第5章 一元一次方程检测题

合集下载

人教版七年级数学上册 第五章 一元一次方程 单元测试卷

人教版七年级数学上册  第五章 一元一次方程  单元测试卷

第五章一元一次方程(单元测试卷人教版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。

1.下列方程中,属于一元一次方程的是()A .0x =B .42x=C .2234x x -=D .43x y -=2.若()2326m m x --=是关于x 的一元一次方程,则m 的值是()A .1B .1-C .2D .1或23.已知关于x 的方程()2x m nx +=的解2x =,则m n -的值为()A .2-B .1-C .1D .24.解方程x 14x 123+=+,下列去分母的过程正确的()A .3(1)81x x +=+B .3(1)46x x +=+C .186x x +=+D .3(1)86x x +=+5.某车间有技工85人,平均每人每天能生产甲种零件16个或乙种零件10个.已知每2个甲种零件和3个乙种零件配成一套,通过合理安排,分配恰当的人数生产甲或乙种零件,可以使得每天生产的配套零件最多,最多为()A .200套B .201套C .202套D .203套6.根据如图所示的程序计算,若输入x 的值是1-时,输出的值是5.若输入x 的值是3,则输出值为()A .13B .0C .1-D .17.设,x y 为任意两个有理数,规定2x y xy x =-◎,若()1215m +=◎,则下列正确的是()A .5m =B .103m =C .133m =D .4m =8.某茶具生产车间共有22名工人,每人每天可生产30个茶壶或者100只茶杯,一个茶壶与4只茶杯配套.为使每天生产的茶壶和茶杯刚好配套,需要有_________名工人生产茶壶()A .8B .14C .10D .129.某环形跑道长400米,甲、乙两人练习跑步,他们同时反向从某处开始跑,甲每秒跑6米,乙每秒跑4米,x 秒后,甲、乙两人首次相遇,则依题意列出方程:①64400x x +=;②()64400x +=;③40064x x -=;④64400x x -=.其中正确的方程有()A .1个B .2个C .3个D .4个10.某电视机去年提价25%,今年想要恢复原价,则应降价().A .15%B .20%C .25%D .30%二、填空题:共8题,每题3分,共24分。

