(人教版初中数学)立体图形的表面展开图
立体图形的表面展开图(课件)
新知讲解
第一种:一四一型
新知讲解
第一种:一四一型
新知讲解
第二种:二三一型
新知讲解
第三种:二二二型
第四种:三三型
新知讲解
例 下面的图形都是正方体的展开图吗?
是
是
是
新知讲解
例 下面的图形都是正方体的展开图吗?
是
不是
是
新知讲解
正方体展开图“口诀” 中间四个面,上下各一面 中间三个面,一二隔河见 中间两个面,楼梯天天见 中间没有面,三三连一线
拓展提高
在下边的展开图中,分别填上1、2、3、4、5、6,使折
叠成正方体后,相对面上的数字之和相等,求x=
,
y=
, z=
。
y
1x z 5
4
拓展提高
引导:由正方体的展开图可以看出:1和z是相对面,5 和x是相对面,4和y是相对面,所以1+z=7, 5+x=7,4+y=7,所以x=2,y=3,z=6。
4.3立体图形的表面展开图
华师大版 七年级上
新知导入
你想知道这些精美的包装 盒是怎么制成的吗?
新知导入
我们知道圆柱的侧面展开图是长方形,圆锥的侧面展 开图是扇形。但在实际生活中常常需要了解整个立体图形 展开的形状,如包装一个长方体形状的物体,需要根据其 平面展开图来裁剪纸张。
我们下面要讨论的是一些简单多面体的表面展开图。
课堂总结
板书设计
4.3立体图形的表面展开图 一、简单立体图形的展开图 二、正方体的展开图
新知讲解
下图的三个图是一些多面体的表面展开图,你能 说出这些多面体的名称吗?
正方体
长方体
三棱柱
立体图形的表面展开图教案
《立体图形的表面展开图》教学设计一、教材分析:本节课是第四章第一节第三课时的学习内容,在本章教材的编排顺序中起着承前启后的作用,在知识的链条结构中也起着重要的作用。
教材考虑到学生的年龄特点和知识的基础,特别强调动手操作和展开想象相结合的学习方式。
首先通过把正方体的盒子剪开得到展开图的活动,引导学生直观认识正方体的展开图,由于学生沿着不同的棱来剪,因此得到的展开图的形状可能也不同,让学生充分感知正方体不同的展开图,体会到从不同的角度去思考、探究问题,会有不同的结果。
然后,教材安排了探究其他立体图形的展开图的活动,这部分内容主要在想象的基础上,加上多媒体演示,展现给同学们。
这个内容对学生的空间观念要求比较高,有些学生学起来有一定的难度,当然可以通过动手“折一折”活动来验证猜想。
让学生在反复的展开和折叠中,经历和体验立体图形与平面图形的相互转化过程,感受立体图形与平面图形的关系,渗透转化和对应的数学思想,发展空间观念,培养学生多角度探究问题的能力和空间思维能力,并且在探究知识的过程中,不断体验发现与成功的喜悦。
教材的意图不仅仅是要求学生掌握本节课的基本知识和基本技能,更重要的是要教给学生探索知识的方法和策略,鼓励学生在教师的引导下自主探索和研究数学知识,这样做的意义就在于将学生的独立思考、展开想象、自主探索,交流讨论,分析判断等探索活动贯穿于课堂教学的全过程,使学生不断获得和积累数学活动经验,培养学生的学习兴趣和学习能力。
二、学情分析:1、学生在学习本课之前,已经学习了长方形、正方形等平面图形的周长与面积计算,但对立体图形与平面图形之间的关系还不能有机地联系起来。
因此,在教学中要通过操作和想象,让学生亲身经历和充分体验立体图形与平面图形之间的相互转化过程,建立展开图中的面与立体图形中的面的对应关系。
2、学生的思维能力、操作能力和空间观念肯定存在差异,接受能力和思维方式也不同,对学习有困难的学生,应及时加以方法的指导,能够在想象的基础上通过操作验证掌握新知,对于思维水平较高、空间观念较强的学生,如果在没有操作的基础上,只通过想象直接判断,应给予肯定和鼓励。
【初中数学】人教版七年级上册第3课时 立体图形的表面展开图(练习题)
