误差理论和测量平差试题复习资料
桂林理工大学《误差理论与测量平差》复习题
桂林理工大学《误差理论与测量平差》复习题一、 写出五种衡量精度指标的名称,并指出他们之间的关系是什么?答:五种衡量精度指标的名称:方差2σ或中误差σ,平均误差θ,或然误差ρ,相对误差和极限误差; 关系:方差nn ][lim 2∆∆=∞→σ,平均误差σθ54≈,或然误差σρ32≈,相对误差Km 1==观测值大小σ,极限误差=2σ或3σ。
二、已知独立观测值1L 、2L 的中误差分别为1σ、2σ,求下列函数的中误差:(1) 2132L L x -=; (2) 212132L L L x -=;(3) )cos(sin 211L L L x +=。
解 (1) 2132L L x -==[]03221+=⎥⎦⎤⎢⎣⎡⋅KL L L , 利用协方差转播公式:TK KL x K KD D LLxx =+=则,,0[][]22212221222122212949432323232σσσσσσσσσσ+±=+=⎥⎦⎤⎢⎣⎡⋅=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⋅==x xxx 则,因此,D (2)212132L L L x -=,此式是非线性形式,需要线性化,对上式求全微分得:[]KdL dL dL L L L dL L dL L L dx =⎥⎦⎤⎢⎣⎡⋅--=⋅-+⋅-=21010212011021)3()3()3()3(利用协方差转播公式:[]2221212212221212210102122210102129)3(9)3()3()3()3()3(σσσσσσσσL L L L L L L L L L L L x xxx +-±=+-=⎥⎦⎤⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡⋅--==则,因此,D(3))cos(sin 211L L L x +=,此式是非线性形式,需要线性化,对上式求全微分得:")(cos )sin(sin ")(cos )sin(sin )cos(cos 2021221110212211211ρρdL L L L L L dL L L L L L L L L dx ⋅⎪⎪⎭⎫ ⎝⎛+++⋅⎪⎪⎭⎫ ⎝⎛++++⋅= 222212211************")(cos )sin(sin ")(cos )sin(sin )cos(cos σρσρσ⎪⎪⎭⎫ ⎝⎛+++⎪⎪⎭⎫ ⎝⎛++++±=L L L L L L L L L L L L L x三、若要在两坚强点间布设一条附合水准路线,已知每公里观测中误差等于mm 0.5±,欲使平差后线路中点高程中误差不大于mm 0.10±,问该路线长度最多可达几公里?解 设路线总长S 公里,按照测量学上的附合路线计算步骤,则路线闭合差 B Ah H h h Hf -++=21由于是路线中点,故()B A h H h h H f v v -++-=-==21212121则线路中点高程()()数点的高程化成观测值函此步的目的是将线路中中点,2121212121212121ˆ212121111B A BA B A A A H H h h H H h h H h h H h H v h H H ++⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=++-=-++-+=++=设每公里高差观测中误差为0σ,则021)2/(σσσs h h ==按误差传播定律)(16,10425)52/(41)52/(41)2/(41)2/(414141212100212122220202222ˆ21121km S S s s s s hhh h H≤≤=⋅⨯+⋅⨯=⨯+⨯=+=⎪⎪⎪⎪⎭⎫⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=σσσσσσσ中点四、设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==mY m X m Y m X 00.150000.1800,00.100000.10002211 向量[]TY X Y X 2211,,,的协方差阵为: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----823261231420223(cm)2 试求坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵;解:[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211120101Y X Y X X X X []⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅-=-=∆2211121010Y X Y X Y Y Y ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆22111121210100101Y X Y