 且获利最大, 最大利润是多少?种成本为25元/件的新型商品.在40天内, 其销售单价n(元/件)与时间x(天)的关系式是:当1≤x≤20时, ;当21≤x≤40时, .这40天中的日销售量m(件)与时间x(天)符合函数关系, 具体情况记录如下表(天数为整数):时间x(天)日销售量m(件)45 40 35 30 25 …(1)请求出日销售量m(件)与时间x(天)之间的函数关系式;(2)若设该同学微店日销售利润为w元, 试写出日销售利润w(元)与时间x(天)的函数关系式;16.某体育用品商店试销一款成本为50元的排球, 规定试销期间单价不低于成本价, 且获利不得高于40%.经试销发现, 销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元, 试写出利润Q(元)与销售单价x(元)之间的函数关系式;当试销单价定为多少元时, 该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元, 请确定销售单价x的取值范围.销售单价q(元/件)与x满足: 当1≤x<25时q=x+60;当25≤x≤50时q=40+ . (1)请分析表格中销售量p与x的关系, 求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(1)请你根据表中的数据, 用所学知识确定与之间的函数表达式;(2)该商店应该如何确定这批文具盒的销售价格, 才能使日销售利润最大?(3)根据(2)中获得最大利润的方式进行销售, 判断一个月能否销售完这批文具盒, 并说明理由.20. 某工厂加工一种商品, 每天加工件数不超过100件时, 每件成本80元, 每天加工超过100件时, 每多加工5件, 成本下降2元, 但每件成本不得低于70元.设工厂每天加工商品x(件), 每件商品成本为y(元),(1)求出每件成本y(元)与每天加工数量x(件)之间的函数关系式, 并注明自变量的取值范围;(2)若每件商品的利润定为成本的20%, 求每天加工多少件商品时利润最大, 最大利润是多少?21.家用电器开发公司研制出一种新型电子产品, 每件的生产成本为18元, 按定价40元出售, 每月可销售20万件, 为了增加销量, 公司决定采取降价的办法, 经过市场调研, 每降价1元, 月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润, 每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围, 使月销售利润不低于480万元.22.城隍庙是宁波市的老牌商业中心, 城隍庙商业步行街某商场购进一批品牌女装, 购进时的单价是600元, 根据市场调查, 在一段时间内, 销售单价是800元时, 销售量是200件, 销售单价每降低10元, 就可多售出20件.(1)求出销售量y(件)与销售单价x(元)之间的函数关系式;(2)求出销售该品牌女装获得的利润W(元)与销售单价x(元)之间的函数关系式;倍,且y是x的二次函数,它们的关系如下表:x(10万元)y 1 1.5 1.8 …(1)求y与x的函数关系式;(2)如果把利润看做是销售总额减去成本费和广告费, 试写出年利润S(10万元)与广告费x(10万元)的函数关系式;(3)如果投入的年广告费为10~30万元, 问广告费在什么范围内, 公司获得的年利润随广告费的增大而增大?24.绿色生态农场生产并销售某种有机产品, 每日最多生产130kg, 假设生产出的产品能全部售出, 每千克的销售价y1(元)与产量x(kg)之间满足一次函数关系y1=﹣x+168, 生产成本y2(元)与产量x(kg)之间的函数图象如图中折线ABC所示.(1)求生产成本y2(元)与产量x(kg)之间的函数关系式;(2)求日利润为W(元)与产量x(kg)之间的函数关系式;(3)当产量为多少kg时, 这种产品获得的日利润最大?最大日利润为多少元?25.新鑫公司投资3000万元购进一条生产线生产某产品, 该产品的成本为每件40元, 市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80, 且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)新鑫公司计划五年收回投资, 如何确定售价(假定每年收回投资一样多)?26. 