第十三讲 差动放大电路(1)
差动放大电路.

采用差动放大电路
+VCC
Rc
Rc
Rb
+ u i1
-
+ uo _
T1
T2
_ReV EE
Rb
+ ui2 -
一、 差动放大电路
1.结构: 对称性结构
+VCC
1=2=
Rc
Rc
UBE1=UBE2= UBE
rbe1= rbe2= rbe
Rb +
RC1=RC2= RC ui1
-
Rb1=Rb2= Rb
+ uo _
K C MR
Re
Rb rbe
Rb T1
RL
T2 Rb
+
+
u i1
加大Re,可提高共模 -
抑制比,为此可用恒
流源T3来代替Re 。
ui2
T3
-
R3
R2 R1
_
V EE
带恒流源的差动放大电路的静态工作点:
U AB
VEE
R1 R1 R2
+VCC
Rc + uo - Rc
IC3
U AB
0.7V R3
1.静态工作点的计算:
ui1 = ui2 0
IB Rb +UBE+ IE Re = VEE
IB
=
VEE U BE
Rb 21 Re
VEE U BE
21 Re
+VCC
IC
IE
= VEE U BE 2Re
VEE 2Re
Rc Rb
+ uo _
Rc Rb
T1
T2
UC VCC IC RC
第13讲--差动放大电路课件

+ T1 RC1 uBE1
- iE1
RS2 -
+ uod -
+
+
uo1
uo2
-
-
RE iE
iC2
iB2 T2
RC2
+
uBE2 -
iE2
❖ 由三极管e极电流与e极电压指数关系,电流方程:
iC1
iE1=I ES
exp( u BE1 UT
)
iE iE1 iE2 iC1 iC2
iC 2
iE2=I ES
2024/10/10
电子电路基础
第十三讲 差动放大电路 (1)
1
主要内容
7.1 基本电路及特征分析 7.2 双端输入、单端输出差动放大电路旳特征 7.3 单端输入、双端输出差动放大电路旳特征 7.4 单端输入、单端输出差动放大电路旳特征 7.5 有源偏置差动放大电路
2
零点漂移
❖ 放大电路无输入时,还有缓慢变化旳电压 输出旳现象为零点漂移
(2)先求rbe,再用前述公式
rbe
rbb
UT ICQ
134 100 26 1.1
2.5(k)
ASD
RC1 //( RL / 2)
RS1 rbe1
100 5 // 5 71
1 2.5
VCC
iC1
iC2
RC1
RL
RC2
Ri 2(RS1 rbe1)
2 (1 2.5) 7(k)
❖ 增大发射极电阻RE旳阻值,线性范围增大
uo1, uo2
uo2
uodm
uo1
RE 小
RE 大
uid
0
电压传输特性
差动放大电路原理介绍

从电路结构上说,差动放大电路由两个完全对称的单管放大电路组成。
由于电路具有许多突出优点,因而成为集成运算放大器的基本组成单元。
一、差动放大电路的工作原理最简单的差动放大电路如图7-4所示,它由两个完全对称的单管放大电路拼接而成。
在该电路中,晶体管T1、T2型号一样、特性相同,RB1为输入回路限流电阻,RB2为基极偏流电阻,RC为集电极负载电阻。
输入信号电压由两管的基极输入,输出电压从两管的集电极之间提取(也称双端输出),由于电路的对称性,图7-4 最简单的差动放大电路C2,即。
由以上分析可知,在理想情况下,由于电路的对称性,输出信号电压采用从两管集电极间提取的双端输出方式,对于无论什么原因引起的零点漂移,均能有效地抑制。
抑制零点漂移是差动放大电路最突出的优点。
但必须注意,在这种最简单的差动放大电路中,每个管子的漂移仍然存在。
2.动态分析差动放大电路的信号输入有共模输入、差模输入、比较输入三种类型,输出方式有单端输出、双端输出两种。
(1)共模输入。
在电路的两个输入端输入大小相等、极性相同的信号电压,即,这种输入方式称为共模输入。
大小相等、极性相同的信号为共模信号。
很显然,由于电路的对称性,在共模输入信号的作用下,两管集电极电位的大小、方向变化相同,输出电压为零(双端输出)。
说明差动放大电路对共模信号无放大作用。
共模信号的电压放大倍数为零。
(2)差模输入。
在电路的两个输入端输入大小相等、极性相反的信号电压,即ui1= -ui2 ,这种输入方式称为差模输入。
大小相等、极性相反的信号,为差模信号。
,导致集电极电位下降T2管的集电极电流减小,导致集电极电位升高(,由于 = ,若其输出电压为uo = Au(ui1- ui2).ui1 - ui2的差值为正,说明炉温低于1 000 ℃,此时uo为负值;反之,uo为正值。
我们就可利用输出电压的正负去控制给炉子降温或升温。
差动放大电路是依靠电路的对称性和采用双端输出方式,用双倍的元件换取有效抑制零漂的能力。
差动放大电路