2021 七年级数学 第5章 一元一次方程 章末检测卷

2021 七年级数学 第5章 一元一次方程 章末检测卷

第5章 一元一次方程 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2021·哈尔滨德强学校七年级期中)下列是一元一次方程的是( ) A .2x +1B .3+2=5C .x +2=3D .x 2=02.(2021·浙江七年级课时练习)若x y =,则下列式子:①11y x -=-;①33x y =-;①11x y -=-;①3223x y +=+,正确的有( ) A .1个B .2个C .3个D .4个3.(2021·河北七年级期末)整式2ax b +的值随x 的取值不同而不同,下表是当x 取不同的值时对应的整式的值,则关于x 的方程22ax b --=的解是( )1C .2x =-D .2x =4.(2021·绵阳市七年级课时练习)如果方程331157n x --=是关于x 的一元一次方程,则n 的值为( ) A .2B .4C .3D .15.(2021·浙江七年级单元测试)下列变形正确的是( ) A .方程54x =-的解是54x =-B .把方程532x x -=-移项得:352x x +=-C .把方程()2352x x --=去括号得:2352x x --=D .方程18233x x -=+的解是3x =6.(2021·重庆市天星桥中学七年级月考)某项工作甲单独做需4天完成,乙单独做需6天完成,若甲先做了一天,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111448x x -++= 7.(2021·浙江七年级期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A.3个B.4个C.5个D.6个8.(2021·山西七年级期末)数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x人先做4h.小亮列的方程是:48(2)14040x x++=,其中,“440x”表示的意思是“x人先做4h完成的工作量”,“8(2)40x+”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x⨯+=,其中,“(48)40x+”表示的意思是()A.先工作的x人前4小时和后8小时一共完成的工作量B.增加2人后,(x+2)人再做8小时完成的工作量C.增加2人后,新增加的2人完成的工作量D.x人先做4小时完成的工作量9.(2021·河南七年级期中)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是11222y y+=-小明翻看了书后的答案,此方程的解是y=53-,则这个常数是()A.1B.2C.3D.410.(2021·山东七年级期末)关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,则符合条件的整数m的值可能是()A.-1B.3C.1D.2 11.(2021·江苏)如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为()A .63B .72C .99D .11012.(2021·江苏七年级期末)球赛积分表问题: 某次篮球联赛积分表:2分;③如果一个队胜m 场,则该队的总积分为()12m +分;④不可能有一个球队的胜场总积分等于它的负场总积分.以上说法正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2020·浙江杭州市·七年级期末)已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______.14.(2021·湖北七年级期中)马小虎计算一个数乘以5,再加24,由于粗心,把乘号看成除号,加号看成减号,但得数是正确的.这道题的正确得数是__.15.(2021·浙江)实验室里,水平桌面上有半径相同的甲、乙、丙三个圆柱形容器(容器足够高),用两个相同的管子在容器的6cm 高度处连通(即管子底端离容器底6cm ).现三个容器中,只有甲中有水,水位高2cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升5c m 6,则开始注入_____分钟的水量后,乙的水位高度比甲的水位高度高0.5cm .16.(2021·重庆市天星桥中学七年级月考)(选自《课堂导报》30期)某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的23.已知7月份团体票每张20元,共售出团体票数的35,零售票每张24元,共售出零售票数的12;如果在8月份,团体票按每张25张售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张______________元. 17.(2021·湖南七年级期末)一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:0m n ==时,我们称使得2323m n m n ++=+成立的一对数,m n 为“相伴数对”,记为(,)m n . (1)若(2,)n 是“相伴数对”,则n =_______;(2)(,)m n 是“相伴数对”,则代数式321[(679)]433m n n m ---+++的值为_______. 18.(2021·浙江杭州外国语学校七年级期末)[)x 表示大于x 的最小整数,如[)[)3.24,32=-=-,则下列判断:①2563⎡⎫-=-⎪⎢⎣⎭;②[)x x -有最小值是-1;③[)x x -有最大值是0;④存在实数x ,使[)0.5x x -=-成立;⑤若m 为整数,m x 为任意实数,则[)[)m x m x +=+,其中正确的是___________(填编号).三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(2021·浙江七年级期末)解方程: (1)2143335x x x ---=- (2)0.20.40.050.20.50.03x x x ---=20.(2021·山西临汾市·七年级期中)阅读理解:已知a ,b 为有理数,且a ≠0,若关于x 的一元一次方程ax =b 的解为x =b +a ,我们就定义该方程为“和解方程”.例如:方程2x =﹣4的解为x =﹣2,因为﹣2=﹣4+2,所以方程2x =﹣4是“和解方程”.请根据上述定义解答下列问题:(1)方程3x =﹣6 “和解方程”;(填“是”或“不是”) (2)已知关于x 的一元一次方程5x =m 是“和解方程”,求m 的值;(3)已知关于x 的一元一次方程4x =ab +b 是“和解方程”,且它的解是x =b ,则a ,b 的值分别为 , .21.(2021·重庆七年级期末)阅读下列材料: 问题:怎样将0.8⋅表示成分数? 小明的探究过程如下:设0.8x ⋅=① 10100.8x ⋅=⨯②108.8x ⋅=③ 1080.8x ⋅=+④108x x =+⑤ 98x =⑥89x =⑦根据以上信息,回答下列问题:(1)从步骤①到步骤②,变形的依据是______ ;从步骤⑤到步骤⑥,变形的依据是______ ; (2)仿照上述探求过程,请你将0.36⋅⋅表示成分数的形式.22.(2021·江苏泰州市·高港实验学校七年级月考)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数--“好数”. 定义:对于三位自然数n ,若各位数字都不为0,且百位上的数字与十位上的数字之和恰好能被个位上的数字整除,则称这个三位自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除,所以426是“好数”:643不是“好数”,因为6+4=10,10不能被3整除,所以643不是“好数”.(1)判断134,614是否是“好数”?并说明理由;(2)求出百位上的数字比十位上的数字大7的所有“好数”.23.(2021·黑龙江)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.请你通过计算说明哪种方案省钱.24.(2021·重庆实验外国语学校九年级二模)4月30日,某水果店购进了100千克水蜜桃和50千克苹果,苹果的进价是水蜜桃进价的1.2倍,水蜜桃以每千克16元的价格出售,苹果以每千克20元的价格出售,当天两种水果均全部售出,水果店获利1800元.(1)求水蜜桃的进价是每千克多少元?(2)5月1日,该水果店又以相同的进价购进了300千克水蜜桃,第一天仍以每千克16元的价格出售,售出了8a千克,且售出量已超过进货量的一半.由于水蜜桃不易保存,第二天,水果店将水蜜桃的价格降低了a%,到了晚上关店时,还剩20千克没有售出,店主便将剩余水蜜桃分发给了水果店员工们,结果这批水蜜桃的利润为2660元,求a的值.25.(2021·福建)某市居民生活用电实行分档累进递增的阶梯电价,按户月均用电量分三档,普通电价表如下:档电价基础上加价0.03元/度;低谷时段8:00—22:00以外时间,其电价在各档电价基础上加价-0.2元/度.小明家9月电表示数变化情况如下表:_______元/度:(2)①计算小明家这个月的普通电费;②若申请“峰谷电价”,9月份能省钱吗?省多少钱?(3)若小明家6月的用电量为350度且峰电量超过230度,他们申请“峰谷电价”后,能节约18.5元,问小明家6月份高峰时段、低谷时段用电量分别是多少?AB=,26.(2021·重庆市天星桥中学七年级月考)如图,在长方形ABCD中,12cm→→→的路线运动,点N以2cm/s 8cmBC=.点M以1cm/s的速度从A出发,沿A B C D→→→的路线运动,若点M,N同时出发,当点N到达A点的速度从D出发,沿D C B A时,M,N两点同时停止运动.运动时间为()s t.(1)当t为何值时,点M,N在运动路线上相遇:(2)当点M,点N在运动路线上相距的路程为11cm时,求t的值.(3)在M,N相遇之前,是否存在直线MN把矩形周长分为1:3的两部分,若存在,请直接写出此时t的值,若不存在,请说明理由;第5章 一元一次方程 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2021·哈尔滨德强学校七年级期中)下列是一元一次方程的是( ) A .2x +1 B .3+2=5C .x +2=3D .x 2=0【答案】C【分析】利用一元一次方程定义解答即可.【详解】解:A 、2x +1不是方程,故此选项不合题意; B 、3+2=5,不含未知数,不是方程,故此选项不合题意; C 、x +2=3是一元一次方程,故此选项符合题意; D 、x 2=0是一元二次方程,故此选项不合题意;故选C .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义:只含有一个未知数,且未知数的次数为1.2.(2021·浙江七年级课时练习)若x y =,则下列式子:①11y x -=-;①33x y =-;①11x y -=-;①3223x y +=+,正确的有( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据等式的性质,等式的两边同时加上(或减去)同一个数(或整式),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或整式),等式仍成立. 【详解】解:①利用等式的基本性质1,两边都减1即可得到,故①正确; ①左边乘3,右边乘3-,故①错误;①由x y =两边都乘1-,得到x y -=-,两边再都加1,得到11x y -+=-+,即11x y -=-,故①正确;①左边乘3加2,右边乘2加3,故①错误.故选:B.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或整式),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或整式),等式仍成立.掌握等式的基本性质是解题关键 .3.(2021·河北七年级期末)整式2ax b +的值随x 的取值不同而不同,下表是当x 取不同的值时对应的整式的值,则关于x 的方程22ax b --=的解是( )1C .2x =-D .2x =【答案】A【分析】根据图表求得一元一次方程−ax −2b =2为2x +2=2,即可得出答案. 【详解】解:∵当x =0时,ax +2b =−2,∴2b =−2,b =−1,∵x =−2时,ax +2b =2,∴−2a −2=2,a =−2,∴−ax −2b =2为2x +2=2,解得x =0.故选:A .【点睛】本题主要考查解一元一次方程,正确得出一元一次方程是解题的关键.4.(2021·绵阳市七年级课时练习)如果方程331157n x --=是关于x 的一元一次方程,则n 的值为( ) A .2 B .4 C .3 D .1【答案】B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).根据未知数的指数为1可求出n 的值. 【详解】解:由方程是关于x 的一元一次方程可知x 的次数是1, 故31n -=,所以4n =.故选:B .【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件.这是这类题目考查的重点. 5.(2021·浙江七年级单元测试)下列变形正确的是( ) A .方程54x =-的解是54x =-B .把方程532x x -=-移项得:352x x +=-C .把方程()2352x x --=去括号得:2352x x --=D .方程18233x x -=+的解是3x =【答案】D【分析】根据一元一次方程的解法分别判断即可.【详解】解:A 、方程54x =-的解是45x =-,故错误;B 、把方程532x x -=-移项得:352x x -=-,故错误;C 、把方程()2352x x --=去括号得:23152x x -+=,故错误;D 、方程18233x x -=+的解是3x =,故正确;故选D .【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.6.(2021·重庆市天星桥中学七年级月考)某项工作甲单独做需4天完成,乙单独做需6天完成,若甲先做了一天,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111448x x -++= 【答案】C【分析】合作的天数减1即可确定乙工作的天数,利用总的工作量为1列出方程即可. 【详解】解:若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x 天,乙工作的天数为(x -1),根据题意得:1146x x -+=,故选:C . 【点睛】本题考查了由实际问题抽象出一元一次方程,找到关键描述语,找到等量关系是解决问题的关键.工程问题中常用的关系式有:工作时间=工作总量÷工作效率.7.(2021·浙江七年级期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .3个B .4个C .5个D .6个【答案】B【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出.【详解】解:∵最后输出的数为656,∴5x +1=656,得:x =131>0, ∴5x +1=131,得:x =26>0,∴5x +1=26,得:x =5>0,∴5x +1=5,得:x =0.8>0;∴5x +1=0.8,得:x =-0.04<0,不符合题意, 故x 的值可取131,26,5,0.8共4个.故选:B .【点睛】本题立意新颖,借助新运算,实际考查一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.8.(2021·山西七年级期末)数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h .小亮列的方程是:48(2)14040x x ++=,其中,“440x ”表示的意思是“x 人先做4h 完成的工作量”,“8(2)40x +”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x ⨯+=,其中,“(48)40x +”表示的意思是( )A .先工作的x 人前4小时和后8小时一共完成的工作量B .增加2人后,(x+2)人再做8小时完成的工作量C .增加2人后,新增加的2人完成的工作量D .x 人先做4小时完成的工作量 【答案】A【分析】根据先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,解答即可.【详解】解:∵设安排x 人先做4h ,然后增加2人与他们一起做8小时,完成这项工作. ∴可得先工作的x 人共做了(4+8)小时,∴列式为:先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,而x 人1小时的工作量为40x,∴x 人(4+8)小时的工作量为(48)40x+, ∴(48)40x+表示先工作的x 人前4h 和后8h 一共完成的工作量,故选A . 【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键. 9.(2021·河南七年级期中)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是11222y y +=-小明翻看了书后的答案,此方程的解是y =53-,则这个常数是( )A .1B .2C .3D .4【答案】B【分析】设所缺的部分为x ,2y +12=12y -x ,把y=- 53代入,即可求得x 的值.【详解】解:设所缺的部分为x , 则2y +12=12y -x , 把y =-53 代入, 求得x =2. 故选B .【点睛】 考查了一元一次方程的解的定义,解决本题的关键是要熟练掌握一元一次方程的解的定义.10.(2021·山东七年级期末)关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,则符合条件的整数m 的值可能是( ) A .-1 B .3 C .1 D .2【答案】A【分析】由题意可得21x m =-,根据关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解可得2与1m -是倍数关系,进而求解即可得.【详解】解:由15142323mx x ⎛⎫-=- ⎪⎝⎭可得:21x m =-,∵关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,且m 为整数,∴11m -=-或-2,∴0m =或-1,故选:A .【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键. 11.(2021·江苏)如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为( )A .63B .72C .99D .110【答案】A【分析】设出正方形A 的边长,进而表示出其他正方形的边长,根据长方形的长相等列出方程,求出方程的解得到x 的值,进而求出长方形的面积即可.【详解】解:设正方形A 的边长为x ,则正方形B 的边长为1x +,正方形C 的边长为2x +,正方形D 的边长为3x +,根据图形得:2331x x x x +++=++,解得:2x =, 则长方形的面积为(23)(12)(25)(23)9763x x x x x x ++++++=++=⨯=.故选:A .【点睛】此题考查了一元一次方程的应用,弄清图形中的数量关系是解本题的关键. 12.(2021·江苏七年级期末)球赛积分表问题: 某次篮球联赛积分表:①负一场积1分; ②胜一场积2分;③如果一个队胜m 场,则该队的总积分为()12m +分; ④不可能有一个球队的胜场总积分等于它的负场总积分. 以上说法正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据钢铁队的积分情况可判断①,根据东方队的积分情况可判断②,根据负一场和胜一场的积分可判断③,设某队胜a 场,根据题意列出方程,解之即可.【详解】解:①∵钢铁队胜场为0,负场为12,积分为12,∴12÷12=1,即负一场记1分,故正确;②根据东方队胜场为10,负场为2,积分为22,∴(22-2)÷10=2,即胜一场记2分,故正确;③如果一个队胜m 场,则该队的总积分为2m+(12-m )=12+m (分),故正确;④设某队胜a 场,则负12-a 场,由题意得2a=12-a ,解得:a=4,因为a 是整数,所以存在某队胜场总积分能等于它的负场总积分,故错误;故选C . 【点睛】此题考查一元一次方程的实际运用,看清表格中蕴含的数量关系是解决问题的关键. 二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2020·浙江杭州市·七年级期末)已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______. 【答案】y =-673【分析】根据题意得出-(3y -2)的值,进而得出答案. 【详解】解:∵关于x 的一元一次方程320212021xx a +=+①的解为x =2021, ∴关于y 的一元一次方程()3232021322021y y a --=--②中-(3y -2)=2021, 解得:y =-673,故答案为:y =-673.【点睛】此题主要考查了一元一次方程的解,正确得出-(3y -2)的值是解题关键. 14.(2021·湖北七年级期中)马小虎计算一个数乘以5,再加24,由于粗心,把乘号看成除号,加号看成减号,但得数是正确的.这道题的正确得数是__. 【答案】﹣26.【分析】设这个数为x ,则由题目中的得数相等列方程,即可求解. 【详解】设这个数为x ,则由题意可列方程:5x +24=15x ﹣24,5x ﹣15x =﹣24﹣24,245x =﹣48,x =﹣10,∴这个数为﹣10,∴这道题的正确得数是:5×(﹣10)+24=﹣26,故答案为:﹣26.【点睛】本题考了一元一次 方程的运用,解题的关键是找准等量关系,列出一元一次方程. 15.(2021·浙江)实验室里,水平桌面上有半径相同的甲、乙、丙三个圆柱形容器(容器足够高),用两个相同的管子在容器的6cm 高度处连通(即管子底端离容器底6cm ).现三个容器中,只有甲中有水,水位高2cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升5c m 6,则开始注入_____分钟的水量后,乙的水位高度比甲的水位高度高0.5cm .【答案】3或9.3【分析】在容器乙中的水未注入容器甲之前,注入的水仅存放在乙、丙容器内;在容器乙中的水注入容器甲之后,注入容器乙和丙中的水流入到甲容器中,在注入的过程中产生0.5cm 的高度差.【详解】解:当容器乙中的水未注入容器甲之前,由题意,注入单个容器中水位上升的高度与时间的关系为5c m 6/分钟, 所以当乙中水位为2.5cm 时满足条件,所用时间为:2.5÷56=3(分钟);当容器乙中的水注入容器甲之后,当甲容器中的水位为5.5cm ,容器乙中的水位为6cm 时, 满足题意,设注水时间为x ,则2×56x +2=2×6+5.5,解得x =9.3(分钟),要使乙中水位高出甲0.5cm ,则需注水的时间为:9.3分钟.故答案为:3或9.3. 【点睛】此题考查了一元一次方程的应用,根据题意分析产生水位差的两种情况是解答本题的关键点,建立方程时要注意甲容器中原有的水.16.(2021·重庆市天星桥中学七年级月考)(选自《课堂导报》30期)某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的23.已知7月份团体票每张20元,共售出团体票数的35,零售票每张24元,共售出零售票数的12;如果在8月份,团体票按每张25张售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张______________元. 【答案】32【分析】设总票数为a 张,8月份零售票按每张x 元定价,则团体票数为23a ,零售票数为13a ,根据等量关系7月份票款数8=月份票款数,列出方程,再求解.【详解】解:设总票数为a 张,8月份零售票按每张x 元定价,由题意得:321232122024()25(1)()53235323a a a a a a x ⨯⨯⨯+⨯-=⨯-⨯+-,2018436a a a ax ∴+=+,∴11663x =.32x ∴=. 即:零售票应按每张32元定价,才能使这两个月的票款总收入相等.故答案是:32. 【点睛】此题考查一元一次方程的实际运用,设出参数,找出题目蕴含的数量关系列出方程解决问题.17.(2021·湖南七年级期末)一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:0m n ==时,我们称使得2323m n m n ++=+成立的一对数,m n 为“相伴数对”,记为(,)m n . (1)若(2,)n 是“相伴数对”,则n =_______;(2)(,)m n 是“相伴数对”,则代数式321[(679)]433m n n m ---+++的值为_______. 【答案】92- -2【分析】(1)根据“相伴数对”的定义可得222323n n++=+,解此方程即可求解;(2)根据“相伴数对”的定义可得2323m n m n ++=+,则可求出940m n +=,然后先将原式化简,代入计算即可求值.【详解】解:(1)∵(2,)n 是“相伴数对”, ∴222323n n ++=+解得92n =-.故答案为:92-.(2)∵(,)m n 是“相伴数对”, ∴2323m n m n++=+,解得940m n +=, ∵321[(679)]433m n n m ---+++327[23]433m n n m =---+++32723433m n n m=-+---155243m n =--- ()594212m n =-+-,∴原式=502212-⨯-=-.故答案为:-2. 【点睛】本题考查了一元一次方程的应用,解决本题的关键是理解题目中“相伴数对”的定义. 18.(2021·浙江杭州外国语学校七年级期末)[)x 表示大于x 的最小整数,如[)[)3.24,32=-=-,则下列判断:①2563⎡⎫-=-⎪⎢⎣⎭;②[)x x -有最小值是-1;③[)x x -有最大值是0;④存在实数x ,使[)0.5x x -=-成立;⑤若m 为整数,m x 为任意实数,则[)[)m x m x +=+,其中正确的是___________(填编号).【答案】②④⑤【分析】根据题意[x )表示大于x 的最小整数,结合各项进行判断即可得出答案. 【详解】解:①2553⎡⎫-=-⎪⎢⎣⎭,故本判断错误;②当x 为整数时,[)1x x -=-,当x 为小数时,[)10x x -<-<∴[)x x -最小为-1;故本判断正确; ③由②得,[)0x x -≠,故本判断错误; ④存在实数x ,使[)0.5x x -=-成立,故本判断正确;⑤[)[)3210-+=-= [)32330-+=-+= [)[)5 3.28.28--=-=-[)()5 3.2538-+-=-+-=-∴[)[)m x m x +=+成立,∴正确的判断是②④⑤故答案为:②④⑤【点睛】此题考查了解一元一次不等式,仔细审题,理解[x )表示大于x 的最小整数是解答本题的关键.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(2021·浙江七年级期末)解方程: (1)2143335x x x ---=- (2)0.20.40.050.20.50.03x x x ---=【答案】(1)x =197-;(2)x =4417【分析】(1)方程去分母,去括号,移项,合并同类项,把未知数系数化为1即可. (2)方程整理后,去分母,去括号,移项,合并同类项,把未知数系数化为1即可. 【详解】解:(1)2143335x x x ---=-, 去分母得45-5(2x -1)=3(4-3x )-15x , 去括号得45-10x +5=12-9x -15x , 移项得-10x +9x +15x =12-45-5, 合并得14x =-38, 系数化为1得x =197-; (2)0.20.40.050.20.50.03x x x ---=, 方程组化简为:2452053x x x ---=, 去分母得3(2x -4)-15x =5(5x -20), 去括号得6x -12-15x =25x -100, 移项得6x -15x -25x =-100+12, 合并同类项得-34x =-88, 系数化为1得x =4417. 【点睛】本题考查了解一元一次方程:掌握解一元一次方程的步骤(去分母、去括号、移项、合并同类项、系数化为1);针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a形式转化.20.(2021·山西临汾市·七年级期中)阅读理解:已知a ,b 为有理数,且a ≠0,若关于x 的一元一次方程ax =b 的解为x =b +a ,我们就定义该方程为“和解方程”.例如:方程2x =﹣4的解为x =﹣2,因为﹣2=﹣4+2,所以方程2x =﹣4是“和解方程”.请根据上述定义解答下列问题:(1)方程3x =﹣6 “和解方程”;(填“是”或“不是”) (2)已知关于x 的一元一次方程5x =m 是“和解方程”,求m 的值;(3)已知关于x 的一元一次方程4x =ab +b 是“和解方程”,且它的解是x =b ,则a ,b 的值分别为 , . 【答案】(1)不是(2)254m =-(3)3,43-. 【分析】(1)先解方程,再根据“和解方程“的定义判断,(2)根据“和解方程“的定义得出x =5+m ,再将其代入方程5x =m 之中进一步求解即可; (3)根据“和解方程“的定义得出4x ab b =++,结合方程的解为x =b ,进一步得出4ab =-,然后代入原方程得43b =-,之后进一步求解a 即可.【详解】(1)∵36x =-的解为2x =-,而2633-≠-+=- ∴方程3x =﹣6不是“和解方程” 故答案为:不是; (2)依题意,方程解为5mx =, ∵一元一次方程5x =m 是“和解方程”,∴5x m =+, ∴将5m x =代入方程5x m =+,解得254m =-,故答案为:254-; (3)依题意,方程解为4x ab b =++,又x b =,∴4ab =-,∴把x b =,4ab =-代入原方程4x ab b =+得:,解得:43b =-,∵4ab =-,∴3a =,故答案为:3,43-.【点睛】本题主要考查了一元一次方程的求解,根据题意准确得知“和解方程”的基本性质是解题关键.21.(2021·重庆七年级期末)阅读下列材料: 问题:怎样将0.8⋅表示成分数? 小明的探究过程如下:设0.8x ⋅=① 10100.8x ⋅=⨯②108.8x ⋅=③ 1080.8x ⋅=+④108x x =+⑤ 98x =⑥89x =⑦根据以上信息,回答下列问题:(1)从步骤①到步骤②,变形的依据是______ ;从步骤⑤到步骤⑥,变形的依据是______ ; (2)仿照上述探求过程,请你将0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等 等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等;(2)114x =【分析】(1)根据等式的性质进行填空;(2)设0.36x =,两边同时乘以100,可得10036x x =+,解方程可得结论.【详解】解:1()从步骤①到步骤②,变形的依据是:等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等⋯从步骤⑤到步骤⑥,变形的依据是:等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等.⋯故答案为:等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等.2()设0.36,..x = 100100036x ⋅⋅=⨯⋯., 1003636x ⋅⋅=.,10036x x =+⋯, 9936x =,411x =. 【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.22.(2021·江苏泰州市·高港实验学校七年级月考)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数--“好数”. 定义:对于三位自然数n ,若各位数字都不为0,且百位上的数字与十位上的数字之和恰好能被个位上的数字整除,则称这个三位自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除,所以426是“好数”:643不是“好数”,因为6+4=10,10不能被3整除,所以643不是“好数”. (1)判断134,614是否是“好数”?并说明理由;(2)求出百位上的数字比十位上的数字大7的所有“好数”.【答案】(1)134是“好数”, 614不是“好数”,理由见解析;(2)百位上的数字比十位上的。