某商品的进价是每件40元, 原售价每件60元. 进行不同程度的涨60 61 62 63 …价后, 统计了商品调价当天的售价和利润情况, 以下是部分数据:售价(元/件)利润(元)6000 6090 6160 6210 …(1)当售价为每件60元时, 当天售出件;(2)若对该商品原售价每件涨价x元(x为正整数)时当天售出该商品的利润为y元.①用所学过的函数知识直接写出y与x之间满足的函数表达式:.②如何定价才能使当天的销售利润不等于6200元?27.服装厂批发某种服装, 每件成本为65元, 规定不低于10件可以批发, 其批发价y (元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y与x之间所满足的函数关系式, 并写出x的取值范围;(1)由题意知商品的最低销售单价是元, 当销售单价不低于最低销售单价时, y是x的一次函数. 求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下, 当销售单价为多少元时, 所获销售利润最大, 最大利润是多少元?29. 某店只销售某种进价为40元/kg的产品, 已知该店按60元kg出售时, 每天可售出100kg, 后来经过市场调查发现, 单价每降低1元, 则每天的销售量可增加10kg.(1)若单价降低2元, 则每天的销售量是_____千克, 每天的利润为_____元;若单价降低x元, 则每天的销售量是_____千克, 每天的利润为______元;(用含x的代数式表示)(2)若该店销售这种产品计划每天获利2240元, 单价应降价多少元?(3)当单价降低多少元时, 该店每天的利润最大, 最大利润是多少元?30. 某文具店出售一种文具, 每个进价为2元, 根据长期的销售情况发现:这种文具每个售价为3元时, 每天能卖出500个, 如果售价每上涨0.1元, 其销售量将减少10个. 物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润, 每个文具的售价应是多少?(2)该如何定价, 才能使这种文具每天的利润最大?最大利润是多少?31.某制衣企业直销部直销某类服装,价格(元)与服装数量(件)之间的关系如图所示,现有甲乙两个服装店,计划在"五一”前到该直销部购买此类服装, 两服装店所需服装总数为件,乙服装店所需数量不超过件,设甲服装店购买件,如果甲、乙两服装店分别到该直销部购买服装,两服装店需付款总和为元.(1)求y关于x的函数关系式,并写出x的取值范围.(2)若甲服装店购买不超过100件,请说明甲、乙两服装店联合购买比分别购买最多可节约多少钱32. 某企业接到生产一批手工艺品订单, 须连续工作15天完成. 产品不能叠压, 需专门存放, 第x天每件产品成本p(元)与时间x(天)之间的关系为p=0.5x+7(1≤x≤5, x 为整数). 约定交付产品时每件20元. 李师傅作了记录, 发现每天生产的件数y(件)与时间X(天)满足关系:(1)写出李师傅第x天创造的利润W(不累计)与x之间的函数关系式.(只要结果, 并注明自变量的取值范围.)(2)李师傅第几天创造的利润最大?是多少元?(3)这次订单每名员工平均每天创造利润299元. 企业奖励办法是: 员工某天创造利润超过平均值, 当天计算奖金30元. 李师傅这次获得奖金共多少元?33. 某手机专营店, 第一期进了品牌手机与老年机各50部, 售后统计, 品牌手机的平均利润是160元/部, 老年机的平均利润是20元/部, 调研发现:①品牌手机每增加1部, 品牌手机的平均利润减少2元/部;②老年机的平均利润始终不变.该店计划第二期进货品牌手机与老年机共100部, 设品牌手机比第一期增加x部. (1)第二期品牌手机售完后的利润为8400元, 那么品牌手机比第一期要增加多少部?(2)当x取何值时, 第二期进的品牌手机与老年机售完后获得的总利润W最大, 最大总利润是多少?34.某公司经销一种水产品, 在一段时间内, 该水产品的销售量W(千克)随销售单价x(元/千克)的变化情况如图所示.(1)求W与x的关系式;(2)若该水产品每千克的成本为50元, 则当销售单价定为多少元时, 可获得最大利润?(3)若物价部门规定这种水产品的销售单价不得高于90元/千克, 且公司想要在这段时间内获得2250元的销售利润, 则销售单价应定为多少元?35. 