正多面体外接球 画板
立体几何专题:外接球问题中常见的8种模型(学生版)
立体几何专题:外接球问题中常见的8种模型1.知识梳理一、墙角模型适用范围:3组或3条棱两两垂直;可在长方体中画出该图且各顶点与长方体的顶点重合直接用公式(2R )2=a 2+b 2+c 2,即2R =a 2+b 2+c 2,求出R【补充】图1为阳马,图2和图4为鳖臑二、麻花模型适用范围:对棱相等相等的三棱锥对棱相等指四面体的三组对棱分别对应相等,且这三组对棱构成长方体的三组对面的对角线。
推导过程:三棱锥(即四面体)中,已知三组对棱分别相等,(AB =CD ,AD =BC ,AC =BD )第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为a ,b ,c ,AD =BC =x ,AB =CD =y ,AC =BD =z ,列方程组,a 2+b 2=x 2b 2+c 2=y 2c 2+a 2=z 2⇒(2R )2=a 2+b 2+c 2=x 2+y 2+z 22,补充:V A −BCD =abc −16abc ×4=13abc 第三步:根据墙角模型,2R =a 2+b 2+c 2=x 2+y 2+z 22,R 2=x 2+y 2+z 28,R =x 2+y 2+z 28,求出R .三、垂面模型适用范围:有一条棱垂直于底面的棱锥。
推导过程:第一步:将ABC 画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O .第二步:O 1为ABC 的外心,所以OO 1⊥平面ABC ,算出小圆O 1的半径O 1D =r(三角形的外接圆直径算法:利用正弦定理a sin A =b sin B=csin C =2r ,OO 1=12PA .第三步:利用勾股定理求三棱锥的外接球半径:(1)(2R )2=PA 2+(2r )2⇔2R =PA 2+(2r )2;(2)R 2=r 2+OO 21⇔R =r 2+OO 21.公式:R 2=r 2+h 24四、切瓜模型适用范围:有两个平面互相垂直的棱锥推导过程:分别在两个互相垂直的平面上取外心O 1、O 2过两个外心做两个垂面的垂线,两条垂线的交点即为球心0,取B C 的中点为E ,连接OO 1、OO 2、O 2E 、O 1E 为矩形由勾股可得|OC |2=|O 2C |2+|OO 2|2=|O 2C |2+|O 1C |2-|CE |2∴R 2=r 21+r 22-l 24公式:R 2=r 21+r 22-l 24五、斗笠模型适用于:顶点的投影在底面的外心上的棱锥推导过程:取底面的外心01,连接顶点与外心,该线为空间几何体的高h ,在h 上取一点作为球心0,根据勾股定理R 2=(h -R )2+r 2⇔R =r 2+h 22h公式:R =r 2+h 22h六、矩形模型适用范围:两个直角三角形的斜边为同一边,则该边为球的直径推导过程:图中两个直角三角形ΔPAB 和ΔQAB ,其中∠APB =∠AQB =90°,求外接圆半径取斜边AB 的中点O ,连接OP ,OQ ,则OP =12AB =OA =OB =OQ 所以O 点即为球心,然后在ΔPOQ 中解出半径R 公式:R 2=l22(l 为斜边长度)七、折叠模型适用范围:两个全等三角形或等腰三角形拼在一起,或菱形折叠.推导过程:两个全等的三角形或者等腰拼在一起,或者菱形折叠,设折叠的二面角∠A EC =α,CE =A E =h .如图,作左图的二面角剖面图如右图:H 1和H 2分别为△BCD ,△A BD 外心,分别过这两个外心做这两个平面的垂线且垂线相交于球心O CH 1=r =BD 2sin ∠BCD,EH 1=h -r ,OH 1=(h -r )tanα2由勾股定理可得:R 2=OC 2=OH 21+CH 21=r 2+(h -r )2tan 2α2.公式:R 2=r 2+(h -r )2tan 2α2八、鳄鱼模型适用范围:所有二面角构成的棱锥,普通三棱锥方法:找两面外接圆圆心到交线的距离m ,n ,找二面角α,找面面交线长度l 推导过程:取二面角两平面的外心分别为O 1,O 2并过两外心作这两个面的垂线,两垂线相交于球心O ,取二面角两平面的交线中点为E ,则O ,O 1,E ,O 2四点共圆,由正弦定理得:OE =2r =O 1O 2sin α①在ΔO 1O 2E 中,由余弦定理得:O 1O 2 2=O 1E 2+O 2E 2-2O 1E O 2E cos α②由勾股定理得:OD 2=O 1O 2+O 1D 2③由①②③整理得:OD2=O 1O 2+O 1D 2=OE 2-O 1E 2+O 1D 2=O 1O 2sin α2-O 1E 2+O 1D 2=O 1E2+O 2E 2-2O 1E O 2E cos αsin 2α-O 1E 2+O 1D 2=O1E2+O2E2-2O1EO2Ecosαsin2α-O1E2+O1B2记O1E=m,O2E=n,AB=l,则R2=m2+n2-2mn cosαsin2α+l22公式:R2=m2+n2-2mn cosαsin2α+l222.常考题型3.题型精析题型一:墙角模型1(2023·高一单元测试)三棱锥A-BCD中,AD⊥平面BCD,DC⊥BD,2AD=BD=DC=2,则该三棱锥的外接球表面积为()A.3π2B.9π2C.9πD.36π1.(2022秋·陕西西安·高一统考期末)在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A-BCD中,满足AB⊥平面BCD,且AB=BD=5,BC=3,CD=4,则此鳖臑外接球的表面积为()A.25πB.50πC.100πD.200π2.(2023·高一课时练习)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图P-ABCD是阳马,PA⊥平面ABCD,PA=5,AB=3,BC=4.则该阳马的外接球的表面积为()A.1252π3B.50πC.100πD.500π33.(2023·广西南宁·统考二模)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A -BCD 中,AB ⊥平面BCD ,CD ⊥AD ,AB =BD =2,已知动点E 从C 点出发,沿外表面经过棱AD 上一点到点B 的最短距离为10,则该棱锥的外接球的体积为.4.(2023春·辽宁朝阳·高二北票市高级中学校考阶段练习)已知四棱锥P -ABCD 的外接球O 的表面积为64π,PA ⊥平面ABCD ,且底面ABCD 为矩形,PA =4,设点M 在球O 的表面上运动,则四棱锥M -ABCD 体积的最大值为.题型二:麻花模型1(2023春·广东梅州·高二统考期中)已知三棱锥S -ABC 的四个顶点都在球O 的球面上,且SA =BC =2,SB =AC =7,SC =AB =5,则球O 的体积是()A.83π B.3223π C.423π D.823π1.(2022春·江西景德镇·高一景德镇一中校考期中)在△ABC 中,AB =AC =2,cos A =34,将△ABC 绕BC 旋转至△BCD 的位置,使得AD =2,如图所示,则三棱锥D -ABC 外接球的体积为.2.(2023秋·吉林·高一吉林一中校考阶段练习)如图,在△ABC 中,AB =25,BC =210,AC =213,D ,E ,F 分别为三边中点,将△BDE ,△ADF ,△CEF 分别沿DE ,EF ,DF 向上折起,使A ,B ,C 重合为点P ,则三棱锥P -DEF 的外接球表面积为()A.72π B.7143π C.14π D.56π3.(2023·江西·统考模拟预测)在三棱锥P -ABC 中,已知PA =BC =213,AC =BP =41,CP =AB =61,则三棱锥P -ABC 外接球的表面积为()A.77πB.64πC.108πD.72π4.(2022·全国·高三专题练习)已知四面体ABCD 的棱长满足AB =AC =BD =CD =2,BC =AD =1,现将四面体ABCD 放入一个轴截面为等边三角形的圆锥中,使得四面体ABCD 可以在圆锥中任意转动,则圆锥侧面积的最小值为.题型三:垂面模型1(2023·高一单元测试)在三棱锥P -ABC 中,PA ⊥平面ABC ,PA =6,BC =3,∠CAB =π6,则三棱锥P -ABC 的外接球半径为()A.3B.23C.32D.61.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且边长为3,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.4πB.8πC.16πD.32π2.(2020春·天津宁河·高一校考期末)在三棱锥P -ABC 中,AP =2,AB =3,PA ⊥面ABC ,且在△ABC 中,C =60°,则该三棱锥外接球的表面积为()A.20π3B.8πC.10πD.12π3.(2023·全国·高一专题练习)已知A ,B ,C ,D 在球O 的表面上,△ABC 为等边三角形且其面积为334,AD ⊥平面ABC ,AD =2,则球O 的表面积为()A.πB.2πC.4πD.8π4.(2022春·山东聊城·高一山东聊城一中校考阶段练习)在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为矩形,BC =2,PC 与平面PAB 所成的角为30o ,则该四棱锥外接球的体积为()A.433π B.43πC.823πD.833π题型四:切瓜模型1(2023·贵州贵阳·校联考模拟预测)在三棱锥A -BCD 中,已知AC ⊥BC ,AC =BC =2,AD =BD =6,且平面ABD ⊥平面ABC ,则三棱锥A -BCD 的外接球表面积为()A.8πB.9πC.10πD.12π1.(2023·四川达州·统考二模)三棱锥A -BCD 的所有顶点都在球O 的表面上,平面ABD ⊥平面BCD ,AB =AD =6,AB ⊥AD ,∠BDC =2∠DBC =60°,则球O 的体积为()A.43πB.32π3C.49π3D.323π2.(2023春·陕西西安·高一长安一中校考期中)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =BC =AA 1=4,点P 为B 1C 1的中点,则四面体PABC 的外接球的体积为()A..41416π B.41413π C.41412π D.4141π3.(2022·高一单元测试)四棱锥P -ABCD 的顶点都在球O 的表面上,△PAD 是等边三角形,底面ABCD 是矩形,平面PAD ⊥平面ABCD ,若AB =2,BC =3,则球O 的表面积为()A.12πB.16πC.20πD.32π4.