人教版七年级上册第3课时立体图形的表面展开图(376)1.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是()A.遇B.见C.未D.来3.一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝4.如图是一个正方体,则它的表面展开图可以是()A. B. C. D.5.下列图形中,不是正方体的展开图的是()A. B. C. D.6.如图,是某种几何体表面展开图的图形.这个几何体是()A.圆锥B.球C.圆柱D.棱柱7.把图中第一行中的立体图形与第二行中它们各自的展开图连线.8.下列图形中可以作为一个三棱柱的展开图的是()A. B. C. D.参考答案1.【答案】:A【解析】:因为该几何体有4个面是三角形,一个面是四边形,所以这个几何体是四棱锥2.【答案】:D3.【答案】:B4.【答案】:B【解析】:A项,含有田字形,不能折成正方体,故A错误.B项,能折成正方体,故B正确.C项,含有凹字形,不能折成正方体,故C错误.D项,含有田字形,不能折成正方体.故D错误.故选 B5.【答案】:C6.【答案】:A【解析】:由圆锥的展开图特点作答.因为圆锥的展开图为一个扇形和一个圆形,故这个几何体是圆锥.故选A.7.【答案】:解:(1)B,(2)A,(3)D,(4)C8.【答案】:A【解析】:三棱柱展开后,侧面是三个长方形,上、下底面各是一个三角形.由此可得只有A是三棱柱的展开图.故选 A。
人教版七年级数学上册《立体图形的展开图》课件
-2
3 -4 1
A 3x-2
当堂反馈——C组:
5 .有一个正方体,在它的各个面上分别涂 了白、红、黄、兰、绿、黑六种颜色。甲、乙 、丙三位同学从三个不同的角度去观察此正方 体,结果如下图,问这个正方体各个面的对面 的颜色是什么?
黑 红兰
白 黄红
绿 兰黄
甲乙ຫໍສະໝຸດ 丙作业布置:1.习题4.1第6、7 题. 2.(选做题)根据所学知识,手工制做一 个长方体形状的盒子。
开图的是( C )
(A)
(B)
(C)
(D)
当堂反馈——A组:
练习2. 将正确答案的序号填在横线上:
圆柱的展开图是——(4—);圆锥的展开图是—(—6—)—; 三棱柱的展开图是_(_3_)_.
当堂反馈——B组: 考考你
3.如果“你”在前面,那么谁在后面?
了!
太棒
你们
当堂反馈——B组:
4.下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体的左面
下面是一些立体图形的展开图,用它们能围成什么样 的立体图形?先细心想一想,看看你想象得到的图形和 实验演示的结果是否相同。
课堂小结:
1.多面体可由平面图形围成,立体图形可 展开成不同的平面图形。
2.不是所有立体图形都有平面展开图, 比如球体。
当堂反馈——A组:
1. 练习:下列图形中可以作为一个正方体的展
通过“展开”和“围成”两种途径认识常见几何体 的展开图。
探究常见的立体图形的展开图:
将正方体的表面沿棱适当剪开,观察它的展开图是怎 样的,然后画出示意图.(沿着不同的棱剪开,会得到 不同的展开图,比一比,看那个组得到的结果多!)
初一数学立体图形的展开图含答案
初一数学立体图形的展开图中考要求例题精讲正方形展开图的知识要点:第一类:有6种。
特点:是4个连成一排的正方形,其两侧各有一个正方形简称“141型〃第二类:有3种。
特点:是有3个连成一排的正方形,其两侧分别有1个和两个相连的正方形;简称“132第四类:仅有1种,三个连成一排的正方形的一侧,还有3个连成一排的正方形,可简称“33型〃正方形展开图的识别方法:1.排除法:(1)由少于或多于6个的正方形组成的图形不是正方形的平面展开图(2)有“凹〃字型或“田〃字型部分的平面图形不是正方体的展开图2.对比法:对照上面的四种规则进行对照;从展开图可以看出,在正方形的展开图中不会出现如下图所示的“凹〃字型和“田〃字型结构。
模块一长方体的展开图长方体展开图【例1】下列图形中,不能表示长方体平面展开图的是()A. L B . I—C C. ---------- D. '— '—【解析】由平面图形的折叠及正方体的展开图解题.选项A, B, C经过折叠均能围成长方体,D两个底面在侧面的同一侧,缺少一定底面,所以不能表示长方体平面展开图.故选D.【答案】D【巩固】如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为()A. 4 【解析】B. 6【答案】 由图可知,无盖长方体盒子的长是3,宽是2 盒子的容积为3x2x1=6.故选B . B【巩固】 下图是一个长方体纸盒的展开图,请把5, 3,成长方体后,相对面上的两数互为相反数.li1 TI LTD . 15 高是1,所以盒子的容积为3x2x1=6. 