第五章《一元一次方程》单元测试(含答案)

第五章《一元一次方程》单元测试(含答案)

第五章一元一次方程单元测试一、单选题(共10题;共30分)1、已知关于x的方程2x+a-9=0的解是x=2,则a的值为()A、2B、3C、4D、52、某书店把一本新书按标价的九折出售,仍可获得20%.若该书的进价为21元,则标价为()A、26元B、27元C、28元D、29元3、武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的问隔相等.如果每隔5米栽l棵,则树苗缺21棵;如果每隔6米栽l棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A、5(x+21-1)=6(x-1) ;B、5(x+21)=6(x-1) ;C、5(x+21-1)=6xD、5(x+21)=6x4、方程3x+6=0的解是()A、2B、-2C、3D、-35、方程=1时,去分母正确的是().A、4(2x-1)-9x-12=1B、8x-4-3(3x-4)=12C、4(2x-1)-9x+12=1D、8x-4+3(3x-4)=126、一益智游戏分二阶段进行,其中第二阶段共有25题,答对一题得3分,答错一题扣2分,不作答得0分.若小明已在第一阶段得50分,且第二阶段答对了20题,则下列哪一个分数可能是小明在此益智游戏中所得的总分()A、103分B、106分C、109分D、112分7、某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A、6折B、7折C、8折D、9折8、小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是()A、25斤B、20斤C、30斤D、15斤9、若关于x的一元一次方程k(x+4)﹣2k﹣x=5的解为x=﹣3,则k的值是()A、﹣2B、2C、D、﹣10、下列方程中是一元一次方程的是()A、B、x2=1 C、2x+y=1 D、二、填空题(共8题;共30分)11、甲乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过________ 秒钟两人首次相遇.12、无论x取何值等式2ax+b=4x-3恒成立,则a+b=________。