某种蔬菜的销售单价y1与销售月份x之间的关系如图1所示, 成本y2与销售月份x之间的关系如图2所示(图1的图象是线段, 图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低, 此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜, 每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元, 且5月份的销售量比4月份的销售量多2万千克, 求4、5两个月的销售量分别是多少万千克?36. 某商品的进价为每件20元, 市场调查反映, 若按每件30元销售, 每天可销售100件;若销售单价每上涨1元, 每天的销售就减少5件.(1)设每天该商品的销售利润为y元, 销售单价为x元(x≥30), 求y与x的函数解析式;(2)求销售单价为多少元时, 该商品每天的销售利润最大, 最大利润是多少?37. 数学兴趣小组几名同学到商场调查发现, 一种纯牛奶进价为每箱40元, 厂家要求售价在40~70元之间, 若以每箱70元销售平均每天销售30箱, 价格每降低1元平均每天可多销售3箱.(1)求出y 与x 之间的函数表达式(2)该新型“吸水拖把”每月的总利润为w (元), 求w 关于x 的函数表达式, 并指出销售单价为多少元时利润最大, 最大利润是多少元?(3)由于该新型“吸水拖把”市场需求量较大, 厂家又进行了改装, 此时超市老板发现进价提高了m 元, 当每月销售量与销售单价仍满足上述一次函数关系, 随着销量的增大, 最大利润能减少1750元, 求m 的值.39.某花店用3600元按批发价购买了一批花卉.若将批发价降低10%, 则可以多购买该花卉20盆.市场调查反映, 该花卉每盆售价25元时, 每天可卖出25盆.若调整价格, 每盆花卉每涨价1元, 每天要少卖出1盆. (1)该花卉每盆批发价是多少元?(2)若每天所得的销售利润为200元时, 且销量尽可能大, 该花卉每盆售价是多少元? (3)为了让利给顾客, 该花店决定每盆花卉涨价不超过5元, 问该花卉一天最大的销售利润是多少元?40. 某商店经营一种小商品, 进价为3元, 据市场调查, 销售单价是13元时平均每天销售量是400件, 而销售价每降低一元, 平均每天就可以多售出100件.(Ⅰ)假定每件商品降低x 元, 商店每天销售这种小商品的利润y 元, 请写出y 与x 之间的函数关系. (注:销售利润=销售收入-购进成本)(Ⅱ)当每件小商品降低多少元时, 该商店每天能获利4800元?40元, 根据市场调查:在一段时间内, 销售单价是50元时, 销售量是600件,而销售单价每涨2元, 就会少售出20件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>50), 请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元, 并把结果填写在表格中:销售单价(元)销售量y(件)①销售玩具获得利润ω(元)②(2)在(1)问条件下, 若玩具厂规定该品牌玩具销售单价不低于54元, 且商场要完成不少于400件的销售任务, 求商场销售该品牌玩具获得的最大利润是多少元?42.如图,某工厂与两地有铁路相连,该工厂从地购买原材料,制成产品销往地.已知每吨进价为600元(含加工费),加工过程中1吨原料可生产产品吨,当预计销售产品不超过120吨时,每吨售价1600元,超过120吨,每增加1吨,销售所有产品的价格降低2元.设该工厂有吨产品销往地.(利润=售价—进价—运费)(1)用的代数式表示购买的原材料有吨.(2)从地购买原材料并加工制成产品销往地后,若总运费为9600元,求的值,并直接写出这批产品全部销售后的总利润.(3)现工厂销往地的产品至少120吨, 且每吨售价不得低于1440元, 记销完产品的总利润为元, 求关于的函数表达式, 及最大总利润.43. 水产经销商以10元/千克的价格收购了1000千克的鳊鱼围养在湖塘中(假设围养期每条鳊鱼的重量保持不变), 据市场推测, 经过湖塘围养后的鳊鱼的市场价格每围养一天能上涨1元/千克, 在围养过程中(最多围养20天), 平均每围养一天有10千克的鳊鱼会缺氧浮水。
二次函数与销售问题
利用二次函数模型,可以预测未来特定时间段源自的销售量,帮助企业做出明智 的决策。
3
二次函数对销售问题的优势
