最新人教版九年级上册数学课本知识点归纳
九年级上册数学笔记整理人教版
九年级上册数学笔记整理人教版一、一元二次方程。
(一)定义。
1. 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
- 一般形式:ax² + bx + c = 0(a≠0),其中ax²是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
(二)解法。
1. 直接开平方法。
- 对于方程x² = p(p≥0),解得x = ±√(p)。
- 例如,方程(x - 3)² = 4,则x - 3 = ±2,x = 3±2,即x = 1或x = 5。
2. 配方法。
- 步骤:- 把方程化为ax²+bx = - c的形式。
- 在方程两边同时加上一次项系数一半的平方,即x²+(b)/(a)x+((b)/(2a))² = - (c)/(a)+((b)/(2a))²。
- 把左边写成完全平方式(x+(b)/(2a))²,然后用直接开平方法求解。
- 例如,对于方程x²+6x - 7 = 0,移项得x²+6x = 7,配方得x² + 6x+9 = 7 + 9,即(x + 3)²=16,解得x=-3±4,x = 1或x=-7。
3. 公式法。
- 对于一元二次方程ax²+bx + c = 0(a≠0),其求根公式为x=(-b±√(b² -4ac))/(2a)。
- 其中b² - 4ac叫做判别式,记作Δ=b² - 4ac。
- 当Δ>0时,方程有两个不相等的实数根。
- 当Δ = 0时,方程有两个相等的实数根。
- 当Δ<0时,方程没有实数根。
- 例如,方程2x² - 3x - 2 = 0,其中a = 2,b=-3,c=-2,Δ=(-3)²-4×2×(-2)=9 + 16 = 25>0,根据公式x=(3±√(25))/(4)=(3±5)/(4),解得x = 2或x =-(1)/(2)。
(完整word版)人教版数学九年级上册知识点整理
知识点五:与圆有关的位置关系
5.点与圆
的位置关系
设点到圆心的距离为d.
⑴d<r?点在OO内;(2)d=r?点在OO上;(3)d>r?点在OO夕卜.
6.直线和 圆的位
m¥方
宀护¥方位置大糸
相离
相切
相交
图形
l®1
[GDI
公共点个数
0个
1个
2个
数量关系
d>r
d=r
dvr
知识点六:切线的性质与判定
解•
(2 )因式分解法:可化为(ax+m)(bx+ n)=0的方程,用因式分解法求
解•
(3 )公式法:一元二次方程ax2+bx+c=0的求根公式为x=
2.一元二次方
b曲4ac(b2-4ac>0).2a
程的解法
(4)配方法:当元二次方程的二次项糸数为1, 次项糸数为偶数时,
也可以考虑用配方法.
先
先用其他,再用公式
(3)弧:圆上任意两点间的部分叫做弧,小于半圆的 弧叫做劣弧,大于半圆的弧叫做优弧.
(4)圆心角:顶点在圆心的角叫做圆心角
(5)圆周角:顶点在圆上,并且两边都与圆还有一个 交点的角叫做圆周角.
(6)弦心距:圆心到弦的距离.