(2021·高一课时练习)在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,且ABCD 为矩形,∠DPA =π2,AD =23,AB =2,PA =PD ,则四棱锥P -ABCD 的外接球的体积为()A.163π B.323π C.643π D.16π5.(2023春·全国·高一专题练习)在四棱锥P-ABCD中,ABCD是边长为2的正方形,AP=PD=10,平面PAD⊥平面ABCD,则四棱锥P-ABCD外接球的表面积为()A.4πB.8πC.136π9D.68π3题型五:斗笠模型1(2023·全国·高一专题练习)正四面体S-ABC内接于一个半径为R的球,则该正四面体的棱长与这个球的半径的比值为()A.64B.33C.263D.31.(2022·高一专题练习)已知正四棱锥P-ABCD(底面四边形ABCD是正方形,顶点P在底面的射影是底面的中心)的各顶点都在同一球面上,底面正方形的边长为10,若该正四棱锥的体积为50 3,则此球的体积为()A.18πB.86πC.36πD.323π2.(2022·全国·高一专题练习)某四棱锥的底面为正方形,顶点在底面的射影为正方形中心,该四棱锥内有一个半径为1的球,则该四棱锥的表面积最小值是()A.16B.8C.32D.243.(2022春·安徽·高三校联考阶段练习)在三棱锥P-ABC中,侧棱PA=PB=PC=10,∠BAC=π4,BC=22,则此三棱锥外接球的表面积为.题型六:矩形模型1(2022春·全国·高一期末)已知三棱锥A-BCD中,CD=22,BC=AC=BD=AD=2,则此几何体外接球的表面积为()A.2π3B.2π C.82π3D.8π1.(2022春·广东惠州·高一校考期中)在矩形ABCD中,AB=6,BC=8,现将△ABC沿对角线AC翻折,得到四面体DABC,则该四面体外接球的体积为()A.1963π B.10003π C.4003π D.5003π2.(2022春·河北沧州·高一校考阶段练习)矩形ABCD中,AB=4,BC=3,沿AC将三角形ABC折起,得到的四面体A-BCD的体积的最大时,则此四面体外接球的表面积值为()A.25πB.30πC.36πD.100π3.(2022春·四川成都·高一统考期末)在矩形ABCD 中,AB =6,AD =8,将△ABC 沿对角线AC 折起,则三棱锥B -ACD 的外接球的表面积为()A.36πB.64πC.100πD.与二面角B -AC -D 的大小有关题型七:折叠模型1(2022春·陕西西安·高一长安一中校考期末)已知菱形ABCD 的边长为3,∠ABC =60°,沿对角线AC 折成一个四面体,使平面ACD 垂直平面ABC ,则经过这个四面体所有顶点的球的体积为().A.5152π B.6πC.515πD.12π1.已知等边△ABC 的边长为2,将其沿边AB 旋转到如图所示的位置,且二面角C -AB -C 为60°,则三棱锥C -ABC 外接球的半径为2.(2023·广西南宁·统考二模)蹴鞠,又名“蹴球”“蹴圈”等,“蹴”有用脚蹴、踢的含义,鞠最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,类似今日的足球,现已知某“鞠”的表面上有四个点A ,B ,C ,D 满足AB =BC =CD =DA =DB =433cm ,AC =23cm ,则该“鞠”的表面积为cm 2.3.(2022秋·福建泉州·高三校考开学考试)在三棱锥S -ABC 中,SA =SB =AC =BC =2,SC =1,二面角S -AB -C 的大小为60°,则三棱锥S -ABC 的外接球的表面积为.4.(2022秋·山东德州·高二统考期中)已知在三棱锥中,S -ABC 中,BA ⊥BC ,BA =BC =2,SA =SC =22,二面角B -AC -S 的大小为5π6,则三棱锥S -ABC 的外接球的表面积为()A.56π3B.58π3C.105π4D.124π9题型八:鳄鱼模型1(2022春·四川成都·高一树德中学校考期末)已知在三棱锥S-ABC中,AB⊥BC,AB=BC=2,SA =SC=22,二面角B-AC-S的大小为2π3,则三棱锥S-ABC的外接球的表面积为()A.124π9B.105π4C.105π9D.104π91.(2023春·全国·高一专题练习)如图,在三棱锥P-ABC,△PAC是以AC为斜边的等腰直角三角形,且CB=22,AB=AC=6,二面角P-AC-B的大小为120°,则三棱锥P-ABC的外接球表面积为()A.5103π B.10π C.9π D.4+23π2.(2023·陕西榆林·统考三模)在三棱锥A-BCD中,AB⊥BC,BC⊥CD,CD=2AB=2BC= 4,二面角A-BC-D为60°,则三棱锥A-BCD外接球的表面积为()A.16πB.24πC.18πD.20π3.(2023春·安徽阜阳·高三阜阳市第二中学校考阶段练习)如图1,四边形ABCD中,AB=AD =2,CB=CD=2,AB⊥AD,将△ABD沿BD翻折至△PBD,使二面角P-BD-C的正切值等于2,如图2,四面体PBCD的四个顶点都在同一个球面上,则该球的表面积为()A.4πB.6πC.8πD.9π4.(2023·江西南昌·校联考模拟预测)在平面四边形ABCD中,AD=CD=3,∠ADC=∠ACB =90°,∠ABC=60°,现将△ADC沿着AC折起,得到三棱锥D-ABC,若二面角D-AC-B的平面角为135°,则三棱锥D-ABC的外接球表面积为.5.(2023春·广东广州·高三统考阶段练习)在三棱锥P-ABC中,△ABC为等腰直角三角形,AB=AC=2,△PAC为正三角形,且二面角P-AC-B的平面角为π6,则三棱锥P-ABC的外接球表面积为.。
正多面体
不久(1751 年)欧拉严格证明了上述公式——人称它为欧拉公式。数学界将 V+F-E=2 称为欧拉示性数。 用欧拉公式证明正多面体只有 5 种 证明:对于正多面体,假设它的各面都是正 n 边形,而且每一个顶角处有 r 个边相遇。这样 就有: nF=2E (1) rV=2E (2) (1)的右边系数 2 是因为每边出现在 2 面中, (2)的右边系数 2 是因为每边通过 2 个顶角。 把(1)和(2)代入欧拉公式中,就得到:
四六十式多面体 62 面 三三三三五式多面体 92 面 M27-04t□ 对偶多面体 连结任何正多面体的相邻两面的中心,就形成对偶多面体。非常巧的是,除正四面体的 对偶体仍为正四面体外, 正方体与正八面体互为对偶体, 正十二面体与正二十面体也互为对 偶体。 M27-05d□ 卡塔朗体 卡塔朗立体是对偶的半正多面体,都是凸多面体。1865 年比利时数学家欧仁·查理·卡 塔朗最先描述它们。因为其对偶多面体半正多面体点匀称而面不匀称,卡塔朗立体,面匀称 而点不匀称。只有两个边匀称的卡塔朗立体:菱形十二面体和菱形三十面体。目前共计有 13 种卡塔兰立体,其对偶多面体均为半正多面体(阿基米德立体)。 M27-06t□ 会徽上的失误 美国数学会是一个拥有两万多名会员的组织(学术团体) ,在世界上影响较大。 1924 年美数学会会刊《美国数学月刊》创立,创刊号上刊登了美国数学会会徽,这是 一个以正 20 面体为主旨的图案,几十年来人们对它的权威性从未怀疑过。 上个世纪 80 年代初,美国华盛顿大学的布兰高·格林鲍华从当时民主德国的一枚邮票 上,发现票面图案中的正 20 面体图案有误:正 20 面体原本有一个基本特点:同一个平面内 的棱或交于一点或彼此平行,但邮票上的图案不是那样。 格氏立刻想到美数学会会徽上的图案,看后他不禁惊呆了,数学会的会徽上的图案,竟 然绘错了,更令人不解的是:它竟然错了五十多年而无人发现。 当他将问题指出后,美数学会终于将会徽图案作了修正。一个错了近 60 年的象征美国 数学会的会徽终于得以改正。 M27-07d□ 多面体的欧拉公式 欧拉 欧拉 1707 年 4 月 15 日出生于瑞士, 在那里受教育。 他一生大部分时间在俄罗斯帝国和 普鲁士度过。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再 返圣彼得堡。欧拉是有史以来最多遗产的数学家,他的全集共计 75 卷。欧拉实际上支配了 18 世纪的数学, 对于当时的新发明微积分, 他推导出了很多结果。 在他生命的最后 7 年中, 欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的著作。 欧拉公式的发现 1750 年一个阴雨连绵的日子,数学家欧拉(Euler,L.)坐在桌前,摊开书本,拿起纸、 笔又在演算数学问题——这是一道涉及长方体的立体几何题目。 演算完毕, 他漫不经心地看 着所画图形且计算着该长方体中顶点数 8、面数 6 和棱数 12 间的关系。 思来算去他发现:8+6-12=2.随后眼睛一亮:这也许正是这类几何体的共性? 接着欧拉又从去角立方体和三棱锥中发现: 顶点数+面数-棱数=4+4-6=2。 他又找来几个(凸的)几何体一一计算后发现,对(凸)多面体而言: 顶点数(V)+面数(F)-棱数(E)=2,即 V+F-E=2. 随即他便将此发现写信告诉另一位数学家哥德巴赫(Goldbach,C.) ,信中流露出他发现 此公式时的惊喜。
专题--多面体的外接球问题
一. 多面体外接球的相关定义
定义1:若一个多面体的各顶点都在一个球的球面 上,则称这个多面体是这个球的内接多面体,这个 球是这个多面体的外接球。
定义2:如果空间中一个定点到一个多面体的所有顶 点的距离都相等,那么这个定点就是该多面体外接
球的球心。 公式3:球体的体积与表面积
4 V球 R 3 3
A 1B 1C 1, ∠B AC =∠A 1B 1C 1 = 90° , A C = A B =A 1A = B 1C 1 = 2,则多面体 A B C - A 1B 1C 1 的外接球的表面积为
(
C
) A. 2π B. 4π C. 6π
D. 8π
4. (2018 ?南岗区三模)三棱锥P - ABC中,底面 ABC满足BA BC,ABC
5.侧棱长都相等的棱锥
题型:侧棱长都相等的棱锥的外接球问题. P
l
A
方法一:利用定义找球心, 其外接球的球心在它的高 所在直线上
h
O
l C 方法二:
D
B
2
h 2R
M
6.折叠模型
题型: 1.两个全等三角形或等腰三角形拼在一起的三棱锥外接球; 2.一个直角三角形与一个等边三角形或等腰三角形拼在一 起的三棱锥外接球等; 3.菱形沿着对角线折叠形式的三棱锥外接球
方法:如图,分别过多边形外 心做平面垂线,垂线交点即为 外接球球心.