X Y Y X X Y X 则坐标差函数12X X X -=∆与12Y Y Y -=∆的方差协方差阵:2)(61151001100151122431100110018232612314202231010101cm D D D D Y Y X Y Y X X X ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎦⎤⎢⎣⎡------=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--⋅⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----⋅⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡∆∆∆∆∆∆∆∆五、有三角网(如图1),其中B 、C 为已知点,A 、D 、E 为待定点,观测角i L (i =1,2,…,10)。
误差理论与测量平差基础习题集
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
《测量平差》复习题
《测量平差》复习题第一章:绪论1、什么是观测量的真值?任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。
2、什么是观测误差?观测量的真值与观测值的差称为观测误差。
3、什么是观测条件?仪器误差、观测者和外界环境的综合影响称为观测条件。
4、根据误差对观测结果的影响,观测误差可分为哪几类?根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
6、观测条件与观测质量之间的关系是什么?观测条件好,观测质量就高,观测条件差,观测质量就低。
7、怎样消除或削弱系统误差的影响?一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。
8、测量平差的任务是什么?⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。
第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么?⑴列表法;⑵绘图法;⑶密度函数法。
2、偶然误差具有哪些统计特性?(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。
(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。
(3) 对称性:绝对值相等的正负误差出现的概率相等。
(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。
3、由偶然误差特性引出的两个测量依据是什么?⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。
4、什么叫精度?精度指的是误差分布的密集或离散的程度。
5、观测量的精度指标有哪些?(1) 方差与中误差;(2) 极限误差;(3) 相对误差。
6、极限误差是怎样定义的?在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。
通常取三倍中误差为极限误差。
当观测要求较严时,也可取两倍中误差为极限误差。
7、误差传播律是用来解决什么问题的?误差传播律是用来求观测值函数的中误差。
8、应用误差传播律的实际步骤是什么?(1) 根据具体测量问题,分析写出函数表达式;(2) 根据函数表达式写出真误差关系式;(3) 将真误差关系式转换成中误差关系式。
测量平差复习题汇总
《测量平差》复习题第一章:绪论1、什么是观测量的真值?任何观测量,客观上总存在一个能反映其真正大小的数值,这个数值称为观测量的真值。
2、什么是观测误差?观测量的真值与观测值的差称为观测误差。
3、什么是观测条件?仪器误差、观测者和外界环境的综合影响称为观测条件。
4、根据误差对观测结果的影响,观测误差可分为哪几类?根据误差对观测结果的影响,观测误差可分为系统误差和偶然误差两类。
5、在测量中产生误差是不可避免的,即误差存在于整个观测过程,称为误差公理。
6、观测条件与观测质量之间的关系是什么?观测条件好,观测质量就高,观测条件差,观测质量就低。
7、怎样消除或削弱系统误差的影响?一是在观测过程中采取一定的措施;二是在观测结果中加入改正数。
8、测量平差的任务是什么?⑴求观测值的最或是值(平差值);⑵评定观测值及平差值的精度。
第二章:误差理论与平差原则1、描述偶然误差分布常用的三种方法是什么?⑴列表法;⑵绘图法;⑶密度函数法。
2、偶然误差具有哪些统计特性?(1) 有界性:在一定的观测条件下,误差的绝对值不会超过一定的限值。
(2) 聚中性:绝对值较小的误差比绝对值较大的误差出现的概率要大。
(3) 对称性:绝对值相等的正负误差出现的概率相等。
(4) 抵偿性:偶然误差的数学期望或偶然误差的算术平均值的极限值为0。
