第24章圆复习总结与小结
最新:人教版九年级上册数学第24章《圆》小结与复习第2课时
(2)举例说明如何计算扇形面积
在半径为R的圆中,因为圆心角是360°的扇形
面积就是圆面积 S R2,所以圆心角是1°的扇
形面积是
R2 360
。这样,在半径为R的圆中,圆心角为
n°的扇形面积S的扇计形 算公n3式6R是02:
1°的扇形面积是 1 R2 360
1°
° n° n°圆心角的扇形的面积 n R2 360
三、选择题:
下A、列三命角题形正外确心的到是三(边C距离)相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,
则这个三角形的面积为_3_0_c_m__.
相信自己我能行
1P.为如A图B,上6⊙一O动的点半,则径点OAPA 到=1圆0c心mO,的弦最A短B=距16离cm,
.
∵直线l是⊙O的切线,切 点为A
∟
O.
∴ OA⊥ l
A
l
典例精析
【例2】.在Rt△ABC中,∠B=90°,∠A的平分线交 BC于D,以D为圆心,DB长为半径作⊙D.
试说明:AC是⊙D的切线.
过D点作DF ⊥AC于F点,
然后证明DF等于圆D的半
F
径BD
【例3】、如图,AB在⊙O的直径,点D在AB的延长 线上,且BD=OB,点C在⊙O上,∠CAB=30°. (1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
B D
C
· E
A
五、 切线 (1) 切线的识别方法: 1.与圆有一个公共点的直线。 2.圆心到直线的距离等于圆的半径的直线是
人教版九年级数学上册第24章《圆》知识小结与复习
A
A.140°B.135°C.130°D.125°
DF
∠BOC=90°+ 1∠A 2
R
E
BM
Q
O
G
P
NC
3、边长分别为3,4,5的三角形的内切圆半径与外 接圆半径的比为( )
A.1∶5 B.2∶5 C.3∶5 D.4∶5
4.已知△ABC,AC=12,BC=5,AB=13。则 △ABC的外接圆半径为 。内切圆半径____ 5. 正三角形的边长为a,它的内切圆和外接圆的半 径分别是______, ____
O1
AM
O
B
如图,在矩形ABCD中,AB=20cm,BC=4cm,点 ⊙p从A开始折线A—B—C—D以4cm/秒的速度 移动,点⊙Q从C开始沿CD边以1cm/秒的速度移 动,如果点⊙P, ⊙Q分别从A,C同时出发,当其中一 点到达D时,另一点也随之停止运动,设运动的时 间t(秒) 如果⊙P和⊙Q的半径都是2cm,那么t 为何值时, ⊙P和⊙Q外切?
(2)若C△ABC= 36, S△ABC=18,则r内=_1____; (3)若BE=3,CE=2, △ABC的周长为18,则AB=_7___;
A
D
8
F
4
o
B
6E
C
1 S △ABC= 2 C △ABC·r内
2.△ABC中, ∠A=70°,⊙O截△ABC三条边所得的
弦长相等.则 ∠BOC=__D__.
3.两圆相切,圆心距为10cm,其中一个圆的半径为 6cm,则另一个圆的半径为_____.
4. 已知圆O1与圆O 2的半径分别为12和2,圆心O1的 坐标为(0,8),圆心O2 的坐标为(-6,0),则两圆的位置 关系是______.