设ui1>0,
则ui2<0
IC2<0, VC2>0
IC1>0, VC1<0; uo=VC1VC2 设VC!=-1V,
VC2=1V
则uo=-2V
(3)比较输入
ui1与ui2是任意
则设ui1为给定信号,ui2为反馈信号 uo=Au(ui1-ui2)
为了便于分析与处理,可以将这种即非共模、又 非差模的信号,分解为共模分量和差模分量。 ui1 uod1
RB
uod2
ui
ui1
RE
T2 T2
RB
ui2
-EE
当T1管输入信号电压ui且极性如图所示,T1的集电流 增大,其增大量为IC(正值),流过RE的电流也增大,因 而发射极电位升高,使T2基—射极电压减小UBE2,T2的 集电极电流也就减小,其减小量为IC2(负值)。IC1和 IC2的相对大小,取决于RE的大小,RE大,T1的输入信号 耦合(传送)到T2管的作用也强。
VE=RE(IC1+IC2)
是一有限值
当RE足够大时, IC1+IC20对信号讲,RE电路可 认为是开路的,如图所示。 rbe rbe RB R
B
ui
ui11/2ui
ui2-1/2ui
在单端输入的差动放大电路中,只要共模反馈电阻RE 足够大时,两管所取得的信号就可以认为是一对差模 从这一点来看,单端输入和双端输入是一样的 信号。
EE 2 R
E
U CE U CC R C I C U CC
EER C 2R E
3. 动态分析: 1) 双端输入——双端输出
RC
RB
T1
uo
T2 RE
差动放大电路

差动放大电路有两个输入端:若信号从两个输入端加入,称为双端输入;若信 号仅从一个输入端加入,则称为单端输入。
差动放大电路有两个输出端:集电极C1 和 C2。若信号从C1 和 C2 同时输出, 则称为双端输出;若信号仅从集电极 C1 或C2 对地输出,则称为单端输出。
按照信号的输入输出方式,差动放大电路有四种接法。 除了前面介绍的双端输入/双端输出方式外,差动放大电路还有另外三种接 线方式,即双端输入/单端输出、单端输入/双端输出和单端输入/单端输出。 在四种不同的输入输出方式中,双端输入/双端输出方式为浮地形式的输入 输出方式。在要求对地输入的场合,就只能采用单端对地的输入方式;而要求 对地输出时,则只能采用单端对地输出的方式。 单端输出电路的差模电压放大倍数为双端输出电路的一半,即
1)对称性:理想情况下,电路左右两 部分完全对称,RB1 RB2 RB ,RC1 RC2 RC, 而且 管子与 管子的特性完全相
同,1 2 ,rbe1 rbe2 rbe。 2)长尾特点:由于电路采用双电源供
电, RE上所需的电压由负电源 VEE 提供, 就像拖着一个长长的尾巴,因此把这种电 路称为“长尾式差动放大电路”。
uoc是在 uic作用下的输出电压。根据定义有
Ac
uoc uic
差动放大电路加共模信号
由于差动放大电路是对称的,在共模信号作用下,两管集电极电位的变化 相同,即 uc1 uc2 ,因此,双端共模输出电压为
uoc uc1 uc2 0
即 Ac 0 。但是,由于实际上两半电路不可能做到完全对称,所以电路仍可能 有微弱的共模输出信号。一般情况下,| Ac|<<1。
直接耦合放大电路的零点漂移
引起零点漂移的原因很多,如温度变化、直流电源波动、元器件老化等。 其中,温度变化影响最大,故零点漂移常被称为温度漂移,简称温漂。温度变 化引起各级工作点变化,尽管这种变化是缓慢的,但由于是直接耦合,因此漂 移会被逐级放大,尤其是第一级,其漂移影响最大。在输出级,漂移信号(虚 假信号)与有用信号相混合,使有效信号的辨识更加困难。
差动输入放大电路