3、由偶然误差特性引出的两个测量依据是什么?⑴制定测量限差的依据;⑵判断系统误差(粗差)的依据。
4、什么叫精度?精度指的是误差分布的密集或离散的程度。
5、观测量的精度指标有哪些?(1) 方差与中误差;(2) 极限误差;(3) 相对误差。
6、极限误差是怎样定义的?在一定条件下,偶然误差不会超过一个界值,这个界值就是极限误差。
通常取三倍中误差为极限误差。
当观测要求较严时,也可取两倍中误差为极限误差。
7、误差传播律是用来解决什么问题的? 误差传播律是用来求观测值函数的中误差。
8、应用误差传播律的实际步骤是什么? (1) 根据具体测量问题,分析写出函数表达式),,,(21n x x x f z =;(2) 根据函数表达式写出真误差关系式n nx x f x x f x x f z ∆∂∂++∆∂∂+∆∂∂=∆ 2211; (3) 将真误差关系式转换成中误差关系式。
1《误差理论与测量平差基础》复习题(word文档良心出品)
一、名词解释(每个2分,共10分)真误差、误差传播定律、平差函数模型、条件方程、观测方程二、填空(每空1分,共20分)1.观测条件主要包括 、 和 三个方面。
2.误差一般分成 、 和 三类。
3.衡量精度的指标有 、 、 、 和极限误差五种。
4.设随机误差服从正态分布,则=+<∆<-)(σσP 。
5.测量平差的任务是 和 。
6.已知某点平面坐标)(Y X 、的协方差阵如下2)(00.130.030.064.0cm ⎪⎪⎭⎫ ⎝⎛,其相关系数XYρ= ,其点位方差为2σ=2)cm (7.若令⎥⎦⎤⎢⎣⎡=21S S Z ,21S S 、为边长观测值,已知其方差阵为2)(4224厘米⎥⎦⎤⎢⎣⎡--=ZZ D ,若220(1ˆ秒)=σ,求2S 的权为 。
8.某观测值L ,其权为4,则L 2的权为 。
9.丈量一正方形各边,边长观测为独立观测,中误差均为4cm ,则该正方形周长的中误差为 。
10. 设观测值的协因数阵为Q ,如果使用条件平差, 则平差后观测值的平差值协因数阵L L Q ˆˆ= ;如果使用间接平差, 则平差后未知数的平差值协因数阵X X Q ˆˆ= ;三、简答题(每小题4分,共20分)1.精度、准确度和精确度之间的关系是什么?2.观测值向量的协方差阵D 、协因数阵Q 和权阵P 之间有什么关系? P 矩阵内的元素的含义是什么?3.什么叫平差的随机模型?它一般如何确定,有什么作用?4.绘图说明使用误差椭圆表示某个方向上误差大小的方法?5. 常用的参数假设检验方法有哪四种?各能检验分布的什么数字特征指标?四、计算题(每小题10分,共40分)1. 设1P 点及2P 点的坐标为:⎩⎨⎧==⎩⎨⎧==mY m X m Y m X 00.30000.400,00.000.02211 向量[]T Y X Y X 2211,,,的协方差阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000010000100001(cm)2,设有向量[]TS Y X Z ,,∆∆=,其中12X X X -=∆、12Y Y Y -=∆、212212)()(Y Y X X S -+-=,求向量Z 的方差协方差阵;2. 如图1,A 、B 为已知点,C 、D 为待定点,同精度独立观测了61L L →六个角度。
误差理论与测量平差基础习题集1
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差复习题及答案
误差理论与测量平差 专升本 复习题 参考一、综合题1.已知两段距离的长度及中误差分别为cm m 5.4465.300±及cm m 5.4894.660±,试说明这两段距离的真误差是否相等?他们的精度是否相等?(问答题,10分) 答:它们的真误差不一定相等;相对精度不相等,后者高于前者。
2.已知观测值向量⎪⎪⎭⎫ ⎝⎛=2121L L L 的权阵为⎥⎦⎤⎢⎣⎡=3224LL P ,及单位权方差120=σ,求L 的方差阵及观测值的权1L P ,2L P 。
(计算题,10分)答:1321248LL Q P --⎡⎤==⎢⎥-⎣⎦,所以128/3,2L L P P == 3.在下图所示三角网中,A .B 为已知点,41~P P为待定点,已知32P P 边的边长和方位角分别为0S 和0α,今测得角度1421,,,L L L 和边长21,S S ,若按条件平差法对该网进行平差:(1)共有多少个条件方程?各类条件方程各有多少个?(2)试列出除图形条件和方位角条件外的其它条件方程(非线性条件方程不要求线性化) (问答题,20分)答:(1)14216,6,10n t r =+=== ,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个 (2)四边形14ABPP 的极条件(以1P 为极): 34131241314ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 四边形1234PP P P 的极条件(以4P 为极): 10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆs i n ()s i n ()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆs i n ˆˆˆˆˆsi n ()s i n s i n ()S L S L L L L L ⋅=++基线条件(0AB S S - ):02101191011ˆˆˆˆˆsi n ()s i n ()S S L L L L L=+++4.