二次函数模型具有灵活性和准确性,能 够提供对未来销售的预测,并为决策提 供有力支持。
案例研究:二次函数在销售中的应用
销售数据分析
二次函数模型构建
通过对销售数据进行分析和挖掘, 我们可以发现销售趋势中的潜在 规律和关键因素。
二次函数与销售问题
二次函数是数学中重要的概念之一。本次演示将深入探讨二次函数的定义、 图像特征以及如何运用它们解决销售问题。
二次函数概述
二次函数定义
二次函数是一个以 x2 为最高次项的多项式函数。
二次函数图像特征
二次函数的图像呈现出抛物线状,具有顶点、对称轴以及开口方向等特征。
销售问题背景
1 销售问题的重要性
通过预测未来销售趋势,企 业能够及时调整销售策略, 提前做好市场准备。
提供决策
基于二次函数模型的分析结 果,企业可以制定更有效的 销售策略和决策,以提升销 售绩效。
销售是任何企业的核心活动,更好地理解销售问题可以帮助企业制定更有效的销售策略。
2 销售问题的挑战
销售问题常常涉及市场需求、竞争分析和销售预测等方面,需要综合考虑多个因素。
利用二次函数解决销售问题的方法
1
利用二次函数建模销售趋势
通过分析历史销售数据,可利用二次函
利用二次函数预测销售量
2
数建立模型来预测销售趋势的变化。
利用收集到的数据,我们可以构 建二次函数模型,以准确预测销 售趋势的变化。
预测销售趋势
通过应用建立的二次函数模型, 我们可以预测未来销售趋势,为 企业的决策提供有力支持。
二次函数对销售问题的优势
中考数学高频考点27-二次函数实际销售问题
中考数学高频考点-二次函数实际销售问题1.某经销商销售一种成本价为100元/件的商品,已知销售价不低于成本价,且物价部门规定这种产品的销售价不得高于180元/件.在销售过程中发现销量y(kg)与售价x(元/kg)之间满足一次函数关系,对应关系如下表所示:x120140150170y360320300260(1)求y与x之间的函数表达式,并写出自变量x的取值范围.(2)设销售这种商品每天所获得的利润为W元,求W与x之间的函数表达式;该商品销售单价定为多少元时,才能使经销商所获利润最大?最大利润是多少?2.某蔬菜加工公司先后两次收购某时令蔬菜200吨,第一批蔬菜价格为2000元/吨,因蔬菜大量上市,第二批收购时价格变为500元/吨,这两批蔬菜共用去16万元.(1)求两批次购蔬菜各购进多少吨?(2)公司收购后对蔬菜进行加工,分为粗加工和精加工两种:粗加工每吨利润400元,精加工每吨利润800元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?3.新冠疫情全球爆发,口罩成了生活必需品,某药店销售一种口罩,每包进价为9元,日均销售量y(包)与每包售价x(元)成一次函数关系,且10≤x≤16.当每包售价为12元时,日均销售量是40包,当每包售价为10元时,日均销售量是56包.(1)求y关于x的函数表达式;(2)要使日均利润达到最大.每包售价应定为多少元?(3)若进价提高了a元,要使日均利润达到最大,则每包售价应定为14元,求a的值.4.我市某乡镇实施产业精准扶贫,帮助贫困户承包了若干亩土地种植新品种草莓,已知该草莓的成本为每千克10元,草莓成熟后投入市场销售.经市场调查发现,草莓销售不会亏本,且每天的销售量y(千克)与销售单价x(元/千克)之间函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围.(2)当该品种草莓的定价为多少时,每天可获利润2000元?(3)销售一段时间后发现,当草莓销售单价定价高时每日所获利润反而比定价低时少,请你说明原因.并给出合理建议:如何制定销售单价,才能使销售单价越高则每天所获利润就越多.5.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销售量的相关信息如下表:时间x(天)1≤x<5050≤x≤90售价(元/件)x+4090每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元[(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.6.某超市销售一种电子计算器,其进价为每个30元,计划每个售价不低于成本,且不高于45元,这种计算器每天的销售量y(个)与销售单价x(元)的关系为y=−x+60(30≤x≤60),设这种计算器每天的销售利润为w元.