三. 例题分析
1. (2018 江西宜春模拟 )一个几何体的三视图如图所 示,则该几何体的外接球的表面积为( B ) A .36π 9 C. π 2 B .8π 27 D. π 8
2.(2017年江西五校调研)如图(1),五边形 PABC D 是由一个正方形与一个等腰三角形拼接而成,其中
八个有趣模型搞定空间几何体的外接球与内切球(教师版)
八个有趣模型——搞定空间几何体的外接球与内切球一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).初图1初图22.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、与台体相关的,此略.五、八大模型第一讲柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)图1-1图1-2图1-3方法:找三条两两垂直的线段,直接用公式2222)2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32解: 162==h a V ,2=a ,24164442222=++=++=h a a R ,π24=S ,选C ;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:933342=++=R ,ππ942==R S ;(3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 .π36 解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1, 取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥,BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直,本题图如图(3)-2, MN AM ⊥,MN SB //,∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC ,∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥,∴⊥SA 平面SBC ,∴SC SA ⊥,故三棱锥ABC S -的三棱条侧棱两两互相垂直,(3)题-1(引理)AC(3)题-2(解答图)AC∴36)32()32()32()2(2222=++=R ,即3642=R ,∴正三棱锥ABC S -外接球的表面积是π36. (4)在四面体S ABC -中,ABC SA 平面⊥,,1,2,120====∠︒AB AC SA BAC 则该四面体的外接球的表面积为( D )π11.A π7.B π310.C π340.D 解:在ABC ∆中,7120cos 2222=⋅⋅-+=BC AB AB AC BC ,7=BC ,ABC ∆的外接球直径为372237sin 2==∠=BAC BC r ,∴3404)372()2()2(2222=+=+=SA r R ,340π=S ,选D (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 解:由已知得三条侧棱两两垂直,设三条侧棱长分别为c b a ,,(+∈R c b a ,,),则⎪⎩⎪⎨⎧===6812ac bc ab ,∴24=abc ,∴3=a ,4=b ,2=c ,29)2(2222=++=c b a R ,ππ2942==R S , (6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222=++=c b a R ,432=R ,23=Rπππ2383334343=⋅==R V 球,类型二、对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =)(6)题图(6)题直观图P第一步:画出一个长方体,标出三组互为异面直线的对棱; 第二步:设出长方体的长宽高分别为c b a ,,,x BC AD ==,y CD AB ==,z BD AC ==,列方程组,⎪⎩⎪⎨⎧=+=+=+222222222z a c y c b x b a ⇒2)2(2222222z y x c b a R ++=++=, 补充:图2-1中,abc abc abc V BCD A 31461=⨯-=-.第三步:根据墙角模型,22222222z y x c b a R ++=++=,82222z y x R ++=,8222z y x R ++=,求出R .思考:如何求棱长为a 的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥A BCD -,其中5,6,7,AB CD AC BD AD BC ======则该三棱锥外接球的表面积为 .解:对棱相等,补形为长方体,如图2-1,设长宽高分别为c b a ,,,110493625)(2222=++=++c b a ,55222=++c b a ,5542=R ,π55=S(1)题图B(2)在三棱锥BCD A -中,2==CD AB ,3==BC AD ,4==BD AC ,则三棱锥BCD A -外接球的表面积为 .π229 解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为c b a ,,,则922=+b a ,422=+c b ,1622=+a c ∴291649)(2222=++=++c b a ,291649)(2222=++=++c b a ,229222=++c b a ,22942=R ,π229=S (3)正四面体的各条棱长都为2,则该正面体外接球的体积为图2-1(3)解答题解:正四面体对棱相等的模式,放入正方体中,32=R ,23=R ,ππ2383334=⋅=V (4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是 .(4)题解答图(4)题解:如解答图,将正四面体放入正方体中,截面为1PCO ∆,面积是2.类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)图3-1图3-2图3-3题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O 的位置,1O 是ABC ∆的外心,则⊥1OO 平面ABC ; 第二步:算出小圆1O 的半径r AO =1,h AA OO 212111==(h AA =1也是圆柱的高); 第三步:勾股定理:21212O O A O OA +=⇒222)2(r hR +=⇒22)2(hr R +=,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为 解:设正六边形边长为a ,正六棱柱的高为h ,底面外接圆的半径为r ,则21=a ,正六棱柱的底面积为833)21(4362=⋅⋅=S ,89833===h Sh V 柱,∴3=h ,4)3(14222=+=R 也可1)21()23(222=+=R ),1=R ,球的体积为34π=球V ; (2)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 . 解:32=BC ,4120sin 322==r ,2=r ,5=R ,π20=S ;(3)已知EAB ∆所在的平面与矩形ABCD 所在的平面互相垂直,︒=∠===60,2,3AEB AD EB EA ,则多面体ABCD E -的外接球的表面积为 .π16 解:折叠型,法一:EAB ∆的外接圆半径为31=r ,11=OO ,231=+=R ;法二:231=M O ,21322==D O r ,4413432=+=R ,2=R ,π16=表S ; 法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222=+=R ,π16=表S ;(4)在直三棱柱111C B A ABC -中,4,3,6,41====AA A AC AB π,则直三棱柱111C B A ABC -的外接(3)题球的表面积为 .π3160解:法一:282164236162=⋅⋅⋅-+=BC ,72=BC ,37423722==r ,372=r , 3404328)2(2122=+=+=AA r R ,π3160=表S ;法二:求圆柱的轴截面的对角线长得球直径,此略.第二讲 锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1图4-2图4-3图4-41.如图4-1,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且P 的射影是ABC ∆的外心⇔三棱锥ABC P -的三条侧棱相等⇔三棱ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的顶点. 解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R ; 事实上,ACP ∆的外接圆就是大圆,直接用正弦定理也可求解出R .2.如图4-2,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径),且AC PA ⊥,则 利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=3.如图4-3,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)21212O O C O OC +=⇔2122O O r R +=⇔2122O O R AC -=4.题设:如图4-4,平面⊥PAC 平面ABC ,且BC AB ⊥(即AC 为小圆的直径)第一步:易知球心O 必是PAC ∆的外心,即PAC ∆的外接圆是大圆,先求出小圆的直径r AC 2=; 第二步:在PAC ∆中,可根据正弦定理R CcB b A a 2sin sin sin ===,求出R . 