知识点二:垂径定理及其推论
2.垂径定
理及其推
论
定理
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
知识点三:二次函数的平移
4.平移与
解析式
的关系
x/_ov2向左(h<0)或向右(h>0)2向上(k>0)或向下(kv0)2
常”>y=a(x-h)—、y=a(x—h)2+k
人教版九年级上册数学知识点汇总
一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
2. 性质•抛物线的开口方向由a的符号决定:a > 0时,开口向上;a < 0时,开口向下。
人教版数学九年级上册知识点归纳1
九年级上册知识点第一单元 一元二次方程一、一元二次方程1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边十一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、一元二次方程的解法1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
2、配方法 配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用。
配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x 4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21。
(完整版)人教版数学九年级上册知识点归纳,推荐文档
一元二次方程 ax2 bx c 0(a 0) 的求根公式: x b b2 4ac (b2 4ac 0)
2a
有括号的先算括号里的(或先去括号)。
4、因式分解法
我去人也就有人!为UR扼腕入站内信不存在向你偶同意因式调分解剖法沙就是龙利用课因反式分倒解的是手龙段,卷求出风方前程的一解的天方我法,分这种页方符法简Z单N易BX吃噶十 行,是解一元二次方程最常用的方法。
开方数 a 必须是非负数。
ax2 bx c 0(a 0) ,它的特征是:等式左边十一个关于未知数 x 的二次多
2、最简二次根式 若二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开
项式,等式右边是零,其中 ax2 叫做二次项,a 叫做二次项系数;bx 叫做一次项,
得尽方的因数或因式,这样的二次根式叫做最简二次根式。
弧也相等。
三、垂径定理及其推论
推论 2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论 1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
推论 3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三
尽方的因数或因式开出来。 3、同类二次根式
直接开平方法适用于解形如 (x a)2 b 的一元二次方程。根据平方根的定义可知,
几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫 做同类二次根式。
x a 是 b 的平方根,当 b 0 时, x a b , x a b ,当 b<0 时,方程没有
b 叫做一次项系数;c 叫做常数项。
化二次根式为最简二次根式的方法和步骤:
九年级数学课本知识点人教版
九年级数学课本知识点人教版初三新学期数学知识点一、圆的定义1、以定点为圆心,定长为半径的点组成的图形。
2、在同一平面内,到一个定点的距离都相等的点组成的图形。
二、圆的各元素1、半径:圆上一点与圆心的连线段。
2、直径:连接圆上两点有经过圆心的线段。
3、弦:连接圆上两点线段(直径也是弦)。
4、弧:圆上两点之间的曲线部分。
半圆周也是弧。
(1)劣弧:小于半圆周的弧。
(2)优弧:大于半圆周的弧。
5、圆心角:以圆心为顶点,半径为角的边。
6、圆周角:顶点在圆周上,圆周角的两边是弦。
7、弦心距:圆心到弦的垂线段的长。
三、圆的基本性质1、圆的对称性(1)圆是图形,它的对称轴是直径所在的直线。
(2)圆是中心对称图形,它的对称中心是圆心。
(3)圆是对称图形。
2、垂径定理。
(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。
平分弧的直径,垂直平分弧所对的弦。
3、圆心角的度数等于它所对弧的度数。
圆周角的度数等于它所对弧度数的一半。
(1)同弧所对的圆周角相等。
(2)直径所对的圆周角是直角;圆周角为直角,它所对的弦是直径。
4、在同圆或等圆中,两条弦、两条弧、两个圆周角、两个圆心角、两条弦心距五对量中只要有一对量相等,其余四对量也分别相等。
5、夹在平行线间的两条弧相等。
6、设⊙O的半径为r,OP=d。
7、(1)过两点的圆的圆心一定在两点间连线段的中垂线上。
(2)不在同一直线上的三点确定一个圆,圆心是三边中垂线的交点,它到三个点的距离相等。
(直角的外心就是斜边的中点。
)8、直线与圆的位置关系。
d表示圆心到直线的距离,r表示圆的半径。
直线与圆有两个交点,直线与圆相交;直线与圆只有一个交点,直线与圆相切;直线与圆没有交点,直线与圆相离。
9、中,A(x1,y1)、B(x2,y2)。
10、圆的切线判定。
(1)d=r时,直线是圆的切线。
切点不明确:画垂直,证半径。
(2)经过半径的外端且与半径垂直的直线是圆的切线。
(精)最新版人教版九年级数学上册全册知识点
最新版人教版九年级数学全册知识点第二十一章一元二次方程21.1 一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是 2 次的整式方程叫做一元二次方程。
一元二次方程有四个特点:(1)只含有一个未知数;(2) 且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为2的形式,ax +bx+c=0(a≠0)则这个方程就为一元二次方程.( 4)将方程化为一般形式:ax 2+bx+c=0 时,应满足( a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x- m)2=n (n ≥0) 的方程,其解为x=± m.直接开平方法就是平方的逆运算. 通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。
这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。