(1)求w与x之间的函数解析式(利润=售价-进价);(2)若该超市销售这种计算器每天要获得200元的销售利润,则销售单价应定为多少元?7.某批发商以每件40元的价格购进600件T恤,第一个月以单价60元销售,售出了200件,第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出20件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余T恤清仓销售,清仓时单价为30元,设第二个月单价降低x元.(1)填表(不需要化简)时间第一个月第二个月清仓时单价/元6030销售量/件200(2)若批发商希望通过销售这批T恤获利7680元,则第二个月的单价应是多少元?(3)如果批发商希望通过销售这批T恤获利达到了最大值,则第二个月的单价应是多少元?可获利多少元?8.某商店进了一批服装,每件成本50元,如果按每件60元出售,可销售800件,如果每件提价5元出售,其销量将减少100件.(1)求售价为70元时的销售量及销售利润;(2)求销售利润y(元)与售价x(元)之间的函数关系,并求售价为多少元时获得最大利润;(3)如果商店销售这批服装想获利12000元,那么这批服装的定价是多少元?9.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.投资量x(万元)2种植树木利润y1(万元)4种植花卉利润y2(万元)2(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.10.专卖店销售一种陈醋礼盒,成本价为每盒40元.如果按每盒50元销售,每月可售出500盒;若销售单价每上涨1元,每月的销售量就减少10盒.设此种礼盒每盒的售价为x元(50<x<75),专卖店每月销售此种礼盒获得的利润为y元.(1)写出y与x之间的函数关系式;(2)专卖店计划下月销售此种礼盒获得8000元的利润,每盒的售价应为多少元?(3)专卖店每月销售此种礼盒的利润能达到10000元吗?说明理由.11.学校体育节即将来临,为了满足全体师生锻炼的需要,学校超市以每件50元的价格购进一种体育用品,销售中发现这种体育用品每天的销售量y(件)与每件的销售价格x(元)近似满足一次函数关系,其图象如图所示,且销售这种体育用品不会亏本.(1)求出y与x的函数关系式,并写出x的取值范围.(2)求该超市每天销售这种体育用品的销售利润w与x之间的函数关系式并求出当销售价格x 为何值时,销售利润w的值最大,最大值是多少?(3)在网格坐标系中画出w关于x的函数的大致图象,再利用图象分析每件体育用品的销售价格在什么范围内时,每天的销售利润在400元以上.12.小明投资销售一种进价为每件20元的护眼台灯.经过市场调研发现,每月销售的数量y(件)是售价x(元/件)的一次函数,其对应关系如表:x/(元/件)22253035…y/件280250200150…在销售过程中销售单价不低于成本价,物价局规定每件商品的利润不得高于成本价的60%,(1)请求出y关于x的函数关系式.(2)设小明每月获得利润为w(元),求每月获得利润w(元)与售价x(元/件)之间的函数关系式,并确定自变量x的取值范围.(3)当售价定为多少元/件时,每月可获得最大利润,最大利润是多少?13.在2020年新冠肺炎抗疫期间,小明决定在淘宝上销售一批口罩。
2025年中考数学一轮专题训练:实际问题与二次函数(销售问题)
2025年中考数学专题训练:实际问题与二次函数(销售问题)1.某商店销售童装每件售价60元,每星期可卖300件,为了促销决定降价销售,减少库存.经市场调查发现,每降1元每星期可多卖30件,已知童装的成本价为40元,问(1)如何定价能使利润为6720元?(2)如何定价使利润最大?2.某商店销售乌馒头,通过分析销售情况发现,乌馒头的日销售量y(单位:盒)是销售单价x(单位:元/盒)的一次函数,销售单价、日销售量的部分对应值如下表,已知销售单价不低于成本价且不高于20元,每天销售乌馒头的固定损耗为20元,且成本价为12元/盒,日销售量为200盒.销售单价x/(元/盒)1513日销售量y/盒500700(1)求乌馒头的日销售量y与销售单价x的函数解析式;(2)端午节期间,商店决定采用降价促销的方式回馈顾客,在顾客获得最大实惠的前提下,当乌馒头每盒降价多少元时,商店日销售纯利润为1480元;(3)当销售单价定为多少时,日销售纯利润最大,并求此日销售最大纯利润.3.