第一章 复数与复变函数

合集下载

复数与复变函数

复数与复变函数

非零复数z的整数n次根式 为:
n
z
=n
iϕ +2kπ
ρe n
=n
ρ (cos ϕ + 2kπ
+ i sin ϕ + 2kπ )
n
n
(k = 0,1,2....n −1)
2. 无穷远点
复平面上一点与球面上的点 一一对应 ,复平面上∝ 点与 球面上N相对应,点的幅角无 意义。复平面+ ∝为闭平面。
(全平面扩充平面)。
ii) 复数“零”的幅角无定义,其模为零.
iii) 当ρ=1时, z = cosϕ + isinϕ = eiϕ称为单位复数.
利用复数的指数形式作乘除法比较简单,如:
z1 z2
=
ρ1 ρ 2 [cos(ϕ1
+ ϕ2 ) + i sin(ϕ1
+ ϕ2 )] =
ρ ρ ei(ϕ1 +ϕ2 ) 12
z1 z2
上却有很大的区别,这是因为实变函数Δx 只沿实轴逼近零
,而复变函数Δz却可以沿复平面上的任一曲线逼近零,因此
复变函数可导的要求比实变函数可导的要求要严格得多.
z x
例: f (z) = z = x − iy 在复平面上处处不可导
∵ z + ∆z − z = ∆z
∆z
∆z
当 Δz→0 沿实轴
∆z = ∆x, ∆z = ∆x → 1 ∆x ∆x
立。
4. 复变函数
例 : 初等单值函数
幂函数: w=zn n=1,2, - - - - -
多项式: a0+a1z1+a2z2+- - - - +anzn n 为整数

第一章-复数与复变函数

第一章-复数与复变函数

复变函数教案2012—2013学年度第二学期任课教师郭城课程名称复变函数采用教材高教三版(钟玉泉编)周课时数 4数统学院数学教育专业2010 年级1班引言数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。

以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。

解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。

我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac<O,就会遇到负数开平方的问题,最简单的一个例子是在解方程x2+1=0时,就会遇到开平方的问题。

1545年,意大利数学物理学家H Cardan(卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程=0的根,它求出形式的根为5和5,积为-+115x x(10)4--=.然而这只不过是一种纯形式的表示而已,当时,谁也说不上这25(15)40样表示究竟有什么好处。

为了使负数开平方有意义,也就是要使上述这类方程有解,我们需要再一次扩大数系,于是就引进了虚数,使实数域扩大到复数域。

但最初,由于对复数的有关概念及性质了解不清楚,用它们进行计算又得到一些矛盾,因而,长期以来,人们把复数看作不能接受的“虚数”。

直到十七世纪和十八世纪,随着微积分的发明与发展,情况才逐渐有了改变。

另外的原因,是这个时期复数有了几何的解释,并把它与平面向量对应起来解决实际问题的缘故。

复变函数论产生于十八世纪。

1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。

而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。

因此,后来人们提到这两个方程,把它们叫做“达朗贝尔一欧拉方程”。

到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西一黎曼条件”。

《复变函数》第1章

《复变函数》第1章

实部:x = Re(z) 虚部:y = Im(z)
纯虚数:z = iy ( y ≠ 0 )
2020/7/21
《复变函数》(第四版)
第2页
共轭复数: x iy x iy
z=0 x=y=0
z1= x1 + iy1 , z2= x2 + iy2 , z1 = z2 x1 = x2 , y1 = y2
连接平面上任一点与球面北极的直线段与球面有一个交点, 又在平面上引入一个假想点∞与球面北极对应, 构成扩充复平面 与球面点的一一对应, 即复数与球面上的点的一一对应, 球面称 为复球面.
2020/7/21
《复变函数》(第四版)
第16页
规定: | ∞| = +∞
α≠∞, α + ∞ = ∞ + α = ∞
解: 1) 几何上看 | z + i | = | z -(-i ) | = 2 : 与点-i
的距离为2的点轨迹, 即中心为(-i ),半径为2的圆.
代数推导: 设 z = x + iy
则 | x + (y + 1)i | = 2
(见书P10 图1.5)
x2 + (y + 1)2 = 4
解: 2) | z - 2i | = | z +2 | —— 到点 2i 和-2 距离
复变函数
(第四版)
电子教案
中山大学公共卫生学院 刘素芳 邓卓燊 编写
第一章 复数与复变函数
复变函数——自变量为复数的函数. 复变函数研究的中心对象: 解析函数. 复变函数论又称为解析函数论.
§1 复数及其代数运算
1.复数的概念
i — 虚数单位
i 2 =-1

复变函数 第1章 复数与复变函数

复变函数 第1章 复数与复变函数
6
6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2

1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .

1.3.2 单连通域与多(复)连通域

1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个

z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s

第1章复数与复变函数汇总

第1章复数与复变函数汇总
2 2
z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
z1 z 2 z1 z 2 Re( z1 z 2 ), z1 z2 z1 z2 Re( z1 z2 ).
(2) ∞的实部,虚部及幅角都无 意义, (3)b≠0(但可为∞)时, b b ,
b ; a 0 , 0, (4)a≠∞时, a a a ; 0 (5)运算∞± ∞,0· ∞, , 0 无意义
§3 复数的乘幂与方根
第一章 复数与复变函数
§1 复数及其代数运算
目录
§2 复数几何表示
§3 复数的乘幂与方根
§4 区 域 §5 复变函数
§6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 形如 z=x+iy 或 z=x+yi 的数,称为复数 虚部为零的复数就可看作实数,即 x+i· 0=x 复数
z n r n (cosn i sin n ) r nein
n
2k 2k z r (cos i sin ) n n 1
1 n
w0 r (cos i sin ) n n 1 2 2 n
n


w1 r (cos
1 n
………………………………………
当x在第一象限
当x在第二象限 当x在第三象限 当x在第四象限 当z在正y轴上
2 arg z 2 0, ,
当z在负y轴上
当z在正x轴上 当z在负x轴上

复变函数-第一章-复数与复变函数

复变函数-第一章-复数与复变函数

y
28
1 i
2
q

4
w0
r 2
q 2k
n i sin
w2
q 2k
n )
o
w3
x
wk n r (cos
16
例 2. 求
4
-1
解 : 1 cos i sin
4
1 cos
2k
4
i sin
2k
4
, (k 0,1,2,3).
z1

z2
z0 内点
P
D-区域
(6) 连通 D中任意两点可用一条全在D
中的曲线连接起来。
21
外点
z1

z2
z0 内点
P
(7) 区域
连通的开集.
D-区域
区域D与它的边界一起构成闭区域, 或闭域. D
22
(8) 有界区域 如果存在正数M,使得对于一切D中的点z, z M, 有 则称 D为有界区域,否则称为无界区域。 例如
设 w e , 由w z , 有 ne in re iq ,
i n
则 n r , n q 2k
(k为整数 ).
即 w = n z = n re
r (cos
n
i
θ + 2 kπ n

q 2k
n )
q 2k
n
i sin
(k为整数).
14
当k=0,1,2,…,n-1时,得到n个相异的根:
z. 共轭 x iy为x iy的共轭复数,记为
注:(1)两个复数相等,是指二者实部、虚部分别相同; (2)两个复数之间无法比较大小,除非都是实数; (3)实部为0,虚部不为0,为纯虚数。

第1章复数与复变函数资料

第1章复数与复变函数资料
(3)幅角主值的求法
arc
tan
y x
,
arg
z
arc tan
y x
,
arc
tan
y x
,
,
arc
tan
y x
,
当x在第一象限 当x在第二象限 当x在第三象限 当x在第四象限
2
arg
z
2
0,
,
当z在正y轴上
当z在负y轴上 当z在正x轴上 当z在负x轴上
4.复球面
扩充复平面的 一个几何模型就是 复球面。
对满足α<t1<β, α≤t2≤β, t1≠ t2的t1及t2,当 z(t1)=z2(t)成立时,点z(t1)称为此曲线C的重点;凡 无重点的连续曲线,称为简单曲线或Jordan
目录
第一章 复数与复变函数
§1 复数及其代数运算
§2 复数几何表示 §3 复数的乘幂与方根 §4 区 域 §5 复变函数 §6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 复数 形如
z=x+iy 或 z=x+yi
的数,称为复数 虚部为零的复数就可看作实数,即 x+i·0=x
点z0为G的边界点,点集G的全部边界点称为G的边 界(如图1.4.1)
注意 区域的边界可能是由几条曲线和一些孤
立的点所组成的(如图1.4.2)
定义1.4.3 若点集G的点皆为内点,则称G为
开集
定义1.4.4 点集G称为一个区域,如果 它满足:
(1)G是一个开集; (2)G是连通的,就是说G中任何两点z1 和z2都可以用完全属于G的一条折线连接起 来(图1.4.1)
(6) z z 2 Re z, z-z 2i Im z.