差动输入放大电路
1.电路组成
图4.2.5所示为差动输入放大电路,它的两个输入端都有信号输入。
u i1通过R1接至运放的反相输入端,u i2通过R2、R3分压后接至同相输入端,而u o通过R f、R1反馈到反相输入端。
图4.2.5差动输入放大电路
2. 与的关系
因i-=0,u-为u i1和u o共同作用的结果,应用叠加定理得:
;根据分压公式得:;又因为u+=u-,故
当R1=R2和R f=R3时,,可见其输出电压u o与两个输入电压的差值(u i2-u i1)成正比。
故称为差值放大电路,又称为减法运算电路。
3.特点
集成运放组成差动输入组态,对共模信号有抑制作用,即使使用一级运放电路,选用较高共模抑制比的运放,电路也具有一定的抗共模噪声干扰的能力。
差动放大电路(课件)知识讲解

2.对差模信号的放大作用分析
R'L=Rc//(RL/2)
AUd
Uo U id
Ucd1 Ucd2 Uid1 Uid2
Ucd1R-bRrLbe Uid1
2Ucd1 Ucd1 2Uid1 Uid1
Ucd2R-bRrLbe Uid2
AUd
-RL
Rb rbe
Uo
与单管增 益相同
rid=2(Rb+rbe) rod ≈2 Rc
1 RL
2 Rb rbe
rid=2(Rb+rbe) rod ≈ Rc
3.对共模信号的抑制作用分析
工作原理
Uic1=Uic2=Uic
Ibc1=Ibc2 Iec1=Iec2
流过Ree上的电流: Iec=Iec1+Iec2=2 Iec1
Iec1
Iec2
Ree上的电压:URee=Iec12Ree
Rb
T1
5. 几种方式指标比较
输出方式
双出
单出
AVD
(Rc
//
1 2
RL )
rbe
(Rc // RL )
2rbe
Rid
2 rbe
R ic
12[rbe(1)2ro]
Ro
2 Rc
Rc
双出
单出
(Rc
//
1 2
RL )
rbe
(Rc // RL )
2rbe
2 rbe
12[rbe(1)2ro]
2 Rc
Rc
集成运算放大器概述
Rb Uid1
T1Rc
RL 2
RL 2
RcT2
Rb Uid2
Uid
2.对差模信号的放大作用分析
差动放大电路.ppt

性相同,幅度也相同,
则是纯共模信号。如
果极性相同,但幅度
不等,则可以认为既
包含共模信号,又包
含差模信号,应分开
加以计算,如图06.07
所示。
图06.07共模差模信 号混合的情况
共模抑制比KCMR是差动放大器的一个重要
指标。
KCMR
Avd Avc
,或
KCMR
20 lg
Avd Avc
dB
双端输出时KCMR可认为等于无穷大,单端 输出时共模抑制比为
K CMR
R'L / 2( RB1 rbe ) R'L / 2Re
Re
RB1 rbe
(动画6-2)
3 带恒流源差动放大电路的分析
1 问题的提出
K CM RR
Ad AC
Avc
RB1
RC
rbe (1
)2RE
单端输出时,为提高共模抑制比,有两个途径,一是增大差模电压放大倍数,一
1 RB vi
RC 3 vo 4 RC RB
T3
A
RB2
RE
RB1
B
-VEE
电路分析
• 静态分析:从T3开始
பைடு நூலகம்
1 RB
VAB
R2 R1 R2
(VCC
VEE )
vi
IE3
VAB VBE RE 3
IC3
I E1
IE2
IC3 2
RC 3 vo 4 RC
VCC
RB RL
T3
A
RB2
差动放大电路