例4 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为 . 解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72=R ,ππ4942==R S ;(2)正四棱锥ABCD S -的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为 解:方法一:找球心的位置,易知1=r ,1=h ,r h =,故球心在正方形的中心ABCD 处,1=R ,34π=V 方法二:大圆是轴截面所的外接圆,即大圆是SAC ∆的外接圆,此处特殊,SAC Rt ∆的斜边是球半径,22=R ,1=R ,34π=V . (3)一个正三棱锥的四个顶点都在半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A .433 B .33 C .43 D .123解:高1==R h ,底面外接圆的半径为1=R ,直径为22=R , 设底面边长为a ,则260sin 2==aR ,3=a ,433432==a S ,三棱锥的体积为4331==Sh V ; (4)在三棱锥ABC P -中,3===PC PB PA ,侧棱PA 与底面ABC 所成的角为60,则该三棱锥外接球的体积为( ) A .π B.3π C. 4π D.43π 解:选D ,由线面角的知识,得ABC ∆的顶点C B A ,,在以23=r 为半径的圆上,在圆锥中求解,1=R ; (5)已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )AA.6 BC.3 D.2解:36)33(12221=-=-=r R OO ,362=h ,62362433131=⋅⋅==Sh V 球 类型五、垂面模型(一条直线垂直于一个平面) 1.题设:如图5,⊥PA 平面ABC ,求外接球半径.解题步骤:第一步:将ABC ∆画在小圆面上,A 为小圆直径的一个端点,作小圆的直径AD ,连接PD ,则PD 必过球心O ;第二步:1O 为ABC ∆的外心,所以⊥1OO 平面ABC ,算出小圆1O 的半径r D O =1(三角形的外接圆直径算法:利用正弦定理,得r C c B b A a 2sin sin sin ===),PA OO 211=; 第三步:利用勾股定理求三棱锥的外接球半径:①222)2()2(r PA R +=⇔22)2(2r PA R +=;②2122OO r R +=⇔212OO r R +=.2.题设:如图5-1至5-8这七个图形,P 的射影是ABC ∆的外心⇔三棱锥ABC P -的 三条侧棱相等⇔三棱锥ABC P -的底面ABC ∆在圆锥的底上,顶点P 点也是圆锥的 顶点.图5-1图5-2图5-3图5-4图5-6图5-7图5-8解题步骤:第一步:确定球心O 的位置,取ABC ∆的外心1O ,则1,,O O P 三点共线;第二步:先算出小圆1O 的半径r AO =1,再算出棱锥的高h PO =1(也是圆锥的高); 第三步:勾股定理:21212O O A O OA +=⇒222)(r R h R +-=,解出R 方法二:小圆直径参与构造大圆,用正弦定理求大圆直径得球的直径. 例5 一个几何体的三视图如图所示,则该几何体外接球的表面积为( )C A .π3 B .π2 C .316πD .以上都不对俯视图侧视图正视图解答图解:选C ,法一:(勾股定理)利用球心的位置求球半径,球心在圆锥的高线上,221)3(R R =+-,32=R ,ππ31642==R S ;法二:(大圆法求外接球直径)如图,球心在圆锥的高线上,故圆锥的轴截面三角形PMN 的外接圆是大圆,于是3460sin 22==R ,下略;第三讲 二面角背景的模型类型六、折叠模型题设:两个全等三角形或等腰三角形拼在一起,或菱形折叠(如图6)图6第一步:先画出如图6所示的图形,将BCD ∆画在小圆上,找出BCD ∆和BD A '∆的外心1H 和2H ; 第二步:过1H 和2H 分别作平面BCD 和平面BD A '的垂线,两垂线的交点即为球心O ,连接OC OE ,; 第三步:解1OEH ∆,算出1OH ,在1OCH Rt ∆中,勾股定理:22121OC CH OH =+ 注:易知21,,,H E H O 四点共面且四点共圆,证略.例6(1)三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 和△ABC 均为边长为2的正三角形,则三棱锥ABC P -外接球的半径为.(1)题解:如图,3460sin 22221===r r ,3221==r r ,312=H O , 35343121222=+=+=r H O R ,315=R ; 法二:312=H O ,311=H O ,1=AH , 352121222=++==O O H O AH AO R ,315=R ; (2)在直角梯形ABCD 中,CD AB //,90=∠A ,45=∠C ,1==AD AB ,沿对角线BD 折成四面体BCD A -',使平面⊥'BD A 平面BCD ,若四面体BCD A -'的顶点在同一个球面上,则该项球的表面积为 π4(2)题-2(2)题-1→A(3)题解:如图,易知球心在BC 的中点处,π4=表S ; (3)在四面体ABC S -中,BC AB ⊥,2==BC AB ,二面角B AC S --的余弦值为33-,则四面体ABC S -的外接球表面积为 π6 解:如图,法一:33)2cos(cos 211-=+∠=∠πO OO B SO , 33sin 21=∠O OO ,36cos 21=∠O OO , 22cos 21211=∠=O OO O O OO ,232112=+=R ,ππ642==R S ; 法二:延长1BO 到D 使111r BO DO ==,由余弦定理得6=SB ,2=SD ,大圆直径为62==SB R ;(4)在边长为32的菱形ABCD 中, 60=∠BAD ,沿对角线BD 折成二面角C BD A --为120的四面体ABCD ,则此四面体的外接球表面积为 π28解:如图,取BD 的中点M ,ABD ∆和CBD ∆的外接圆半径为221==r r ,ABD ∆和CBD ∆的外心21,O O 到弦BD 的距离(弦心距)为121==d d , 法一:四边形21MO OO 的外接圆直径2=OM ,7=R ,π28=S ;法二:31=OO ,7=R ;法三:作出CBD ∆的外接圆直径CE ,则3==CM AM , 4=CE ,1=ME ,7=AE ,33=AC ,72147227167cos -=⋅⋅-+=∠AEC ,7233sin =∠AEC ,72723333sin 2==∠=AEC AC R ,7=R ;(5)在四棱锥ABCD 中, 120=∠BDA ,150=∠BDC ,2==BD AD ,3=CD ,二面角CBD A --的平面角的大小为120,则此四面体的外接球的体积为(4)题图解:如图,过两小圆圆心作相应小圆所在平面的垂线确定球心,→抽象化(5)题解答图-2(5)题解答图-11B32=AB ,22=r ,弦心距32=M O ,13=BC ,131=r ,弦心距321=M O , ∴2121=O O ,72120sin 21==O O OM , 法一:∴292222=+==OM MD OD R ,29=R ,∴329116π=球V ; 法二:2522222=-=M O OM OO ,∴29222222=+==OO r OD R ,29=R ,∴329116π=球V . 类型七、两直角三角形拼接在一起(斜边相同,也可看作矩形沿对角线折起所得三棱锥)模型图7题设:如图7,90=∠=∠ACB APB ,求三棱锥ABC P -外接球半径(分析:取公共的斜边的中点O ,连接OC OP ,,则AB OP OC OB OA 21====,∴O 为三棱锥ABC P -外接球球心,然后在OCP 中求出半径),当看作矩形沿对角线折起所得三棱锥时与折起成的二面角大小无关,只要不是平角球半径都为定值.例7(1)在矩形ABCD 中,4=AB ,3=BC ,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为( ) A .π12125 B .π9125 C .π6125 D .π3125解:(1)52==AC R ,25=R ,6125812534343πππ=⋅==R V ,选C (2)在矩形ABCD 中,2=AB ,3=BC ,沿BD 将矩形ABCD 折叠,连接AC ,所得三棱锥BCDA -的外接球的表面积为 .解:BD 的中点是球心O ,132==BD R ,ππ1342==R S .第四讲 多面体的内切球问题模型类型八、锥体的内切球问题1.题设:如图8-1,三棱锥ABC P -上正三棱锥,求其内切球的半径. 第一步:先现出内切球的截面图,H E ,分别是两个三角形的外心;第二步:求BD DH 31=,r PH PO -=,PD 是侧面ABP ∆的高;第三步:由POE ∆相似于PDH ∆,建立等式:PDPODH OE =,解出r 2.题设:如图8-2,四棱锥ABC P -是正四棱锥,求其内切球的半径第一步:先现出内切球的截面图,H O P ,,三点共线;第二步:求BC FH 21=,r PH PO -=,PF 是侧面PCD ∆的高;第三步:由POG ∆相似于PFH ∆,建立等式:PFPOHF OG =,解出3.