人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.下列式子是一元一次方程的是()A.6x-5B.2−x3=1C.xy=5D.2x-1x=32.下列方程中,解为x=4的方程是()A.x-1=4B.4x=1C.4x-1=3x+3D.2(x-1)=13.下列变形中,正确的是()A.若a=b,则a+1=b-1B.若a-b+1=0,则a=b+1C.若a=b,则ax =b xD.若a3=b3,则a=b4.方程x2-1=2的解是() A.x=2 B.x=3C.x=5D.x=65.对于方程-3x-7=12x+6,下列移项正确的是()A.-3x-12x=6+7B.-3x+12x=-7+6C.-3x-12x=7-6D.12x-3x=6+76.选项中的变形,正确的是()A.将5x-4=2x+6移项,得5x-2x=6-4B.将4x=2系数化为1,得x=12C.将2(x-3)=-3(-x+6)去括号,得2x-6=-3x-18D.将12-x+13=1去分母,得3-2(x +1)=17.若单项式-2x 5yz n +1和13x 2m +1yz 3是同类项,则m +n 的值为 ( )A.3B.4C.6D.58.若☆是规定的新运算符号,定义a ☆b =ab +a +b ,则在3☆x =-9中,x 的值是 ( )A.3B.-3C.4D.-49.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问:人数、物价各是多少?若设物价是x 钱,则根据题意列一元一次方程,正确的是 ( )A.x−38=x+47B.x+38=x−47C.x−48=x+37D.x+48=x−3710.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打( )A.五折B.六折C.七折D.八折 二、填空题(每小题3分,共30分)11.写出一个解是x =2 023的一元一次方程: . 12.若(m -1)x |m |=7是关于x 的一元一次方程,则m = . 13.当a = 时,2(2a -3)的值比3(a +1)的值大1.14.已知4m +2n -5=m +5n ,利用等式的性质比较m 与n 的大小关系:m n (填“>”“<”或“=”). 15.若方程-x+n 3=34-2x+14的解是-5的相反数,则n = .16.一个两位数,十位数字是个位数字的3倍,将两个数字对调后得到的新两位数比原来的两位数小36,则原来的两位数是 .17我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是跑得快的马每天走240里(1里=0.5千米),跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 .18.有一则故事,大致内容是某人工作一年的报酬是年终给他一件农具和11枚银币,但他干满8个月就决定不再继续干了,结账时,给了他一件农具和5枚银币,则这件农具值 枚银币.19.小马同学在解关于x 的方程2a -5x =21时,误将“-5x ”看成了“+5x ”,得方程的解为x =3,则原方程的解为 . 20.小敏两岁时父亲28岁,现在父亲的年龄是小敏年龄的2倍,现在小敏的年龄是 岁. 三、解答题(共40分) 21(6分)解下列方程: (1)x +x2+2x =180-x ; (2)x−12=1-3x+25.22.(8分)学习了一元一次方程的解法,下面是一道解方程的问题及小明同学解题过程的第一步: 解方程:2x−0.30.5-x+0.40.3=1.解:原方程可化为20x−35-10x+43=1.(1)小明解题的第一步依据是 ;(填“等式的性质”或“分数的性质”) (2)请写出完整的解题过程.23.(8分)在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足|a +2|+(b -3)2=0.点C 在数轴上表示的数为x ,且x 满足方程23x -7=2x +1.求BC -AB 的值.24.(8分)一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)甲、乙两工程队合作修建需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算) 25.(10分)下表中有两种移动电话计费方式:月使用费(元)主叫限定 时间(min) 主叫超时费(元/min)方式一 58 200 a 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收主叫超时费. (1)如果某月的主叫时间为500 min,按方式二计费应交费 元; (2)当某月的主叫时间为350 min 时,两种方式收费相同,求a 的值; (3)在(2)的条件下,如果每月主叫时间超过400 min,选择哪种方式更省钱?答案全解全析一、选择题1.B 6x -5不含等号,不是方程.2−x 3=1,是一元一次方程.xy =5,有两个未知数,不是一元一次方程.2x -1x =3,分母中含未知数,不是一元一次方程.故选B .2.C 将x =4分别代入方程的左右两边,左右两边相等的是4x -1=3x +3. 3.D a 3=b 3,等式两边同乘3,得a =b.4.Dx 2-1=2,移项,得x2=2+1合并同类项,得x2=3系数化为1,得x =6,故选D . 5.A 移项得-3x -12x =6+7,故选A. 6.B 将5x -4=2x +6移项,得5x -2x =6+4; 将4x =2系数化为1,得x =12;将2(x -3)=-3(-x +6)去括号,得2x -6=3x -18; 将12-x+13=1去分母,得3-2(x +1)=6.故选B .7.B 由-2x 5yz n +1和13x 2m +1yz 3是同类项,得2m +1=5,n +1=3,解得m =2,n =2,所以m +n =4. 8.B 根据题中的新定义得3x +3+x =-9 移项,得3x +x =-9-3 合并同类项,得4x =-12 系数化为1,得x =-3.9.B 本题根据人数不变可列出一元一次方程.已知物价是x 钱,根据题意,得x+38=x−47.10.D 设商店打x 折,依题意,得180×0.1x -120=120×20%,解得x =8.故商店应打八折.故选D . 二、填空题11.2x =4 046(答案不唯一) 12.-1解析 因为方程(m -1)x |m |=7是关于x 的一元一次方程,所以m -1≠0且|m |=1,解得m =-1. 13.10解析 根据题意,得2(2a -3)-3(a +1)=1 去括号,得4a -6-3a -3=1 移项,得4a -3a =1+6+3 合并同类项,得a =10. 14.>解析 移项、合并同类项,得3m -3n =5 等式的两边都除以3,得m -n =53,因为53>0 所以m >n. 15.1解析 根据题意得x =-(-5)=5 把x =5代入-x+n 3=34-2x+14得-5+n 3=34-10+14,解得n =1.16.62解析 设原来两位数的个位数字是x ,则它的十位数字是3x ,根据题意得10×3x +x -(10x +3x )=36 解得x =2,所以3x =6 所以原来的两位数是62. 17.(240-150)x =150×12解析 本题等量关系为“快马比慢马每天多走的路程×快马走的天数=慢马每天走的路程×12”,故可列方程为(240-150)x =150×12. 18.7解析 设这件农具值x 枚银币,依题意,得x+1112=x+58,解得x =7,故这件农具值7枚银币.19.x =-3解析 根据题意,可得x =3是方程2a +5x =21的解.所以2a +15=21 解得a =3,即原方程为6-5x =21,解得x =-3. 20.26解析 设小敏现在的年龄为x 岁,则父亲现在的年龄是2x 岁,由题意得2x -x =28-2,解得x =26. 故小敏现在的年龄为26岁. 三、解答题21.解析 (1)移项,得x +x2+2x +x =180 合并同类项,得9x2=180系数化为1,得x =40.(2)去分母,得5(x -1)=10-2(3x +2) 去括号,得5x -5=10-6x -4 移项,得5x +6x =10-4+5 合并同类项,得11x =11 系数化为1,得x =1. 22.解析 (1)分数的性质.(2)原方程可化为20x−35-10x+43=1去分母,得3(20x -3)-5(10x +4)=15 去括号,得60x -9-50x -20=15 移项,得60x -50x =15+9+20 合并同类项,得10x =44 系数化为1,得x =4.4. 23.解析 因为|a +2|+(b -3)2=0 所以a +2=0,b -3=0 解得a =-2,b =3所以点A ,B 表示的数分别为-2,3. 解23x -7=2x +1得x =-6 所以点C 表示的数为-6因为点A 表示的数为-2,点B 表示的数为3 所以AB =3-(-2)=5,BC =3-(-6)=9 所以BC -AB =9-5=4.24.解析 (1)设甲、乙两工程队合作修建需x 个月完成 根据题意,得(13+16)x =1解得x =2.(12+5)×2=34(万元).答:甲、乙两工程队合作修建需2个月完成,共耗资34万元.(2)设甲、乙两工程队合作修建y 个月,剩下的由乙工程队来完成,且恰好4个月完工. 根据题意,得(13+16)y +4−y 6=1,解得y =1,则4-y =3.故甲、乙两工程队合作修建1个月,剩下的再由乙工程队来修建3个月,就可以保证按时完成任务且最大限度节省资金.25.解析(1)113.(2)由题意得,58+(350-200)a=88,解得a=0.2所以a的值为0.2.(3)设每月主叫时间为x分钟.当x>400时,按方式二计费应交费88+0.25(x-400)=(0.25x-12)元.按方式一计费应交费58+0.2(x-200)=(0.2x+18)元.当0.2x+18=0.25x-12时,解得x=600所以当400<x<600时,选择计费方式二更省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一更省钱.。

浙教版第五章一元一次方程单元测试题

浙教版第五章一元一次方程单元测试题

第五章 一元一次方程 单元评估一、 选择题(每小题3分,共30分) 1.下列等式中是一元一次方程的是 ( )A .S=21ab B. x -y=0 C. x=2x -3 D .321+x =1 2.下列方程中,解是2x =的是 ( ) A .2 4.x = B .1 4.2x = C .4 2.x = D .1 2.4x = 3.下列解方程过程中,变形正确的是 ( ) A.由2x-1=3得2x=3-1 B.由4x +1=1.013.0+x +1.2得4x +1=1103+x +12 C.由-75x=76得x=-7675 D.由3x -2x =1 得2x-3x=6 4.已知x=-3是方程k(x+4)-x = 5的解,则k 的值是 ( ) A.-2 B.2 C.3 D.5 5.若代数式x -31x +的值是2,则x 的值是 ( ) (A)0.75 (B)1.75 (C)1.5 (D) 3.5 6.方程∣2x -6∣=0的解是 ( ) A.3 B.-3 C.±3 D.31 7.若代数式3a 4b x 2与0.2 a 4b 13-x 是同类项,则x 的值是 ( ) A.21 B.1 C.31 D.0 8. X=-2是下列方程中哪一个方程的解? ( ) A.-2X+5=3X+10 B.X 2-4=4X C.X(X-2)=-4X D.5X-3=6X-2 9.初一(1)班举行了一次集邮展览,展出的邮票比平均每人3张多24张, 比平均每人4张少26张,这个班共展出邮票的张数是 ( ) A.164 B.178 C.168 D.174 10.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是 ( ) (A)0.4 (B)2.5 (C)-0.4 (D)-2.5 二、填空题(每小题3分,共30分)1、一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程_______________。

2.请写出一个解为x=5的一元一次方程: .3、方程5x -3=7的解是__________.4、关于x 的两个方程5x -3=4x 与ax -12=0的解相同,则a=_______。

七年级数学上册第5章一元一次方程检测卷作业新版浙教版

七年级数学上册第5章一元一次方程检测卷作业新版浙教版

21.(10 分)对于有理数 a,b,规定一种新运算: a*b=ab+2b. (1)计 算 : ( - 4)*5= ________, 4*[(- 3)*2]= ________; (2)已知方程(x-4)*1 =x-4,求 x 的值.
2
解:(1)∵a*b=ab+2b∴(-4)*5=(-4)×5+2
上车,若每辆客车乘 62 人,则最后一辆车空了 8
个座位.在下列四个方程①60m+10=62m-8;②
60m+10=62m+8;③n-10 =n+8 ;④n+10 =
60
62
60
n-8 中,其中正确的有( 62
A
)
A.①③ B.②④ C.①④ D.②③
10.甲、乙两人完成一项工作,甲先做了 3 天, 然后乙加入合作完成剩下的工作,设工作总量为 1,
三、解答题(共 66 分) 17.(6 分)解方程: (1)3(x-2)+6x=5;
解:去括号得:3x-6+6x=5,移项合并得:9x =11,解得:x=11 ;
9
(2)1.5x-2 -0.5=5x .
3
3
解:去分母得:3x-4-3=10x,移项合并得:-
7x=7,解得:x=-1.
18.(8 分)当 x 为何值时,代数式x+1 比代数式 2
工作进度如下表:则完成这项工作共需( A )
天数 第3天 工作进度
第5天
A.9 天 B.10 天 C.11 天 D.12 天
二、填空题(每小题 4 分,共 24 分) 11.已知关于 x 的方程(|m|-2)x2+(m+2)x-9
=0 为一元一次方程,则 m=__2____.
12.已知 x=1 是方程 x+2m=7 的解,则 m=__3__.

最新【浙教版】七年级上册数学第5章《一元一次方程》检测试卷(含答案)

最新【浙教版】七年级上册数学第5章《一元一次方程》检测试卷(含答案)