第24章圆知识完整归纳
24章圆知识点一:圆的定义1、圆可以看作是的集合。
2、圆的特征(1)圆上各点到定点(圆心O)的距离都等于定长(半径)。
(2)到定点的距离等于定长的点都在同一个圆上。
知识点二:圆的相关概念1. 叫做弦,2. 叫做直径。
3. 的部分叫做圆弧,简称弧。
圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。
的弧(用三个点表示)叫优弧;的弧叫做劣弧.注意:半圆是弧,但弧不一定是半圆。
半圆既不是优弧,也不是劣弧。
3、等圆:叫做等圆周。
4、等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。
知识点三:圆的对称性圆是轴对称图形,都是圆的对称轴。
知识点四:垂径定理及推论(重点)1、垂径定理:。
注意:(1)这里的垂径可以是直径、半径或过圆心的直线或线段,其本质是“过圆心”。
(2)垂径定理中的“弦”为直径时,结论仍成立。
2、垂径定理的推论:平分弦(不是直径)的垂直于弦,并且平分弦所对的.知识点五:弧、弦、圆心角之间的关系(重点、难点)1、圆心角定理:在同圆或等圆中,所对的弦相等,所对的弧也相等。
2、推论:(1)在同圆或等圆中,如果两条弧相等,那么它们所对的相等,所对的相等。
(2)在同圆或等圆中,如果两条弦相等,那么它们所对的相等所对的相等。
知识点六:圆周角定理及其推论1、圆周角定理:一条弧所对的圆周角等于的一半。
2、圆周角定理的推论:(1)同弧或等弧所对的相等。
(2)半圆(或直径)所对的圆周角是;90°的圆周角所对的弦是 . 知识点七:圆内接多边形圆的内接四边形性质:圆的内接四边形的对角 .知识点八:三角形的外接圆1.经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
2.三角形外接圆的圆心是三角形三条边的的交点,叫做这个三角形的外心,(1)三角形的外心到三角形的距离相等,等于外接圆的半径。
(2)一个三角形有且只有个外接圆,而一个圆却有个内接三角形。
(3)三角形外心的位置:锐角三角形的外心在三角形;钝角三角形的外心在三角形;直角三角形的外心是。
新人教版数学第24章圆复习知识点归纳
r ●O d ┐
相切
d r;<
d r;=
d r.>
r ●O
d
┐ 相离
切线的判定定理 • 定理 经过半径的外端,并且垂直于这条半径的直线是圆的切线.
如图 ∵OA是⊙O的半径, 且CD⊥OA, ∴ CD是⊙O的切线.
●O
C
D
A
(1)定义 (2)圆心到直线的距离d=圆的半径r (3)切线的判定定理:经过半径的外端,并且垂直于这条半径的直线是圆的切线.
面积s=πr2
. r
O
1
或
S
=
lr
2
4.圆柱的展开图:
A
D
h
B
C
r
S侧 =2πr h S全=2πr h+2 π r2
5.圆锥的展开图:
l h
r S侧 =πr l S全=πr l + π r2
l 侧面
底面
谢谢!
三角形三边垂直平分线的交点
三角形的内心
三角形三内角角平分形各边的距 离相等
三角形的外心是否一定在三角形的内部?
A
A
●O
●O
┐
B
C
B
C
锐角三角形的外心位于三角形内, 直角三角形的外心位于直角三角形斜边中点, 钝角三角形的外心位于三角形外.
A ●O
B
C
怎样要将一个如图所示的破镜重圆?
切线的性质定理 圆的切线垂直于过切点的半径. ∵CD切⊙O于A, OA是⊙O的半径
∴CD⊥OA.