当电源电压或温度变化时,两管的集电极电流和电位同时发生变化,输
出电压Uo=UCE1-UCE2=0。因此,尽管各管的零点漂移仍存在,但输出电 压为零,整个放大电路的零点漂移得到抑制。
差
动
放差
大 电 路
动 放 大 电
路
的
分
析
1.2
第5页
2 动态分析
当有信号输入时,对称差动放大电路可以分为差模输入和共模输入两种 情况进行分析。其中,放大器两端分别输入大小相等、极性相反的信号(即 ui1=-ui2)时称为差模输入;放大器两端分别输入大小相等、极性相同的信 号(即ui1=ui2)时称为共模输入。
Aud
Aud1
RC
rbe
两输入端之间的差模输入电阻为:
rid 2(RS rbe )
两输出端之间的差模输出电阻为:
rod 2RC
差
动
放差
大 电 路
动 放 大 电
路
的
分
析
1.2
第8页
2 动态分析
2)共模输入
在共模输入信号的作用下,对于完全对称的差动放大电路来说,两管的 集电极电位变化相同,因而输出电压等于零,所以,差动放大电路对共模信 号没有放大能力,即放大倍数Auc为零。
电 工 电 子 技 术
过渡页
第2页
差动放大电路
• 1.1 概述 • 1.2 差动放大电路的分析
差 动 放 大 电 路
概 述
1.1
第3页
差动放大电路是由对称的两个基本放大电路,通过射极公共电阻耦合构 成的,如图10-16所示。对称的含义是两个晶体管的特性一致,电路参数对应)和两个输出端(晶体 管的集电极)。若信号同时从两个输入 端加入,称为双端输入;若信号仅从一 个输入端加入,称为单端输入。若信号 同时从两个输出端输出称为双端输出; 若信号仅从一个输出端输出称为单端输 出。
差动放大电路

号的变化。
有时,为简化起见,常常用一个简 化的恒流源符号来表示恒流管VT3 的具 体电路,如图3.9所示。
图3.9 集成运算放大器
3.2.1 集成运算放大器的基本组成
集成运算放大器实质上是一个具有高 电压放大倍数的多级直接耦合放大电路。 从20世纪60年代发展至今已经历了四代产 品,类型和品种相当丰富,但在结构上基 本一致,其内部通常包含四个基本组成部 分:输入级、中间级、输出级以及偏置电 路,如图3.12所示。
1.单端输入
单端输入和双端输入并没有本质的区
别,可以直接利用双端输入时的公式进行
计算。
2.单端输出
单端输出的输出信号可以取自VT1 或 VT2的集电极。
(1)单端输出时的差模电压放大倍数Aud1 (2)单端输出时的共模电压放大倍数Auc1 (3)单端输出时的共模抑制比KCMR (4)单端输出时差动放大电路的输出电阻rod
5.输入失调电压温漂ΔUIO/ΔT和
输入失调电流温漂ΔIIO/ΔT
6.共模抑制比KCMR
7.差模输入电阻rid 8.输出电阻rod
集成运算放大器使用 中的几个具体问题
3.2.3
1.集成运放的选择 (1)信号源的性质 (2)负载的性质 (3)精度要求 (4)环境条件
2.集成运放参数的测试
以μA741为例,其管脚排列如图3.14(a) 所示。其中2脚为反相输入端,3脚为同相
(1)它由两个完全对称的共射电 路组合而成。 (2)电路采用正负双电源供电。
图3.1 典型基本差动放大电路
2.差动放大电路抑制零点漂移的原理
由于电路的对称性,温度的变化对VT1、 VT2 两管组成的左右两个放大电路的影响 是一致的,相当于给两个放大电路同时加 入了大小和极性完全相同的输入信号。因 此,在电路完全对称的情况下,两管的集 电极电位始终相同,差动放大电路的输出 为零,不会出现普通直接耦合放大电路中 的漂移电压,可见,差动放大电路利用电 路对称性抑制了零点漂移现象。
差动放大电路