1.转化:将此一元二次方程化为 ax^2+bx+c=0 的形式 ( 即一元二次方程的一般形式)2.系数化 1:将二次项系数化为 13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△的值代入求根公式x=(b2- 4ac≥0) 就可得到方程的根。
=b2-4ac的值,当b2- 4ac≥0时,把各项系数a, b, c因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
最新人教版初中九年级数学上册知识点笔记总结
最新人教版初中九年级数学上册知识点笔记总结人教版九年级数学上册知识点总结21.1 一元二次方程知识点一:一元二次方程的定义一元二次方程是等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程。
需要注意以下几点:1.只含有一个未知数;2.未知数的最高次数是2;3.是整式方程。
知识点二:一元二次方程的一般形式一元二次方程的一般形式为ax+ bx + c = 0(a≠0)。
其中,ax是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三:一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
21.2 降次——解一元二次方程知识点一:直接开平方法解一元二次方程1)如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x=a(a≥0)的方程,根据平方根的定义可解得x1=a,x2=-a。
2)直接开平方法适用于解形如x=p或(mx+a)=p(m≠0)形式的方程,如果p≥0,就可以利用直接开平方法。
3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二:配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
1)把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
人教版数学九年级上册知识点归纳
人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。
最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。
2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
解一元二次方程的方法有直接开平方法、配方法和公式法。
直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。
配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。
关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。
即点P(x,y)关于y 轴的对称点为P’(-x,y)。
第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。
二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。
2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。
3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
人教版九年级上册数学知识点归纳总结
人教版九年级上册数学知识点归纳总结一、整数1. 整数的概念整数包括正整数、负整数和0,用来表示有向数量。
2. 整数的加减法同号两个整数相加、相减,取相同符号的绝对值之和或之差,符号不变。
3. 整数的乘法异号两个整数相乘,积的符号为负;同号两个整数相乘,积的符号为正。
4. 整数的除法两个非零整数相除,商的符号与被除数、除数的符号相同,绝对值之商。
5. 整数的应用整数在实际生活中的应用,如海拔、温度等。
二、有理数1. 有理数的概念有理数包括整数和分数,可以用来表示各种实际问题中的量。
2. 有理数的加减法有理数的加减法规则和整数基本一致,注意分子分母的通分。
3. 有理数的乘除法有理数的乘法和除法同样需要进行通分操作,然后按照整数的乘除法规则进行计算。
4. 有理数的混合运算有理数的混合运算就是包括加减乘除四则运算。
5. 有理数的应用有理数在实际生活中的应用,如商业运算、比赛计分等。
三、代数式1. 代数式的概念用字母和数字表示的数学式子,其中字母表示数,称为未知量。
2. 代数式的基本概念包括代数式的项、系数、次数和幂等基本概念。
3. 代数式的合并与因式分解将同类项合并,或者根据公式原理进行因式分解。
4. 代数式的加减法同类项之间可以进行加减运算,非同类项需要进行合并。
5. 代数式的应用代数式在解决实际问题中的应用,如代数方程、代数不等式等。
总结回顾在人教版九年级上册数学中,整数和有理数是重点内容,涉及到加减乘除运算、混合运算以及实际应用。
在学习整数和有理数的基础上,代数式是进一步学习的基础,包括代数式的基本概念、合并与因式分解、加减法以及应用。
通过系统的学习和练习,可以更好地掌握数学知识,提高解决实际问题的能力。
个人观点数学是一门理性和逻辑性都很强的学科,整数、有理数和代数式都是数学的基础内容,对于学生来说,掌握这些知识点对于后续的学习至关重要。
在学习过程中,需要注重理论与实践相结合,灵活运用数学知识解决问题,培养自己的逻辑思维能力和数学建模能力。
人教版九年级数学上册知识点整理(完整版)
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
部编人教版九年级数学上册复习提纲
部编人教版九年级数学上册复习提纲
一、整数
1. 整数的概念及表示方法
2. 整数的比较和大小关系
3. 整数的加法与减法运算
4. 整数的乘法与除法运算
5. 整数的混合运算
6. 整除性质及应用
二、分数
1. 分数的概念及表示方法
2. 分数的大小关系
3. 分数的基本运算:加法、减法、乘法和除法
4. 分数的化简与比较
5. 分数与整数的四则混合运算
6. 分数的小数表示及进位与舍位
三、代数式
1. 代数式的概念及基本运算
2. 代数式的展开
3. 代数式的收集同类项与合并同类项
4. 代数式的因式分解
四、线性方程
1. 方程的含义与解的概念
2. 一次方程的求解
3. 一次方程的应用
4. 二元一次方程组的解法
五、平面图形
1. 长方形、正方形、菱形、平行四边形的性质
2. 三角形的性质、分类及相关定理
3. 三角形的周长与面积计算