●O
C
D
A
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等;这点与圆心的连线平分这两条切线的夹 角。
第二十四章圆小结与复习
第二十四章圆小结与复习1.12.23.3圆是轴对称图形有无数条对称轴过圆心的每一条直线,过圆中一点最长的弦是直径最短的弦是与垂直的弦,弧的度数等于它所对的圆心角的度数,圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。
第二十四章圆小结与复习2017-10-30 13:32:47 | #1楼第二十四章圆小结与复习24.1.1圆一、圆的概念1、圆的定义:(1)(2)2、圆的特征(1)(2)3、确定圆的条件:圆心、半径二、圆的有关概念弦、直径、虎半圆、优虎劣虎等圆、同心圆、等虎弦心距(10个)注:1、直径是弦,但弦不是直径2、半圆是虎但弧不是半圆三、圆的对称性1、圆是轴对称图形,有无数条对称轴(过圆心的每一条直线)2、圆是中心对称图形,圆心是对称中心(也是旋转对称图形,具有旋转不变性) 24.1.2垂径定理1、以下五个条件任意两个,均可得出其余三个:(1)过圆心的直线(2)垂直于弦(3)平分弦(4)平分优弧(5)平分劣弧(强调平分的弦不是直径)2、常用辅助线:连半径、做弦心距3、过圆中一点P最长的弦是直径,最短的弦是与OP垂直的弦4、垂径定理常常与勾股定理合用求值。
24.1.3虎弦、圆心角、弦心距1、圆心角:2、弧的度数等于它所对的圆心角的度数。
3、四者关系、推论:(前提:在同圆或等圆中)24.14圆周角1、圆周角:①②2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
3、圆周角定理的推论:(1)同弧或等弧所对的圆周角相等;在同圆或等圆中,相等圆周角所对的弧也相等。
(2)半圆(或直径)所对圆周角是直角,90°的圆周角所对的弦是直径,所对的弧是半圆。
(给直径想直角;给90°圆周角想直径)(3)在同圆或等圆中,同弦或等弦所对的圆周角相等或互补。
(同侧:相等;异侧:互补)(4)如果三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形。
注:1、有弧找角、有角找弧是证明弧相等、角相等的常用思想。
人教版九年级上册课件第24章《圆》小结
C
C C
O
O
O
B
A
B
D A
B
第3题图
第4题图
A
第5题图
4、已知∠AOB=120°,求∠ACB的大小。
5、已知∠ACD=30°,求∠AOB的大小。 6、已知∠AOB=110°,求∠ACB的大小。
O
B
A
C
第6题图
【典型例题】 例1 如图, ⊙O 的弦 AB=8 cm,直径CE⊥AB 于D, DC=2 cm, 求半径 OC 的长.
7.如图、水平放置的圆柱形排水管道的截面半径是0.6 cm, 其中水面高0.3 cm,求截面上有水部分的面积.
0
A
D
B
C
8.已知一个圆锥的高为6cm,半径为8 cm,则这个圆锥的母线
长为_______ (2)平分弦的直线,必定过圆心。
(6)直径是最长的弦; 即:若直径CD垂直于弦AB,则CD平分弦AB, (2)求这个圆锥的高. (5)平分弧的直线,平分这条弧所对的 弦。 (3)平分弦 (4)平分弦所对的优弧 弓形:由弦及其所对的弧组成的图形叫弓形。
为________。
A
A
C
B
O·
O·
C
B
第3题图1 第3题图2
4.已知扇形的圆心角为120°,半径为2,则这个扇形的面积为
_______.
5.已知扇形的圆心角为30°,面积为 4 ,则这个扇形的半径
R=____.
3
6.已知扇形的圆心角为150°,弧长为20π cm,则扇形的面积 为 A
B
C
【典型例题】 例2.如图所示,点A,B是⊙O上的两点,∠AOB=120°,点C是
A⌒B的中点.
第24章-----圆复习总结
第24章圆复习(2)学习目标:1.探索并理解与圆有关的位置关系:了解切线的概念、性质和判定,会过圆上一点画圆的切线.2.进一步认识和理解正多边形和圆的关系,能进行与正多边形有关的计算.3.熟练掌握弧长和扇形面积公式及其它们的应用;•理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.学习重点:弧长及扇形面积公式及其应用。