题设:三棱锥ABC P -是任意三棱锥,求其的内切球半径方法:等体积法,即内切球球心与四个面构成的四个三棱锥的体积之和相等 第一步:先画出四个表面的面积和整个锥体体积;第二步:设内切球的半径为r ,建立等式:PBC O PAC O PAB O ABC O ABC P V V V V V -----+++=⇒r S S S S r S r S r S r S V PBC PAC PAB ABC PBC PAC PAB ABC ABC P ⋅+++=⋅+⋅+⋅+⋅=∆∆∆∆-)(3131313131第三步:解出PBCO PAC O PAB O ABC O ABCP S S S S V r -----+++=3图8-1A图8-2例8 (1)棱长为a 的正四面体的内切球表面积是 62a π,解:设正四面体内切球的半径为r ,将正四面体放入棱长为2a的正方体中(即补形为正方体),如图,则 2622313133aa V V ABC P =⋅==-正方体,又 r a r a Sr V ABC P 223343314314=⋅⋅⋅=⋅=-, ∴263332a r a =,62a r =,∴内切球的表面积为6422a r S ππ==表(注:还有别的方法,此略)(2)正四棱锥ABCD S -的底面边长为2,侧棱长为37解:如图,正四棱锥ABCD S -的高7=h ,正四棱锥ABCD S -的体积为374=-ABCD S V 侧面斜高221=h ,正四棱锥ABCD S -的表面积为284+=表S ,正四棱锥ABCD S -的体积为r r S V ABCDS ⋅+==-328431表, ∴3743284=⋅+r , 771427)122(7221728474-=-=+=+=r (3)三棱锥ABC P -中,底面ABC ∆是边长为2的正三角形,⊥PA 底面ABC ,2=PA ,则32解:如图,3=∆ABC S ,2==∆∆ACP ABP S S ,7=∆BCP S ,743++=表S ,(2)题(1)题D(3)题B三棱锥ABC P -的体积为332=-ABC P V , 另一表达体积的方式是r r S V ABC P ⋅++==-347331表, ∴3323473=⋅++r ,∴47332++=r习题:1.若三棱锥ABC S -的三条侧棱两两垂直,且2=SA ,4==SC SB ,则该三棱锥的外接球半径为( ) A.3B.6C.36D.9解:【A 】616164)2(2=++=R ,3=R【三棱锥有一侧棱垂直于底面,且底面是直角三角形】【共两种】2. 三棱锥ABC S -中,侧棱⊥SA 平面ABC ,底面ABC 是边长为3的正三角形,32=SA ,则该三棱锥的外接球体积等于 . 332π解:260sin 32==r ,16124)2(2=+=R ,42=R ,2=R ,外接球体积332834ππ=⋅ 【外心法(加中垂线)找球心;正弦定理求球小圆半径】3.正三棱锥ABC S -中,底面ABC 是边长为3的正三角形,侧棱长为2,则该三棱锥的外接球体积等于 .解:ABC ∆外接圆的半径为 ,三棱锥ABC S -的直径为3460sin 22==R ,外接球半径32=R ,或1)3(22+-=R R ,32=R ,外接球体积2733233834343πππ=⋅==R V , 4.三棱锥ABC P -中,平面⊥PAC 平面ABC ,△PAC 边长为2的正三角形,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:PAC ∆的外接圆是大圆,3460sin 22==R ,32=R , 5. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,3==PC PA ,BC AB ⊥,则三棱锥ABC P -外接球的半径为 .解:973324992cos 222=⋅⋅-+=⋅-+=∠PC PA AC PC PA P ,81216)97(1sin 22⋅=-=∠P ,924sin =∠P ,42922992422===R ,829=R 6. 三棱锥ABC P -中,平面⊥PAC 平面ABC ,2=AC ,PC PA ⊥,BC AB ⊥,则三棱锥ABCP -外接球的半径为 .R 解:AC是公共的斜边,AC的中点是球心O,球半径为1。
高中数学新教材8.3.2球与多面体的内接与外切类型总结公开课优秀课件(精品、值得收藏、好用)
如果一个长方体有内切球,那么它一定是 正方体
探究新知
二、 长方体的外接球
图形
度量关系 长方体的(体)对角线等于球直径 设长方体的长、宽、高分别为a、b、c, 则a2 b2 c2 (2R)2。
反馈练习
例2、一个长方体的各顶点均在同一球面上, 且一个顶点上的三条棱长分别为1,2,3 ,则此 球的表面积为 .
8.3 球与多面体的内切、外接
新பைடு நூலகம்引入
球的性质
●球心和截面圆心的连 线 垂直 于截面
●球心到截面的距离与球 的半径R及截面的半径的 关系: R2 = r2 + d2
球的表面积公式:S 4 R2 球的体积公式 :V 4 R3
3
o1 r
dR o●
新课引入
定义: 若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个多面体的外接球 。
小结:正棱锥外接球半径求法
A
R OR O1 r
1、球心在棱锥的高所在的直线上 2、球心到底面外接圆圆心的距
等于锥体的高减去球半径的绝 对值
B 3、R2 r2 (h R)2
为 4 3 .
2. 甲球内切于正方体的各面,乙球内切于该正方体的各条棱,
丙球外接于该正方体,则三球表面面积之比为( A )
A. 1:2:3
B. 1: 2: 3 C. 1:3 4:3 9 D. 1: 8: 27
类型二:长方体
探究新知
一、长方体的内切球
思考:一般的长方体有内切球吗?
没有。一个球在长方体内部,最多可以 和该长方体的5个面相切。
球直径等于正方体的(体)对角线
知识拓展 1.几个与球有关的切、接常用结论
【课件】球与多面体的内切、外接课件2022-2023学年高一下学期数学人教A版(2019)必修第二册
o2
o
5πa2
●
R
r o1
课堂练习
2.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球
32π
的体积为
,那么这个正三棱柱的体积是(
3
A.96 3
C.24 3
)
B.16 3
√D.48
3
1 3
3
设正三棱柱的底面边长为a,则球的半径 R= × a= a,
3 2
6
3
正三棱柱的高为 a.
3
4 3 32π
三棱锥、四个面都是直角三角形的三棱锥都分别可构造长方体或
A
正方体.
P
B
C
探究新知
总结:正四面体的棱长与外接球、内切球的半径总结的关系
1.若正四面体棱长为a,外接球半径为R,内切球半径为r,则
r PO R
6
R
a
4
R : r 3 :1
6
r
a
12
6
6
6
a
a
a.
3
4
12
P
P
a
a
A
V 球= πR = .∴a=4 3.
3
3
3
3
2
∴V 柱= ×(4 3) × ×4 3=48 3.
4
3
例题讲解
(4)正棱锥、圆锥 ①内切球
P
例6 正三棱锥的高为1,底面边长为2,内有一个球与
它的四个面都相切,求内切球的表面积与体积.
A
解1:如图,P-ABC为正三棱锥,
设球的半径为r,底面中心为D,取BC边中点E ∴PD=2,易知
1
V锥体 Sh
3
高中数学立体几何外接球7大模型
02
03
04
例题1
已知长方体的长为3,宽为4 ,高为5,求其外接球的半径
。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(3^2+4^2+5^2)=
3/2*sqrt(10)。
例题2
已知长方体的长为6,宽为8 ,高为10,求其外接球的半
径。
解法
根据长方体外接球半径计算方 法,可得出外接球的半径为 1/2*sqrt(6^2+8^2+10^2) =1/2*sqrt(100+64+100)=1 /2*sqrt(264)=sqrt(66)。
长方体的每个面都是 矩形或正方形,相对 的两个面完全相同。
长方体外接球半径计算方法
01
设长方体的长、宽、高分别为a、 b、c,则长方体的体对角线长度 为sqrt(a^2+b^2+c^2)。
02
外接球的半径为体对角线长度的 一半,即 R=1/2*sqrt(a^2+b^2+c^2)。
典型例题解析
01
外接球半径$R = frac{sqrt{3}a}{3}$
典型例题解析
题目
在正四面体$P-ABC$中,点$P,A,B,C$都在同一球面上,若$angle PAB = angle PBA = angle BPC = angle ACP = 90^{circ}$,则该球的表面积为____.
解析
首先根据正四面体的性质,我们可以计算出外接球的半径$R = frac{sqrt{3}a}{3}$。然后 根据球的表面积公式$S = 4pi R^{2}$,我们可以计算出球的表面积为$S = 4pi (frac{sqrt{3}a}{3})^{2} = frac{4pi a^{2}}{3}$。
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
•
12简·爱人生追求有两个基本旋律:富 有激情 、幻想 、反抗 和坚持 不懈的 精神; 对人间 自由幸 福的渴 望和对 更高精 神境界 的追求 。
人教A版高二数学必修二.2 简单多面体位置法
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
•
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
例5. 在矩形ABCD中,AB=4,BC=3,沿AC将矩形 ABCD折成一个直二面角B-AC-D,则四面体ABCD 的外接球的体积为 1 2 5
6
将“直二面角”改为“二面角”结果? 变 式 题 : 如 图 , 棱 形 A B C D 的 边 长 为 1 ,且 B A D = 6 0 0 , 沿 对 角 线 B D 将 棱 形 A B C D 折 成 直 二 面 角 A - B D - C , 则 三 棱 锥 A B C D 外 接 球 的 表 面 积 为
求正多面体外接球的半径
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
D
C
6a 4 求正方体外接球的半径
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
对棱相等的三棱锥
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
D
C
6a 4 求正方体外接球的半径
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
29
思考总结:什么样的三棱锥可构造成正方体或长方体?