5, -1, -3, 1分别填入六个长方形,使得按虚线折 【解析】根据题意,找到相对的面,把互为相反数的数字分别填入即可.正方体展开图【答案】C展开图;5可以拼成一个正方体.故选C.【答案】C【答案】C【巩固】将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.注意带图案的三个面相交于一点.而通过折叠后A、B都不符合,且D折叠后图案的位置正好相反,所以能得到的图形是C.【答案】C.【例4】将如图正方体的相邻两面上各画分成九个全等的小正方形,并分别标上0、x两符号.若下列有一图形为此正方体的展开图,则此图为()【解析】此题主要根据0、x两符号的上下和左右位置判断,可用排除法.由已知图可得,0、x两符号的上下位置不同,故可排除A、B;又注意到0、x两符号之间的空行有3列.【答案】C.【解析】本题考查正方体的表面展开图及空间想象能力.在验证立方体的展开图式,要细心观察每一个标志的位置是否一致,然后进行判断.根据有图案的表面之间的位置关系,正确的展开图是D.【答案】故选D.【点评】学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.A、B、C、D、【巩固】如图,哪一个是左边正方体的展开图(【答案】D.成不相符,所以不是无盖的正方体盒子的平面展开图.【答案】D.【巩固】如图,是一个正方体盒子(6个面)的侧面展开图的一部分,请将它补充完整.模块二圆柱、圆锥的侧面展开图圆柱体【例6】圆柱的侧面展开图形是()A.圆B.矩形C.梯形D .扇形【解析】略【答案】B【巩固】如图,已知MN是圆柱底面的直径,NP是圆柱的高,在高柱的侧面上,过点M, P嵌有一幅路径最短的金属丝,现将圆柱侧面沿NP剪开,所得的侧面展开图是()A.产 F & p p c.尹尸D .尸尸【解析】由平面图形的折叠及立体图形的表面展开图的特点解题.因圆柱的展开面为长方形,MP展开应该是两直线,且有公共点M.故选A.【答案】A【例7】如图,MN是圆柱底面的直径,NO是圆柱的高,在圆柱的侧面上,过点M, P.有一条绕了四周的路径最短的金属丝,现将圆柱侧面沿NO剪开,所得的侧面展开图可以是:【解析】根据两点之间线段最短,剪开后所得的侧面展开图中的金属丝是线段,即可选择.注意P点在展开图中长边的中点处,圆柱侧面沿NO剪开,根据两点之间线段最短,剪开后所得的侧面是长方形,P点在展开图中长边的中点处,金属丝是线段,且从P点开始到M点为止.故选②.【答案】②圆锥体【例8】下列立体图形中,侧面展开图是扇形的是()A. LB.C. ^—■D D , L——U【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥. 【答案】B【巩固】我国运用长征火箭发射了百余颗人造卫星和5次神州飞船.如图是我国航天科技人员自主研究开发的长征系列火箭的立体图形.(火箭圆柱底面圆的周长不等于圆柱的高)(1)请你画出火箭的平面展开图,并标上字母.(2)写出平面图形中所有相等的量.【解析】结合圆柱和圆锥的侧面展开图的特征解题.(1)如右图.(2)OA=OB , CB = ED = AB , BE=CD , Z B = Z C = Z D = Z E = 90 .【答案】同解析.模块二其他立体图形的展开图【例9】若下列只有一个图形不是右图的展开图,则此图为何?()【解析】选项D的四个三角形面不能折叠成原图形的四棱锥,而是有一个三角形面与正方形面重合,故不能组合成原题目的立体图形. 【答案】故选D.【巩固】图1是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如图2所示.下列四个图形中哪一个是图2的展开图()排除B、D,又阴影部分正方形在左,三角形在右.【答案】故选A.形,故可得答案.【答案】B.【巩固】下面四个图形中,是三棱柱的平面展开图的是()A. B. C.【解析】根据三棱柱的展开图的特点作答.八、是三棱柱的平面展开图;3、是三棱锥的展开图,故不是;C、是四棱锥的展开图,故不是;D、两底在同一侧,也不符合题意.故选A.【答案】A【解析】利用棱柱及其表面展开图的特点解题.A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D 围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.