《复变函数》第一章 复数与复变函数

《复变函数》第一章 复数与复变函数

(1.14)
若 z 为指数形式, z rei , w f (z) 则又可表为 w p(r,) i(r,) (1.15)
其中 p(r, ) ,Q(r, ) 均为 r 、 的二元实函数. 由(1.14)和(1.15)两式说明,我们可以把复变函数理解为复平面 z 上的
z 1
均为多值函数.
今后如无特别说明,所提到的函数均为单值函数.
设 w f (z) 是定义在点集 E 上的函数,若令 z x iy ,w u iv
则 u 、 v 均随着 x 、 y 而确定,即 u 、v 均为 x 、y 的
二元实函数,因此我们常把 w f (z) 写成
f (z) u(x, y) iv(x, y)
z2

Argz1 Argz1

Argz2 Argz2

(1.11)
公式(1.10)与(1.11)说明:两个复数 z1 , z2 的乘积(或商),其模等
于这两个复数模的乘积(或商),其幅角等于这两个复数幅角的和(或
差).
特别当 z2 1 时可得 z1z2 rei(12 )
cos3 cos3 3cos sin2 4cos3 3cos
sin 3 3cos2 sin sin3 3sin 4sin3
4.曲线的复数方程
例1.2 连接 z1 及 z2 两点的线段的参数方程为 z z1 t(z2 z1) (0 t 1)
区域.
例如,例1.5—1.8所示的区域均为单连通区域,例1.9所示的区域为多连 通区域.
作业: 第42页 6.(1) (3) (5) , 7, 8,9
§3 复变函数
1.复变函数概念

高等数学复变函数与积分变换第一章 复数与复变函数

高等数学复变函数与积分变换第一章  复数与复变函数

第一章 复数与复变函数第一节 复数1.复数域每个复数z 具有x iy +的形状,其中x 和R y ∈,1-=i 是虚数单位;x 和y 分别称为z 的实部和虚部,分别记作z x Re =,z y Im =。

复数111iy x z +=和222iy x z +=相等是指它们的实部与虚部分别相等。

如果0Im =z ,则z 可以看成一个实数;如果0Im ≠z ,那么z 称为一个虚数;如果0Im ≠z ,而0Re =z ,则称z 为一个纯虚数。

复数的四则运算定义为:)21()21()22()11(b b i a a ib a ib a ±+±=+±+)1221()2121()22)(11(b a b a i b b a a ib a ib a ++-=++ ()()11121221122222()222222a ib a a b b a b a b i a ib a b a b ++-=++++ 复数在四则运算这个代数结构下,构成一个复数域,记为C 。

2.复平面C 也可以看成平面2R ,我们称为复平面。

作映射:),(:2y x iy x z R C +=→,则在复数集与平面2R 之建立了一个1-1对应。

横坐标轴称为实轴,纵坐标轴称为虚轴;复平面一般称为z -平面,w -平面等。

3.复数的模与辐角复数z x iy =+可以等同于平面中的向量。

向量的长度称为复数的模,定(,)x y义为:||z向量与正实轴之间的夹角称为复数的辐角,定义为:Arg arctan 2y z i xπ=+(k Z ∈)。

复数的共轭定义为:z x iy =-;复数的三角表示定义为:||(cos sin )z z Argz i Argz =+;复数加法的几何表示:设1z 、2z 是两个复数,它们的加法、减法几何意义是向量相加减,几何意义如下图:关于两个复数的和与差的模,有以下不等式:(1)、||||||1212z z z z +≤+;(2)、||||||||1212z z z z +≥-; (3)、||||||1212z z z z -≤+;(4)、||||||||1212z z z z -≥-; (5)、|Re |||,|Im |||z z z z ≤≤;(6)、2||z zz =;例1.1试用复数表示圆的方程:22()0a x y bx cy d ++++= (0a ≠)其中a,b,c,d 是实常数。

明德 第一章 复数与复变函数

明德 第一章 复数与复变函数
y 虚轴
P x, y
复数z x iy可用xoy平面上 坐标为( x,y )的点p表示.此时,
x轴 — 实 轴 y轴 — 虚 轴 平 面— 复 平 面 或 z平 面
0
z x iy
x 实轴