有水准网如下图,A 、B 为已知水准点,高程m H A 013.12+=、m H B 013.10+=无误差,C 、D 为待定点,观测了四个高差,高差观测值及相应水准路线的距离为:km S 21=,m h 004.11-=,km S 12=,m h 516.12+=,km S 23=,m h 512.23+=,km S 5.14=,m h 520.14+=。
《误差理论与测量平差》复习题
《误差理论与测量平差》复习思考题1.观测条件是由那些因素构成的?它与观测结果的质量有什么联系?2. 观测误差分为哪几类?它们各自是怎样定义的?对观测结果有什么影响?试举例说明。
3.用钢尺丈量距离,有下列几种情况使得结果产生误差,试分别判定误差的性质及符号: (1) 尺长不准确; (2) 尺不水平;(3) 估读小数不准确; (4) 尺垂曲;(5) 尺端偏离直线方向。
4.在水准了中,有下列几种情况使水准尺读书有误差,试判断误差的性质及符号: (1) 视准轴与水准轴不平行; (2) 仪器下沉; (3) 读数不准确; (4) 水准尺下沉。
5. 何谓多余观测?测量中为什么要进行多余观测?6. 为了鉴定经纬仪的精度,对已知精确测定的水平角'"450000α=作12次同精度观测,结果为:'"450006 '"455955 '"455958 '"450004'"450003'"450004'"450000 '"455958 '"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
7.已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等? 8. 设对某量进行了两组观测,他们的真误差分别为: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ,并比较两组观测值的精度。
9. 设有观测向量1221[]T X L L =,已知1ˆL σ=2秒,2ˆL σ=3秒,122ˆ2L L σ=-秒,试写出其协方差阵22XXD。
误差理论和测量平差试卷及答案6套 试题+答案
《误差理论与测量平差》课程自测题(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
误差理论和测量平差习题集(含答案)
误差理论和测量平差习题集(含答案)1.1 观测条件是由那些因素构成的?它与观测结果的质量有什么联系?1.2 观测误差分为哪⼏类?它们各⾃是怎样定义的?对观测结果有什么影响?试举例说明。
1.3⽤钢尺丈量距离,有下列⼏种情况使得结果产⽣误差,试分别判定误差的性质及符号:(1)尺长不准确;(2)尺不⽔平;(3)估读⼩数不准确;(4)尺垂曲;(5)尺端偏离直线⽅向。
1.4 在⽔准了中,有下列⼏种情况使⽔准尺读书有误差,试判断误差的性质及符号:(1)视准轴与⽔准轴不平⾏;(2)仪器下沉;(3)读数不准确;(4)⽔准尺下沉。
1.5 何谓多余观测?测量中为什么要进⾏多余观测?答案:1.3 (1)系统误差。
当尺长⼤于标准尺长时,观测值⼩,符号为“+”;当尺长⼩于标准尺长时,观测值⼤,符号为“-”。
(2)系统误差,符号为“-”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”(5)系统误差,符号为“-”1.4 (1)系统误差,当i⾓为正时,符号为“-”;当i⾓为负时,符号为“+”(2)系统误差,符号为“+”(3)偶然误差,符号为“+”或“-”(4)系统误差,符号为“-”2.1 为了鉴定经纬仪的精度,对已知精确测定的⽔平⾓'"450000α=作12次同精度观测,结果为:'"450006 '"455955'"455958'"450004'"450003455958'"455959 '"455959 '"450006 '"450003设a 没有误差,试求观测值的中误差。
2.2 已知两段距离的长度及中误差分别为300.465m ±4.5cm 及660.894m ±4.5cm ,试说明这两段距离的真误差是否相等?他们的精度是否相等?2.3 设对某量进⾏了两组观测,他们的真误差分别为:第⼀组:3,-3,2,4,-2,-1,0,-4,3,-2 第⼆组:0,-1,-7,2,1,-1,8,0,-3,1试求两组观测值的平均误差1?θ、2θ和中误差1?σ、2?σ,并⽐较两组观测值的精度。
误差理论与测量平差基础期末复习试题含答案
误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。
2. 测量误差的定义为,按其性质可分为、和。
3. 衡量估计量优劣的标准有、、。