人教A版高二数学必修二.2 简单多面体的外接球问题 优质课课件
几何体外接球和内接球半径几种求法课件
目录
CONTENTS
• 几何体外接球和内接球的基本概念 • 几何体外接球的求法 • 几何体内接球的求法 • 几何体外接球和内接球的典型例题解析 • 几何体外接球和内接球的注意事项
01
CHAPTER
几何体外接球和内接球的基 本概念
定义与性质
外接球
对于一个多面体,外接球是指包 含该多面体的所有顶点的球体。
单位要统一
在计算过程中,所有的长度单位必须 统一,否则会导致计算错误。
精度问题
在计算过程中,需要注意精度问题, 以避免舍入误差导致的结果偏差。可 以使用高精度的数学库或工具进行计 算,以确保结果的准确性。
THANKS
谢谢
详细描述
首先,设长方体的三个边分别为a、b、c,然后利用勾股定理 计算其对角线的长度。这个对角线的长度就是外接球的直径 ,因此,通过除以2即可得到外接球的半径。
利用向量求外接球半径
总结词
利用向量求外接球半径是一种基于向量的方法。通过向量的运算和性质,结合几 何体的特征,可以求出外接球的半径。
详细描述
几何体外接球和内接球的半径公式
对于正四面体,外接球的半径 $R = frac{sqrt{6}}{4}a$,其中 $a$ 是正四面体的边长;内接球
的半径 $r = frac{sqrt{6}}{12}a$。
对于正六面体,外接球的半径 $R = frac{sqrt{3}}{2}a$,其中 $a$ 是正六面体的边长;内接球 的半径 $r = frac{a}{2sqrt{3}}$
05
CHAPTER
几何体外接球和内接球的注 意事项
确定几何体的外心和内心
确定外心
外心是外接圆的圆心,也是三条垂直平分线 的交点。对于三角形,外心是三条垂直平分 线的交点;对于矩形,外心是两条对角线中 点连线的交点;对于正四面体,外心是三条 高线与底面交点的连线的交点。
高考数学多面体的外接球专题模型总结终极版(七大模型)
多面体的外接球专题模型总结终极版题型一、长方体的外接球1.长方体外接球半径R=√a2+b2+c22a2.正方体外接球半径R=√323.长方体外接球的切割体(从长方体八个顶点中任取四个顶点)(1)三条侧棱两两垂直的三棱锥简称墙角型(2)一条侧棱垂直于底面,底面是直角三角形的三棱锥(双垂直)(3)各棱相等的三棱锥(正四面体)(4)对棱相等的三棱锥专题练习例1.在三棱锥BCD A −中,侧棱AB 、AC 、AD 两两垂直,ABC ∆、ACD ∆、ADB ∆的面积分别为22、32、62,则三棱锥BCD A −的外接球的体积为( )A .6πB .26πC .36πD .46π例2. 如图所示,已知球O 的面上有四点A 、B 、C 、D ,2===⊥⊥BC AB DA BC AB ABC DA ,,面,则球O 的体积等于 .例 3.已知三棱锥BCD A −的所有棱长都为2,则该三棱锥外接球的体积为_________例4.四面体BCD A −中,5==CD AB ,34==BD AC ,41==BC AD ,则四面体BCD A −外接球的表面积为( )A .π50B .π100C .π150D .π200变式练习1.在三棱锥ABC P −中,4==BC PA ,5==AC PB ,11==AB PC ,则三棱锥ABC P −的外接球的表面积为( )A .π8B .π12C .π26D .π242.已知三棱锥ABC P −的顶点都在球O 的表面上,若PA ,PB ,PC 两两互相垂直,且2===PC PB PA ,则球O 的体积为( ) A .π312 B .π28 C .π34 D .π43.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥ABC P −为鳖臑,⊥PA 平面ABC ,2==AB PA ,4=AC ,三棱锥ABC P −的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .π8 B .π12 C .π20 D .π244.已知三棱锥ABC S −的各顶点都在一个半径为r 的球面上,且1===SC SB SA ,2===AC BC AB ,则球的表面积为( )A .π12B .π8C .π4D .π35.已知三棱锥ABC P −的各顶点都在同一球面上,且⊥PA 平面ABC ,若该棱锥的体积为332,2=AB ,1=AC ,︒=∠60BAC ,则此球的表面积等于( ) A .π5 B .π8 C .π16 D .π206.三棱锥ABC P −的四个顶点都在球O 的球面上,已知PA ,PB ,PC 两两垂直,1=PA ,4=+PC PB ,当三棱锥的体积最大时,球O 的体积为( ) A .π36 B .π9C .29π D .49π7.如图所示,平面四边形ABCD 中,2===CD AD AB ,22=BD ,CD BD ⊥,将其沿对角线BD 折成四面体ABCD ,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一个球面上,则该球的体积为( )A .π328B .π24C .π34题型二、上下对称几何体外接球(直棱柱)直棱柱外接球半径R=√r 2+h 24,其中r 是底面外接圆半径,h 是直棱柱的高 r =a 2sinA(正弦定理)例1.设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为( )A.πa 2B.73.πa 2 C. 113πa 2 D. 5πa 2例2.如图,网格纸上小正方形的边长为 1,粗线画出的是某几何体的三视图,则该几何体的外接球的表面积为 .例3.如图,三棱锥的所有顶点都在一个球面上,在ABC ∆中,3=AB ,︒=∠60ACB ,︒=∠90BCD ,CD AB ⊥,22=CD ,则该球的体积为 .例4. 如图是某几何体的三视图,正视图是等边三角形,侧视图和俯视图为直角三角形,则该几何体外接球的表面积为( ) A .320πB .π8C .π9D .319π例5. 如图,某三棱锥的正视图、侧视图和俯视图分别是直角三角形、等腰三角形和等边三角形,若该三棱锥的顶点都在同一球面上,则该球的表面积为( ) A .π27 B .π48 C .π64D .π81变式练习1.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,⊥AD 平面ABC ,62==AB AD ,则该球的体积为( ) A .π332 B .π48 C .π24 D .π162.四面体ABCD 的四个顶点都在球O 的表面上,⊥AB 平面BCD ,三角形BCD 是边长为3的等边三角形,若4=AB ,则球O 的表面积为( ) A .π36B .π28C .π16D .π43.已知一个三棱锥的三视图如下图所示,其中俯视图是顶角为32π的等腰三角形,则该三棱锥外接球的表面积为( ) A .π20B .π17C .π16D .π8题型三、正N 棱锥外接球正N 棱锥外接球半径R=l 22ℎ,其中l 是侧棱长度,h 是正棱锥的高例1. 正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.81π4B. 16πC. 9πD.27π4题型四、等腰三角形底边与一直角三角形斜边构成二面角的四面体如上图中,ABC △为等腰三角形,且AC AB =,DBC △是以BC 为斜边的△Rt ,D BC A −−二面角为α,令ABC △的外接圆半径为2r ,BC 边上的高为21h AO =,12r BC =,F 为ABC △的外心,则根据剖面图可知,外接球半径R 满足以下恒等式()21222221212sin r r h R E O OO OE +⎪⎭⎫ ⎝⎛−==+=α.例1在四面体ABC S −中,BC AB ⊥,2==BC AB ,SAC △为等边三角形,二面角B AC S −−的余弦值为33−,则四面体ABC S −的外接球表面积为 .CB图3图4图5作二面角剖面⇒例2.在四面体ABCD 中,AB=AD=2,∠BAD =60。
玲珑画板基本教程-1画立体图8. 球与多面体的内切外接的画法
如何使用玲珑画板画立体图形(之八)球与多面体的内切外接的画法一、效果图(球的内接正方体直观图,正四面体的内接外接球直观图、透视图)。
二、球的内接正方体直观图。
2.1 作图思路:1、正方体的边长与球体的半径比例要正确。
默认的正方体长是4,所以计算得外接球的径就是,2、在生成旋转体时,先计算好用于生成纬线的点。
3、旋转体通常都用平行正面投影,然后绕Y轴往外旋转一定角度最佳。
4、为保持大圆为实线,所以外面的大圆不需旋转。
2.2右键菜单:2D网格模式,然后,画一半径为的半圆(为生成旋转体做准备),在屏幕中央画一点,然后再重合创建一点,选中这个点,单击菜单:编辑/精确定位/定值轴位移,输入2*sqrt(3)。
然后单击菜单:创建/圆/圆弧。
2.3然后在上下距圆心为2画两条线段与半圆相交。
为生成纬线点做准备。
然后在与圆弧交点处点击创建交点。
然后重合交点,新建自由点,2.4然后删除线段及端点,选中所有。
右键菜单:生成旋转体。
2.5单击菜单:创建/正多面体/正六面体,然后捕捉以球心,单击,则以球心为中心创建了一个正方体。
2.5选中所有,单击菜单:编辑/投影方式/平行正面投影,为效果方便,只选中正方体,通过操作轴,绕Z(绿色那个圈)旋转一点点。
2.6选中所有对象,右键菜单:合成组件。
2.7选中球的构成大圆的两个半圆弧,隐藏,以球心为圆心,球半径大小另画一个大圆:单击菜单:创建/圆/圆。
这里必须是自由圆。
2.8选中正方体与球的合成体(不选中大圆),通过操作轴绕Y(红色那个圈),往外旋转一定角度。
2.9选中所有对象,合成组件。
注意:如果是做透视图效果的话,则从2.6合成组件后,就修改旋转体属性为网格显示即可。
三、正四面体的内切外接球直观图画法。
3.1作图思路:正四面体的高与球体的半径比例要正确。
计算比为:4:33.2右键菜单:2D网格模式。
单击菜单:创建/圆/圆弧,画出半径为3的半圆。
3.3然后在下距圆心为1画一条线段与半圆相交。
简单多面体的外接球
目录
• 定义与性质 • 计算方法 • 实例分析 • 特殊情况
01
定义与性质
简单多面体的定义
由多个平面多边形围 成的立体图形。
每个面都是凸多边形。
每个顶点都由相交的 棱组成,且每个顶点 处的多边形的边数相 等。
外接球的性质
外接球是球心到多面体的所有顶点的 距离相等的球。
外接球的球心是各顶点与各平面的垂 足的交点。
详细描述
等边三角形的三边的垂直平分线交于一点,该点即为外接圆的圆心,而三边的垂直平分线的长度即为 圆的半径。
等腰三角形的外接圆
总结词
等腰三角形的外接圆是等腰三角形底边 上的中垂线所围成的圆。
VS
详细描述
等腰三角形底边上的中垂线与顶角相对的 底边上的中点相交,该交点即为外接圆的 圆心,而底边上的中垂线的长度即为圆的 半径。
计算顶点与外心的距离
利用勾股定理计算顶点到外心的距离,即外接球的半径。
计算半径
计算所有顶点到外心的距离
将每个顶点与外心的距离进行计算。
确定外接球的半径
取所有顶点到外心距离中的最小值,即为外接球的半径。
外接球的构造
根据外心和半径确定外接球的位置
将外心与多面体的一个顶点相连,并延长至与外接球相切,切点即为外接球的球心。