二、 抑制零漂的原理
当 ui1 = ui2 =0 时: uo= UC1 - UC2 = 0 当温度变化时: uo= (UC1 + uC1 ) - (UC2 + uC2 ) = 0
14
三、差模电压放 大倍数Aud
差模输入电压:Uid=Ui1-Ui2
差模输入信号: ui1 =- ui2 =1/2*Uid (大小相等,极性相反) 因ui1 = -ui2, uo1 =-uo2 uo= uo1 - uo2= 2uo1
输入电阻 Ri 2( Rb rbe) 输入:单端或双端;双端输出
RL 2 ; Ac 0; Ro 2 Rc Ad Rb rbe R e //
输入:单端或双端;单端输出 单端输入
RL ( Rc // RL) 2 ; Ac Ad ; Ro Rc 2( Rb rbe ) Rb rbe 2(1 ) Re R e //
7
直接耦合
+EC RB1 RC1 V1 Rs + Us - RC2 V2 VZ + Uo -
为了避免电容对缓慢信号带来的不良影响,去掉耦合电容, 将前级输出直接连到下一级,我们称之为直接耦合。 直接耦合的缺点:适用传送缓慢变化的信号。 直接耦合的缺点:前后级Q点相互影响。零点漂移。
8
变压器耦合
T1 RB11 V2 RB22 CE1 CB RE2 CE2 RB12 +EC T2 RL
40
uOd ic( Rc // RL) ( Rc // RL) Ad uid 2ib( Rb rbe) 2( Rb rbe) Ri 2( Rb rbe); Ro Rc
41
42
上面两图为:单端输入,双端输出
模电实验课件 差动放大电路(共11张PPT)

双端输出 放大倍数
VodVo1Vo2
Avd
Vod V sd
单端输出
放大倍数
Vo d 2Vo2Vo2 0
Avd 2
Vod 2 Vsd
差模双端输入
差模单端输入
差模单端输入计算公式 参照双端输入
差模单端输入
实验内容二
测量共模增益
如图,将电路接为共模输入方式 输入Vsc=1v 测填表2.27
共模输入
Re为两管共用的发 射极电阻,它对差 模信号无负反馈作 用,但对共模信号 有较强的负反馈作 用,可以有效的抑 制零漂,稳定静点。
调零电位器Rw用来调节
T1和T2的静点,使输入 电压Ui=0时,双端输出
电压Uo=0。
将两组都调为12V输出。将1组端(-)连2组 (+),此为地端;1组(+)为+12V;2组(-)
双端输出 放大倍数
VocVo1Vo2
Avc
Voc V sc
单端输出 放大倍数
Vo2cVo2Vo2 0
Avc2
Voc 2 Vsc
共模输入
返回
实验内容三
观察大信号传输特性
将电路接为单端输入形式 在A点接入较大幅度正弦信号(信号源地接B点),频率
为1000Hz. 使示波器处于X-Y工作方式,并将输入信号作为X轴,
电路图分析 为-12V。第三组用来提供输入信号 实验当中使用了+12V和-12V的 双电源。直流源能提供三组独立直 流电压输出,具体连接如下。
调节信号幅度,观察传输特性曲线的变化 特点是共模抑制能力很强,但输出不是对地输出 差动放大是将输入信号差分为不同的两部分(差模信号),在电路当中利用成倍的器件,在放大差模信号的同时获得对共模信号的强烈的抑 制,从而有效地抑制干扰 如图,将电路接为共模输入方式 去掉输入端与地的短接线 去掉输入端与地的短接线 双端输出即将|Vo1-Vo2|作为电路输出。 调节直流电源,使Usd=0. 输出形式也有两种:双端输出和单端输出。 设在输入为0时,Vo1对地的电压为Vc1,则单端输出电压应为|Vo1-Vc1| 在放大电路当中,噪声和干扰一般都相同地作用在每个电路上(共模信号)。 差模单端输入计算公式参照双端输入 如图,将电路接为共模输入方式
差动放大电路