9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。
5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。
(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。
Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。
,,zzz122T8. = 。
tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。
f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。
11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。
ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。
E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。
测量平差备考复习资料
一、 正误判断(正确“T ”,错误“F ”每题1分,共10 分)。
1.已知两段距离的长度及中误差分别为128.286m ±4.5cm 与218.268m ±4.5cm ,则其真误差与精度均相同( )。
2.如果X 与Y 的协方差0xy σ=,则其不相关( )。
3.水准测量中,按公式i icp s =(i s 为水准路线长)来定权,要求每公里高差精度相同( )。
4.可用误差椭圆来确定待定点与待定点之间的某些精度指标( )。
5.在某一平差问题中,观测数为n ,必要观测数为t ,参数个数u <t 且不独立,则该平差问题可采用附有参数的条件平差的函数模型。
( )。
6.由于同一平差问题采用不同的平差方法得到的结果不同,因此为了得到最佳平差结果,必须谨慎选择平差方法( )。
7.根据公式()222220cos sin 0360E F θσθθθ=+≤≤得到的曲线就是误差椭圆( )。
8.对于特定的平面控制网,如果按间接平差法解算,则误差方程的个数是一定的( )。
9.对于同一个观测值来说,若选定一定权常数0σ,则权愈小,其方差愈小,其精度愈高( )。
10.设观测值向量,1n L 彼此不独立,其权为()1,2,,i P i n =,12(,,,)n Z f L L L =,则有22211221111Z n nf f f P L P L P L P ⎛⎫⎛⎫⎛⎫∂∂∂=+++ ⎪ ⎪ ⎪∂∂∂⎝⎭⎝⎭⎝⎭( )。
二、填空题(每空2分,共24分)。
1、设对某三角网进行同精度观测,得三角形角度闭合差分别为:3秒,-3秒,2秒,4秒,-2秒,-1秒,0秒,-4秒,3秒,-2秒,则测角中误差为 秒。
2、某平差问题函数模型)(I Q =为⎪⎪⎩⎪⎪⎨⎧=-=--=+-+=--0ˆ03060515443121x v v v v v v v v ,则该函数模型为 平差方法的模型;=n ,=t ,=r ,=c ,=u 。
626山东财经大学成人高等教育期末考试 误差理论与测量平差复习题-专升本
《误差理论与测量平差》复习题A
一、填空题
1、测量平差的任务是:、。
2、观测误差产生的原因:、、。
3、观测误差一般分为:、、。
4、最小二乘法最早由提出,其基本思想
是。
5、图1所示水准网中观测总数n= 、
必要观测个数t= 、多余观测数r= 。
6、四种基本平差方法:、
、、。
图1
7、误差椭圆三要素指、、。
二、判断题
1、在水准测量中估读尾数不准确产生的误差是系统误差。
()
2、对于大量的偶然误差具有一定的概率统计规律。
()
3、系统误差可用四种基本平差模型进行减弱或消除。
()
4、粗差在测量过程中是不可避免的。
()
5、对于同一几何模型,如果按条件平差法解算,不同的人列出的条件方程可能不同。
()
6、定权时错误!未找到引用源。
是可以任意选定的常数。
()
7、权一定无单位。
()
8、精度是指误差分布的密集或离散的程度。
误差理论与测量平差基础习题集
第一章绪论§1-1观测误差1.1.01为什么说观测值总是带有误差,而且观测误差是不可避免的?1.1.02观测条件是由哪些因素构成的?它与观测结果的质量有什么联系?1.1.03测量误差分为哪几类?它们各自是怎样定义的?对观测成果有何影响?试举例说明。
1.1.04用钢尺丈量距离,有下列几种情况使量得的结果产生误差,试分别判定误差的性质及符号:(1)长不准确;(2)尺尺不水平;(3)估读小数不准确;(4)尺垂曲;(5)尺端偏离直线方向。
1.1.05在水准测量中,有下列几种情况使水准尺读数带有误差,试判别误差的性质及符号:(1)视准轴与水准轴不平行;(2)仪器下沉;(3)读数不准确;(4)水准尺下沆。
§1-2测量平差学科的研究对象1.2.06 何谓多余观测?测量中为什么要进行多余观测?1.2.07 测量平差的基本任务是什么?§1-3测量平差的简史和发展1.3.08 高斯于哪一年提出最小二乘法?其主要是为了解决什么问题?1.3.09 自20世纪五六十年代开始,测量平差得到了很大发展,主要表现在那些方面?§1-4 本课程的任务和内容1.4.10 本课程主要讲述哪些内容?其教学目的是什么?第二章误差分析与精度指标§2-1 正态分布2.1.01 为什么说正态分布是一种重要的分布?试写出一维随机变量X的正态分布概率密度式。