【答案】故选D.【例12]如图是一个正四面体,它的四个面都是正三角形,现沿它的三条棱AC、BC、CD剪开展成平面图形,则所得的展开图是()【答案】B.【例13】哪种几何体的表面能展成如图所示的平面图形?需剪几条棱才能得到如此形状的平面图?你是怎样数出来的?请总结其规律.【解析】侧面为五个长方形,底边为五边形,故原几何体为五棱柱.五棱柱能展成如图所示的平面图形.由五棱柱展开成平面图形,需要剪9条棱.因为五棱柱共有15条棱,7个面,展成平面图形时,7个面需有6条棱相连,共需留下6条棱不剪,所以需剪15-6=9 (条)棱.总结规律:n棱柱有n+2个面,3n条棱,展成平面图形时,n+2个面需有n+1条棱相连,故应留下n+1条棱不剪,所以要把n棱柱展成平面图形,共需剪3n- (n+1) =(2n-1)条棱.(n +1)= 2 n -1.【答案】五棱柱;9; 3 n-【例14】下列图形是某些立体图形的平面展开图,说出这些立体图形的名称.【解析】由平面图形的折叠及常见立体图形的展开图解题.根据图示可知:①五棱锥;②圆柱;③三棱柱.【答案】①五棱锥②圆柱③三棱柱由平面图形的折叠及立体图形的表面展开图的特点解题.6个正方形能围成一个正方体,个长方形和两个三角形能围成一个三棱柱,一个四边形和四个三角形能围成四棱锥,6个长方形可以围成长方体.课后作业【解析】圆锥的侧面展开图是扇形,故选C .【答案】C【巩固】图中四个图形是多面体的展开图,你能说出这些多面体的名称吗?【解析】 【答案】 正方体;三棱柱;四棱锥;长方体.【答案】故选D ..【答案】B4.如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.【解析】根据四棱锥、三棱柱、圆柱、圆锥及其表面展开图的特点解答并作图.观察图形,由立体图形及其表面展开图的特点可知相应的立体图形顺次是四棱锥、三棱柱、圆柱、圆锥.作图如下:【答案】同解析.【点评】本题考查了几何体的展开图,可根据所给图形判断具体形状,也可根据所给几何体的面数进行判断.。
从不同方向看立体图形与立体图形的展开图 课件(共20张PPT) 人教版七年级数学上册
同学们,这节课我们学习了从不同方向看立体图形与立体图形的展开图,认识了多种立体图形的展开图,并且从展开图的角度进一步了解了立体图形与平面图形的转化关系.
教材习题:完成课本158-159页习题2,4,6,7,8,9,11题.实践性作业:在家里找一个物品放置在桌面上,请你分别画出从前面看、从左面看、从上面看该物体得到的图形.
重点
难点
古诗导入
《题西林壁》苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.问题1:从诗中可以看出作者苏轼从不同角度对庐山进行了仔细观察,那他都从哪些角度对庐山进行了观察呢?问题2:诗中隐含着什么道理?对你有什么启发?
同学们,你们知道这些精美的包装盒是怎么制成的吗?要设计、制作一个包装盒, 除了美术设计以外,还要了解它展开后的形状,根据它来准备材料.
知识点2:立体图形的展开图(重难点)
名称
正方体
长方体
五棱柱
圆柱
圆锥
立体图形
展开图(举例)
3.正方体的展开图:“一四一”型 : “二三一”型: “阶梯”型:
注:(1)不是所有的立体图形都能展开成平面图形,如球.(2)同一个立体图形】从不同方向观察几何体
6.1 几何图形
6.1.1 立体图形与平面图形
第2课时 从不同方向看立体图形与立体图形的展开图
1. 经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能会看到不一样的结果,能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,提高学生的画图能力.2.通过观察和动手操作,经历和体验平面图形和立体图形相互转换的过程,初步建立空间观念,发展几何直观,培养动手操作能力和语言表达能力.
图片导入
1. 分别从前面、左面、上面看长方体、球、圆柱、圆锥,各能得到什么平面图形?2.请同学们阅读课本152-153页,动手画一画分别从前面、左面、上面观察图6.1-5得到的平面图形.