在发射极电阻R 的作用:是为了提高整个电路以及单管 在发射极电阻RE的作用 放大电路对共模信号的抑制能力。 负电源U 的作用:是为了补偿RE上的直流压降,使发 负电源UEE的作用 射极基本保持零电位。 恒流源比发射极电阻RE对共模信号具有更强的抑制作用。
RC R1 V1 ui 1 V3 R2 RE + uo - V2 ui 2 V1 ui 1 I -UEE -U EE (b) 图(a)的简化电路 RC +U CC RC + +UCC RC
从工作波形可以看到,在 波形过零的一个小区域内 输出波形产生了失真,这 种失真称为交越失真。产 生交越失真的原因是由于 V1、V2发射结静态偏压为 零,放大电路工作在乙类 状态。当输入信号ui 小于 晶体管的发射结死区电压 时,两个晶体管都截止, 在这一区域内输出电压为 零,使波形失真。
ui 0 uo1 0 uo2 0 uo 0 t 交越失真 t t t
uo - V2
+ ui 1 -
I -UEE (c) 单端输入双端输出
+ ui 1 -
V1
V2
I -UEE (d) 单端输入单端输出
单端输入式差动放大电路的输入信号只加到放大器的一个 输入端,另一个输入端接地。由于两个晶体管发射极电流 之和恒定,所以当输入信号使一个晶体管发射极电流改变 时,另一个晶体管发射极电流必然随之作相反的变化,情 况和双端输入时相同。此时由于恒流源等效电阻或发射极 电阻RE的耦合作用,两个单管放大电路都得到了输入信号 的一半,但极性相反,即为差模信号。所以,单端输入属 于差模输入。
R1 V1 R2 D1 D2 V2 R3 +
+UCC
C RL + uo -
差动放大电路

差动放大电路一、概述差动放大电路又叫差分电路,他不仅能有效的放大直流信号,而且能有效的减小由于电源波动和晶体管随温度变化多引起的零点漂移,因而获得广泛的应用。
特别是大量的应用于集成运放电路,他常被用作多级放大器的前置级。
基本差动放大电路由两个完全对称的共发射极单管放大电路组成,该电路的输入端是两个信号的输入,这两个信号的差值,为电路有效输入信号,电路的输出是对这两个输入信号之差的放大。
设想这样一种情景,如果存在干扰信号,会对两个输入信号产生相同的干扰,通过二者之差,干扰信号的有效输入为零,这就达到了抗共模干扰的目的。
二、基本电路图差动放大电路的基本电路图上图为差动放大电路的基本电路图[1]三、差动放大电路的工作原理1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。
它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集点极电位也相等,所以输出电压Uo=UC1-UC2=0。
温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。
它的放大作用(输入信号有两种类型)(1)共模信号及共模电压的放大倍数 Auc共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。
如图(2)所示共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。
因此:。
于是差动电路对称时,对共模信号的抑制能力强字串3(2)差模信号及差模电压放大倍数 Aud差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。
如图(3)所示差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此:此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。
差动放大电路

