第一章-复数与复变函数
(完整版)复变函数知识点梳理解读

第一章:复数与复变函数这一章主要是解释复数和复变函数的相关概念,大部分内容与实变函数近似,不难理解。
一、复数及其表示法介绍复数和几种新的表示方法,其实就是把表示形式变来变去,方便和其他的数学知识联系起来。
二、复数的运算高中知识,加减乘除,乘方开方等。
主要是用新的表示方法来解释了运算的几何意义。
三、复数形式的代数方程和平面几何图形就是把实数替换成复数,因为复数的性质,所以平面图形的方程式二元的。
四、复数域的几何模型——复球面将复平面上的点,一一映射到球面上,意义是扩充了复数域和复平面,就是多了一个无穷远点,现在还不知道有什么意义,猜想应该是方便将微积分的思想用到复变函数上。
五、复变函数不同于实变函数是一个或一组坐标对应一个坐标,复变函数是一组或多组坐标对应一组坐标,所以看起来好像是映射在另一个坐标系里。
六、复变函数的极限和连续性与实变函数的极限、连续性相同。
第二章:解析函数这一章主要介绍解析函数这个概念,将实变函数中导数、初等函数等概念移植到复变函数体系中。
一、解析函数的概念介绍复变函数的导数,类似于实变二元函数的导数,求导法则与实变函数相同。
所谓的解析函数,就是函数处处可导换了个说法,而且只适用于复变函数。
而复变函数可以解析的条件就是:μ对x与ν对y的偏微分相等且μ对y和ν对x的偏微分互为相反数,这就是柯西黎曼方程。
二、解析函数和调和函数的关系出现了新的概念:调和函数。
就是对同一个未知数的二阶偏导数互为相反数的实变函数。
而解析函数的实部函数和虚部函数都是调和函数。
而满足柯西黎曼方程的两个调和函数可以组成一个解析函数,而这两个调和函数互为共轭调和函数。
三、初等函数和实变函数中的初等函数形式一样,但是变量成为复数,所以有一些不同的性质。
第三章:复变函数的积分这一章,主要是将实变函数的积分问题,在复变函数这个体系里进行了系统的转化,让复变函数有独立的积分体系。
但是很多知识都和实变函数的知识是类似的。
可以理解为实变函数积分问题的一个兄弟。
复变函数-总结

所 以 vx,y1y22xy-1x2c. 于是
2
2
27
fzx2-y2xy i 1 2y22 xy-1 2x2 c
由f00( x y 0 0) c0 从而
fz x 2- y 2 x y i 1 2 y 2 2 x y - 1 2 x 2 1 - 2 i z 2
即为所求解析函数。
等价定义:
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 ,
那么
lim f (z)
zz0
运算性质:
limu(x, Axyxyl im xxyy0000 v(x,
y) y)
u0 v0
.
( 1 ) li (f m ( z ) g ( z ) ) lifm ( z ) lig ( m z )
例题1 一调和函数 ux,yx2-y2xy,
求一解析函数 fzuiv使 f00.
解:〔法一〕 ux2xy,uy-2yx
由 C-R 方程 v y u x 2 x y v 2 x y d y
由 v x - u y 2x2 yy 12c y2x c 2 xy - x v x c2xyc-12xx2,c,
9
对复平面内任一
x3
点z, 用直线将z
除了复数的平面表 示方法外, 还可以
与N相连, 与球面
N(0,0,2r) 用球面上的点来表
相交于P点, 那么
示复数.