§2-2 偶然误差的规律性2.2.02 观测值的真误差是怎样定义的?三角形的闭合差是什么观测值的真误差?2.2.03 在相同的观测条件下,大量的偶然误差呈现出什么样的规律性?2.2.04 偶然误差*服从什么分布?它的数学期望和方差各是多少?§2-3 衡量精度的指标2.3.05 何谓精度?通常采用哪几种指标来衡量精度?2.3.06 在相同的观测条件下,对同一个量进行若干次观测得到一组观测值,这些观测值的精度是否相同?能否认为误差小的观测值比误差大的观测值精度高?2.3.07 若有两个观测值的中误差相同,那么,是否可以说这两个观测值的真误差一定相同?为什么?2.3.08 为了鉴定经纬度的精度,对已知精确测定的水平角α=45O00’00”作12次观测,结果为:45o00’06” 44o59’55” 44o59’58” 45o00’04”45o00’03” 45o00’04” 45o00’00” 44o59’58”44o59’59” 44o59’59” 45o00’06” 45o00’03”设α没有误差,试求观测值的中误差。
误差理论与测量平差(专升本) 中国地质大学开卷参考资料题库及答案
误差理论与测量平差(专升本)阶段性作业2
总分:100分得分:0分
一、单选题
1. 已知观测向量 的协因数阵为 ,则向量 的协因数为。(3分)
(A) 7
(B) 33
(C) 73
(D) 80
参考答案:C
2. 某段水准路线共测20站,若取C=100个测站的观测高差为单位权观测值,则该段水准线路观测高差的权为________。 (3分)
(D) 平差值相同
(E) 观测值相同
参考答案:B,C
3. 衡量精度的指标有很多种,常用的精度指标有。(4分)
(A) 中误差
(B) 平均误差
(C) 或然误差
(D) 权
(E) 协因数
参考答案:A,B,C,D,E
4. 在相同的观测条件下,大量的偶然误差呈现一定的规律,下列说法正确的是。(4分)
(A) 在一定的观测条件下,偶然误差的绝对值有一定的限值
正确错误
参考答案:错误
解题思路:
8. 相关观测值权逆阵 的对角线元素 与权阵 的对角线元素 之间的关系为 。(2分)
正确错误
参考答案:错误
解题思路:
9. 观测值 与其偶然真误差 必定等精度。(2分)
正确错误
参考答案:正确
解题思路:
10. 系统误差可用平差的方法进行减弱或消除。(2分)
正确错误
参考答案:错误
二、多选题
1. 已知 , ,则下列说法正确的有。(4分)
(A) 中误差相等
(B) 极限误差相等
(C) 观测精度相等
(D) 相对误差相等
(E) 真误差相等
参考答案:A,B
2. 对某一角度进行了n次同精度观测,对于该组观测值,下列说法正确的有。(4分)
中南大学《误差理论与测量平差基础》考研复习重点笔记
考试复习重点资料(最新版)资料见第二页封面第1页第一章测量误差理论§1-1正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§1-2偶然误差的规律性2.直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3.误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4.偶然误差的特性第2章协方差传播律在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
§2—1数学期望的传播数学期望是描述随机变量的数字特征之一,在以后的公式推导中经常要用到它,因此,首先介绍数学期望的定义和运算公式。
其定义是:§2—2协方差传播律从测量工作的现状可以看出:观测值函数与观测值之间的关系可分为以下3种情况,下面就按这3种情况来讨论两者之间中误差的关系。
第3章最小二乘平差§3-1条件平差原理以条件方程为函数模型的方法称之条件平差。
二、按条件平差求平差值的计算步骤及示例计算步骤:1.列出r=n-t个条件方程;2.组成并解算法方程;3.计算V和的值;4.检核。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《误差理论与测量平差》(1)一、正误判断。
正确“T”,错误“F”。
(30分)1.在测角中正倒镜观测是为了消除偶然误差()。
2.在水准测量中估读尾数不准确产生的误差是系统误差()。
3.如果随机变量X和Y服从联合正态分布,且X与Y的协方差为0,则X与Y相互独立()。
4.观测值与最佳估值之差为真误差()。
5.系统误差可用平差的方法进行减弱或消除()。
6.权一定与中误差的平方成反比()。
7.间接平差与条件平差一定可以相互转换()。
8.在按比例画出的误差曲线上可直接量得相应边的边长中误差()。
9.对同一量的N次不等精度观测值的加权平均值与用条件平差所得的结果一定相同()。