R o = Rc
理论计算
动态分析 3.单端输入 单端输入、 3.单端输入、双端输出 ' RL vo vo1 − vo 2 2vo1 2 β RL 差模电压增益: 差模电压增益:AVD = ′ = = =− RL = RC // vid vi1 − vi 2 vid Rid 2 共模电压增益: 共模电压增益: Avc = voc1 − voc 2 vic ≈ 0
(
)
共模抑制比: 共模抑制比: 输入阻抗 输出阻抗: 输出阻抗:
K
CMR
=
A A
vd
vc
→∞
Rid = 2rbe + (1 + β ) Rp; rbe = rbb ' + 26(1 + β ) / I C1Q
Ro = 2Rc
动态分析 4.单端输入 单端输入、 4.单端输入、单端输出
理论计算
' RL vo vo1 − vo 2 2vo1 β RL ′ RL = RC // = = =− 差模电压增益: 差模电压增益: AVD = 2 vid vi1 − vi 2 vid Rid
2011-6-13
理论计算
静态分析 当输入信号为零时: 当输入信号为零时: 由于没有输入信号,所以: 由于没有输入信号,所以: VB1=VB2=0V; VE1=VE2=0-0.7=-0.7V; VC3=VE1-0.5*IC3*0.5RP=-0.7-0.5*1.15*0.5*330=-0.79V 由于I 所以: 由于 C3 ≈ IE3, IE1 =IE2 = 0.5 IE3,所以: IE1=IE2=0.5IE3=0.577mA; VC1=VC2=VCC-IE1*RC=12-0.577*10*1000=6.23V
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i C1 R C1 T1 i E1 RE iE -VEE RL + u o1 + u o2 T2 E iE2
i C2 R C2 RS2 i B2 + u S2 -
RL /2
RL /2 Ro + - u o2 RC2 - T2 RS2 iB2
+ + uo1 -
uo
7
差模小信号放大特性分析
差模信号:uS1=-uS2
差模净输入电压uid uid u BE1 u BE 2
u o1
i E R C1 iC1 RC1= u 1+exp( - id ) UT
iE R C 2 u o 2 iC 2 RC 2= uid 1+exp( ) UT
15
差模大信号时的电压传输特性表达式
当uid趋于时,T1趋于饱和、T2趋于截止,则 iC20、uo20、iEiC1 ,uo1和电路输出电压uod达 到最大uo1m,且-iERC1-iC1RC1=uo1muodm
iB1 + uS /2 - + uS /2 - Ri
RS1 iB1 + uS /2 - + uS /2 - rbe1 iB1 RC1 + + uo1 RL /2
RL /2
RL /2 Ro + - u o2 RC2 - T2 RS2 iB2
RS1 T1 RC1
+ uo1 + -
uo
uo
- + uo2 RL /2 RC2 iB2
uo uo1 uo 2 uo1 ( uo1 ) 2uo1 RC1 //( RL / 2) ASD= uS RS1 rbe1 uS uS uS uS 2( RS 1 rbe1 ) 输入电阻 Ri= iB1
输出电阻
Ro=2RC1
9
共模小信号放大特性分析
电子电路基础
第十一讲 差动放大电路
2017/2/6
1
主要内容
7.1 7.2 7.3 7.4 7.5 基本电路及特性分析 双端输入、单端输出差动放大电路的特性 单端输入、双端输出差动放大电路的特性 单端输入、单端输出差动放大电路的特性 有源偏置差动放大电路
2
零点漂移
放大电路无输入时,还有缓慢变化的电压 输出的现象为零点漂移
解:(1) I BQ1 I BQ2 I BQ
VEE-U BEQ RS1+2(1 ) RE
12-0.7 11( A) 1+2 (1 100) 5
ICQ1 ICQ 2 I BQ 1.1(mA)
UCEQ1 UCEQ 2 UCEQ
VCC - ICQ RC1+UBEQ
19
VCC
iB1 + uS1 -
RS1
RL
+ uo - E
T2 iE2
RS2
iB2 uS2 - +
四种形式的差动放大电路
双端输入、双端输出电路 双端输入、单端输出 单端输入、双端输出
iB1 RS1 + uS - iC1 RC1 T1 iE1 RE iE -VEE
20
VCC iC2 RL + uo1 + uo2 E T2 iE2 RC2 RS2 iB2
i C1 RC1 i E1
+ + u o1 - RE iE
u od
- + u o2 -
i C2 RC2 T2 +
i B2 u BE2 -
i E2
iE i = C1 uid 1+exp(- ) iC1 u u -u UT iE iC1 iC 2 =exp( BE1 BE 2 )=exp( id ) iC 2 UT UT iE iC 2= uid 1 + exp( ) 三极管集电结输出电压uo1和uo2 UT