学习难点:圆锥侧面积及全面积的计算一、知识梳理(一)重点知识、数学思想、方法回顾、梳理.(二)基础知识检测1.如图14,⊙O的半径为4cm,直线l⊥OA,垂足为O,则直线l沿射线OA方向平移_____cm 时与⊙O相切.图14 图15 图162.两圆有多种位置关系,图15中不存在的位置关系是_____________.3. 如图16,AB是⊙O的切线,OB=2OA,则∠B的度数是_______________.图17 图184. 如图17,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O的半径为()...A.5.如图18,已知∠AOB=30°,M为OB边上任意一点,以M为圆心,半径为2cm作⊙M,当OM=______cm时,⊙M与OA相切.6.已知扇形的圆心角为120°,半径为2cm,则扇形的弧长是_______cm,扇形的面积________cm2.7.如图19,两个同心圆中,大圆的半径OA=4cm,∠AOB=∠BOC=60°,则图中阴影部分的面积是______cm2.cm 8.如图20,圆锥的底面半径为6cm,高为8cm,那么这个圆锥的侧面积是_______2图19 图20二、例题精解例1、如图21,在⊙O 中,直径AB 垂直于弦CD ,垂足为E ,连接AC ,将△ACE 沿AC 翻折得到△ACF,直线FC 与直线AB 相交于点G .(1)直线FC 与⊙O 有何位置关系?并说明理由;(2)若OB=BG=2,求CD 的长.图21例2、如图22,OA 、OB 是⊙O 的两条半径,且OA ⊥OB ,点C 是OB 延长线上的任意一点,过点C 作CD 切⊙O 于点D ,连接AD 交OC 于点E.⑴求证:CD=CE图22⑵若将图⑴中的半径OB 所在的直线向上平移交OA 于F ,交⊙O 于'B ,其他条件不变(如图23),那么上述结论CD=CE 还成立吗?为什么?图23⑶若将图⑴中的半径OB 所在的直线向上平移到⊙O 外的CF ,点E 是DA 延长线与CF 的交点,其它条件不变,(如图24),那么上述结论CD=CE 还成立吗?为什么?图24例3、如图25中图1所示,O 是圆柱形木块底面的圆心,过底面的一条弦AD ,沿母线AB 剖开,得剖面矩形ABCD ,AD=24cm ,AB=25cm ,若AmD 的长为底面周长的32,如图25中图2所示:(1)求⊙O 的半径;(2)求这个圆柱形木块的表面积.(结果可保留根号)图25三、学习体会_______________________________________________________________________________________________________________.四、自我测试1. 已知⊙O 1的半径为1cm ,⊙O 2的半径为4cm ,O 1O 2长为3cm ,则⊙O 1和⊙O 2的位置关系是( )A .外离B .外切C .相交D .内切2.生活处处皆学问,如图26,眼镜镜片所在的两圆的位置关系是( )A.外离B .外切C .内含D .内切图26 图27 图283.如图27,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ,则图中阴影部分的面积是( )A.6πB.5πC.4πD.3π4.如图28,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130° B.100° C.50° D.65°5. 已知:如图29,AB为⊙O直径,BC交⊙O于点D,DE⊥AC于E,要使DE是⊙O的切线,那么图中的角应满足的条件为_______(只需填一个条件).图29 图30 图316.如图30,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连结AC、BC,则圆中阴影部分的面积为()A.12π B.π C.2π D.4π7.如图31,小圆的圆心在原点,半径为3,大圆的圆心坐标为)0,(a,半径为5,如果两圆内含,那么a的取值范围是.8. 如图32,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BDE = 60°,PD =3,求PA的长.五、拓展提高1、如图33,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC 平分∠PAE,过C作CD⊥PA,垂足为D。
人教版初三数学上册第二十四章圆的小结与复习
第24章圆小结与复习、圆的概念集合形式的概念:i、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:至U定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
练习题:一个圆的直径为8cm,到圆心的距离为则该点在圆_______________三、直线与圆的位置关系1、直线与圆相离— d • r = 无交点;2、直线与圆相切— d =r―有一个交点;3、直线与圆相交—d r―有两个交点;1、点在圆内— d :: r—点C在圆内;2、点在圆上― d = r―点B在圆上;3、点在圆外— d r—点A在圆外;5cm,、点与圆的位置关系练习题:、一个点到圆的最短距离为 3cm ,到圆的最长距离为 9cm ,则这个圆的半径为四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:( 1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共 5个结论中,只要知道其中 2个即可推出其它3个结论,即:六、圆周角定理①AB 是直径② AB _CD③CE =DE ④弧BC =弧BD⑤弧AC =弧AD中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