球面上除N点外
x3
的所有点和复平
面上的所有点有
P(x1,x2,x3)
一一对应的关系,
而N点本身可代
表无穷远点, 记 作 .这样的球面
复变函数-复数的概念与定义

乘积的几何意义 :
y
z1 z2
1 2
z2
1
2Leabharlann z1x商:
z2 r2e i 2 r2 i ( 2 1 ) e i 1 z1 r1e r1
2. 乘幂与方根
n 个相同复数 z 的乘积 , 称为z 的 n 次幂, 记为z n
n z n z z ...z
2 i 2i ( 2 i )( i ) 2i (1 i ) 解: z i 1 i i (i ) (1 i )(1 i )
2i (1 i ) 2i 1 2 i 1 i 1 2 3 i 2
所以 Re z 2,
Im z 3
设 z1 , z2 , z3 , z C , 则有
(1) 交换律: z1 z2 z2 z1 , z1 z2 z2 z1
(2) 结合律: z1 z2 z3 z1 z2 z3 , ( z1 z2 )z3 z1 ( z2 z3 )
(3) 分配律: z1 z2 z3 z1 z2 z1 z3
5
3
z 的方根:
当 z 0 时, 若满足 wn z,则称 w 为 z 的 n 次方根, 记为 w n z
令 w e 有
i
ne in re i
于是 n r , n 2k (k 0,1,2,)
n r, 2k
n , ( k 0,1,2,)
x1 x2 y1 y2 i x1 y2 x2 y1
3. 商
z1 (x1 iy1 ) z z2 x2 iy2
( z2 0)
x1 x2 y1 y2 x2 y1 x1 y2 i 2 2 2 2 x 2 y2 x 2 y2
复变函数(1.2.3)--第一章复数与复变函数常见问题

Argz2 , Arg � � �zz12
� � �=
Argz1
-
Argz2
答 这两个等式只是形式上的相等。由于幅角的多值性,等式两端都是由无穷多个数构成的 数集,也就是说,等式两端可能取的值的全体是相等的,因此是集合相等。即对于左端的一 个值,右端必有一值与其相等。
问题 3. 扩充复平面上的无穷远点与实数的无穷大量有区别吗?如何理解无穷远点的邻域这
问题 1. 复数能比较大小吗? 答 复数不能比较大小。根据复数的定义可知,给定一个复数,就可以和复平面上的一个点 相对应,也可以和连接原点和这个点的向径相对应。模和方向是构成复数的两大要素,所以 复数不能比较大小。
问题 2. 如何正确理解以下两个关于幅角的运算公式?
Arg (
z1z2
)
=
Argz1
+
个概念?
z-+ᆬ>ᆬ R
答 由于扩充复平面上的与北极点相对应,因此只有一个。这与实数中的“无穷大”不一样, 实数中与是不同的。既然扩充复平面上的与北极点相对应,那么它的邻域,对于复球面,是 一绕北极点的小圈 C 的内部;对于复平面,就是一大圆 C 的外部,即,是的一个领域。
复变函数与积分变换第1章复数与复变函数

点z1,z2之间的距离. 利用复数z的指数表示式作复数乘法与除法运算很方便.
假设
,则由式(1.5)可得
于是
页 退出
复变函数与积分变换
出版社 理工分社
由此可知:
①两个复数乘积的模等于它们各自模的乘积,两个复数乘积的辐角等于
它们各自辐角的和;
②两个复数商的模等于它们各自模的商,两个复数商的辐角等于分子辐
显然z和 是关于实轴
图1.6
页 退出
复变函数与积分变换
例1.6设 解因为
所以
,试求Re z,lm z和
出版社 理工分社
页 退出
复变函数与积分变换
例1.7求证:若|a|=1,则
证由
得
出版社 理工分社
页 退出
复变函数与积分变换
例1.8设复数
满足条件
求证
是内接于单位圆|z|=1的一个正三角形的顶点.
页 退出
复变函数与积分变换
出版社 理工分社
定义1.4设 为一点集,
如果对
,点集
是无穷点
集,则称z0为E的聚点或极限点,E的聚点全体通常记为E′;若
,但
则称z0为E的孤立点;若
,使得
,则称z0为E的外点.
定义1.5若点集E能完全包含在以原点为圆心,以某一个正数R为半径的圆域
内部,则称E为有界集,否则称E为无界集.
求其第三个顶
点.
解如图1.4将向量z2-z1绕z1旋转
得另一个向量,其终点就是所
求的第三个顶点z3(或z′3),根据复数乘法的几何意义可得
图1.3
图1.4
页 退出
复变函数与积分变换
所以 类似可得
出版社 理工分社
复变函数 第1章 复数与复变函数

6
1 cos
2 k
6
i sin
2 k
6
( k 0 , 1, 2 , 3 , 4 , 5 )
可求出6个根,它们是
z0 3 2 1 2 i, z 1 i, z2 3 2 1 2 i
z3
3 2
1 2
i,
z 4 i,
z5
3 2
0
}
为 z 0 的去心 —邻域,
开集 如果点集 D 的每一个点都是 D 的内 点,则称 D 为开集. 闭集 如果点集 D 的余集为开集,则称 D 为 闭集. 连通集 设是 D开集,如果对于 D 内任意两 点,都可用折线连接起来,且该折线上的 点都属于 D ,则称开集 D 是连通集. 区域(或开区域) 连通的开集称为区域或 开区域. 闭区域 开区域 D 连同它的边界一起,称为 闭区域,记为 D .