数z与点z同义
2. 向量表示法
z x iy 点P ( x,y ) oP { x , y } 显然下列各式成立 可 用 向 量 oP表 示z x iy。 x z, y z, 称向量的长度为复数z=x+iy 的模或绝对值; 2 以x轴正方向为始边,OP 为终边的的夹角 θ 称为复数 2 z z z z . z x y, z=x+iy的辐角. y 虚轴 uu r
2 2
法 2. 将 z x iy 代入得: x y 1 i 2
x y 1 i 4 即 x y 1 4
2 2 2
2
z 2i z 2
解: 由几何意义, z 2i z 2 即 z 2i z 2
0
特别的,以z0为圆点?
z z0 Re i 0 2 , 为参数
x
0 2 , 为参数
例5 指出下列方程表示的曲线
1
解:法 1.
zi 2
由几何意义 z i 2 即 z i 2 表示到 i
距离为2的点的轨迹, 即圆 x y 1 4
n
k 0,1,,n 1
(1) 当k=0,1,…,n-1时,可得n个不同的根, 而k取其它整数时,这些根又会重复出现。
n n (2)几何上, z 的n个值是以原点为中心, r 为半 径的圆周上n个等分点,即它们是内接于该圆周 的正n边形的n个顶点。

复变函数第一章

复变函数第一章

1.1.4.复数四则运算的几何意义 .1.4.复数四则运算的几何意义 , θ θ 设有两个复数 z1 = r1(cos 1 + i sinθ1) z2 = r2 (cos 2 + i sinθ2)
则,z1 z 2 = r1 (cos θ 1 + i sin θ 1 )r2 (cos θ 2 + i sin θ 2 )
例1:下列复数化为三角表示式与指数表示式
2i ( 1 ) z = − 12 − 2i, ( 2 ) z = , ( 3 ) z = −3 + 4i −1+ i
例3:求下列方程所表示的曲线
(1) |z + i| = 2, ( 2) |z − 2i| = |z + 2|, ( 3 ) Im(i + z) = 4
________
7 1 z1 ∴ ( )=− + i z2 5 5
__ 1 3i 例2: z = - − 求 Re (z),Im (z)与z z i 1-i
− ( 1 − i) − 3i(i) − 1 + i + 3 2 + i ( 2 + i)( 1 − i) = = 解: z = = i( 1 − i) i +1 1+ i 2
x
(3)幅角主值的求法 (3)幅角主值的求法 y arctan x , ( x > 0 , y > 0 ) arctan y + π ( x < 0 , y > 0 ) , x arg z = arctan y − π , ( x < 0 , y < 0 ) x y arctan , ( x > 0, y < 0) x

第一章 复数和复变函数

第一章 复数和复变函数

ei1 ei2 (cos1 i sin 1 )(cos 2 i sin 2 ) cos(1 2 ) i sin(1 2 ) ei (1 2 ) ,
可得
z1z 2 r1r2ei (1 2 ) .
于是有如下等式
(1.13)
| z1 z2 || z1 || z2 |, Arg ( z1z 2 ) Arg ( z1 ) Arg ( z 2 ).
(1.14)
式(1.14)表明: 两个复数乘积的模等于它们模的乘积, 两个复数乘积的辐角等于它们辐角的 和。值得注意的是,由于辐角的多值性,式(1.14)的第二式应理解为对于左端 Arg ( z1 z2 ) 的
上海交通大学数学系 王健
任一值, 必有由右端 Argz1 与 Argz2 的各一值相加得出的 和与之对应;反之亦然。以后,凡遇到多值等式时,都 按此约定理解。 由式(1.14)可得复数乘法的几何意义,即: z1 z2 所 对应的向量是把 z1 所对应的向量伸缩 r2 | z2 | 倍, 然后再 旋转一个角度 2 argz 2 所得(见图 1.2)。
a 2 b 2 ( a b)( a b), a3 b3 ( a b)(a 2 ab b 2 ),
等等仍然成立。实数域和复数域都是代数学中所研究的“域”的实例。 由于一个复数与平面上的一个向量所对应, 因此, 复数的加法运算与平面上向量加法运 算一致,从而以下两个不等式成立。
z2 x2 iy2 相等,是指它们的实部与实部相等,虚部与虚部相等, 即 x1 iy1 x2 iy2
当且仅当 x1 x2 , y1 y2 。 1.1.2 复数的表示 1.1.2.1 代数表示 由式(1.1)所给出的即为复数的代数表示。 1.1.2.2 几何表示 由复数的定义可知,复数 z x iy 与有序数对 ( x, y ) 建立了一一对应关系。在平面上建立直角坐标 系 xOy ,用 xOy 平面上的点 P ( x , y ) 表示复数 z ,这 样复数与平面上的点一一对应,称这样的平面为复平 面。若用向量 OP 表示复数 z ,如图 1.1 所示。该向