即:在O O 中,T AB // CD•••弧 AC 二弧 BD五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对 的弧相等,弦心距相等。
13 第二十四章小结与复习
第二十四章小结与复习【学习目标】1.正确理解圆的定义、弧、弦、圆心角、圆周角概念、三角形的外接圆和三角形外心的概念、切线、切线长的概念、三角形的内切圆和三角形的内心的概念,圆内接多边形、多边形的外接圆等概念、正多边形的中心、半径、中心角、边心距的概念及有关计算.2.通过对圆的有关性质定理与判定定理的复习,熟练掌握圆的有关性质定理与判定定理的综合运用.【学习重点】垂径定理、圆周角定理、切线的判定及性质的有关运用.【学习难点】圆的有关性质与判定的综合运用.教学建议:建议本课时分成2个课时,第一课时复习情景导入(一)~(三)内容,自学互研并交流展示知识模块一~三,当堂演练中相应的题目;第2课时复习情景导入(四)~(七)内容,自学互研并交流展示知识模块三~四,当堂演练中相应的题目.【导学流程】一、情景导入 感受新知本节课对全章的知识作一回顾,梳理其知识脉络,熟悉其知识构架,进一步澄清那些易混点,易错点,同时对本章中的一些常用辅助线和常见分类作一整理.二、自学互研 生成新知【自主探究】①结合下面的知识结构框图复习整理本章知识要点.圆⎩⎪⎪⎪⎨⎪⎪⎪⎧圆的基本性质⎩⎪⎨⎪⎧轴对称性→垂径定理任意旋转不变性→弧、弦、圆心角的关系定理圆周角定理→圆内接四边形的性质与圆有关的位置关系⎩⎪⎨⎪⎧点和圆→圆的确定定理(三角形外心)直线和圆→切线⎩⎪⎨⎪⎧判定性质三角形内切圆(三角形内心)与圆有关的计算⎩⎪⎨⎪⎧正多边形与圆弧长扇形面积圆锥的侧面积和全面积②常规辅助线.a .与弦有关:垂直于弦的直径.b .已知直径:垂直于直径的弦.c .证切线:有明确公共点,连接圆心与公共点;无明确公共点, 过圆心作切线的垂线段.d .已知切线:垂直于切线且过切点的半径.③圆中的分类讨论(各举一例和同桌交流).a .点和圆的位置关系:点到圆的最近距离和最远距离问题.b .圆的轴对称性:求圆的两平行弦的距离;求有公共端点的两弦夹角.c .弦所对的圆周角.d .与三角形的外心有关的计算.师生活动:①明了学情:关注学生提纲中三个方面的整理情况.②差异指导:根据学情进行分类指导.③生助生:小组内相互交流、研讨、改正.三、典例剖析运用新知【合作探究】典例1:①如图,⊙O的直径CD=10 cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM∶OC=3∶5,则AB的长为(A)A.8cm B.91cmC.6cm D.2cm②如图,AB与⊙O相切于点C,OA=OB,⊙O的直径为8 cm,AB=10 cm,求OA的长.解:连接OC.∵AB与⊙O相切于点C,∴∠ACO=90°.又∵OA=OB,∴AC=CB=12AB=5 cm.在Rt△AOC中,OA=OC2+AC2=16+25=41(cm).③如图,在足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到A点时,同伴乙已经助攻冲到B点,此时甲是直接射门好,还是将球传给乙,让乙射门好?(仅从射门角度考虑)解:∵A在圆外,B在圆上,∴∠PAQ<∠PBQ.∴让乙射门好.典例2:已知,如图,扇形AOB的圆心角为120°,半径OA为6 cm.(1)求扇形AOB的弧长和扇形面积;(2)若把扇形纸片AOB卷成一个圆锥无底纸盒,求这个纸盒的高OH.解:(1)扇形AOB的弧长=4π(cm),扇形AOB的扇形面积=12π(cm2).(2)设圆锥底面圆的半径为r,所以2πr=4π,解得r=2.在Rt△OHC中,HC=2,OC=6,所以OH=OC2-HC2=42(cm).四、课堂小结回顾新知(1)总结本节课的收获.(2)再次回顾全章知识要点.五、检测反馈落实新知1.如图,在⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=75°,则∠B等于(D)A.15°B.40°C.75°D.35°,(第1题图)),(第2题图))2.如图,PA,PB分别切⊙O于点A,B,∠P=70°,则∠C=(B)A.70°B.55°C.110°D.140°3.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D,求证:AC平分∠DAB.证明:连接OC.∵OA=OC,∴∠OAC=∠OCA.又∵DC是⊙O的切线,∴OC⊥CD.又AD⊥CD,∴AD∥CO.∴∠DAC=∠OCA,∴∠DAC=∠OAC.∴AC平分∠DAB.六、课后作业巩固新知(见学生用书)。
第二十四章 圆 知识点总结
第二十四章圆一、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。
(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。