【浙教版】七年级数学上册一元一次方程测试卷(含答案)阶 段 性 测 试(一)([考查范围:5.1~5.3 总分:100分]一、选择题(每小题4分,共32分)1.下列叙述中正确的是( B ) A .方程是含有未知数的式子 B .方程是等式C .只有含有字母x ,y 的等式才叫方程D .带等号和字母的式子叫方程2.若代数式x +2的值为1,则x 等于( B ) A .1B .-1C .3D .-33.下列等式的变形正确的是( D ) A .如果s =v t ,那么v =ts B .如果12x =6,那么x =3 C .如果-x -1=y -1,那么x =y D .如果a =b ,那么a +2=2+b4.下列方程中是一元一次方程的是( A ) A .4x -5=0B .3x -2y =3C .3x 2-14=2D.1x -2=35.利用等式的性质解方程-23x =32时,应在方程的两边( C ) A .同乘-23 B .同除以-32 C .同乘-32D .同减去-236.运用等式性质的变形,正确的是( B ) A .如果a =b ,那么a +C =b -C B .如果a c =bc ,那么a =b C .如果a =b ,那么a c =bc D .如果a =3,那么a 2=3a 2 7.下列方程中变形正确的是( A )①3x +6=0变形为x +2=0;②2x +8=5-3x 变形为x =3;③x2+x3=4去分母,得3x +2x =24;④(x +2)-2(x -1)=0去括号,得x +2-2x -2=0.A .①③B .①②③C .①④D .①③④8.在解方程x -12-2x +33=1时,去分母正确的是( A ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .3(x -1)-2(2x +3)=3D .2(x -1)-2(2x +3)=6二、填空题(每小题5分,共20分) 9.已知x -3y =3,则7+6y -2x =__1__.10.若(a -1)x |a |=3是关于x 的一元一次方程,则a =__-1__. 11.已知y 1=x +3,y 2=2-x ,当x =__2__时,y 1比y 2大5. 12.在如图所示的运算流程中,若输出的数y =7,则输入的数x =__28或27__.第12题图【解析】当x 是偶数时,有x ÷4=7, 解得:x =28,当x 是奇数时,有(x +1)÷4=7. 解得:x =27.故答案为28或27. 三、解答题(共48分)13.(8分)方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0得:x =-13, -13的倒数为-3,把x =-3代入方程k +x2-3k -2=2x , 得:k -32-3k -2=-6, 解得:k =1.14.(12分)(1)已知方程2x -12=4与关于x 的方程4x -a2=-2()x -1的解相同,求a 的值.(2)x -2x +56=1-2x -32. (3)x -20.2-x +10.5=3.解:(1)解方程2x -12=4得x =92, 把x =92代入方程4x -a2=-2(x -1),得4×92-a2=-2⎝ ⎛⎭⎪⎫92-1, 解得a =50.(2)6x -(2x +5)=6-3(2x -3), 6x -2x -5=6-6x +9, 6x -2x +6x =6+9+5, 10x =20, x =2.(3)5(x -2)-2(x +1)=3, 5x -10-2x -2=3,5x -2x =3+10+2, 3x =15, x =5.15.(10分)下面是某同学解方程的过程,请你仔细阅读,然后回答问题.解:x +12-1=2+2-x 4, x +12-1×4=2+2-x4×4, ① 2x +2-4=8+2-x , ② 2x +x =8+2+2+4, ③ 3x =16, ④ x =163. ⑤(1)该同学有哪几步出现错误? (2)请你写出正确的解答过程. 解:(1)观察得:第①、②、③步出错. (2)正确解法为:去分母得:2x +2-4=8+2-x , 移项得:2x +x =8+2-2+4,合并得:3x =12, 解得:x =4.16.(8分)小明解方程2x -15+1=x +a2时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x =4,试求a 的值,并正确求出方程的解.解:由题意可知(在去分母时,方程左边的1没有乘10,由此求得的解为x =4),2(2x -1)+1=5(x +a ), 把x =4代入得:a =-1,将a =-1代入原方程得:2x -15+1=x -12, 去分母得:4x -2+10=5x -5, 移项合并得:-x =-13,解得:x =13.17.(10分)【阅读】|4-1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4-(-1)|,表示4与-1的差的绝对值,也可以理解为4与-1两数在数轴上所对应的两点间的距离.(1)|4-(-1)|=__5__. (2)|5+2|=__7__.(3)利用数轴找出所有符合条件的整数x ,使得|x +3|=5,则x =__x =2或-8__.(4)利用数轴找出所有符合条件的整数x ,使得|x +3|+|x -2|=5,这样的整数是哪些?第17题图解:(4)∵-3与2两数在数轴上所对应的两点之间的距离是5, ∴使得|x +3|+|x -2|=5成立的整数是-3和2之间的所有整数(包括-3和2),∴这样的整数是-3、-2、-1、0、1、2.阶 段 性 测 试(二)[考查范围:5.1~5.4 总分:100分]一、选择题(每小题4分,共32分)1.若代数式x +2的值为1,则x 等于( B ) A .1B .-1C .3D .-32.下列各题正确的是( D )A .由7x =4x -3移项得7x -4x =3B .由2x -13=1+x -32去分母得2(2x -1)=1+3(x -3) C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=1 D .由2(x +1)=x +7去括号、移项、合并同类项得x =5 3.小明今年11岁,爸爸今年39岁,x 年后爸爸年龄是小明年龄的3倍,则x 的值为( B )A .2B .3C .4D .54.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( D )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D.2×22x=16(27-x)5.(安徽)2 014年我省财政收入比2 013年增长8.9%,2 015年比2014年增长9.5%,若2 013年和2 015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为(C)A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)6.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为200元,按标价的五折销售,仍可获利10%,设这件商品的标价为x元,根据题意列出方程(A)A.0.5x-200=10%×200B.0.5x-200=10%×0.5xC.200=(1-10%)×0.5xD.0.5x=(1-10%)×2007.如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为(B)第7题图A.43公分B.44公分C.45公分D.46公分8.(宁德)如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是(C)第8题图A.①B.②C.③ D.④【解析】解法一:设中间位置的数为A,则①位置数为A-7,④位置为A+7,左②位置为A-1,右③位置为A+1,其和为5A=5a-5,∴a =A +1,即a 为③位置的数; 解法二:5a -5=5(a -1), 则中间的数为a -1,因为方框③表示的数比中间的数大1,所以方框③表示的数就是a ,即数a 所在的方框就是③;故选C.二、填空题(每小题5分,共20分)9.小明同学在解方程x 6-x 2=53时,他是这样做的:解:⎝ ⎛⎭⎪⎫16-12x =53,……①-13x =53,……② x =-5,……③∴x =-5是原方程的解.同桌小洪同学对小明说:“你做错了,第①步应该去分母”,你认为小明做__对__(填“对”或“错”)了,他第①步变形是在__合并同类项__.10.(金华)若a b =23,则a +b b =__53__.【解析】根据等式的性质:两边都加1,a b +1=23+1,则a +b b =53.11.初三某班学生在会议室看录像,每排坐13人,则有1人无处坐,每排坐14人,则空12个座位,则这间会议室共有座位的排数是__13__.12.如图,在数轴上,点A,B分别在原点O的两侧,且到原点的距离都为2个单位长度,若点A以每秒3个单位长度,点B以每秒1个单位长度的速度均向右运动,当点A与点B重合时,它们所对应的数为__4__.第12题图【解析】设点A、点B的运动时间为t,根据题意知-2+3t=2+t,解得:t=2,∴当点A与点B重合时,它们所对应的数为-2+3t=-2+6=4,故答案为4.三、解答题(共48分)13.(8分)(安徽)《九章算术》中有一道阐述“盈不足术”的题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.解:设共有x 人,可列方程为:8x -3=7x +4. 解得x =7,∴8x -3=53,答:共有7人,这个物品的价格是53元.14.(8分)有一列数,按一定的规律排列成-2,4,-8,16,…,其中某三个相邻的数的和为-384,求这三个数.解:设第一个数为x ,则第二个数为-2x ,第三个数为4x . 由题意,得x -2x +4x =-384,解得x =-128,∴-2x =256,4x =-512. 则这三个数分别为-128,256,-512.15.(8分)已知关于x 的方程2(x +1)-m =-m -22的解比方程5(x -1)-1=4(x -1)+1的解大2.(1)求第二个方程的解. (2)求m 的值.解:(1)5(x -1)-1=4(x -1)+1, 5x -5-1=4x -4+1, 5x -4x =-4+1+1+5, x =3.(2)由题意得:方程2(x +1)-m =-m -22的解为x =3+2=5, 把x =5代入方程2(x +1)-m =-m -22得: 2(5+1)-m =-m -22,12-m =-m -22,解得m =22.16.(12分)目前节能灯在各城市已基本普及,今年某市面向县级及农村地区推广,为响应号召,朝阳灯饰商场用了4 200元购进甲型和乙型两种节能灯.这两种型号节能灯的进价、售价如表:特别说明:毛利润=售价-进价(1)朝阳灯饰商场销售甲型节能灯一只毛利润是__5__元. (2)朝阳灯饰商场购买甲、乙两种节能灯共100只,其中买了甲型节能灯多少只?(3)现在朝阳灯饰商场购进甲型节能灯m 只,销售完节能灯时所获的毛利润为y 元.当y =1 080时,求m 的值.解:(2)设买了甲型节能灯x 只,根据题意得 25x +45(100-x )=4 200, 解得x =15,答:买了甲型节能灯15只.(3)购进甲型节能灯m 只,则购进乙型节能灯的数量为4 200-25m45只,根据题意,得:5m +15×4 200-25m 45=1 080, 解得:m =96.17.(12分)“十一”期间,小明跟父亲一起去杭州旅游,出发前小明从网上了解到杭州市出租车收费标准如下:(1)若甲、乙两地相距10千米,乘出租车从甲地到乙地需要付款多少元?(2)小明和父亲从火车站乘出租车到旅馆,下车时计费表显示18元,请你帮小明算一算从火车站到旅馆的距离有多远.(3)小明的母亲乘飞机来到杭州,小明和父亲从旅馆乘出租车到机场去接母亲,到达机场时计费表显示72元,接完母亲,立即沿原路返回旅馆(接人时间忽略不计),请帮小明算一下乘原车返回和换乘另外的出租车各需多少钱.解:(1)根据题意得:10+(10-3)×2=10+14=24(元).答:乘出租车从甲地到乙地需要付款24元.(2)由(1)可知:因为18<24,得出火车站到旅馆的距离超过3千米,但少于10千米,设火车站到旅馆的距离有x千米,则10+2×(x-3)=18,解得:x=7,答:火车站到旅馆的距离有7千米.(3)由(1)可知,出租车行驶的路程超过10千米,设出租车行驶的路程为x千米,根据题意得:10+2(10-3)+3(x-10)=72,解得:x=26,乘原车返回需要花费:24+3×(26×2-10)=150(元),换乘另一辆出租车需要花费:72×2=144(元),∵150>144,∴小明换乘另外的出租车更便宜.阶段性测试(三)[考查范围:6.1~6.4 总分:100分]一、选择题(每小题4分,共32分)1.七棱柱的面数、顶点数、棱数分别是(C)A.9,14,18B.7,14,21C.9,14,21 D.7,14,212.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是(D)第2题图3.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是(C)第3题图4.根据“反向延长线段CD”这句话,下列图中表示正确的是(C)5.下列语句正确的是( B ) A .延长线段AB 到C ,使BC =AC B .反向延长线段AB ,得到射线BA C .取直线AB 的中点D .连结A 、B 两点,并使直线AB 经过C 点6.如图,线段AB =D E ,点C 为线段A E 的中点,下列式子不正确的是( D )第6题图A .BC =CDB .CD =12A E -AB C .CD =AD -C ED .CD =D E7.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( B ) A .1个B .2个C .3个D .4个8.在平面上,如果点A 和点B 到点C 的距离分别为3和4,那么A,B两点的距离d应该是(D)A. d=1B. d=5C. d=7D. 1≤d≤7【解析】若三点在同一条直线上,则d=1或者d=7;若不在同一条直线上,即构成一个三角形,则1≤d≤7,故选D.二、填空题(每小题5分,共20分)9.如图,在一条直线上有A、B、C、D四个点,则图中共有__6__条不同的线段.第9题图10.如图所示,M是AC的中点,N是BC的中点,若A M=1 cm,BC=3 cm,则A N=__3.5__ cm.第10题图11.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为N A的中点,Q为M A的中点,则MN∶PQ 等于__2__.第11题图12.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=3,且A O=2B O,则a+b的值为__-1__.第12题图三、解答题(共48分)13.(8分)如图,已知点C 为AB 上一点,AC =12 cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点,求D E 的长.第13题图解:根据题意,AC =12 cm ,CB =23AC , 所以CB =8 cm ,所以AB =AC +CB =20 cm , 又D 、E 分别为AC 、AB 的中点, 所以D E =A E -AD =12(AB -AC)=4 cm.14.(10分)如图是一个长为4 cm ,宽为3 cm 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π).第14题图解:如图1,绕长边旋转得到的圆柱的底面半径为3 cm ,高为4 cm ,体积=π×32×4=36π cm 3;如图2,绕短边旋转得到的圆柱底面半径为4 cm ,高为3 cm ,体积=π×42×3=48π cm 3.所以绕短边旋转得到的圆柱体积大.15.(10分)指出下列句子的错误,并加以改正: (1)如图1,在线段AB 的延长线上取一点C.(2)如图2,延长直线AB ,使它与直线CD 相交于点P . (3)如图3,延长射线O A ,使它和线段BC 相交于点D.第15题图解:(1)如图1,应为:在线段BA 的延长线上取一点C. (2)如图2,应为:直线AB 与直线CD 相交于点P . (3)如图3,反向延长射线O A ,使它和线段BC 相交于点D. 16.(8分)如图所示,AB =10 cm ,D 为AC 的中点,DC =2 cm ,B E =13BC ,求C E 的长.第16题图解:∵D 为AC 的中点,DC =2 cm. ∴AC =2DC =4 cm.由图可知:BC =AB -AC =10 cm -4 cm =6 cm. ∴B E =13BC =2 cm. ∴C E =BC -B E =4 cm.17.(12分)将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起:(1)若∠DC E=35°,则∠ACB的度数为__145°__;(2)若∠ACB=140°,求∠DC E的度数;(3)猜想∠ACB与∠DC E的大小关系,并说明理由;(4)三角尺ACD不动,将三角尺BC E的C E边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠AC E(0°<∠AC E<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AC E角度所有可能的值,不用说明理由.第17题图解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°-35°=145°.(2)∵∠ACD=∠ECB=90°,∴∠DCE=180°-140°=40°.(3)∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(4)30°、45°、60°、75°.。