1.3.2 单连通域与多(复)连通域
1. 简单曲线、简单闭曲线 若存在满足 t , t 且 t t 的 t 1 与 t 2,使 z ( t ) z ( t ) ,则称此曲线C有重点, 无重点的连续曲线称为简单曲线或约当 (Jordan)曲线;除 z ( ) z ( ) 外无其它重 点的连续曲线称为简单闭曲线,例如,
n
z z z
n个
若
z r ( cos i sin ,则有 )
z r ( cos i sin )
当 r 1 时,得到著名的棣莫弗(De Moivre) 公式
(cos i sin )
n
cos n i sin n
3
z 1 i 3 2 (c o s
第1章复数与复变函数汇总

z z (Re z ) (Im z ) z ;
(6) z z 2 Re z, z- z 2i Im z.
利用共轭复数的概念,还可以得到 两个关于复数模的重要公式:
z1 z 2 z1 z 2 Re( z1 z 2 ), z1 z2 z1 z2 Re( z1 z2 ).
(2) ∞的实部,虚部及幅角都无 意义, (3)b≠0(但可为∞)时, b b ,
b ; a 0 , 0, (4)a≠∞时, a a a ; 0 (5)运算∞± ∞,0· ∞, , 0 无意义
§3 复数的乘幂与方根
第一章 复数与复变函数
§1 复数及其代数运算
目录
§2 复数几何表示
§3 复数的乘幂与方根
§4 区 域 §5 复变函数
§6 复变函数的极限和连续性
第一章 复数与复变函数
§1 复数及其代数运算
1.复数的概念 形如 z=x+iy 或 z=x+yi 的数,称为复数 虚部为零的复数就可看作实数,即 x+i· 0=x 复数
z n r n (cosn i sin n ) r nein
n
2k 2k z r (cos i sin ) n n 1
1 n
w0 r (cos i sin ) n n 1 2 2 n
n
w1 r (cos
1 n
………………………………………
当x在第一象限
当x在第二象限 当x在第三象限 当x在第四象限 当z在正y轴上
2 arg z 2 0, ,
当z在负y轴上
当z在正x轴上 当z在负x轴上
复变函数-第一章-复数与复变函数

y
28
1 i
2
q
4
w0
r 2
q 2k
n i sin
w2
q 2k
n )
o
w3
x
wk n r (cos
16
例 2. 求
4
-1
解 : 1 cos i sin
4
1 cos
2k
4
i sin
2k
4
, (k 0,1,2,3).
z1
z2
z0 内点
P
D-区域
(6) 连通 D中任意两点可用一条全在D
中的曲线连接起来。
21
外点
z1
z2
z0 内点
P
(7) 区域
连通的开集.
D-区域
区域D与它的边界一起构成闭区域, 或闭域. D
22
(8) 有界区域 如果存在正数M,使得对于一切D中的点z, z M, 有 则称 D为有界区域,否则称为无界区域。 例如
设 w e , 由w z , 有 ne in re iq ,
i n
则 n r , n q 2k
(k为整数 ).
即 w = n z = n re
r (cos
n
i
θ + 2 kπ n
,
q 2k
n )
q 2k
n
i sin
(k为整数).