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?(3)超市销售这种苹果每天要获利150元并要使顾客实惠,那么每千克这种苹果的售价应定为多少元?4.某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:()603060y x x =-+≤≤.设这种双肩包每天的销售利润为w 元.(1)求w 与x 之间的函数解析式;(2)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?5.某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销量y (千克)与销售单价x (元/千克)之间是一次函数关系,如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保鲜期为20天,根据(2)中获得最大利润的方式进行销售,能否在保鲜期内销售完这批蜜柚?请说明理由.6.小明大学毕业回家乡创业,第一期培植盆景与花卉各40盆.售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;①花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共80盆,设培植的盆景比第一期增加x 盆,第二期盆景与花卉售完后的利润分别为12,W W (单位:元)(1)用含x 的代数式分别表示1W ,2W ;(2)当x 取何值时,第二期培植的盆景与花卉售完后获得的总利润W 最大,最大总利润是多少?7.某工厂接到一批产品生产任务,按要求在20天内完成,已知这批产品的出厂价为每件8元.为按时完成任务,该工厂招收了新工人,设新工人小强第x 天生产的产品数量为y 件,y与x满足关系式为:20(05)10100(520)x xyx x≤≤⎧=⎨+<≤⎩.(1)小强第几天生产的产品数量为200件?(2)设第x天每件产品的成本价为a元,a(元)与x(天)之间的函数关系图象如图所示,求a与x之间的函数关系式;(3)设小强第x天创造的利润为w元.①求第几天时小强创造的利润最大?最大利润是多少元?①若第①题中第m天利润达到最大值,若要使第(1)m+天的利润比第m天的利润至少多124元,则第(1)m+天每件产品至少应提价几元?8.新冠疫情期间,邻居小王在淘宝上销售某类型口罩,每袋进价为20元,经市场调研,销售定价为每袋25元时,每天可售出250袋;销售单价每提高1元,每天销售量将减少10袋,已知平台要求该类型口罩每天销售量不得少于120袋.(1)直接写出:①每天的销售量y(袋)与销售单价x(元)之间的函数关系式________;②每天的销售利润w(元)与销售单价x(元)之间的函数关系式________.(2)小王希望每天获利1760元,则销售单价应定为多少元?(3)若每袋口罩的利润不低于10元,则小王每天能否获得2000元的总利润,若能,求出销售定价;否则,说明理由.9.某商店经营一种小商品,进价为3元.据市场调查,销售单价是13元时平均每天销售量是400件,而销售价每降低一元,平均每天就可以多售出100件.(1)假定每件商品降低x元,商店每天销售这种小商品的利润y元,请写出y与x之间的函数关系.(注:销售利润=销售收入-购进成本)(2)当每件小商品降低多少元时,该商店每天能获利4800元?10.宜昌某农副加工厂2023年年初投入80万元经销某种农副产品,由于物美价廉,在惠农网商平台推广下,该产品火爆畅销全国各地.已知该产品的成本为20元/件,经市场调查发现,该产品的销售单价定为25元到30元之间较为合理,该产品每年的销售量y (万件)与售价x (元/件)之间满足一种函数关系,售价x (元/件)与y (万件)的对应关系如表:(1)求该产品每年的销售量y (万件)与售价x (元/件)之间的函数关系式;(2)2023年年底该工厂共盈利16万元,2024年国家惠农政策力度更大,生产技术也有所提高,使得该特产的成本平均每件减少了1元.①求2023年该特产的售价;①该产品2024年售价定为多少时,工厂利润最大? 最大利润是多少?11.某网店尝试用单价随天数而变化的销售模式销售一种商品,利用30天的时间销售一种成本为10元/件的商品,售后经过统计得到此商品单价与第x 天(x 为正整数)的销售量的相关信息,如下表所示.