确定外接球的形状
根据多面体的形状,确定外接球的形状,可以是球、椭球等。
03
实例分析
正方体的外接球
总结词
正方体的外接球半径等于正方体 对角线长度的一半。
详细描述
正方体具有六个面,每个面都是 正方形。外接球的球心位于正方 体的中心,且半径等于正方体对 角线长度的一半。
长方体的外接球
总结词
专题12 多面体的外接球和内切球
专题12 多面体的外接球和内切球一、结论1.球与多面体的接、切定义1;若一个多面体的各顶点都在一个球面上,则称这个多面体是这个球的内接多面体,这个球是多面体的外接球。
定义2;若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是多面体的内切球。
类型一 球的内切问题(等体积法)例如:在四棱锥P ABCD −中,内切球为球O ,求球半径r .方法如下:P ABCD O ABCD O PBC O PCD O PAD O PAB V V V V V V −−−−−−=++++即:1111133333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r −=⋅+⋅+⋅+⋅+⋅,可求出r .类型二 球的外接问题 1、公式法正方体或长方体的外接球的球心为其体对角线的中点 2、补形法(补长方体或正方体) ①墙角模型(三条线两个垂直)题设:三条棱两两垂直(重点考察三视图)②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CD AB =,BC AD =,BD AC =) 3、单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥P ABC −中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2sin ar A=); 图2图3②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则OP OA R ==,利用公式22211OA O A OO =+可计算出球半径R .4、双面定球心法(两次单面定球心) 如图:在三棱锥P ABC −中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ②选定面PAB ∆,定PAB ∆外接圆圆心2O③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .二、典型例题1.(2022·山西吕梁·一模(文))在《九章算术·商功》中,将四个面都为直角三角形的四面体称为鳖臑,如图在鳖臑ABCD 中,AB ⊥平面BCD ,1AB BC CD ===,BC CD ⊥,则鳖臑ABCD 内切球的表面积为( ) A .3π B.(3π− C .12π D.(3π+【答案】B 【解析】解:因为四面体ABCD 四个面都为直角三角形,AB ⊥平面BCD ,BC CD ⊥,所以AB BD ⊥,AB BC ⊥,BC CD ⊥,AC CD ⊥,设四面体ABCD 内切球的球心为O ,则()13ABCD O ABC O ABD O ACD O BCD ABC ABD ACD BCD V V V V V r S S S S −−−−=+++=+++△△△△内,所以3ABCDVr S =内, 因为四面体ABCD的表面积为1ABCD ABC ABD ACD BCD S S S S S =+++=△△△△又因为四面体ABCD 的体积16ABCD V =,所以312V r S ==内,所以24(3S r ππ==−球, 故选:B【反思】本例中涉及到求内切球问题,典型的等体积法.2.(2021·四川省南充高级中学高二期中(文))在三棱锥P -ABC 中,PA ,PB ,PC 两两垂直,1PA =,2PB =,3PC =,则该三棱锥的外接球的表面积为( )A .494π B .56πC D .14π【答案】D【解析】将三棱锥P -ABC 补全为长方体,则长方体的外接球就是所求的外接球,设球半径为R ,则()222224214R R PA PB PC ==++=,所以球的表面积为2414S R ππ==.故选:D .【反思】由题意PA ,PB ,PC 两两垂直,可直接用补形法,补成长方体,利用长方体求外接球.3.(2021·全国·高一课时练习)已知三棱锥P ABC −,在底面ABC 中,30A =,1BC =,PA ⊥面ABC ,PA = )A .163πB .C .323πD .16π【答案】D 【解析】设ABC 的外接圆半径为R ,因为30A =,1BC =,由正弦定理得:122sin sin 30BC R A ===︒,所以ABC 的外接圆半径为1,设ABC 的外接圆圆心为D ,过点D 做PA 的平行线,则球心一定在该直线上,设为O ,因为PA ⊥面ABC ,PA =由于OP OA R ==,故12OD PA =2OA =,即此三棱锥的外接球的半径为2,故外接球表面积为24π216π⨯=.故选:D【反思】此题典型的单面定球心求外接球的问题,先确定ABC 的外接圆圆心D ,再过D 做PA 的平行线,则可确定球心O 在该直线上,进而通过计算求出外接球半径R . 4.三棱锥ABC P −中,平面PAB ⊥平面ABC ,PAB ∆和ABC ∆均为边长为2的正三角形,则三棱锥ABC P −外接球的半径为 .【解析】:由于ABC ∆是正三角形,并且边长为2,所以ABC ∆的外接圆圆心为1O ,则1HO =,1O C =同理可得PAB ∆的外接圆圆心为2O,可得到23HO =,23O P =,分别过1O 做面ABC 的垂线,过2O 做面PAB 的垂线交于O ,因为平面PAB ⊥平面ABC ,所以四边形12HO OO 为正方形,且OC R =,利用勾股定理:2222221153OC OO OC R =+⇒=+=,所以R =【反思】此题典型的双面定球心,由于选定的面ABC ∆,PAB ∆都是正三角形,故其外心都是中心,如果是普通三角形,可以采用正弦定理定外心.三、针对训练 举一反三一、单选题1.(2021·湖北黄冈·高一期末)若圆锥的内切球(球面与圆锥的侧面以及底面都相切)的半径为1,当该圆锥体积是球体积两倍时,该圆锥的高为( ) A .2 B .4CD.2.(2021·青海·海南藏族自治州高级中学高三开学考试(理))如图正四棱柱1111ABCD A B C D −中,底面面积为36,11A BC V 的面积为111B A B C −的外接球的表面积为( )A .68πB .C .172πD .3.(2022·全国·高三专题练习)已知四面体P ABC −中,PA ⊥平面ABC ,2PA AB ==,BC 3tan 2ABC ∠=,则四面体P ABC −的外接球的表面积为( ) A .15πB .17πC .18πD .20π4.(2021·江苏·金陵中学高一期末)前一段时间,高一年级的同学们参加了几何模型的制作比赛,大家的作品在展览中获得了一致好评.其中一位同学的作品是在球当中放置了一个圆锥,于是就产生了这样一个有趣的问题:已知圆锥的顶点和底面圆周都在球O 面上,若圆锥的侧面展开图的圆心角为23π,面积为3π,则球O 的表面积等于( ) A .818πB .812πC .1218πD .1212π5.(2021·云南·弥勒市一中高二阶段练习)设直三棱柱111ABC A B C −的所有顶点都在一1AB AC AA ==,120BAC ∠=︒,则此直三棱柱的高是( )A .1B .2C .D .46.(2021·重庆·西南大学附中高一期末)已知正方形ABCD 中,2AB =,E 是CD 边的中点,现以AE 为折痕将ADE 折起,当三棱锥D ABE −的体积最大时,该三棱锥外接球的表面积为( ) A .525π48B .5π4C .25π4D .25π7.(2021·广西·柳铁一中高三阶段练习(理))在三棱锥A BCD −中,3AB AD BC ===,5CD =,4BD =,AC =( ) A .63π10B .64π5C .128π5D .126π58.(2021·江西省南丰县第二中学高一学业考试)已知四棱锥S ABCD −,SA ⊥平面ABCD ,AB BC ⊥,BCD DAB π∠+∠=,2SA =,BC =S BC A −−的大小为3π.若四面体S ACD −的四个顶点都在同一球面上,则该球的体积为( )A B .C .10πD .323π 二、填空题9.(2022·河南焦作·一模(理))已知三棱锥P ABC −的每条侧棱与它所对的底面边长相等,且ABC 是底边长为积为___________.10.(2022·河南驻马店·高三期末(文))在三棱锥P ABC −中,底面是以AB 为斜边的等腰直角三角形,4AB =,PA PB PC ==P ABC −外接球的表面积为______.11.(2022·全国·模拟预测(理))已知A 、B 、C 、D 为空间不共面的四个点,且2BC BD AB ===A BCD −体积最大时,其外接球的表面积为______.12.(2022·安徽马鞍山·一模(理))三棱锥-P ABC 中,PAC △是边长为角形,2AB BC ==,平面PAC ⊥平面ABC ,则该三棱锥的外接球的体积为______13.(2021·湖北荆州·高一期中)如图,在一个底面边长为2锥P ABCD −中,大球1O 内切于该四棱锥,小球2O 与大球1O 及四棱锥的四个侧面相切,则小球2O 的表面积为______.。
几何体的外接球课件
O R
B
C
l 设柱体的高为l , 底面外接圆的半径为r, 则有R r 2
2
2
构造直角三角形使用技巧
椎体的外接球
O
O
O1
A
O1
A
设椎体的高为h, 底面外接圆的半径为r, 则有R r h R
2
2
补形法的使用技巧
根据题中给出的线面位置关系,将其放到特殊的 几何体中,转化为直接法或构造直角三角形法。
小结1 如何求直棱柱的外接球半径呢? (1)先找外接球的球心: 它的球心是连接上下两个多边形的外心 的线段的中点; (2) 再构造直角三角形,勾股定理求解。
二、构造直角三角形
2010 年理 设三棱柱的侧棱垂直于底面,所有棱的长都为 a, 顶点都在一个球面上,则该球的表面积为
OB OO O1B
1 1 2 6 6 3 ∴V 棱锥= Sh= a · a= a . 3 3 2 6 1 根据 r· S =V 棱锥,有 3 全 6 3 3V棱锥 3× 6 a 42- 6 r= = a. 3= 12 S全 ( 7+1)a
构造直角三角形使用技巧
球心在几何体外部
设椎体的高为h, 底面外接圆的半径为r, 则有R r h R
多面体外接球的半径的求法
• 方法一:直接法
• 方法二:构造直角三角形 • 方法三:补形
一、直接法
2010 年文 (7) 设长方体的长、宽、高分别为 2a 、a 、a,其顶点都在一个 球面上,则该球的表面积为 (A ) 3 a2 (B) 6 a2 (C ) 12 a 2 (D ) 24 a 2
2 1
2
构造直角三角形使用技巧
任意直棱柱的外接球 圆柱的外接球
【高中数学】立体几何中外接球内切球 专题课件 高一下学期数学人教A版(2019)必修第二册
答案 A 解析 由已知, 2R 12 12 ( 2)2 2 , S球 4 R2 4 π.