第五章《一元一次方程》检测题B

第五章《一元一次方程》检测题B

第五章《一元一次方程》检测题B一.选择题(共12小题)1.下列结论不成立的是()A.若x=y,则m﹣x=m﹣y B.若x=y,则mx=myC.若mx=my,则x=y D.若,则nx=ny2.下列说法:①若a+b=0,且ab≠0,则x=1是方程ax+b=0的解;②若a﹣b=0,且ab≠0,则x=﹣1是方程ax+b=0的解;③若ax+b=0,则x=﹣;④若(a﹣3)x|a﹣2|+b=0是一元一次方程,则a=1.其中正确的结论是()A.只有①②B.只有②④C.只有①③④D.只有①②④3.下列说法:①0是最小的有理数;②一个有理数不是正数就是负数;③没有绝对值最大的负数;④没有最大的负数;⑤6x+8是一元一次方程;⑥a与2a是同类项.其中,正确的说法有()个?A.4个B.3个C.2个D.1个4.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程•a=﹣(x﹣6)无解,则a的值是()A.1 B.﹣1 C.±1 D.a≠15.解方程=x﹣时,去分母正确的是()A.3(x+1)=x﹣(5x﹣1)B.3(x+1)=12x﹣5x﹣1C.3(x+1)=12x﹣(5x﹣1)D.3x+1=12x﹣5x+16.已知方程2﹣=+3﹣x与方程4﹣=3k﹣的解相同,则k的值为()A.0 B.2 C.1 D.﹣17.已知关于x的方程x﹣=﹣1的解是正整数,则符合条件的所有整数a的积是()A.12 B.36 C.﹣4 D.﹣128.把方程的分母化为整数,以下变形正确的是()A.B.C.D.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人11.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在()A.边BC B.边CD C.边DE D.边EF12.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时二.填空题(共6小题)13.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.14.若(m﹣2)x|m|﹣1=3是关于x的一元一次方程,则m的值是.15.规定运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,若=6x﹣5,则x的值是.16.如图,在1000个“〇”中依次填入一列数字m1,m2,m3…,m1000使得其中任意四个相邻“〇”中所填数字之和都等于﹣10,已知m25=x﹣1,m999=﹣2x,可得x 的值为.17.根据图中提供的信息,可知一个杯子的价格是元.18.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.三.解答题(共9小题)19.解方程;(1)3(x﹣4)+1=x﹣5(2)1+=(3)=﹣1(4)x﹣=2﹣20.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.21.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x|=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图(25﹣1)可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图(25﹣2),在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.22.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.23.某市对供水范围内的居民用水实行“阶梯收费”,具体收费标准如表:水费单价(单位:元/立方米)一户居民一个月用水为x立方米x≤22a超出22立方米的部分a+1.1某户居民三月份用水10立方米时,缴纳水费23元(1)求a的值;(2)若该户居民四月份所缴水贵为71元,求该户居民四月份的用水量.24.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?25.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.=,5.=;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1=,2.0=;(注:0.1=0.315315…,2.0=2.01818…)【探索发现】(4)①试比较0.与1的大小:0.1(填“>”、“<”或“=”)②若已知0.8571=,则3.1428=.(注:0.857l=0.285714285714…)答案与解析一.选择题1.【分析】根据等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式进行分析即可.【解答】解:A、若x=y,则m﹣x=m﹣y成立;B、若x=y,则mx=my成立;C、若mx=my,则x=y不一定成立,应说明m≠0;D、若,则mx=my成立;故选:C.2.【分析】使方程左右两边的值相等的未知数的值是该方程的解.因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等,如果左边=右边,那么这个数就是该方程的解;反之,这个数就不是该方程的解.【解答】解:①ab≠0,所以一次项系数不是0,则x=1是方程ax+b=0的解;同理,②若a﹣b=0,且ab≠0,则x=﹣1是方程ax+b=0的解;④若(a﹣3)x|a﹣2|+b=0是一元一次方程,则a=1也是正确的.③若ax+b=0,则x=﹣没有说明a≠0的条件.其中正确的结论是只有①②④.故选:D.3.【分析】根据有理数的分类、绝对值的性质、一元一次方程的定义、同类项的定义即可作出判断.【解答】解:①没有最小的有理数,原来的说法错误;②一个有理数是正数、0、负数,原来的说法错误;③没有绝对值最大的负数是正确的;④没有最大的负数是正确的;⑤6x+8不是一元一次方程,原来的说法错误;⑥a与2a是同类项是正确的.故选:B.4.【分析】要把原方程变形化简后再讨论没有解时a的值应该是什么.【解答】解:去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6移项,合并得,x=,因为无解;所以a﹣1=0,即a=1.故选:A.5.【分析】根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.【解答】解:方程两边都乘以12,去分母得,3(x+1)=12x﹣(5x﹣1).故选:C.6.【分析】根据同解方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由2﹣=+3﹣x解得x=1,由方程2﹣=+3﹣x与方程4﹣=3k﹣的解相同,得4﹣=3k﹣,解得k=1.故选:C.7.【分析】利用解一元一次方程的一般步骤解出方程,根据题意求出a的值,计算即可.【解答】解:x﹣=﹣1去分母,6x﹣4+ax=2x+8﹣6移项、合并同类项,(4+a)x=6,x=,由题意得,a=﹣3、﹣2、﹣1、2,则符合条件的所有整数a的积是﹣12,故选:D.8.【分析】把方程中的分子与分母同时乘以一个数,使分母变为整数即可.【解答】解:把的分子分母同时乘以10,的分子分母同时乘以100得,=﹣1,即=﹣1.故选:A.9.【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.11.【分析】设正六边形的边长为1,乙的速度为x,则甲的速度为3x,根据路程=速度×时间结合点甲、乙的第2018次相遇时甲比乙多跑的路程,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设正六边形的边长为1,乙的速度为x,则甲的速度为3x,根据题意得:3x﹣x=2017×6+1,解得:x=6052=1008×6+4,∴甲、乙的第2018次相遇在点F.故选:D.12.【分析】设轮船在静水中的速度是x千米/小时,根据路程=速度×时间结合A、B两港之间路程不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设轮船在静水中的速度是x千米/小时,根据题意得:3(x﹣3)=2(x+3),解得:x=15.答:轮船在静水中的速度是15千米/小时.故选:B.二.填空题13.【分析】根据观察,可发现规律:第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,可得答案.【解答】解:由一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,得第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,解是x=2017的方程:+=1,故答案为:+=1.14.【分析】根据一元一次方程的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x的一元一次方程,∴,解得m=﹣2.故答案为:﹣2.15.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简得:3x﹣3+2x=6x﹣5,移项合并得:﹣x=﹣2,解得:x=2,故答案为:216.【分析】由于任意四个相邻数之和都是﹣10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a2=a6=a10=…=x ﹣1,a3=a7=a11=…﹣7,a3=a7=a11=…=﹣2x,a4=a8=a12=…=0,所以已知a999=a3=﹣2x,a25=a1=x﹣1,由此联立方程求得x即可.【解答】解:∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x﹣1,同理可得a2=a6=a10=…=﹣7,a3=a7=a11=…=﹣2x,a4=a8=a12= 0∵a1+a2+a3+a4=﹣10,∴﹣2x﹣7+x﹣1+0=﹣10,解得:x=2.故答案为:2.17.【分析】设一盒杯子x元,一个暖瓶45﹣x元,根据图示可得方程求解.【解答】解:设一盒杯子x元,可得:2x+3(45﹣x)=99,解得:x=9.答:一个杯子的价格是9元,故答案为:918.【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.三.解答题(共9小题)19.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(1)【解答】解:3(x﹣4)+1=x﹣53x﹣12+1=x﹣53x﹣x=﹣5+12﹣12x=6x=3;(2)【解答】解:1+=12+2(x﹣2)=3(3x+7)12+2x﹣4=9x+212x﹣9x=21﹣12+4﹣7x=13x=﹣.(3)【解答】解:3(3x+2)=2(2x+1)﹣69x+6=4x+2﹣65x=﹣10x=﹣2(4)【解答】解:12x﹣4(x﹣1)=24﹣3(x+3)12x﹣4x+4=24﹣3x﹣911x=11x=120.【分析】(1)根据|a+3|+(b﹣2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;(2)①根据2x+1=x﹣8可以求得x的值,从而可以得到点C表示的数,从而可以得到线段BC的长;②根据题意可以列出关于点P表示的数的关系式,从而可以求得点P表示的数.【解答】解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2;(2)①2x+1=x﹣8解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC的长为8;②存在点P,使PA+PB=BC,设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得,m=3.5,当﹣3<m<2时,无解,当x<﹣3时,m=﹣4.5,即点P对应的数是3.5或﹣4.5.21.【分析】(1)根据例1的方法,求出方程的解即可;(2)根据例2的方法,求出方程的解即可;(3)根据例3的方法,求出x的范围即可.【解答】解:(1)方程|x+3|=5的解为x=2或x=﹣8;故答案为:x=2或x=8;(2)方程|x﹣2017|+|x+1|=2020的解为x=﹣2或x=2018;故答案为:x=﹣2或x=2018;(3)∵|x+4|+|x﹣3|表示的几何意义是在数轴上分别与﹣4和3的点的距离之和,而﹣4与3之间的距离为7,当x在﹣4和3时之间,不存在x,使|x+4|+|x﹣3|≥11成立,当x在3的右边时,如图所示,易知当x≥5时,满足|x+4|+|x﹣3|≥11,当x在﹣4的左边时,如图所示,易知当x≤﹣6时,满足|x+4|+|x﹣3|≥11,所以x的取值范围是x≥5或x≤﹣6.22.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.23.【分析】(1)由三月份的水费=水费单价×用水量,即可得出关于a的一元一次方程,解之即可得出结论;(2)设该户居民四月份的用水量为x立方米,先求出当用水量为22立方米时的应缴水费,比较后可得出x>22,再根据四月份的水费=2.3×22+(2.3+1.1)×超出22立方米的部分,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:10a=23,解得:a=2.3.答:a的值为2.3.(2)设该户居民四月份的用水量为x立方米.∵22×2.3=50.6(元),50.6<71,∴x>22.根据题意得:22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28.答:该户居民四月份的用水量为28立方米.24.【分析】可以设三环路车流量每小时x辆,那么四环路车流量每小时(x+2000)辆,然后根据三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍即可列出关于x的方程,解方程就可以求出三环路、四环路的车流量.【解答】解:设三环路车流量每小时x辆,那么四环路车流量每小时(x+2000)辆,依题意得:3x﹣(x+2000)=2×10000,∴x=11000,x+2000=13000.答:三环路车流量为11000辆,四环路车流量为13000辆.25.【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.【解答】解:(1)由题意知0.=、5.=5+=,故答案为:、;(2)0.=0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x=,∴0.=;(3)同理0.1==,2.0=2+=故答案为:,(4)①0.==1故答案为:=②3.1428=3+=3+=故答案为:。