(1)请计算第几天该商品的单价为25元?(2)求网店销售该商品30天里每天所获利润y (元)关于x (天)的函数关系式.(3)这30天中,第几天获得的利润最大? 最大利润是多少?12.某品牌大米远近闻名,深受广大消费者好评,某超市每天购进一批成本价为6元/kg 的该大米,以不低于成本价且不超过12.5元/kg 的价格销售.当售价为8元/kg 时.每天售出大米1000kg ;当售价为9元/kg 时,每天售出大米900kg ,通过分析销售数据发现:每天销售大米的质量()y kg 与售价x (元/kg )满足一次函数关系.(1)请写出y 与x 的函数关系式;(2)当售价定为多少元/kg 时,每天销售该大米的利润可达到3500元;(3)当售价定为多少元/kg 时,每天获利最大?最大利润为多少?13.近年来,湖北省某地致力打造特色乡村旅游,发展以“农家乐”“高端民宿”为代表的旅游度假区.为迎接旅游旺季的到来,某民宿准备重新调整房间价格,已知该民宿有20个房间,当每个房间每天的定价为500元时,所有房间全部住满;当每个房间每天的定价每增加50元时,就会有一个房间无人入住,如果有游客居住房间,民宿每天需要对每个房间各支出100元的其他费用.设每个房间每天的定价增加x个50元(020x≤≤,且x为整数),该民宿每天游客居住的房间数量为y间,所获利润为W元.为吸引游客,该地物价部门要求民宿尽最大可能让利游客.(1)分别求出y与x,W与x之间的函数关系式;(2)当定价为多少元时,民宿每天获得的利润可以达到9600元;(3)求当每个房间的定价为多少元时,民宿每天获得的利润最大,最大利润是多少?14.成都市某新能源汽车销售商,购进某种型号的汽车成本价为20万元/台,投入市场销售,其销售单价不低于成本,开展购买新能源汽车补贴活动后,发现每月销售量y(台)与销售单价x(万元/台)之间存在一次函数关系,且已知两月数据为:销售价定20.1万元,每月销售39台;销售价定为20.3万元,每月销售37台.(1)若该店销售这种新能源汽车每月获得30万元的利润,则这种新能源汽车的销售单价定为多少元?(2)设每月的总利润为w万元,当销售单价定为多少时,该店每月的利润最大?最大利润是多少?15.某公司投入20万元作为某种电子产品的研发费用,成功研制出后投入生产并进行销售.已知生产这种电子产品的成本为10元/件,公司规定该种电子产品每件的销售价格不低于22元,不高于32元.在销售过程中发现:销售量y(万件)与销售价格x(元/件)的关系如图所示.设该公司销售这种电子产品的利润为S(万元).(1)求y(万件)与销售价格x(元/件)之间的函数关系式;(2)求销售这种电子产品的利润的最大值(利润=总售价﹣总成本﹣研发费用);(3)公司决定每销售1件该产品就捐赠m元5()给希望工程,通过销售记录发现,销售价m≥格大于25元/件时,扣除捐赠后的利润随销售价格x(x为正整数)增大而减小,求m的取值范围.。
九年级数学二次函数销售最大利润问题课件
【销售最大利润问题】先通过价格与利润关系得到二次函数的关系式,根据函
数图象及性质求最大值。
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每涨价1元,
每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,请问:
3)如何定价才能使每周利润最大化
并确定x的取值范围?
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每
涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进
价为每件40元,请问:
1)题中调整价格的方式有哪些?
涨价和降价
2)如何表示价格与利润之间的关系?
元
情景思考(销售最大利润问题)
某产品现在售价为每件60元,每星期可卖出300件。市场调查反映:如果调价,每涨价1元,每
星期要少卖出10件;每降价1元,每星期可多卖出20件。已知商品的进价为每件40元,请问:
3)如何定价才能使每周利润最大化并确定x的取值范围?
300+20x(0 ≤ ≤ 0)
20x
(2)要使每日的销售利润最大,每件产品的售价应定为多少元?此时的日销售利润是多少?
(3)若日销售利润不低于125元,请直接写出售价的取值范围.