令交流输入uS1=uS2=0
电路对称:IB1=IB2,IE1=IE2,IE=IE1+IE2=2IE1 基极回路方程: I B1RS1+U BE1+2 I E1RE=VEE
5
VCC
差放静态特性分析
i B1 R S1
i C1 R C1 T1 i E1 RE iE -VEE RL + u o1 + u o2 T2 E iE2
基本电路及静态特性
V CC RC IB1 RS1 I C1 T1 IE1 RE IE -VEE T2 E I E2 I C2 RS2 I B2 VCC
由戴维南等效:
VCC VCC RL RL RC
RL // RC RC
22
双入、单出电路--基本电路及静态特性
基极回路对称,静态特性与双端输入电路相同
(2)先求rbe,再用前述公式
U 26 rbe rbb T 134 100 2.5(k) I CQ 1.1 RC1 //( RL / 2) ASD RS 1 rbe1
iB1 RS1 + uS1 -
VCC iC1 RC1 T1 iE1 RE iE -VEE RL + uo1 + uo2 E T2 iE2 iC2 RC2 RS2 iB2 + uS2 -
RC1=RC2 ,RS1=RS2
4
(1)静态特性分析
iC1
VCC iC2 RL + uo1 + uo2 E RE iE -VEE T2 iE2 RC2 RS2 iB2
T1和T2参数相同,对称 RC1=RC2, RS1=RS2
uS1 - iB1 RS1 +
RC1 T1 iE1
+ uS2 -
iB2 RS2 rbe2
8
R S1 i B1 u S /2 u S /2 + - + - r be1 i B1 R C1
+ + uo1 R L /2
uo
- + u o2 R L /2 R C2 i B2
i B2 R S2 r be2
源电压放大倍数(利用参数的对称性)
uS / 2 uo1= iB1RC1 //( RL / 2) RC1 //( RL / 2) RS1 rbe1 uo 2 uo1
12 1.1 5 0.7 7.2(V )
+ uS1 - iB1 RS1
VCC iC1 RC1 T1 iE1 RE iE -VEE RL + uo1 + uo2 E T2 iE2 iC2 RC2 RS2 iB2 + uS2 -
静态工作点比较合适
12
例7-1:如图差动放大电路,三极管的UD=0.7V,rbb=134, β =100,VCC=VEE=12V,RS1=RS2=1k,RL=10k,RC1=RC2=RE=5k, 计算:(1)工作点;(2)ASD以及输入/输出电阻
VCC i C1 R C1 T1 i E1 RE iE -VEE RL + u o1 + u o2 T2 E iE2 i C2 R C2 RS2 i B2
共模信号:uS1=uS2=uiC
RL iB1 RS1 T1 RC1 2RE - - + + uo1 uOC - + uo2 RC2
i B1Байду номын сангаасR S1 + uS1 -
I BQ1=I BQ 2=I BQ= VEE-U BEQ RS1+2(1 ) RE
IB1 RS1 RC I C1 T1 IE1 RE IE -VEE T2 E I E2 V CC I C2 RS2 I B2 VCC
I CQ1= I CQ 2 = ICQ = I BQ
-ICQ RC +U BEQ UCEQ1 VCC
只有差模净输入电压uid为0附近,输出电压uod与 uid呈线性关系;
uid较大时,三极管趋于饱和或截止,uod趋于平缓 增大发射极电阻RE的阻值,线性范围增大
uo1 , uo2 uo2 uodm uo1 RE 小 RE 大 0 uid
电压传输特性
17
四种形式的差动放大电路
双端输入、双端输出电路
由三极管e极电流与e极电压指数关系,电流方程:
u BE1 iC1 i E1=I ES exp( ) UT iE iE1 iE 2 iC1 iC 2
iC 2 i E 2=I ES
u BE 2 exp( ) UT
14
i B1 R S1 + + uS - R S2 - uid + uBE1 - T1
i C2 R C2 RS2 i B2
电路参数对称
VEE-U BEQ RS1+2(1 ) RE
VEE-U BEQ RS 1 1 + 2 RE
I BQ1=I BQ 2=I BQ=
I CQ1=I CQ2=I CQ=I BQ=
U CEQ1=U CEQ2=U CEQ=VCC-I CQ RC1+U BEQ
四种形式的差动放大电路
双端输入、双端输出电路 双端输入、单端输出 单端输入、双端输出 单端输入、单端输出
+ uS - iB1 RS1 RC1 iC1 T1 iE1 RE iE -VEE
21
VCC
RL
+ uo - E
T2 iE2
RS2
iB2
(2)双端输入、单端输出差动放大电路特性
双入、单出,输出不对称
uoc 共模放大倍数AC: AC= uic
共模抑制比CMR:综合考察差模信号放大能力以及
| ASD | 共模信号抑制能力 CMR= | AC |