立体图形的表面展开图例题与讲解
立体图形的表面展开图例题与讲解(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是().解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C 也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是().A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是().A.4 B.6 C.7D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是().解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图().解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。
初中数学《立体图形的表面展开图》教案
§4.3 立体图形的表面展开图【教学目标】:1、会判断所给定的平面图形能否折成立体图形2、给出一些立体图形的展开图,能说出相应立体图形的名称;3、会判断给定的平面图形是否某立体图形的展开图,并会把一个简单的立体图形展开成平面图形;【教学重点】:探讨正方体的表面展开图,能从展开图得到正方体的立体图形.【教学难点】:研究一个简单立体图形的展开图.【学习过程】:一、新课引入小壁虎的难题:如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?●蚊子壁虎●二、试一试1. 把以下立体图形展开,看它的平面展开图是什么?2.把正方体纸盒按任意方式沿棱展开,你能得到哪些不同的展开图?总结:正方体的平面展开图共11种,如下:第一类:“一四一”型,共6种第二类:“二三一”型,共3种第三类:“二二二”型,共1种第四类:“三三型”,共1种三、中考链接1.(2015•眉山)下列四个图形中是正方体的平面展开图的是(B)A.B.C.D.2.(2015•崇左)如图是一个正方体展开图,把展开图折叠成正方体后,“我”字一面的相对面上的字是(D)A.的B.中C.国D.梦3.(2014•恩施州)正方体的六个面分别标有1,2,3,4,5,6六个数字,如图是其三种不同的放置方式,与数字“6”相对的面上的数字是(B)A.1 B.5 C.4 D.34.(2015•茂名)如图是一个正方体的平面展开图,折叠成正方体后与“建”字所在面相对的面的字是(C)A.创B.教C.强D.市5.(2011•扬州)如图1,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为39.6.(2014•遵义)有一个正六面体骰子(图2),放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2014次后,骰子朝下一面的点数是.(图1)(图2)。
人教版数学七年级上册 第四章4.1.1立体图形的展开图
谢谢聆听
激励大学生奋斗的励志句子
14. 磨练,使人难以忍受,使人步履维艰,但它能使强者站得更挺,走得更稳,产生更强的斗志。 11. 这个世界并不是掌握在那些嘲笑者的手中,而恰恰掌握在能够经受得住嘲笑与批评忍不断往前走的人手中。 10. 付出才会杰出;为别人创造价值,别人才愿意和你交往。 8. 穷不一定思变,应该是思富思变。 9. 用心观察成功者,别老是关注失败者。 10. 尽管这个世界破洞百出,但真的不用担心。每个破洞都会找到一个补洞的人。但是,如果我们轻易放弃我们该做的,世界同样也会放弃我 们。最后连角落都不给我们躲藏了。
15. 竞争颇似打网球,与球艺胜过你的对手比赛,可以提高你的水平。 4. 靠山山会倒,靠水水会流,靠自己永远不倒。 15. 不要轻易用过去来衡量生活的幸与不幸!每个人的生命都是可以绽放美丽,只要你珍惜。 10. 让我们挥起沉重的铁锤吧!每一下都砸在最稚嫩的部位,当青春逝去,那些部位将生出厚晒太阳的茧,最终成为坚实的石,支撑起我们不再 年轻但一定美丽的生命。
新知讲解
1
2
3
4
5
6
7
8
9
10
11
思考: 1.观察上面的11种正方体的展开图有没有什么规律? 2.小组讨论这些正方体展开图可以分为几类?哪几号展开图
可以分为一类,为什么?
新知讲解
新知讲解
新知讲解
新知讲解
相 对 两 面 不 相 连来自上左下右隔隔
一一
蓝
行列
黄
新知讲解
巧记正方体的展开图口诀 :
正方体盒巧展开, 六个面儿七刀裁, 十一类图记分明; 一四一呈6种, 一三二有3种, 二二二与三三各1种; 对面相隔不相连, 识图巧排“凹”和“田”.