情景思考
【分析】
(1) 因为日销售量y是销售价x的一次函数,设y=kx+b,代入对应数值求出函数解析式即可;
(2) 利用销售利润=一件利润×销售件数,一件利润=销售价-成本, 日销售量y是销售价x的
___________________元,此时每周产品的成本______________元,因此周利
用二次函数解决销售最值问题
根据广告效果的分析结果,可以建立一个二次函数模型,表示广 告投入与销售量之间的关系。
求解最值
通过求解二次函数的极值,可以得到广告投入的最优解,使得销 售量最大化。
某电商平台推广策略的最值问题
分析用户行为
电商平台可以通过分析用户的浏览、购买、搜索等行为数据,了解 用户的消费习惯和需求。
时取最大值。
求二次函数最值的方法
配方法
将二次函数化为顶点式,即 $y=a(x-h)^2+k$的形式,其中 $(h,k)$为顶点坐标,然后比较区 间端点和顶点的函数值,取最大
或最小值。
判别式法
通过求解一元二次方程的判别式 $Delta=b^2-4ac$,判断二次 函数的根的情况,从而确定最值。
导数法
用二次函数解决销售最值问
目录
• 二次函数的基本概念 • 二次函数的最值问题 • 用二次函数解决销售最值问题 • 实际应用案例 • 结论与展望
01 二次函数的基本概念
二次函数的定义
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a$、 $b$、$c$是常数,且$a neq 0$。
计算简便
二次函数的一般形式为$f(x) = ax^2 + bx + c$, 可以通过求导数或配方等方法快速找到最值点。
3
实际意义明确
二次函数的最值点对应着商品销售的最佳定价或 库存量,能够为企业的销售策略提供明确的指导。
未来研究的方向和挑战
拓展应用领域
将二次函数解决最值问 题的思路和方法拓展到 其他领域,如金融、物 流等,实现更广泛的应 用。
二次函数-----销售问题
姓名:_______________________ 班级:______________________应用题四销售问题课前预习区(自主阅读教材,独立思考问题)学习重点:通过实际销售问题,形成运用一元二次方程分析和解决销售问题的能力;学习难点:在销售问题中,设出适当未知数,表示出单价、利润、数量,并利用等量关系正确建立一元二次方程课堂活动区(合作探究重点,互动克服困难)回答下列问题:某商品进价为每个20元,以每个40元销售时,每天可销售80件,后来进行价格调整。
(1)市场调查发现,该商品每降价1元,商场平均每天可多销售2件。
完成下表:思考:如果降价x元,则多卖__________件,每天销售量为__________件,单个利润为________________元,总利润________________________元;先完成下表:归纳:如果降价x元,商品每天的销售量=_____________________________________商品总利润=________________________________________(2)市场调查发现,该商品每涨价2元,商场平均每天可少销售4件。
如果涨价x元,则多卖__________件,每天销售量为__________件,单个利润为________________元,总利润________________________元;先完成下表:归纳:如果涨价x元,商品每天的销售量=_____________________________________商品总利润=________________________________________例1、某商场将进货价为30元的台灯以40元售出,平均每月能售出600个。
市场调研表明:当销售价每上涨1元时,其销售量就将减少10个。
商场要想销售利润平均每月达到10000元,每个台灯的定价应为多少元?这时应进台灯多少个?变式1、将进价为40元的商品按50元的价格出售时,能卖出500个,已知该商品每涨价1元,其销售量就要减少10个,为了赚取8000元的利润,售价应定为多少元?例2、百货大楼服装柜台在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际问题与二次函数(1)(预习单)
阅读课文P22~P23,并完成下列练习:
1.下列抛物线有最高点或最低点吗?如果有,写出这些点的坐标.(要求用配方法或公式求解)
(1)243y x x =-+; (2)2
36y x x =++.
2.已知抛物线y =ax 2+bx +c 的开口向下,顶点坐标为(2,-3),那么该抛物线有( )
A .最小值-3
B .最大值-3
C .最小值2
D .最大值2
3.已知二次函数y =-x 2+4x +5,其中-2≤x ≤1,则y 有最大值为 .
4.已知直角三角形的两条直角边的和等于8,两条直角边各为多少时,这个直角三角形的面积最大,最大值是多少?
解:设其中的一条直角边长为x ,另一条直角边长为
这个直角三角形的面积y =
= ( )
5.某种商品的进价为30元,在某段时间内若以每件x 元出售,可卖出(100-x )件,应如何定价才能使利润最大?
解:利润y =( )(100-x )
= ( )
6.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?(分“涨价”与“降价”两种情况讨论)
解:(1)设每件涨价x 元,则每件的利润为 (20+x ) 元, (2) 设每件降价x 元,则每件的利润为 元, 每星期的销售量为 (300-10x ) 件. 每星期的销售量为 件. ∴总利润y =( 20+x )( 300-10x ) ∴总利润y =( )( )
= ( ) = ( )
【例题】某商场将每台进价为3000元的彩电以3900元的销售价售出,每天可销售出6台.假设这种品牌的彩电每台降价100x(x为正整数)元,每天可以多销售出3x台.(注:利润=销售价-进价)
(1)设商场每天销售这种彩电获得的利润为y元,试写出y与x之间的函数关系式;
(2)销售该品牌彩电每天获得的最大利润是多少?此时,每台彩电的销售价是多少时,彩电的销售量和营业额均较高?
【练习】某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?。