14
当k=0,1,2,…,n-1时,得到n个相异的根:
z. 共轭 x iy为x iy的共轭复数,记为
注:(1)两个复数相等,是指二者实部、虚部分别相同; (2)两个复数之间无法比较大小,除非都是实数; (3)实部为0,虚部不为0,为纯虚数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数教案2012—2013学年度第二学期任课教师郭城课程名称复变函数采用教材高教三版(钟玉泉编)周课时数 4数统学院数学教育专业2010 年级1班引言数学从产生、有发展到现在,已成为分支众多的学科了,复变函数是其中一个非常重要的分支。
以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。
解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论,简称函数论。
我们知道,在解实系数一元二次方程ax2+bx+x=O(a≠o1时,如果判别式b2-4 ac<O,就会遇到负数开平方的问题,最简单的一个例子是在解方程x2+1=0时,就会遇到开平方的问题。
1545年,意大利数学物理学家H Cardan(卡丹)在所著《重要的艺术》一书中列出将10分成两部分,使其积为40的问题,即求方程=0的根,它求出形式的根为5和5,积为-+115x x(10)4--=.然而这只不过是一种纯形式的表示而已,当时,谁也说不上这25(15)40样表示究竟有什么好处。
为了使负数开平方有意义,也就是要使上述这类方程有解,我们需要再一次扩大数系,于是就引进了虚数,使实数域扩大到复数域。
但最初,由于对复数的有关概念及性质了解不清楚,用它们进行计算又得到一些矛盾,因而,长期以来,人们把复数看作不能接受的“虚数”。
直到十七世纪和十八世纪,随着微积分的发明与发展,情况才逐渐有了改变。
另外的原因,是这个时期复数有了几何的解释,并把它与平面向量对应起来解决实际问题的缘故。
复变函数论产生于十八世纪。
1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程。
而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们。
因此,后来人们提到这两个方程,把它们叫做“达朗贝尔一欧拉方程”。
到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西一黎曼条件”。
关于复数理论最系统的叙述,是由瑞士数学家欧拉(Euler)作出的。
他在1777年系统地建立了复数理论,发现了复指数函数和三角函数之间的关系,创立了复变函数论的一些基本定理,并开始把它们用到水力学和地图制图学上,用符号“i”作为虚数的单位,也是他首创的。
此后,复数才被人们广泛承认和使用。
在复数域内考虑问题往往比较方便,例如,一元n次方程在复数域内恒有解。
这就是著名的代数学基本定理,它用复变函数来解决是非常简洁的。
又如,在实数域内负数的对数无意义,而在复数域内我们就可以定义负数的对数。
复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学。
当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一。
在十九世纪,复变函数的理论经过法国数学家柯西(Cauchy)、德国数学家黎曼(Riemann)和维尔斯特拉斯(Weierstrass) 的巨大努力,已经形成了非常系统的理论,并深刻地渗人到代数学、解析数论、概率统计、计算数学和拓扑学等数学分支;同时,它在热力学、流体力学、和电学等方面也有很多的应用。
二十世纪以来,复变函数已经被广泛应用到理论物理、弹性理论和天体力学等方面,与数学中其它分支的联系也Et益密切。
致使经典的复变函数理论,如整函数与亚纯函数理论、解析函数的边值问题等有了新的发展和应用。
并且,还开辟了一些新的分支,如复变函数逼近论、黎曼曲面、单叶解析函数论、多复变函数论、广义解析函数论以及拟保形变换等。
另外,在种种抽象空间的理论中,复变函数还常常为我们提供新思想的模型。
为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱。
后来为这门学科的发展作了大量奠基工作的要算是柯西、黎曼和德国数学家维尔斯特拉斯。
二十世纪初,复变函数论又有了很大的进展,维尔斯特拉斯的学生,瑞典数学家列夫勒、法国数学家彭加勒、阿达玛等都作了大量的研究工作,开拓了复变函数论更广阔的研究领域,为这门学科的发展做出了贡献。