立体图形的表面展开图例题与讲解
立体图形的表面展开图1.圆柱、圆锥、棱柱的表面展开图将一个几何体的外表面展开,就像打开一件礼物的包装纸.礼物外形不同,包装纸的形状也各不相同.那么我们熟悉的一些几何体,如圆柱、圆锥、棱柱的表面展开图是什么形状呢(1)圆柱的表面展开图是两个圆(作底面)和一个长方形(作侧面).(2)圆锥的表面展开图是一个圆(作底面)和一个扇形(作侧面).(3)棱柱的表面展开图是两个完全相同的多边形(作底面)和几个长方形(作侧面).【例1】如图,将图中的阴影部分剪下来,围成一个几何体的侧面,使AB,DC重合,则所围成的几何体图形是( ).解析:此题可用排除法.因为阴影部分是个扇环,而圆柱的侧面展开图是长方形,所以排除A;圆锥的侧面展开图是扇形,所以排除B;长方体的侧面展开图是长方形,所以C也要排除;故选D.答案:D2.正方体的表面展开图(1)正方体的表面展开图按展开图中正方形所在的行数及正方形的个数,归纳起来有四种情形,各种类型的共同特点是行与行之间有且只有一个“日”型结构,由此可知正方体的展开图不会出现如下面图形所示的“凹”字型和“田”字型结构,因为这里的行与行之间出现了两组“日”型结构.(2)正方体展开图中相对面的寻找技巧:相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面,如图1中的A面和B面;‘Z’字两端处的小正方形是正方体的对面,如图2、图3的A面和B面.此种方法简称为“相间、‘Z’端是对面”.解技巧正方体的表面展开图的判断思路(1)是否满足四种阵型中的一种;(2)行与行之间有且只有一个“日”型结构.【例2】一个正方形的每一个面上都写有一个汉字,其平面展开图如图所示,那么在该正方形中,与“爱”相对的字是( ).A.家B.乡C.孝D.感解析:本题以热爱家乡为素材,考查正方体的表面展开图.解题时可亲自动手剪一剪、折一折,即可得到与“爱”相对的字是“乡”;另外也可对展开图加以分析,根据展开图对面之间不能有公共边或公共的顶点,“爱”的对面不可能是“我”或“家”,折叠起来后“孝”、“感”与“爱”相邻,所以“爱”的对面不可能是“孝”、“感”,所以与“爱”相对的字是“乡”;但如果本题应用正方体展开图的对面寻找技巧——“相间、‘Z’端是对面”来解决,会非常简单,由相间的两个小正方形(中间隔着一个小正方形)是正方体的两个对面易知“爱”与“乡”相对.答案:B【例3】如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( ).A.4 B.6 C.7 D.8解析:将展开图还原成正方体,2和6相对,3和4相对,1和5相对,则原正方体相对两个面上的数字和最小为6.答案:B谈重点解决正方体展开图问题的关键熟练掌握正方体展开图的对面寻找技巧可以有效降低解题的难度,起到事半功倍的效果.3.正方体表面展开图的应用如果不考虑由于旋转等造成的相对位置的不同,正方体表面展开图一共有11个.正方体表面展开图的特点是每一个顶点周围的棱不超过三条.(1)“1–4–1”型有6个,其中通过“1”的移动可以由一个得到另外的5个,如图.(2)“1–3–2”型有3个,其中通过“1”的移动可以由1个得到另外的2个,如图.(3)“3–3”型有一个,“2–2–2”型有一个,如图.【例3-1】一个正方体的每一个面上都写着一个汉字,其表面展开图如图所示,那么,在该正方体中和“超”所对的汉字是__________.解析:这是“1–3–2”型的正方体表面展开图.根据展开图可知对面之间不能有公共边或公共顶点,所以“超”字的对面不能是“沉”、“着”、“越”,根据上下相对和左右相对,由于“信”和“着”相对,“着”和“超”相邻,所以“信”和“超”相邻.这样和“超”相对的字只能是“自”.答案:自【例3-2】六一儿童节时,阿兰准备用硬纸片通过裁剪、折叠制作一个封闭的正方体礼盒.她先在硬纸片上设计了一个如图1所示的裁剪方案(实线部分),经裁剪、折叠后成为一个封闭的正方体礼盒.请你参照如图,帮她设计另外两种不同的裁剪方案,使之经裁剪、折叠后也能成为一个封闭的正方体礼盒.图1 图2分析:阿兰设计的是正方体的11种展开图中的一种,可以从剩下的10种展开图中任选两种在如图的小方格中画出.解:如图2所示.4.其他立体图形展开图的应用由平面图形围成的立体图形叫多面体,其表面展开图可以有不同的形状.应多实践,观察,并大胆想象立体图形与表面展开图的关系.立体图形的表面展开图包括侧面展开图和底面展开图,画立体图形的展开图时,一定先观察立体图形的每一个面的形状.圆柱的侧面展开图是长方形,底面是圆;圆锥的侧面展开图是扇形,底面是圆;n棱柱的侧面展开图是n个高相等的长方形,底面是n边形;n棱锥的侧面展开图是n个三角形,底面是n边形.【例4】小新的茶杯是圆柱形,如图所示.左边下方有一只蜘蛛,从A处爬行到对面的中点B处,如果蜘蛛爬行路线最短,请画出这条最短路线图.分析:先画出圆柱的侧面展开图,再连接得到最短路线.解:如图所示.5.