10.无论是用间接平差还是条件平差,对于特定的平差问题法方程阶数一定等于必要观测数()。
11.对于特定的平面控制网,如果按条件平差法解算,则条件式的个数是一定的,形式是多样的()。
12.观测值L的协因数阵Q LL的主对角线元素Q ii不一定表示观测值L i的权()。
13.当观测值个数大于必要观测数时,该模型可被唯一地确定()。
14.定权时σ0可任意给定,它仅起比例常数的作用()。
15.设有两个水平角的测角中误差相等,则角度值大的那个水平角相对精度高()。
二、用“相等”或“相同”或“不等”填空(8分)。
已知两段距离的长度及其中误差为300.158m±3.5cm;600.686m±3.5cm。
则:1.这两段距离的中误差()。
2.这两段距离的误差的最大限差()。
3.它们的精度()。
4.它们的相对精度()。
三、选择填空。
只选择一个正确答案(25分)。
1.取一长为d的直线之丈量结果的权为1,则长为D的直线之丈量结果的权P D=()。
a) d/D b) D/dc) d 2/D 2 d) D 2/d 22.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需增加的测回数N=( )。
a) 25 b) 20c) 45 d) 53.某平面控制网中一点P ,其协因数阵为: ⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡=5.025.025.05.0yy yx xy xx XX Q Q Q Q Q单位权方差20σ=±2.0。
则P 点误差椭圆的方位角T=( )。
a) 90 b) 135c) 120 d) 454.设L 的权为1,则乘积4L 的权P=( )。
a) 1/4 b) 4c) 1/16 d) 165.设⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡21311221x x y y ; ⎥⎦⎤⎢⎣⎡=4113xx D又设12x y F +=,则=2F m ( )。
a) 9 b) 16c) 144 d) 36四、某平差问题是用间接平差法进行的,共有10个独立观测值,两个未知数,列出10个误差方程后得法方程式如下(9分):⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡--146ˆˆ8221021x x且知[pll]=66.0。
求:1. 未知数的解2. 单位权中误差m 03. 设21ˆ3ˆ4x xF +=;求F p 1五、 如图平面控制网,A 、B 为已知点,C 、D 、E 、F 为待定点,全网中观测了14个角度和3个边长,现按条件平差法解算,计算如下内容(9分)。
1. 条件式个数。
2. 写出一个非线性化的极条件。
3. 写出一个线性化的正弦条件。
(五题图)六、 证明在间接平差中估计量X ˆ具有无偏性(10分)。
A FEDC B七、证明在条件平差中V、L、Lˆ两两相关或不相关(9分)。
一、FFTFF TTTTF TTFTF二、相等相等相同不等三、aabcd《误差理论与测量平差》(2)一、正误判断:正确( T ),错误或不完全正确(F )。
(30分)1.偶然误差符合统计规律()。
2.权与中误差的平方成反比()。
3.如果随机变量X 和Y 服从联合正态分布,且X 与Y 的协方差为零,则X 与Y 相互独立()。
4.系统误差可用平差的方法进行消除或减弱()。
5.在按比例画出的误差曲线上可直接量的相应边的边长中误差()。
6.对同一量的多次不等精度观测值的加权平均值与用条件平差所得结果完全一致()。
7.观测值与平差值之差为真误差()。
8.三角形闭合差是真误差()。
9.权一定无单位()。
10.对于特定的测量控制网,如果用条件平差法平差,则条件方程式个数和条件方程的形式都是一定的()。
11.因为测量误差服从正态分布,所以可以用最小二乘法消除或减弱()。
12.无论是三角高程网还是水准网最大的秩亏数都是1()。
13.两个水平角的测角精度相同,则角度大的那一个精度高()。
14.对于同一个平差问题,间接平差和条件平差的结果有可能出现显著差异()。
15.在测角中,正倒镜观测是为了消除偶燃误差()。
二、计算填空。
(20分)1.设β的权为1,则乘积4β的权为()。
2.有一角度测20测回,得中误差±0.42秒,如果要使其中误差为±0.28秒,则还需再增加()测回。
3.某平面控制网经平差后得出P 点坐标的协因数阵为:⎥⎦⎤⎢⎣⎡=69.100.000.069.1ˆX Q 22/)(秒分米单位权中误差1ˆ0±=σ秒,则P 点误差椭圆参数中的=E ϕ()。
4.设n 个同精度独立观测值的权均为P ,其算术平均值的权为P 。
则=P P ()。
三、计算。
(18分)1.设有函数y f x f F 21+=,n n nn L L L L y L L L L x ββββαααα++++=++++= (332211332211)式中:i i βα,为无误差的常数,n L L L ,...,,21的权分别为n p p p ,...,,21,求F 的权倒数F p 1。