第一章复数与复变函数

第一章复数与复变函数

n 次幂,
cos i sin
n
cosn i sinn
此式称为棣莫佛(De Moivre)公式。
2、复数的开方 开方是乘方的逆运算,设 w z 则称复数 z的n次方根记作: n z . w w为复数
n
容易得
1 1 w z | z |[cos( 2k ) i sin( 2k )] n n
2 2 2 2
2
2

三、复数的表示方法
1. 点的表示法 2. 向量表示法
3. 三角表示法 4. 指数表示法
1. 点的表示法
复数z x iy 一对有序实数x, y), (
在平面直角坐标系中, 任 意 点 ( x , y ) 一 对 有 序 实 数x , y ) P ( z x iy 平 面 上 的 点 ( x , y ) P
则有 z1z2 | z1 || z2 | [cos( 1 2 ) i sin( 1 2 )]
于是得到:1z2 || z1 || z2 | |z
Arg( z1z2 ) Argz1 Argz2
后一个式子应理解为集合相等。
几何意义 : 将复数 z 1 按逆时针方向旋转一个 角度2 ,再将其伸缩 z2 倍。
内接于该圆周的正 n 边形的 n 个顶点。
如 wk 4 1 i
2k 2k 8 2 (cos 4 i sin 4 ) ( k 0,1,2,3) 4 4
(见下图)
w1
y
1 i
2
28
w0
w2
o
w3
x
例5 求解方程 z 3 2 0
解:z 2
故得
1 3

第一章 复数与复变函数

第一章  复数与复变函数
把复数x + iy对应的实数对(x, y) 表现在复平面上。
y
P (x, y)
复平面:如图所示, y x + yi 横轴表示实数, x 纵轴表示纯虚数, O x 整个坐标平面可称为复(数)平面。
2. 复数的向量表示
复数与平面向量等同起来,将复数的实 部与虚部分别看作向量的水平分量与铅 垂分量。
y y
z 2 =x2 − iy2
z1 + z 2 = ( x1 + x2 ) − i ( y1 + y2 )
故 z1 + z 2 = z1 + z 2
3. 复数的共轭运算
根据共轭复数的定义,不难证明共轭复 数具有如下性质:
(1) z1 ± z 2 = z1 ± z 2 ;
(2) z1z 2 = z1 z 2 ;
( x1 x2 + y1 y2 ) + i ( − x2 y1 + x1 y2 )
= 2( x1 x2 + y1 y2 ) = 2 Re( z1 ⋅ z2 ).
或 z1 ⋅ z2 + z1 ⋅ z2 = z1 ⋅ z2 + z1 ⋅ z2 = 2Re(z1 ⋅ z2 ).
§2 复数的表示法
1. 复数的点表示法
z = x + iy = x − iy
易知 ( z ) = z
2. 复数的代数运算zFra bibliotek复数的相等 z1 = x1+ iy1 x1= x2 y1= y2
z2 = x2+ iy2 ⇒ z1= z2
3i与2i
任意两个复数不能比较大小
z
复数的代数运算
(1)复数的加(减)法
z1 ± z 2 = ( x1 ± x2 ) + i ( y1 + y2 )

复变函数1.pdf

复变函数1.pdf

2⎢⎣⎡cos
π 4
+
i
sin
π⎤ 4 ⎥⎦
4
1+
i
=
8
⎡π
⎢ 2⎢cos
4
⎢⎣
+ 2kπ 4
+
π i sin 4
+
2kπ
⎤ ⎥
4
⎥ ⎥⎦