从柯西算起,复变函数论已有170多年的历史了。
它以其完美的理论与精湛的技巧成为数学的一个重要组成部分。
它曾经推动过一些学科的发展,并且常常作为一个有力的工具被应用在实际问题中。
现在。
复变函数论中仍然有不少尚待研究的课题,所以它将继续向前发展,并将取得更多应用。
第一章复数与复变函数1.教学目的复变函数的自变量和因变量都是复数,因此,复数和平面点集是研究复变函数的基础。
复变函数及其极限理论与微积分学的相应内容类似,但因复变函数是研究平面上的问题,因此有其新的含义与特点。
本章主要介绍复数和复变函数的基本概念,通过本章教学,使学生明确复变函数要研究的对象是解析函数,其理论基础是建立在复数域和复平面上。
2.教学基本要求理解复数、区域、单连通区域、多连通区域、约当曲线、光滑(逐段光滑)曲线、无穷远点、扩充复平面等概念;理解复数的性质,掌握复数的运算,理解复数的模和辐角的性质;理解并掌握复变函数极限与连续性的概念与性质;进一步认识复数域的结构,并联系中学的复数教学。
3.教学重点和难点重点是复变函数的概念、极限与连续性;难点是无穷远点及无穷远点邻域。
4.学法指导以自习为主,通过讲授1节习题课来加强学生对该章主要概念的理解。
5.教学内容与课时分配教学内容§1 复数教学目的与要求:了解复数的概念及复数的模与辐角; 掌握复数的代数运算复数的乘积与商﹑幂与根运算.重点:德摩弗()DeMoiVre 公式.难点:德摩弗()DeMoiVre 公式.课时:2学时.1. 复数域形如z x iy =+或z z yi =+的数,称为复数,其中x 和y 均是实数,称为复数z 的实部和虚部,记为Re x z =,Im y z = i =两个复数111z x iy =+,与222z x iy =+相等,当且仅当它们的实部和虚部分别对应相等,即12x x =且12y y =虚部为零的复数可看作实数,即0x i x +=,特别地,000i +=,因此,全体实数是全体复数的一部分.实数为零但虚部不为零的复数称为纯虚数,复数x iy +和x iy -称为互为共轭复数,记为()x iy x iy +=- 或 x iy x iy -=+设复数111z x iy =+,222z x iy =+,则复数四则运算规定:121212()()z z x x i y y ±=±±±1212121221()()z z x x y y i x y x y =-++1121221122222222222(0)z x x y y x y x y i z z x y x y +-=+≠++ 容易验证复数的四则运算满足与实数的四则运算相应的运算规律.全体复数并引进上述运算后称为复数域,必须特别提出的是,在复数域中,复数是不能比较大小的.2.复平面从上述复数的定义中可以看出,一个复数z x iy =+实际上是由一对有序实数(,)x y 唯一确定.因此,如果我们把平面上的点(,)x y 与复数z x iy =+对应,就建立了平面上全部的点和全体复数间的一一对应关系.由于x 轴上的点和y 轴上非原点的点分别对应着实数和纯虚数,因而通常称x 轴为实轴,称y 轴为虚轴,这样表示复数z 的平面称为复平面或z 平面.引进复平面后,我们在“数”与“点”之间建立了一一对应关系,为了方便起见,今后我们就不再区分“数”和“点”及“数集”和“点集”.3.复数的模与幅角由图1.1中可以知道,复数z x iy =+与从原点到点z 所引的向量oz 也构成一一对应关系(复数O 对应零向量).从而,我们能够借助于点z 的极坐标r 和θ来确定点z x iy =+,向量oz 的长度称为复数z 的模,记为图1.1图1.1 220r z x y ==+≥. 显然,对于任意复数z x iy =+均有x z ≤,y z ≤,z x y ≤+ (1.1) 另外,根据向量的运算及几何知识,我们可以得到两个重要的不等式 1212z z z z +≤+ (1.2) (三角形两边之和≥第三边,图1.2)图1.21212z z z z -≤- (1.3)(三角形两边之差≤第三边,图1.3)图1.3(1.2)与(1.3)两式中等号成立的几何意义是:复数1z ,2z 分别与12z z +及12z z -所表示的三个向量共线且同向.向量oz 与实轴正向间的夹角θ满足y xθ=tan 称为复数z 的幅角()Argument ,记为Argz θ= 由于任一非零复数z 均有无穷多个幅角,若以Argz 表示其中的一个特定值,并称满足条件 Argz ππ-<≤ (1.4)的一个值为Argz 的主角或z 的主幅角,则有arg 2Argz z k θπ==+ (1.5)(0,1,2,)k =±±注意:当0z =时,其模为零,幅角无意义.