2.已知独立观测值1L 和2L 的中误差为1σ和2σ,设有函数21212/L L L X +=,计算X 的中误差X σ。
3.设某水准网,各观测高差、线路长度和起算点高程如下图所示。
计算P 点的平差值h p (精确到0.001米)。
四、如图控制网,A和B为已知点,C、D、E、F为待定点,观测了全网中的14个内角、两个边长S1和S2,回答或计算下列问题(12分)。
1.条件式个数_____________。
2.必要观测个数_____________。
3.写出一个极条件(不必线性化)。
4.写出一个正弦条件(线性形式)。
( 四题图)五、如图单一水准路线,A、B为已知点,A到B的长度为S,P为待定点。
证明平差后高程最弱点在水准线路的中央。
(8分)六、在条件平差中,证明观测值的平差值和改正数相关或不相关。
(6分)七、在如图所示的直角三角形中(C为直角),测的三个边长L1、L2和L3。
试列出平差值条件方程式。
(6分)一、TTTFT TFTFF TFFFF二、1、1/16 2、25 3、1.69 4、n《误差理论与测量平差》(3)一、选择题(15分)(本题共有10个小题,每小题有四个可供选择的答案,其中两个是最接近要求的答案,每选对一个得1.5分,每小题3分,本题共15分;将答案全部选上者该题不得分。
)1.下列观测中,哪些是具有“多余观测”的观测活动A 对平面三角形的三个内角各观测一测回,以确定三角形形状B 测定直角三角形的两个锐角和一边长,确定该直角三角形的大小及形状C 对两边长各测量一次D 三角高程测量中对水平边和垂直角都进行一次观测2.下列哪些是偶然误差的特性A 绝对值小的误差比绝对值大的误差出现的概率小B 当偶然误差的个数趋向极大时,偶然误差的代数和趋向零C 误差分布的离散程度是指大部分误差绝对值小于某极限值绝对值的程度D 误差的符号只与观测条件有关3.某测角网的网形为中点多边形,网中有3个三角形,共测水平角9个A 共有5个条件方程可列出B 极条件方程有2个C 水平条件方程有2个D 极条件方程有1个3.对上题(一题3小题)进行参数平差A 法方程的个数为5个B 误差方程的个数为9个C 待求量的个数为5个D 待求量的个数为13个5.在t检验中,设置检验显著水平为0.05,由此确定的拒绝域界限值为1.96,某被检验量M的t检验值为1.99A 原假设成立B 备选假设不成立C 原假设不成立D 备选假设成立二、正误判断题(15分)(本题共5个小题,每小题3分,本题共15分;)1.一点的纵横坐标(X,Y)均是角度观测值与边长观测值的函数,若角度观测值与边长观测值是独立观测值,则X,Y之间是相关的。
--位差极大值方向的坐标方位角;E—位差极大2.误差椭圆的三个参数的含义分别为:E值方向;F —位差极小值方向。
3.各观测值权之间的比例关系与观测值中误差的大小无关。
4.平差值是观测值的最佳估值。
5.平差前观测值的方差阵一般是已知的。
三、填空题(20分)(本题共5小题,每小题4分,本题共20分)1. 已知水准测量中,某两点间的水准路线长为D=10km ,若每km 高差测量中误差为mm 20±=σ,该段水准高差测量中误差为[1](计算取位至mm )。
2.某段水准路线共测20站,若取C=200个测站的观测高差为单位权观测值,则该段水准路线观测的权为[2]。
3.观测值L 1、L 2┅L n 其权为P 1=P 2=┅P n =2,若Z=][][P PL ,试求Z 的权P Z =[3]。
4.某三角网共有100个三角形构成,其闭合差的[WW]=200″,测角中误差的估值为[4] (计算取位至于0.1″)。
5.某长度由6段构成,每段测量偶然误差中误差为mm 2±=σ,系统误差为6mm ,该长度测量的综合中误差为[5](计算取位至0.1mm )。
四、计算题(40分)(本题共有5个小题,本题共40分) 1、误差方程式如下(15分)67832153242132211++-=--=---===x x x v x x v x x v x v x v δδδδδδδδδ观测值的权均为1,试求1/P X1=?,权函数32x x δδϕ+=,?1=ϕP2、水准测量中每站高差的中误差为±1cm ,现要求从已知点推至待定点的高程中误差不大于±5cm,问应测多少站。
(5分)3、用经纬仪对同一角度α进行了三次同精度观测,得观测L 1、L 2、L 3,试列出条件平差该问题时的条件方程式(10分)4、已知某平差问题的误差方程式如下:4216 13 5243 133 222 11-=+-=--=-+-=+ -=x v xvx xvx xvx xv若观测值权阵为I,试组成法方程,并解算法方程未知数。
(10分)五、分析推证题(10分):举例说明最小二乘原理一、选择题答案1、A,B2、B,C3、A,D4、B,D5、C,D二、正误判断题1 - 5 T、T、F、T、F三、填空题1–5 ±63mm 10 2n ±0.8″±36.3mm《误差理论与测量平差》(4)一、选择题(本题共5个小题,每小题有4个可供选择的答案,其中两个是最接近要求的答案,每选对一个得1.5分,每小题3分,本题共15分;每小题选择的答案数最多为两个,填于题后的答案框中,否则该小题不得分。