(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。
弧用符号“⌒”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
垂径定理及其推论可概括为:过圆心垂直于弦直径平分弦知二推三平分弦所对的优弧平分弦所对的劣弧四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。
五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。
3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
人教版九年级数学第二十四章《圆》单元知识点总结
人教版九年级数学第二十四章《圆》单元知识点总结1.弦弦:连结圆上任意两点的线段叫做弦. 直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.2.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.①半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;②优弧:大于半圆的弧叫做优弧;③劣弧:小于半圆的弧叫做劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.5、弧、弦、圆心角的关系(1)圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.(2)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.6、圆周角(1)圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.(2).圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(3).圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.7.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).8.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
人教版九年级上册第24章《圆》小结与复习
(2)垂径定理的推论:平分弦(不是直径)的直径垂直于 这条弦,并且平分这条弦所对的两条弧; 平分弧的直径垂直平分这条弧所对的弦.
侵权必究
要点梳理 2.圆周角定理 (1)圆周角定理:圆周角的度数等于它所对弧上的 圆心角度数的一半. (2)推论1:在同圆或等圆中,同弧或等弧所对的 圆周角相等;相等的圆周角所对弧相等. [注意] “同弧”指“在一个圆中的同一段弧”; “等弧”指“在同圆或等圆中相等的弧”;“同弧
A
D
O
侵权必究
BM
C
考点精讲 方法归纳
(1)证切线时添加辅助线的解题方法有两种: ①有公共点,连半径,证垂直; ②无公共点,作 垂直,证半径;有切线时添加辅助线的解题方法 是:见切点,连半径,得垂直; (2)设未知数,通常利用勾股定理建立方程.
侵权必究
考点精讲 已知:如图,PA,PB是⊙O的切线,A、B为切点,
2 的面积等于___3____.
侵权必究
课堂小结
✓ 归纳总结 ✓ 构建脉络
侵权必究
课堂小结
圆的概念
圆是中心对称图形
圆的对称性 圆是轴对称图形,任意一 条直径所在直线都是它的
圆的性质
对称轴 圆心角、圆周角、弧与弦之间的关系
圆
垂径定理
四边形的内接圆、三角形的外接圆
与圆有关的 位置关系
直线与圆的 位置的关系
或等弧”不能改为“同弦或等弦”.
(3)推论2:90°的圆周角所对的弦是直径. (4)推论3:圆的内接四边形的对角互补.
侵权必究
要点梳理 3.与切线相关的定理 (1)判定定理:经过圆的半径的外端且垂直于这 条半径的直线是圆的切线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
A
O
B
图1
图2
5.如图:圆O中弦AB等于半径R,则这条弦所对的圆 心角是_6_0°_,圆周角是_30_°_或_150_°_.
O A
B
6.已知ABC三点在圆O上,连接ABCO,如果
∠ AOC=140 °,求∠ B的度数. 解:在优弧AC上定一点D,连结AD、CD. D
∵ ∠ AOC=140 °
∴ ∠ D=70 °
A.AB=2CD B.AB<2CD C.AB>2CD
D.不能确定
3、 如图2,⊙O中A⌒B的度数为60°,AC是⊙O的直径,那么
∠BOC等于 ( );
A.150° B.130°
C.120°
D.60°
4、在△ABC中,∠A=70°,若O为△ABC的外心,
∠BOC=
;若O为△ABC的内心,∠BOC=
.
C
2、等边三角形外接圆半径与内切圆半径之比 2:1 .