从直角坐标与极坐标的关系,我们还可以用复数的模与幅角来表示非零复数z ,即有(cos sin )z r i θθ=+ (1.6)同时我们引进著名的欧拉()Euler 公式:cos sin i e i θθθ=+ (1.7)则(1.6)可化为i z re θ= (1.8)(1.6)与(1.8)式分别称为非零复数z 的三角形式和指数形式,由(1.8)式几指数性质即可推得复数的乘除有12121122()121212()111222i i i i i i z z r e r r r e z r e r e z r r θθθθθθθθ+-⎫==⎪⎬==⎪⎭(1.9) 因此 1212z z z z =,1122z z z z = 2(0)z ≠ (1.10) 12121122()Argz z Argz Argz z Arg Argz Argz z =+⎫⎪⎬=-⎪⎭(1.11) 公式(1.10)与(1.11)说明:两个复数1z ,2z 的乘积(或商),其模等于这两个复数模的乘积(或商),其幅角等于这两个复数幅角的和(或差). 特别当21z =时可得 12()12i z z re θθ+= 此即说明单位复数()21z =乘任何数,几何上相当于将此数所对应的向量旋转一个角度.另外,也可把公式(1.11)中的Argz 换成argz (某个特定值),若argz 为主值时,则公式两端允许相差2π的整数倍,即有12121122()2()2Arg z z argz argz k z Arg argz argz k z ππ=++⎫⎪⎬=-+⎪⎭(1.12) 公式(1.9)可推广到有限个复数的情况,特别地,当12n z z z ===时,有()(cos sin )n i n n in n z re r e r i θθθθ===+ 当1r =时,就得到熟知的德摩弗()DeMoiVre 公式:(cos sin )cos sin n i n i n θθθθ+=+ (1.13)例1.1求cos3θ及sin3θ用cos θ与sin θ表示的式子解:3cos3sin 3(cos sin )i i θθθθ++()=3223cos 3cos sin 3cos sin sin i i θθθθθθ=+--323cos3cos 3cos sin 4cos 3cos θθθθθθ∴=-=-233sin33cos sin sin 3sin 4sin θθθθθθ=-=-4.曲线的复数方程例1.2连接1z 及2z 两点的线段的参数方程为121()(01)z z t z z t =+-≤≤ 过1z 及2z 两点的直线(图 )的参数方程为121()()z z t z z t =+--∞≤≤+∞ 例1.3 z 平面上以原点为心,k 为半径的圆周的方程为z R =z 平面上以0z 为心,R 为半径的圆周的方程为0z z R -=例1.4 z 平面上实轴的方程为Im 0z =,虚轴的方程为Re 0z =.作业:第42页 2,3,4§2 复平面上的点集教学目的与要求:平面点集的几个基本概念;掌握区域的概念;了解约当定理. 重点:区域的概念,约当定理.难点:区域的概念.课时:2学时.1. 几个基本概念定义1.1 满足不等式0z z ρ-<的所有点z 组成的平面点集(以下简称点集)称为点0z 的ρ-邻域,记为0N z ρ(). 显然,0N z ρ()即表示以0z 为心,以ρ为半径的圆的内部 定义1.2 设E 为平面上的一个点集,若平面上一点0z 的任意邻域内巨有E 的无穷多个点,则称0z 为E 的内点.定义1.3 若E 的每个聚点都属于E ,则称E 为闭集.若E 的所有点均为内点,则称E 为开集定义1.4 若0M ∃>,z E ∀∈,均有z M ≤则称E 为有界集,否则称E 为无界集.2. 区域与约当()Jordan 曲线定义1.5 若非空点集D 满足下列两个条件:(1) D 为开集.(2) D 中任意两点均可用全在D 中的折线连接起来,则称D 为区域. 定义1.6 若0z 为区域D 的聚点且0z 不是D 的内点,则称0z 为D 的界点,D 的所有界点组成的点集称为D 的边界,记为D ∂,若0r ∃>,使得0()r N z D ϕ⋂=,则称0z 为D 的外点定义1.7 区域D 加上它的边界C 称为闭区域,记为D D C =+有关区域的几个例子例1.5 z 平面上以点0z 为心,R 为半径的圆周内部(即圆形区域):0z z R -< 例1.6 z 平面上以点0z 为心,R 为半径的圆周及其内部(即圆形闭区域)0z z R -≤例1.5与例1.6所表示的区域都以圆周0z z R -=为边界,且均为有界区域 例1.7 上半平面 Im 0z >下半平面 Im 0z <它们都以实轴Im 0z =为边界,且均为无界区域.