立体图形展开图的应用立体图形展开图的考查一般以选择题为主要方式,答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生的空间观念.解决此类问题,要充分考虑带有各种符号和各种图案的面的特点及位置,解题时,先正确画出立体图形的表面展开图,再仔细观察图案以及符号的不同特点,从而选出正确的答案.有时,根据图案的位置和方向可以先把一些很明显的不符合题目要求的选择项先排除掉,再一步步的寻找正确的选项.要想灵活解决此类问题,一要熟练掌握立体图形展开图的基本知识和解题技巧;二要充分发挥自己的空间想象力;三要不断积累生活经验和解题经验.【例5-1】如图所示的正方体的展开图是( ).解析:利用正方体及其表面展开图的特点解题.选项A和选项D折叠后,箭头不指向白三角形,C项折叠后与原正方体不符.B折叠后与原正方体相同.故选B.答案:B【例5-2】图1是由白色纸板拼成,将其中两面涂上颜色,如图2所示.下列四个中哪一个是图2的表面展开图( ).解析:由图中阴影部分的位置,首先可以排除B,D,又阴影部分正方形在左,三角形在右.故选A.答案:A。
人教版数学七年级上册.1立体图形的展开图课件
上下底面 侧面
锥体 底面 侧面
圆锥 三棱锥 四棱锥 五棱锥
小结:常见几何体的展开图
柱体 圆柱 三棱柱 四棱柱 五棱柱 上下底面 圆 三角形 四边形 五边形 侧面 长方形 长方形 长方形 长方形
锥体 底面 侧面
圆锥 三棱锥 四棱锥 五棱锥 圆 三角形 四边形 五边形 扇形 三角形 三角形 三角形
小结:常见几何体的展开图
将一个正方体的表面沿某些棱剪开,能展成什么样 的平面图形?
友谊提示: 沿着棱剪 展开后是一 个平面图形
武装思想
漫游学海
让政治课贴近生活
引领学习
小组合作探究:正方体的展开图
想一想:正方体与其展开图的联系。 记一记:在原稿纸上记录展开图的形状。 比一比:哪个小组的展开方式最多?
友谊提示: 沿着棱剪 展开后是一 个平面图形
求:a= -2 ;b= -7 ;c= 1 .
一个多面体的展开图中, 在同一直线上的相邻的三个线 框中,首尾两个线框是立体图 形中相对的两个面.
拓展训练
如图,左边的图形可能是右边哪个图形的展开图?
拓展训练
如图,左边的图形可能是右边哪个图形的展开图?
小结:常见几何体的展开图
柱体
圆柱 三棱柱 四棱柱 五棱柱
P112 第2题
总 结 : 正 方 体 的 展 开 图
蓝
黄
总
相
结
对
: 正
两 面 不
方
相
体
连
的
展
上左
开 图
下右
隔隔
蓝
一一
行列
黄
总
结
你能在11个图形中找到以
:
下形状吗?
正
方
人教版七年级数学上册:4.1.1《立体图形与平面图形——立体图形的表面展开图》说课稿2
人教版七年级数学上册:4.1.1 《立体图形与平面图形——立体图形的表面展开图》说课稿2一. 教材分析《立体图形与平面图形——立体图形的表面展开图》这一节是人教版七年级数学上册第四章第一节的内容。
本节主要让学生了解立体图形的表面展开图的概念,学会如何将立体图形展开成平面图形,并能够识别常见的立体图形的表面展开图。
内容主要包括长方体、正方体、圆柱体和圆锥体的表面展开图。
二. 学情分析七年级的学生已经学习了平面图形的知识,对图形的性质和特征有一定的了解。
但是,对于立体图形的表面展开图,学生可能比较陌生。
因此,在教学过程中,我需要引导学生从平面图形的角度去理解和认识立体图形的表面展开图。
三. 说教学目标1.知识与技能目标:学生能够理解立体图形的表面展开图的概念,学会如何将立体图形展开成平面图形,并能够识别常见的立体图形的表面展开图。
2.过程与方法目标:通过观察、操作、思考等活动,学生能够培养空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,克服困难,自主学习,培养合作意识和团队精神。
四. 说教学重难点1.教学重点:立体图形的表面展开图的概念,常见立体图形的表面展开图。
2.教学难点:如何将立体图形展开成平面图形,理解立体图形和平面图形之间的关系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、合作学习法、引导发现法等。
2.教学手段:多媒体课件、实物模型、展开图卡片等。
六. 说教学过程1.导入新课:通过展示一些日常生活中的立体物体,如纸箱、易拉罐等,引导学生思考这些物体的表面展开图是什么样子。
2.探究新知:(1)教师展示长方体和正方体的实物模型,引导学生观察其表面展开图的特点。
(2)学生分组讨论圆柱体和圆锥体的表面展开图,教师进行指导。
(3)各小组汇报讨论结果,教师点评并总结。
3.巩固练习:学生独立完成一些立体图形的表面展开图的练习题,教师进行讲解和指导。
4.课堂小结:教师引导学生总结本节课所学内容,巩固立体图形的表面展开图的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.1.1 几何图形(三)
一、教学目标
知识与能力目标
⒈了解直棱柱、圆锥等简单立体图形的侧面展开图.