三、选择题:
下列命题正确的是( C )
A、三角形外心到三边距离相等
B、三角形的内心不一定在三角形的内部
C、等边三角形的内心、外心重合
D、三角形一定有一个外切圆
四、一个三角形,它的周长为30cm,它的内切圆半径为2cm,则 这个三角形的面积为__3_0c_m__2 .
O
C
∴ ∠ B=180°-70 °=110 °
A
B
7.平面上一点P到⊙O上一点的距离最长为6cm,最 短为2cm,则圆O的半径为_2_或__4_c_m_.
与圆有关的位置关系:
1.点和圆的位置关系
(1)点在圆内 (2)点在圆上 (3)点在圆外
如果规定点与圆心的距离为d,圆的半径为r, 则d与r的大小关系为:
3.⊙O的半径为R,圆心到点A的距离为d,且R、d分别是方
程x2-6x+8=0的两根,则点A与⊙O的位置关系是( )
A.点A在⊙O内部
B.点A在⊙O上
C.点A在⊙O外部
D.点A不在⊙O上
2.直线与圆的位置关系
r ●O ┐d
相交
r ●O
d ┐ 相切
1、直线和圆相交 2、直线和圆相切 3、直线和圆相离
还能知道哪些正确的结论?请把它们一一写出来
;
3.为改善市区人民生活环境,市建设污水管网工程,某圆
柱型水管的直径为100 cm,截面如图2,若管内污水的面宽
AB=60 cm,则污水的最大深度为
cm
A
C
E
D
O
m
n
B
图1
O
A
B
图2
4.M是⊙O内一点,已知过点M的⊙O最长的弦为10 cm, 最短的弦长为8 cm,则OM=_____ cm.
特别的:
等边三角形的外心与内心重合. 内切圆半径与外接圆半径的比是1:2.
A
O
B
D
C
练一练
一、判断。 1、三角形的外心到三角形各边的距离相等; ( × )
2、直角三角形的外心是斜边的中点.
(√)
二、填空:
1、直角三角形的两条直角边分别是5cm和12cm,则它的外接圆
半径 6.5cm ,内切圆半径 2cm ;
点与圆的位置关系 d与r的关系
.A.
点在圆内
d<r
.
点在圆上
d=r
C
.
点在圆外
d>r
B
1.如图,OA是⊙O的半径,已知AB=OA,试探索当∠OAB的 大小如何变化时点B在圆内?点B在圆上?点B在圆外?
O•
A
B
OP
2.有两个同心圆,半径分别为R和r,P是圆环内一点,则 OP的取值范围是_r_<_OP_<_R .
辅助线 规律
圆
能力树
圆的定义
1.圆的定义辨析
篮球是圆吗?
圆必须在一个平面内
以3cm为半径画圆,能画多少个? 以点O为圆心画圆,能画多少个? 由此,你发现半径和圆心分别有什么作用?
半径确定圆的大小;圆心确定圆的位置
圆是“圆周”还是“圆面”?
圆是一条封闭曲线
圆周上的点与圆心有什么关系?
2.圆的定义(集合观点)
第24章 圆
复习与小结
本章知识结构图
圆的基本性质
与圆有关的位置关系
圆
正多边形和圆
圆的对称性 弧、弦圆心角之间的关系
同弧上的圆周角与圆心角的关系
点和圆的位置关系
三角形的外接圆
直线和圆的位置关系 切线 三角形内切圆
圆和圆的位置关系
等分圆
有关圆的计算
弧长 扇形的面积
圆锥的侧面积和全面积
圆的基本性质
点、直线与圆 的位置关系
正多边 形和圆
弧长和扇 形面积
圆
知识树
垂径定理 圆心角,圆
旋转
周角定理
中心 圆的基本性质
轴
几个相关概念与计算
正多边 形和圆
等分圆
外接圆
内切圆
点、直线与圆 的位置关系
确弧定长和圆扇 的形条的计件算
圆锥的侧 面积和全 面积
圆 切线的性质和判定
弧长 扇形面积
知识树
运动变 化观点
数形结 合思想
分类、方 程思想
②AB=A′B′ ④ OD=O′D′
圆周角定理及推论
D
B
C
C
E
●O
A
●O
BA
●O
B
A
C
定理: 在同圆或等圆中,同弧或等弧所对的圆周角相等, 都等于这弧所对的圆心角的一半.