左半平面 Re 0z >右半平面 Re 0z <它们都以虚轴Re 0z =为边界,且均为无界区域.例1.8 图1.4所示的带形区域表为12Im y z y <<.图1.4x其边界为1y y =与2y y =,亦为无界区域.例1.9 图 所示的圆环区域表为r z R <<其边界为z r =与z R =,为有界区域. 定义1.8 设()x t 及()y t 是两个关于实数t 在闭区间[,]αβ上的连续实数,则由方程()()()z z t x t iy t ==+ ()t αβ≤≤ (1.13)所确定的点集C 称为z 平面上的一条连续曲线,(1.13)称为C 的参数方程,()z α及()z β分别称为C 的起点和终点,对任意满足1t αβ<<及2t αβ<<的1t 与2t ,若12t t ≠时有12()()z t z t =,则点1()z t 称为C 的重点;无重点的连续曲线,称为简单曲线(约当曲线);()()z z αβ=的简单曲线称为简单闭曲线.若在t αβ≤≤上时,()x t '及()y t '存在节不全为零,则称C 为光滑(闭)曲线.定义1.9 由有限条光滑曲线连接而成的连续曲线称为逐段光滑曲线. 定义1.1(约当定理) 任一简单闭曲线C 将z 平面唯一地分为C 、()I C 、()E C 三个点集(图 1.5 ),它们具有如下性质:图1.5(1)彼此不交.I C与()E C一个为有界区域(称为C的内部),另一个为无界区域(称为C的(2)()外部)E C,则P与C必有交(3)若简单折线P的一个端点属于()I C,另一个端点属于()点.对于简单闭曲线的方向,通常我们是这样来规定的:当观察这沿C绕行一周时,C的内部(或挖)始终在C的左方,即“逆时针”(或“顺时针”)方向,称为C 的正方向(或负方向).定义1.10设D为复平面上的区域,若D内任意一条简单闭曲线的内部全含于D,则称D为单连通区域,不是单连通的区域称为多连通区域.例如,例1.5 1.8所示的区域均为单连通区域,例1.9所示的区域为多连通区域.(请同学们针对定义1.10自己作图思考)作业: 第42页 6.(1) (3) (5) , 7, 8,9§3复变函数教学目的与要求:理解复变函数的概念;了解复变函数的极限与连续的概念. 重点:复变函数的概念.难点:复变函数的几何表示.课时:2学时.1.复变函数概念定义1.11 设E 为一复数集,若存在一个对应法则f ,使得E 内每一复数z 均有唯一(或两个以上)确定的复数u 与之对应,则称在E 上确定了一个单值(或多值)函数()w f z =()z E ∈,E 称为函数()w f z =的定义域,w 值的全体组成的集合称为函数()w f z =的值域.例如w z =,w z =及11z w z +=- (1)z ≠均为单值函数,w =及w Argz =(0)z ≠ 均为多值函数.今后如无特别说明,所提到的函数均为单值函数.设()w f z =是定义在点集E 上的函数,若令z x iy =+,w u iv =+则u 、v 均随着x 、y 而确定,即u 、v 均为x 、y 的二元实函数,因此我们常把()w f z =写成()(,)(,)f z u x y iv x y =+ (1.14)若z 为指数形式,i z re θ=,则()w f z =又可表为(,)(,)w p r i r θθθ=+ (1.15) 其中(,)p r θ,(,)Q r θ均为r 、θ的二元实函数.由(1.14)和(1.15)两式说明,我们可以把复变函数理解为复平面z 上的点集和复平面w 上的点集之间的一个对应关系(映射或变换),这是由于在复平面上我们不再区分“点”(点集)和“数”(数集).故今后我们也不再区分函数、映射和变换.3. 复变函数的极限和连续性定义1.12 设()w f z =于点集E 上有定义,0z 为E 的聚点,若存在一复数0w ,使得0ε∀>,0δ∃>,当00z z δ<-<时有0()f z w ε-< ()z Z ∈则称()f z 沿E于0z 有极限0w ,记为lim ()0()f z w z z z E =→∈定义1.12的几何意义是:对于0ε∀>,存在相应的0δ>,使得当z 落入0z 的去心δ-邻域时,相应的()f z 就落入0w 的ε-邻域.这就说明lim ()0()f z z z z E →∈与0z z →的路径无关.即不管z 在E 上从哪个方向趋于0z ,只要z 落入0z 的去心δ-邻域内,则相应的()f z 就落入0w 的ε-邻域内,而在数学分析中,0lim ()x x f x →中x 只能在x 轴上沿着0x 的左,右两个方向趋于0x ,这正是复分析与数学分析不同的根源.