w0
=8
2
⎣⎡⎢cos
π 16
+
i
sin
1π6⎥⎦⎤,
(k = 0,1,2,3).
w1
=
8
2⎣⎡⎢cos
9π 16
+
i sin 916π⎥⎦⎤,
w2
=
8
2⎣⎡⎢cos
当 z 的模 r = 1,即 z = cosθ + i sinθ ,
(cosθ + i sinθ )n = cos nθ + i sin nθ .棣莫佛公式
例 计算( 12-2i)3
解 由于 12-2i = 4[cos(−π / 6) + i sin(−π / 6)]
因此( 12-2i)3 = 43 (cos(−π / 6) + i sin(−π / 6))3
例如,设 z1 = −1, z2 = i, 则 z1 ⋅ z2 = −i,
Argz1 = π + 2nπ, (n = 0, ± 1, ± 2,"),
A故Arrgg3(zπz21+z=22)π2(=m+−2+πm2n+π)π,2k=π(m−, π=(+k02,=k±π01,,,
± 2,"), ± 1, ± 2,"),
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2) z z; (3) z z Re(z)2 Im( z)2;
(4) z z 2Re(z), z z 2i Im(z).
§2 复数的几何表示
1. 复平面
复数 z x iy 与有序实数对( x, y) 成一一
对应. 因此, 一个建立了直角坐标系的平面可以
44
44
4 (1 i) 8 2[cos( k ) i sin( k )]
16 2
16 2
k 0,1,2,3 有四个根。
问题: 4 i 2 有几个根?
§4 区域
(1)邻域
平面上以 z0 为中心, (任意的正数)为半径 的圆: z z0 内部的点的集合称为z0 的邻域. 不等式 0 z z0 所确定的点的集合称为
SO
y
x
2. 复球面的定义 球面上的点, 除去北极 N 外, 与复平面内
的点之间存在着一一对应的关系. 我们可以用 球面上的点来表示复数.
我们规定: 复数中有一个唯一的“无穷大”与
复平面上的无穷远点相对应, 记作∞ . 因而球 面上的北极 N 就是复数无穷大∞的几何表示.
球面上的每一个点都有唯一的复数与之 对应, 这样的球面称为复球面.
平面向量成一一对应,因此,复数z也可用向量OP
来表示.
y z x iy
y
P(x, y)
z r

o
x
x
复数的模(或绝对值)
向量的长度称为z 的模或绝对值,
记为 z r x2 y2 .
模的性质
x z, y z, z x y, z z z 2 z2 .
虚数集
复数集
纯虚 数集
实数集
A 复数的概念
复数不能比较大小的一种解释
例如:i与0能不能比较大小?
(1)如果i>0,那么i·i>0·i,即-1>0。
(2)如果i<0,那么-i>0,(-i)2>0·(-i)
即-1>0.
因此,i与0不能比较大小。
Note Z1 =a1 + i b1, Z2 =a2 + i b2
则 z2 r2 ei(2 1 ) . z1 r1
2) 幂与根 (a) n次幂:
n 个相同复数 z 的乘积称为z 的 n 次幂,
记作 zn , zn z z z .
n个
对于任何正整数n, 有 zn rn(cosn i sin n ).
n 为负整数时,
有z n
1) 两复数的和 z1 z2 ( x1 x2 ) i( y1 y2 ).
2) 两复数的积
z1 z2 ( x1 x2 y1 y2 ) i( x2 y1 x1 y2 ).
3)两复数的商
z1 z2

x1 x2 x22

y1 y2 y22

i
x2 y1 x22

z 的向量OP 为终边的角的弧度数 称为 z 的辐角, 记作 Argz . 当 z 0时, z 0, 而辐角不确定. 任何一个复数z 0有无穷多个辐角.
如果1 是其中一个辐角, 那么 z 的全部辐角为 Arg z 1 2kπ (k为任意整数).
辐角的主值
在 z( 0)的辐角中, 把满足 π 0 π 的0
习题Ex1-19 题: 证明:若|z1|=|z2|=|z3|=1,z1+z2+z3=0, 则z1,z2,z3是内接 于单位圆|z|=1的一个正三角形的三顶点。
证明: 由于 z1 z2 z3 1, 所以 z1,z2,z3 位于单位圆上。又 z1 z2 z3 0 得 z1 z2 z3 , 即 z1 z2 z3 z3 1 1 z1 z2 2 (z1 z2 )(z1 z2 )
第一章 复数与复变函数
§1 复数及代数运算
1. 复数的概念
回 忆
复数的 一般形
式?