⒉能根据展开图初步判断和制作立体模型.
⒊进一步认识立体图形与平面图形之间的关系.
⒋通过描述展开图,发展学生运用几何语言表述问题的能力.
过程与方法目标
⒈在平面图形和立体图形互相转化的过程中,初步建立空间观念,发展几何直觉.
⒉通过动手观察、操作、类比、推断等数学活动,积累数学活动经验,感受数学思考过程的条理性,发展形象思维.
⒊通过展开与折叠的活动,体会数学的应用价值.
情感、态度、价值观
⒈通过学生之间的交流活动,培养主动与他人合作交流的意识.
⒉通过探讨现实生活中的实物制作,提高学生学习热情.
二、重点与难点
重点:直棱柱的展开图.
难点:根据展开图判断和制作立体模型.
三、教学过程
1.创设情境,导入课题
小壁虎的难题:
如图:一只圆桶的下方有一只壁虎,上方有一只蚊子,壁虎要想尽快吃到蚊子,应该走哪条路径?
学生各抒己见,提出路线方案.
教师总结: 若在平面上,壁虎只要沿直线爬过去就可以了.而在圆桶上,直线不太好找,那么把圆柱侧面展开,就可找出答案.
如图所示:
● 蚊壁虎 ●
蚊子
圆柱侧面展开后是矩形,壁虎只要沿图中直线爬向蚊子即可.若蚊子和壁虎在其他几何体上,如棱锥,正方体……它们展开后是什么图形呢?今天我们就来讨论它们的展开图.
2、新课探究:
(1)正方体的表面展开图
教师先演示正方体的展开过程,提醒沿着棱展开,且展开图必须是一个完整的图形.然后让学生拿出学具正方体纸盒(或是课前准备好的正方体纸盒,或现成的正方体包装盒)进行动手操作,得到正方体展开图.
过程与要求:
⑴首先要各自独立完成,再以小组为单位,组内相互交流展开图如何得到的,最后看看共得到几种展开图?
⑵再以小组为单位,各组相互交流,尽可能得到更多的不同的展开图.(以组为单位展示成果)
⑶教师从学生结论中任选一种图形,要求学生按指定图形再次展开正方体.(学生相互合作,讲解,动手操作,并能简单描述展开的方法,学有余力的同学可了解其展开规律)
⑷小组内或组间交流,试着把别人的展开图形重新恢复围成一个正方体,体会从平面图形与立体图形之间的转化.
.教师再拿出如下图所示的两个纸片,提问:能否经过折叠围成一个正方体?若不能,如何改变其形状就能围成一个正方体?(要求学生仔细观察,思考,讨论,并动手操作验证猜想)
(2)其他直棱柱的表面展开图
学生从其他直棱柱中任选一种,得到它的展开图,相互交流.教师指导总结.
(特别是圆柱体展开时,体会怎样展开会得到侧面是一个长方形)
(3)让学生分组研究观察三棱锥的展开图.
归纳:从刚才的实践过程中,大家可能已经感受到,同一个几何体,按不同的方式展开,得到的展开图也不同.
(4)你能想象出下面的平面图形可以折叠成什么多面体?动手做做看.
提问:通过实践,说说以上平面图形叠成什么多面体?
上面的图〈1〉及图〈3〉可以折叠成正三棱锥,所以它们都是正三棱锥的表面展开图.图〈2〉不可以折叠成正三棱锥,所以它不是正三棱锥的表面展开图.
归纳:一些平面图形也可以围成立体图形.
(5)提问:是所有的立体图形都能展开成平面图形吗?
老师引导得出:是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.
2.小结
(1)一些立体图形是由平面图形围成的立体图形,沿着它们的一些棱将它剪开,可以把多面体展开成一个平面图形.体现了立体图形与平面图形之间的相互联系.
(2)对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.。