推论:1.同弧(或等弧)所对的圆周角相等; 在同圆或等圆中,相等的圆周角所对的弧相等
2.直径(或半圆)所对的圆周角是直角; 90°的圆周角所对的弦是直径.
后证明DF等于圆D的半径
BD
F
5.如图,AB在⊙O的直径,点D在AB的延长线上, 且BD=OB,点C在⊙O上,∠CAB=30°. (1)CD是⊙O的切线吗?说明你的理由; (2)AC=_____,请给出合理的解释.
只要连接OC,而后 证明OC垂直CD
A
C
O
B
D
3.三角形的外接圆和内切圆:
A
A
O
I
切线的判定定理的两种应用
1、如果已知直线与圆有交点,往往要 作出过这一点的半径,再证明直线垂直于 这条半径即可;
2、如果不明确直线与圆的交点,往往要 作出圆心到直线的垂线段,再证明这条垂 线段等于半径即可.
切线的性质定理
圆的切线垂直于过切点的半径.
∵CD切⊙O于A, OA是⊙O的半径 ∴CD⊥OA.
4.四边形与圆的位置关系
圆内接四边形的性质: (1)对角互补; (2)任意一个外角都等于它的内对角
圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是(
)
A、1∶2∶3∶4
B、1∶3∶2∶4
C、4∶2∶3∶1
D、4∶2∶1∶3
5.圆与圆的位置关系
交点个数
d
R
r
0
名称
外离
1
外切
2
相交
1
内切
d , R , r 的关系 d>R+r d=R+r R-r< d < R+ r d=R-r
圆是到定点的距离等于定长的点的集合。 圆上各点到定点(圆心)的距离都等于定长(半径); 到定点的距离等于定长的点都在圆上。
一个圆把平面内的所有点 分成了多少类? 你能模仿圆的集合定义思 想,说说什么是圆的内部 和圆的外部吗?
与圆有关的概念
弦和直径 什么是弦?什么是直径? 直径是弦吗?弦是直径吗?
弧与半圆 什么是圆弧(弧)?怎样表示? 弧分成哪几类? 半圆是弧吗?弧是半圆吗?
练一练
1、两个同心圆的半径分别为3 cm和4 cm,大圆的弦
BC与小圆相切,则BC=_____ cm; 2、如图2,在以O为圆心的两个同心圆 A
P
B
中,大圆的弦AB是小圆的切线,P为切点,
O
设AB=12,则两圆构成圆环面积为_____;
3、下列四个命题中正确的是( ).
①与圆有公共点的直线是该圆的切线 ; ②垂直于圆的
0
内含
同心圆是内含的特殊情况
d<R-r
6.正多边形和圆:
(5)平分优弧.
知二得三
D
注意: “ 直径平分弦则垂直弦.”
这句话对吗?( 错 )
垂径定理推论1
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所 对的两条弧。
(2)平分弦所对的一条弧的直径,垂直平分弦,并且平分 弦所对的另一条弧。
(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
例.⊙O的半径为10cm,弦AB∥CD,
A ●O
B
直角三角形的内切圆半 径与三边关系.
r abc. A 2
D
O
●┗
F
┓
B
EC
B
三角形的内切圆半径与圆面积.
S 1 ra b c.
2A
D
F
O
●
┓
E
C
反证法的三个步骤: 1、提出假设 2、由题设出发,引出矛盾 3、由矛盾判定假设不成立,肯定结论正确
用反证法证明“三角形中至少有一个内角不小于60°”, 先应当假设这个三角形中 A. 有一个内角小于60° B. 每一个内角都小于60° C. 有一个内角大于60° D. 每一个内角都大于60°
垂径定理
1.定理 条弧.
C
A
M└
●O
垂直于弦的直径平分弦,并且平分弦所的两
B
若 ① CD是直径
②CD⊥AB
可推得
③AM=BM,
④A⌒C=B⌒C, ⑤A⌒D=B⌒D.