Z=a+bi(a, b∈R)
实部! a =Re( z )
虚部! b =Im( z )
一个复数 由什么唯 一确定?
复数 z =a + bi (a,b∈R)
实数 (b=0) 虚数 (b‡0)
纯虚数 (a=0) 非纯虚数 (a‡0)
(A)若z21+z22>0,则z21>-z22 (B)|z1-z2|=√(z1+z2) 2-4z1z2 (C)z21+z22=0z1=z2=0 (D)z1-z1是纯虚数或零
例2 是否存在复数z,使其满足z·z+2iz=3+ai(a∈R) 如果存在,求出z 的值;如果不存在,
2. 复数的代数运算
设两复数 z1 x1 iy1, z2 x2 iy2 ,
思考: (1)满足|z|=5(z∈R)的z值有几个? (2)满足|z|=5(z∈C)的z值有几个? 这些复 数对应的点在复平面上构成怎样的图形?
例4(1) 已知复数z=(m2+m-6)+(m2+m-2)i在复平面内 所对应的点位于第二象限,求实数m允许的取值范围。
解:由mm22

m m

Arg(z1z2 ) Argz1 Argz2.
几何意义
从几何上看, 两复数对应的向量分别为 z1, z2 ,
先把 z1 按逆时针方向
z
y
旋转一个角2 ,
r z1
再把它的模扩大到 r2 倍, 所得向量 z 就表示积 z1 z2 .
o
2 1

r1

r2
z2
x
复数相乘就是把模相乘, 辐角相加.
(z1 z2 )(z1 z2 ) | z1 |2 | z2 |2 z1 z2 z2 z1
z1 z2 z2 z1 1
z1 z2 2 (z1 z2 )(z1 z2 ) | z1 |2 | z2 |2 z1 z2 z2 z1 2 (1) 3 z1 z2 3
2
x2
(3)三角表示法
利用直角坐标与极坐标的关系

x y

r r
cos , sin ,
复数可以表示成 z r(cos i sin )
(4)指数表示法
利用欧拉公式 ei cos i sin ,
复数可以表示成 z rei 称为复数 z 的指数表示式.
例3 求下列复数的模: (1)z1=-5i (2)z2=-3+4i (3)z3=5-5i (4)z4=1+mi(m∈R) (5)z5=4a-3ai(a<0)
图形为一角形,它是一个单连通无界区
域,其边界为半射线:arg( z i) 2 arg( z i) 3
2. 复球面与无穷大
1. 南极、北极的定义
取一个与复平面切于原点 z 0的球面,
球面上一点S 与原点重合,
N
通过 S 作垂直于复平面的
P
直线与球面相交于另一点 N ,
我们称 N 为北极, S 为南极.
利用 zz x2 y2 ,
z z 2x,
z z i2y
另解:
(x x0 )2 ( y y0 )2 r 2
| Z Z0 | r
得:azz z z d 0
其中, 1 (b ic).
2
例6、复数 {z | 2 arg( z i) 3}图形
6 2

0 0
得m
3 m 2 2或 m
1
m(3,2) (1,2)
表示复数的点所 转化 复数的实部与虚部所满
在象限的问题
足的不等式组的问题
(几何问题)
(代数问题)
一种重要的数学思想:数形结合思想
例4(2) 已知复数z=(m2+m-6)+(m2+m-2)i,证明对一 切m,此复数所对应的点不可能位于第四象限。
称为 Argz 的主值, 记作0 arg z.
arctan
y x
,
z0 辐角的主值arg
z


2
,
x 0, x 0, y 0,
arctan
y x

,
x 0, y 0,
,
x 0, y 0.
(其中 arctan y )
三角不等式
z2
z2
关于两个复数的和与差的
模,有以下不等式:
0
(1)、| z1 z2 || z1 | | z2 |
(2) | z1 z2 ||| z1 | | z2 || z2
z1 z2 z2
z1 z1 z1 z2
复数的辐角
在 z 0的情况下, 以正实轴为始边, 以表示
称 C {}为扩充复平面,记为 C。
无穷远点:
关于无穷远点,我们规定其实部、虚部、 辐角无意义,模等于:
| |
它和有限复数的基本运算为:
aa
a a (a 0)
a (a 0); a 0(a )
0

这些运算无意义: ,0 , / ,0 / 0.
x1 y2 y22
.
3. 共轭复数
实部相同而虚部绝对值相等符号相反的两 个复数称为共轭复数.
与 z 共轭的复数记为z, 若 z x iy, 则 z x iy.
共轭复数的性质
(1) z1 z2 z1 z2 ; z1 z2 z1 z2 ;
z1 z1 ; z2 z2
证明:若复数所对应的点位于第四象限,
则mm
2 2
相关文档
最新文档