第五章一元一次方程

第五章一元一次方程

一元一次方程(①基础)1、下列是一元一次方程的是( )A 、6x y =-B 、63x -C 、 9x =D 、24x =2、若12x =是方程12mx m -=+的解,则m = 3、关于x 的方程322241k x k -+=是一元一次方程,则 k= ,方程的解为___ .4、下列等式的变形正确的是( ).A.若x y =,则22x m y m +=+B.若a b =,则a c b c +=- C.若a b =,则a b c c = D.若22(2)1(2)m a m +=-+,则1a =5、已知2x -与2(21)x y -+互为相反数,则y =6、若方程 42=+x m 与 1213+=-x x 的解相同,则m =7、已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________。

8、某商人一次卖出两件商品。

一件赚了15%,一件赔了15%,卖价都是1955元,在这次买卖过程中,商人 。

9、甲班与乙班共有学生95人,若设甲班有x 人,现从甲班调1人到乙班,甲班人数是乙班人数的90%,依题意有方程 。

10、一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为 。

11、某商品的进货价为每件x 元,零售价为每件900元,为了适应市场竞争,商店按零售价的九折让利40元销售,仍可获利10%,则x 。

12、某人按定期2年向银行储蓄1500元,假定每年利率为3%(不计复利)到期支取时,扣除利息所得税(税率为20%)此人实得利息为 。

13、解方程:(1)211011412x x x ++-=-; (2)2(21)2(1)3(3)x x x -=+++.(3)17.03.027.1-=-x x二、列方程解应用题1.一根竹竿插入水池中,放池底泥中部分占全长的51 ,水中部分比泥中部分长32 米,露出水面1米,问竹竿全长多少米?2.有含盐20%的盐水60千克,(1)要使盐水中含盐25%,需蒸发多少水?(2)要使盐水中含盐25%,需加盐多少?(3)要使盐水含盐15%,需加水多少?3.甲、乙、丙三人单独完成同一件工作,分别需要10天、12天、15天,若让甲做,然后乙、丙加入共同完成,前后共用了7天,问甲先做了几天?(3分)4.甲、乙两人从相距14千米的地点,分别以2.8千米/时,4.2千米/时的速度相向而行,同时,甲所带的小狗以9千米/时的速度奔向乙,小狗遇到乙方后立即回头奔向甲,遇到甲后又奔向乙,……如此下去,直到甲、乙相遇,则小狗所走的路程是多少?5.甲、乙两人驾车分别从A、B两地同时出发相向而行,在C处相遇后,继续前进,甲到B地,乙到A地后都立即返回,在D处第二次相遇,乙知C、D相遇243,求A、B两地的路程。

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各式中,是方程的是( )A .30x -=B .5y -C .3(2)1+-=D .75x >2.下列运用等式变形错误的是( )A .由a b =,得66a b +=+B .由a b =,得99a b = C .由a bc c=,得a b = D .由22a b -=-,得a b =-3.山西省所有公立医疗机构于2024年3月25日起全面执行第九批国家组织药品集中带量采购中选结果,某药品降价后每盒180元,比原价降低了60%,求该药品原价是多少元?解:设该药品原价为x 元,则由题意可得方程( ) A .60180x =% B .60180x -=% C .(160)180x +=%D .(160)180x -=%4.方程 42x -= 的解是( )A .2x =-B .2x -=C .2x =D .12x =-5.如果关于x 的方程 213x += 和方程 213a x--= 的解相同,那么a 的值为( ) A .6 B .4C .3D .26.若3x 3y n -1与-x m+1y 2是同类项,则m -n 的值为( )A .—1B .0C .2D .37.下列变形中,正确的是( )A .由-x+2=0 变形得x=-2B .由-2(x+2)=3 变形得-2x -4=3C .由132x = 变形得 32x = D .由 21106x --+= 变形得 (21)10x --+= 8.我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,称为“铺地锦”.例如,如图1所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12的12写在3下面的方格里,十位1写在斜线的上面,个位2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线末端,最后把得数依次写下来是1457,即31×47=1457.如图2,用“铺地锦”的方法表示两个两位数相乘,则a 的值是( ) A .5B .4C .3D .29.解方程的过程中正确的是( ).A .将2-371745x x -+=去分母,得2-5(5x -7)=-4(x+17) B .由0.150.710.30.02x x --=,得10157010032x x --= C .40-5(3x -7)=2(8x+2)去括号,得40-15x -7=16x+4 D .255x -=,得x=-25210.下列判断:①若0a b c ++=,则()22a c b +=.②若0a b c ++=,且0abc ≠,则122a cb +=-.③若0a bc ++=,则1x =一定是方程0ax b c ++=的解.④若0a b c ++=,且0abc ≠,则0abc >.其中正确的是( ) A .①②③B .①③④C .②③④D .①②③④二、填空题11. 若方程()1260k k x+++=是关于x 的一元一次方程,则2023k += .12.如果一个两位数上的十位数字是个位数字的一半,两个数位上的数字之和为12,则这个两位数是 .13.关于x 的方程3x+a=0的解与方程2x ﹣4=0的解相同,则a= . 14.无论x 取何值等式2ax+b=4x -3恒成立,则a+b= 。

(好题)初中数学七年级数学上册第五单元《一元一次方程》检测卷(答案解析)(3)

(好题)初中数学七年级数学上册第五单元《一元一次方程》检测卷(答案解析)(3)