4. 直角三角形及勾股定理
5. 圆的性质及计算
六、数据的处理
1. 统计图表的读取与分析
2. 数据的收集与整理
3. 数据的概率处理与应用
以上提纲为九年级数学上册复习的主要内容,旨在帮助学生复习回顾所学知识,提高数学能力和成绩。
每个主题下根据具体情况进行适当的例题演练,加深理解并掌握解题方法。
希望同学们认真复习,做好准备,取得优异的成绩!。
人教版九年级数学上册知识点整理(完整版)
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
人教版初三数学上册知识点归纳
人教版初三数学上册知识点归纳第21章 一元二次方程21.1、一元二次方程一元二次方程:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
一般形式:20(0)ax bx c a ++=≠ 2ax 是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项。
一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
21.2、解一元二次方程21.2.1、配方法配方法:通过配成完全平方形式来解一元二次方程的方法,叫做配方法。
21.2.2、公式法判别式:b ×b-4ac判别式>0时,有两个不相等的实数根判别式=0时,有两个相等的实数根。
判别式<0时,无实数根。
求根公式:2b x a-±= 公式法:解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。
21.2.3、因式分解法因式分解法:先分解因式,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解一元二次方程的方法叫做因式分解法。
1.2.4、一元二次方程的根与系数的关系 根与系数的关系:12b x x a +=-,12c x x a•= 21.3、实际问题与一元二次方程第22章 二次函数22.1、二次函数的图像和性质22.1.1、二次函数二次函数:形如2y ax bx c =++ (a,b,c 是常数,a 不等于0)的函数,叫做二次函数 22.1.2、二次函数2y ax =的图像和性质22.1.3、二次函数2()y a x h k =-+的图像和性质22.1.4、二次函数2y ax bx c =++的图形和性质 对称轴:2b x a =-,顶点(2b a-,244ac b x a -=) 22.2、二次函数与一元二次方程22.3、实际问题与二次函数第23章 旋转23.1、图形的旋转图形的旋转:把一个平面图形绕着平面内某一点o 转动一个角度,叫做图形的旋转。
人教版九年级数学上册重点知识点总结
人教版九年级数学上册重点知识点总结一、实数1.有理数1.1 定义:整数和分数统称为有理数。
1.2 分类:正有理数、负有理数和零。
1.3 性质:有理数加减乘除遵循交换律、结合律和分配律。
1.4 相反数、绝对值:一个数的相反数是与它的数值相等,但符号相反的数;一个数的绝对值是它与零的距离。
2.无理数2.1 定义:不能表示为两个整数比的数称为无理数。
2.2 性质:无理数不能精确表示,只能近似计算。
2.3 常见无理数:π、√2、√3等。
3.实数3.1 定义:有理数和无理数的集合称为实数。
3.2 性质:实数加减乘除遵循交换律、结合律和分配律。
二、代数式1.代数式的概念1.1 代数式是由数字、字母和运算符组成的表达式。
1.2 代数式的分类:单项式、多项式、函数等。
2.单项式2.1 定义:只有一个项的代数式称为单项式。
2.2 项的系数:单项式中字母的系数是该字母前的数字。
3.多项式3.1 定义:有两个或以上项的代数式称为多项式。
3.2 多项式的度:多项式中最高次项的次数称为该多项式的度。
4.函数4.1 定义:对于每个输入值,都有唯一输出值的代数式称为函数。
4.2 函数的表示方法:解析式、表格、图象等。
三、方程(含方程组)1.一元一次方程1.1 定义:只有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。
1.2 解法:移项、合并同类项、化简等。
2.二元一次方程2.1 定义:有两个未知数,且未知数的最高次数为1的方程称为二元一次方程。
2.2 解法:代入法、消元法等。
3.方程组3.1 定义:由两个或以上方程组成的解集称为方程组。
3.2 解法:代入法、消元法、图解法等。
四、不等式(含不等式组)1.不等式1.1 定义:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间大小关系的式子称为不等式。
1.2 解法:同方向不等式可以相加减,异方向不等式需要变号。
2.不等式组2.1 定义:由两个或以上不等式组成的解集称为不等式组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级上册数学课本知识点归纳第二十一章 二次根式一、二次根式1.二次根式:把形如)0(≥a a 的式子叫做二次根式, “” 表示二次根号。
2.最简二次根式:若二次根式满足:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式。
这样的二次根式叫做最简二次根式。
3.化简:化二次根式为最简二次根式(1)如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
(2)如果被开方数是整数或整式,先将他分解因数或因式,然后把能开得尽方的因数或因式开出来。
4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。
5.代数式:运用基本运算符号,把数和表示数的字母连起来的式子,叫代数式。
6.二次根式的性质(1))0()(2≥=a a a )0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥•=b a b a ab (乘法)(4))0,0(≥≥=b a b a b a (除法)二、二次根式混合运算1.二次根式加减时,可以把二次根式化成最简二次根式,再把被开方数相同的最简二次根式进行合并。
2.二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号)。
第二十二章一元二次方程一、一元二次方程1、一元二次方程含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程。
2、一元二次方程的一般形式)0(02≠=++a c bx ax ,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