今后为了简便起见,在不致引起混淆的地方,lim ()0()f z z z z E →∈均写成lim ()0f z z z → 可以类似于数学分析中的极限性质,容易验证复变函数的极限具有以下性质:(1)若极限存在,则极限是唯一的.(2)lim ()0f z z z →与lim ()0g z z z →都存在,则有 lim [()()]lim ()lim ()000f z g z f z g z z z z z z z ±=±→→→ lim ()()lim ()lim ()000f z g z f z g z z z z z z z =→→→lim ()()0lim lim ()lim ()000f z z z f z g z g z z z z z z z →=→→→ (()0)g z ≠另外,对于复变函数的极限与其实部和虚部的极限的关系问题,我们有下述定理:定理1.2 设函数()(,)(,)f z u x y iv x y =+于点集E 上有定义,000z x iy =+为E 的聚点,则lim ()0f z a ib z z η==+→的充要条件0lim (,)x x u x y a →=及0lim (,)y y v x y b →= 证明:因为()[(,)][(,)]f z u x y a i v x y b η-=-+-从而由不等式1.1可得(,)()(,)()u x y a f z v x y b f z ηη-≤-⎫⎪⎬-≤-⎪⎭(1.16)及 ()(,)(,)f z u x y a v x y b η-≤-+- (1.17)故由(1.16)即可得必要性部分的证明.由(1.17)可得充分性部分的证明. 定义1.13设()w f z =于点集E 上有定义,0z 为E 的聚点,且0z z ∈,若0lim ()()f z f z =则称()f z 沿E 于0z 连续.根据定义1.13,()f z 沿E 于0z 连续就意味着:0ε∀>,0δ∃>,当0z z δ-<时,有0()()f z f z ε-<与数分中的连续函数性质相似,复变函数的连续性有如下性质:(1)若()f z ,()g z 沿集E 于点0z 连续,则其和,差,积,商(在商的情形,要求分母0z 不为零)沿点集E 于0z 连续.(2)若函数0()f z η=沿集E 于0z 连续,且()f E G ⊆,函数()w g η=沿集G 于00()f z η=连续,则复合函数0[()]w g f z =沿集E 于0z 连续.其次,我们还有定理1.3 设函数()(,)(,)f z u x y iv x y =+于点集E 上有定义,0z E ∈,则()f z 在点000z x iy =+连续的充要条件为:(,)u x y ,(,)v x y 沿E 于点00(,)x y 均连续.事实上,类似于定理1.2的证明,只要把其中的a 换成00(,)u x y ,b 换成00(,)v x y 即可得到定理的证明.例1.10 设1()()2z z f z i zz =- (0)z ≠ 试证()f z 在原点无极限,从而在原点不连续.证明:设(cos sin )z r i θθ=+,则22211()()()sin 222z z z z z z f z i i r zz θ-+-=== 因此000lim ()0z z f z z θπθ→→⎧⎪=⎨→⎪⎩当沿着正实轴=0时1当沿着正实轴=时4故0lim ()z f z →不存在,从而在原点不连续. 定义1.14 若函数()f z 在点集E 上每一点都连续,则称()f z 在E 上连续,或称()f z 为E 上的连续函数.特别地,当E 为实轴上的区间[,]αβ时,则连续曲线(1.16)就是[,]αβ上的连续函数()z z t =其次,若E 为闭区域D ,则D 上每一点均为聚点,考虑其边界上的点0z 的连续性时,0z z →只能沿D 的点z 来取.与数学分析相同,在有界闭集E 上连续的伏辩函数具有以下性质:(1)在E 上()f z 有界,即0M ∃>,使得()()f z M z E ≤∈ (2)()f z 在E 上有最大值和最小值.(3)()f z 在E 上一致连续,即0ε∀>,0δ∃>使对E 上任意两点1z ,2z ,只要12z z δ-<就有12()()f z f z ε-<作业: 第43页 10(1) (3), 11(1)(3) 13 14 15 17§4复球面与无穷远点教学目的与要求:理解复球面的概念;了解与无穷远点相关的扩充复平面的几个概念.重点:复球面的概念.难点:无穷远点与扩充复平面.课时:1学时.1. 复球面 复数还有一种几何表示方法,它是借助地图制图学中将地球投影到平面上的测地投影法,建立复平面与球面上的点的一一对应,这种说明引入无穷远点的合理性。