(4)在正三棱锥 S-ABC 中,M,N 分别是棱 SC,BC 的中点,
且 AM MN ,若侧棱 SA 2 3 ,则正三棱锥 S-ABC 外接球的表面
积是________.
2
空间几何体的外接球与内切球十大模型
1.墙角模型; 2.对棱相等模型; 3.汉堡模型; 4.垂面模型; 5.切瓜模型; 6.斗笠模型; 7.鳄鱼模型; 8.已知球心或球半径模型; 9.最值模型; 10.内切球模型.
3
一、墙角模型 墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模
型,用构造法(构造长方体)解决.外接球的直径等于长方体的体对角线 长(在长方体的同一顶点的三条棱长分别为 a,b,c,外接球的半径为 R, 则 2R= a2+b2+c2.),秒杀公式:R2=a2+b2+c2。可求出球的半径
4
2
7a 2
7
, a 2
.在正四面体
A BCD 的边长为 2,外接球的半径 R
6a 4
6
2 ,外接球的体积
V 4 R3
3
6 .
12
(5) 已 知 三 棱 锥 A BCD , 三 组 对 棱 两 两 相 等 , 且
AB CD 1 , AD BC 3 ,若三棱锥 A BCD 的外接球表面
足为 BC 的中点 M.又 AM=12BC=52,OM=12AA1=6,
所以球 O 的半径 R=OA=
5 2
2+62=13. 2
另解 过 C 点作 AB 的平行线,过 B 点作 AC 的
平行线,交点为 D,同理过 C1 作 A1B1 的平行线,过 B1 作 A1C1 的 平行线,交点为 D1,连接 DD1,则 ABCD-A1B1C1D1 恰好成为球
十种题型搞定多面体的外接球,内切球问题
十种题型搞定多面体的外接球,内切球问题题型一 直角四面体的外接球 补成长方体,长方体对角线长为球的直径1.三棱锥P ABC -中,ABC ∆为等边三角形,2PA PB PC ===,PA PB ⊥,三棱锥P ABC -的外接球的表面积为( )A .48πB .12πC .D .2.在正三棱锥A BCD -中,,E F 分别是,AB BC 的中点,EF DE ⊥,若BC =A BCD -外接球的表面积为A πB 2πC 3πD 4π3.在正三棱锥S ABC -中,,M N 分别是,SC BC 的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥S ABC -外接球的表面积为A 12πB 32πC 36πD 48π 4.(2019全国1理12).已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D5.设A ,B ,C ,D 是半径为2的球面上的四个不同点,且满足AB →·AC →=0,AD →·AC →=0,AB →·AD →=0,用S 1、S 2、S 3分别表示△ABC 、△ACD 、△ABD 的面积,则S 1+S 2+S 3的最大值是________.题型二 等腰四面体的外接球 补成长方体,长方体相对面的对角线为等腰四面体的相对棱1.在四面体ABCD 中,若AB CD ==,2AC BD ==,AD BC ==ABCD 的外接球的表面积为( ) A .2πB .4πC .6πD .8πA B C D ,,,四点在半径为225的球面上,且5AC BD ==, AD BC ==,AB CD =,则三棱锥D ABC -的体积是____________.3.在三棱锥S ﹣ABC 中,底面△ABC 的每个顶点处的三条棱两两所成的角之和均为180°,△ABC 的三条边长分别为AB=3,AC=5,BC=6, 则三棱锥ABC S -的体积( )A .22B . 10C .232D .234 题型三 有公共斜边的两个直角三角形组成的三棱锥 ,球心在公共斜边的中点处1.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角D AC B --,则四面体ABCD 的外接球的体积为A. π12125B.π9125C.π6125D.π31252.三棱锥S ABC -的所有顶点都在球O 的球面上,且SA AC SB BC ====4SC =,则该球的体积为A2563π B 323π C 16π D 64π3.在四面体S ABC -中,,2AB BC AB BC SA SC ⊥====,二面角S AC B --的余弦值是3-)A. B .6π C .24π D4.在平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体'A BCD -,使平面'A BD ⊥平面BCD ,若四面体'A BCD -顶点都在同一个球面上,则该球的体积为A 32πB 3πC 23π D 2π 5.平行四边形ABCD 中,AB ·BD =0,沿BD 将四边形折起成直二面角A 一BD -C ,且4222=+BD AB ,则三棱锥A -BCD 的外接球的表面积为( ) A .2π B .4π C .π4 D .2π6已知直角梯形ABCD ,AB AD ⊥,CD AD ⊥,222AB AD CD ===,沿AC 折叠成三棱锥,当三棱锥体积最大时,三棱锥外接球的体积为 .题型四 侧棱垂直于地面或侧面垂直于地面 过底面外心做垂线,球心有垂线上 1.已知四面体P ABC -,其中ABC ∆是边长为6的等边三角形,PA ⊥平面ABC ,4PA =,则四面体P ABC -外接球的表面积为________.2. 一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的( )外接球的半径为33B .表面积为137++C .体积为3D .外接球的表面积为π4. 题型五 其中一条侧棱满足某个特殊的条件1.已知三棱锥BCD A -中,2====CD BD AC AB ,AD BC 2=,直线AD 底面BCD 所成的角是3π,则此时三棱锥外接球的体积是 ( ) A π8 B π32 C π324 D π328 答案。
多面体的外接球问题
多⾯体的外接球问题
简单多⾯体外接球问题是⽴体⼏何中的难点重要考点,此类问题的实质是解决球的半径R和确定球⼼的位置问题,其中确定球⼼的位置是关键.
由球的定义确定球⼼
在空间,如果⼀个定点与⼀个简单多⾯体的所
有顶点的距离都相等,那么这个定点就是该简单多
⾯体的外接球的球⼼.
由上述性质,可以得到确定简单多⾯体外接球
的球⼼的如下结论.
结论 1 正⽅体或长⽅体的外接球的球⼼是其
体对⾓线的中点.
结论 2 正棱柱的外接球的球⼼是上下底⾯中
⼼的连线的中点.
结论 3 直三棱柱的外接球的球⼼是上下底⾯
三⾓形外⼼的连线的中点.
结论 4 正棱锥的外接球的球⼼是在其⾼上,
具体位置可通过计算找到.
结论 5 若棱锥的顶点可构成共斜边的直⾓三
⾓形,则公共斜边的中点就是其外接球的球⼼.
⼀、出现“墙⾓”结构利⽤补形知识,联系长⽅体。
⼆、出现两个垂直关系,利⽤直⾓三⾓形结论。
【原理】:直⾓三⾓形斜边中线等于斜边⼀半。
球⼼为直⾓三⾓形斜边中点。
【总结】斜边⼀般为四⾯体中除了直⾓顶点以外的两个点连线。
⼆、出现多个垂直关系时建⽴空间直⾓坐标系,利⽤向量知识求解
【结论】:空间两点间距离公式:
⼆、四⾯体是正四⾯体
外接球与内切球的圆⼼为正四⾯体⾼上的⼀个点,
根据勾股定理知,假设正四⾯体的边长为时,它的外接球半径为
思考题。