二、降次----解一元二次方程1.降次:把一元二次方程化成两个一元一次方程的过程(不管用什么方法解一元二次方程,都是要一元二次方程降次)2、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
直接开平方法适用于解形如x 2=b 或b a x =+2)(的一元二次方程。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
3、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
配方法解一元二次方程的步骤是:①移项、②配方(写成平方形式)、③用直接开方法降次、④解两个一元一次方程、⑤判断2个根是不是实数根。
4、公式法:公式法是用求根公式,解一元二次方程的解的方法。
一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b a ac b b x当ac b 42->0时,方程有两个实数根。
当ac b 42-=0时,方程有两个相等实数根。
当ac b 42-<0时,方程没有实数根。
5、因式分解法:先将一元二次方程因式分解,化成两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解叫因式分解法。
这种方法简单易行,是解一元二次方程最常用的方法。
三、一元二次方程根的判别式根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆四、一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,由求根公式 )04(2422≥--±-=ac b a ac b b x 可算出a b x x -=+21,a c x x =21。
第二十三章 旋转一、旋转1、定义:把一个图形绕某一点O 转动一个角度的图形变换叫做旋转,其中O 叫做旋转中心,转动的角叫做旋转角。
2、性质(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
⑶ 旋转前后的图形全等。
二、中心对称1、定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形:把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
5、关于原点对称的点的特征:两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)6、关于x轴对称的点的特征:两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)。
7、关于y轴对称的点的特征:两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)。
第二十四章圆一、圆的相关概念1、圆的定义:在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”二、弦、弧等与圆有关的定义(1)弦:连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径:经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧:圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
四、圆的对称性1、圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性:圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角:顶点在圆心的角叫做圆心角。
2、弦心距:从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论1、圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r⇔点P在⊙O内;d=r⇔点P在⊙O上;d>r⇔点P在⊙O外。
八、过三点的圆1、过三点的圆:不在同一直线上的三个点确定一个圆。
2、三角形的外接圆:经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心:三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件):圆内接四边形对角互补。
九、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交⇔d<r;直线l与⊙O相切⇔d=r;直线l与⊙O相离⇔d>r;十一、切线的判定和性质1、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理:圆的切线垂直于经过切点的半径。
十二、切线长定理1、切线长:在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
十三、三角形的内切圆1、三角形的内切圆:与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心:三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。
十四、圆和圆的位置关系1、圆和圆的位置关系:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距:两圆圆心的距离叫做两圆的圆心距。
3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离⇔d>R+r两圆外切⇔d=R+r两圆相交⇔R-r<d<R+r(R≥r)两圆内切⇔d=R-r(R>r)两圆内含⇔d<R-r(R>r)4、两圆相切、相交的重要性质:如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆1、正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。
2、正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十六、与正多边形有关的概念1、正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心。
2、正多边形的半径:正多边形的外接圆的半径叫做这个正多边形的半径。