一、选择题1.在一次数学活动中,小明在某月的日历上圈出了相邻的三个数a ,b ,c ,求出它们的和为36,则这三个数在日历中的排布不可能的是( )A .B .C .D .2.已知关于x 的方程3210x a +-=的解与方程20x a -=的解互为相反数,则a 的值为( )A .14-B .12- C .4 D .2 3.3x =-是下列哪个方程的解( ) A .35210x x -+=+B .123x x -=C .()32x x x +=-D .2633x -+= 4.某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了85元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款( )元A .284B .308C .312D .3205.若9个工人14天完成了一件工作的35,由于任务的需要,剩下的工作要在4天内完成,则需要增加的人数是( )A .14B .13C .12D .116.已知a =b ,则下列变形不一定成立的是( )A .a +n =b +nB .a n =b nC .a 2=b 2D .a b =1 7.已知2n ++(5m -3)2=0,则关于x 的方程10mx +4=3x +n 的解是( ) A .x =23 B .x =-23 C .x =2 D .x =-28.2020年武汉抗击疫情期间,全国各地加班加点为前线医护人员提供防护面罩和防护服.已知某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套,若分配x 名工人生产防护服,其他工人生产防护面罩,恰好使每天生产的防护服和防护面罩配套,则所列方程是( )A .()16024040x x =-B .()16040240x x -=C .()160240402x =-D .()240160402x x -= 9.如图,在长方形ABCD 中,AB 6cm =,8BC cm =,点E 是AB 上的点,且2AE BE =.点P 从点C 出发,以2/cm s 的速度沿点C D A E ---匀速运动,最终到达点E .设点P 运动时间为ts ,若三角形PCE 的面积为218cm ,则t 的值为( )A .98或194B .194或98或274 C .94或6 D .6或94或274 10.已知4x =是关于x 的方程373ax x -+=的解,则a 的值为( ) A .2 B .3 C .4 D .511.中国古代数学问题:有甲、乙两个牧童,甲对乙说:“把你羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( )A .()123x x +=-B .122x x -=+C .()122x x +=-D .112x x +-= 12.甲、乙、丙三数之比是2:3:4,甲、乙两数之和比乙、丙两数之和大30,则甲数为( )A .30-B .45-C .15-D .60-二、填空题13.若2752m x y +-与3213n x y -是同类项,则n m 的值为________.14.已知关于x 的方程5x +m =﹣2的解为x =2,则m 的值为_____.15.若|2||3|9x x ++-=,则x 的值为________.16.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为175.,当MN 的右三等分点移动到点A 时,点M 所对应的数为4.5,则木棒MN 的长度为_______.17.如图,O 为直线AB 上一点,过点O 作射线OC ,30AOC ∠=︒,将一直角三角板(30M ∠=︒)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.经过______秒后,OM 恰好评分BOC ∠;若三角板在转动的同时,射线OC 也绕O 点以每秒5°的速度沿顺时针方向旋转一周,如图,那么经过______秒,OC 平分MON ∠?18.李明同学欲购买一件运动服,打七折比打九折少花30元钱,那么这件运动服的原价为__________元.19.甲、乙两站相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km .已知慢车先行1.5h ,快车再开出,则快车开出______h 与慢车相遇.20.2019年4月4日,中国国际女足锦标赛半决赛在武汉进行,这场由中国队迎战俄罗斯队的比赛牵动着众多足球爱好者的心,在未开始检票入场前,已有1200名足球爱好者排队等待入场,假设检票开始后,每分钟赶来的足球爱好者人数是固定的,1个检票口每分钟可以进入40人,如果4个检票口同时检票,15分钟后排队现象消失;如果7个检票口同时检票,则___________分钟后排队现象消失.三、解答题21.用适当方法解方程(1)12146x x -+= (2)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(),a b 与(),c d .我们规定:()(),,a b c d bc ad =-※.若有理数对()()3,211,17x x --+=※,则x 的值是多少?22.甲、乙二人同时从相距1252千米的A 地去B 地,甲骑车,乙步行.甲每小时的速度比乙每小时的速度的3倍多1千米,甲达到B 地后停留45分,然后从B 地返回A 地,在途中遇见乙,这时距他们出发的时间恰好3小时,求两人的速度各是多少?23.饺子源于古代的角子,饺子原名“娇耳”,一个饺子皮加馅就可以做一个饺子.中国北方还流行一种面食—合子,含有团团圆圆的美好寓意,在两层饺子皮中间加一层馅,就可以包成一个合子.“元旦”这天,妈妈走进书房对正在学习的小刚说;“妈妈刚才在厨房包饺子,结果面和多了,做了106个饺子皮,最后包的饺子和合子一共是98个.”小刚说:“妈妈,我能用学过的数学知识列一元一次方程,求出妈妈包的饺子和合子分别是多少.”请你写出小刚的解答过程.24.越来越多的人在用微信付款、转账,把微信账户里的钱转到银行卡叫做提现,每个微信账户终身享有1000元的免费提现额度,当累计..提现金额超过1000元时,超出的部分需支付0.1%的手续费,以后每次提现支付的手续费均为提现金额的0.1%.(1)小赵使用微信至今,用自己的微信账户共提现两次,提现金额均为1500元,则小赵这两次提现分别需支付手续费多少元?(2)小周使用微信至今,用自己的微信账户共提现三次,若小周第三次提现金额恰好等于前两次提现金额的差,提现手续费如下表,求小周第一次提现的金额.第一次第二次第三次手续费/元0 1.10.225.如图,已知数轴上点A表示的数为-10,点B表示的数为2.动点P从点A出发,以每秒4个单位长度的速度沿数轴向右匀速运动,动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,P、Q同时出发,设运动时间为t(t>0)秒,解答下列问题.(1)数轴上点P表示的数为,点Q表示的数为(用含t的代数式表示);(2)当点P表示的数和点Q表示的数互为相反数时,求t的值;(3)点P追上点Q时,求t的值;(4)若点B恰好是线段PQ的3等分点时,t的值为.26.某景区门票上绘制了简易游览图(如图),从游客中心到观景台有1km山路,从观景台到山顶有2km山路,圆圆同学从导游口中得知:离观景台500m处有一个凉亭,离凉亭200m处有一个小卖部.(1)圆圆同学把这张图中的游览线路抽象成一条数轴,其中游客中心是原点,往山顶方向为正方向,1km为1个单位长度,请在数轴上标出小卖部P所有可能的位置,并用数字表示出来.(2)圆圆同学上山时从游客中心到山顶共用了h小时,下山时从山顶到游客中心的平均速度为v千米/小时,求圆圆同学上山、下山全程的平均速度(用含h和v的代数式表示).(3)若凉亭在观景台到山顶的途中,方方同学上午8:00从游客中心出发匀速上山,于8:40到达观景台,在观景台停留30分钟后,以同样的速度继续上山,途中又在凉亭休息了15分钟,到山顶游玩了35分钟后下山(下山途中不再停留),为了在下午13:00准时回到游客中心,方方同学下山的速度比上山的速度快%a,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A、设最小的数是x.x+x+7+x+14=36,x=5.故本选项不合题意;B、设最小的数是x.x+x+6+x+7=36,x=233,故本选项错误符合题意;C、设最小的数是x.x+x+7+x+8=36,x=7,故本选项不合题意;D、设最小的数是x.x+x+8+x+16=36,x=4,本选项不合题意.故选择:B.【点睛】本题考查用字母表示数,列代数式,列方程解应用题,掌握用字母表示数,列代数式的方法,列方程解应用题方法与步骤是解题关键.2.A解析:A【分析】先求出第二个方程的解,根据相反数得出第一个方程的解是x=−2a,把x=−2a代入第一个方程,再求出a即可.【详解】解:解方程x−2a=0得:x=2a,∵方程3x+2a−1=0的解与方程x−2a=0的解互为相反数,∴3(−2a)+2a−1=0,解得:a=14 -.故选A【点睛】本题考查了解一元一次方程、一元一次方程的解和相反数,能得出关于a的一元一次方程是解此题的关键.3.B解析:B【分析】根据方程的解的定义,把x=-3代入方程进行检验即可.【详解】解:A、把3x=-代入方程,左边=14,右边=4,左边≠右边,故不符合题意;B、把3x=-代入方程,左边=-3,右边=-3,左边=右边,故符合题意;C、把3x=-代入方程,左边=0,右边=6,左边≠右边,故不符合题意;D、把3x=-代入方程,左边=4,右边=3,左边≠右边,故不符合题意.故选:B.【点睛】本题主要考查了方程解的定义,解题关键是将x的值代入方程左右两边进行验证.4.B解析:B【分析】设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,分0<x<100及100≤x<350两种情况可得出关于x的一元一次方程,解之可求出x的值,由第二次购物付款金额=0.9×第二次购物购买商品的价格可得出关于y的一元一次方程,解之可求出y 值,再利用两次购物合并为一次购物需付款金额=0.8×两次购物购买商品的价格之和,即可求出结论.【详解】解:设第一次购物购买商品的价格为x元,第二次购物购买商品的价格为y元,当0<x<100时,x=85;当100≤x<350时,0.9x=85,解得:8509x=(不符合题意,舍去);∴85x=;当100≤y<350时,则0.9y=270,∴y=300.当y>350时,0.8y=270,∴y=337.5(不符合题意,舍去);∴300y=;∴0.8(85300)308⨯+=(元).∴小敏至少需付款308元.故选:B .【点睛】此题主要考查了一元一次方程的应用,解题关键是第一次购物的90元可能有两种情况,需要讨论清楚.本题要注意不同情况的不同算法,要考虑到各种情况,不要丢掉任何一种. 5.C解析:C【分析】设剩下的工作要在4天内完成,需要增加的人数是x 人,根据工程问题的数量关系:一个人的工作效率×增加后的总人数×时间4天=135-,建立方程求出其解即可. 【详解】解:设剩下的工作要在4天内完成,需要增加的人数是x 人,由题意,得3391449155x ÷÷⨯⨯+=-()() , 解得:x=12.故选:C .【点睛】本题考查了列一元一次方程解实际问题的运用,工程问题的数量关系的运用,解答时根据工程问题的数量关系建立方程是关键.6.D解析:D【分析】分别利用等式的基本性质,判断得出即可.【详解】解:解:A 、当a =b 时,两边同时加上n ,该等式仍然成立;B 、当a =b 时,a n =b n ,该等式仍然成立;C 、当a =b 时,a 2=b 2,该等式仍然成立;D 、当a =b ,b=0时,a b 无意义,所以a b=1不成立; 故选:D .【点睛】此题主要考查了等式的基本性质,熟练掌握性质1、等式两边加同一个数(或整式)结果仍得等式;性质2、等式两边乘同一个数或除以一个不为零的数(或整式),结果仍得等式是解题关键. 7.D解析:D【分析】利用非负数的性质,求出m 与n 的值,代入方程1043mx x n +=+,解方程即可求解.【详解】()22530n m ++-=, 20n ∴+=,530m -=,2n ∴=-,35m =, 将2n =-,35m =代入方程1043mx x n +=+, 得3104325x x ⨯+=-, ∴36x =-,∴2x =-,故选:D .【点睛】本题考查了绝对值的非负性,及解一元一次方程,准确求解出参数是解题关键. 8.A解析:A【分析】若分配x 名工人生产防护服,根据“某车间有40名工人,每人每天生产防护服160件或防护面罩240个,一件防护服和一个防护面罩配成一套”列出方程.【详解】解:设分配x 名工人生产防护服,则分配(40−x )人生产防护面罩,根据题意,得160x =240(40−x ).故选:A .【点睛】本题主要考查了由实际问题抽象出一元一次方程,解题的关键是找到等量关系. 9.C解析:C【分析】分为三种情况讨论,当点P 在CD 上,即0<t≤3时,根据三角形的面积公式建立方程求出其解即可;当点P 在AD 上,即3<t≤7时,由S △PCE =S 四边形ABCD −S △CDP −S △APE −S △BCE 建立方程求出其解即可;当点P 在AE 上,即7<t≤9时,由S △PCE =12PE•BC =18建立方程求出其解即可.【详解】解:设点P 运动的时间为ts .∵AB 6cm =,2AE BE =∴AE=4cm ,BE=2cm如图,当0<t≤3时,S △PCE =12×2t×8=18,解得t =94(s ); 如图,当3<t≤7时,S △PCE =40−S △CDP −S △APE −S △BCE =48−12×6×(2t-6)−12×4×(14-2t )−12×8×2=18 解之得:t =6(s );如图,当7<t≤9时,S △PCE =12×8×(18−2t )=18, 解得t =274(s ). ∵274<7, ∴t =274应舍去 综上,当t =94s 或6s 时,△PCE 的面积等于18cm 2. 故选C .【点睛】 本题考查了一元一次方程的应用,解题的关键是熟知矩形的性质的运用,三角形的面积公式的运用,根据题意找到数量关系列方程求解.10.A解析:A【分析】把4x =代入方程,转化为关于a的一元一次方程求解可.【详解】∵4x =是关于x 的方程373ax x -+=的解,∴41273a -+=,解得a=2,故选A .【点睛】本题考查了一元一次方程的解的定义,一元一次方程的解法,熟练利用方程解的定义代入转化为所求字母的一元一次方程是求解的关键.11.A解析:A【分析】根据甲的话可得乙羊数的关系式,根据乙的话得到等量关系即可.【详解】解:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊, ∴乙有12x ++1只, ∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”, ∴12x ++1+1=x-1,即x+1=2(x-3) 故选:A .【点睛】 考查列一元一次方程;得到乙的羊数的关系式是解决本题的难点.12.A解析:A【分析】设甲数是2x ,则乙数是3x ,丙数是4x ,列出方程,解方程求得x 的值即可.【详解】解:设甲数是2x ,则乙数是3x ,丙数是4x ,则2x+3x-(3x+4x )=30解得x=-15.故2x=-30,3x=-45,4x=-60.即甲、乙、丙分别为-30、-45、-60.故选:A .【点睛】考查了一元一次方程的应用,难度不大,关键是根据题意恰当的设未知数,列出方程.二、填空题13.-8【分析】根据同类项定义得到2m+7=32n-1=5解方程求出m 及n 的值代入计算即可【详解】解:由题意得2m+7=32n-1=5解得:m=-2n=3∴故答案为:-8【点睛】此题考查同类项的定义解一解析:-8【分析】根据同类项定义得到2m+7=3,2n-1=5,解方程求出m 及n 的值代入计算即可.【详解】解:由题意得2m+7=3,2n-1=5,解得:m=-2,n=3,∴3(2)8n m =-=-,故答案为:-8.【点睛】此题考查同类项的定义,解一元一次方程,有理数的乘方运算,正确掌握同类项的定义列得方程是解题的关键.14.-12【分析】把x =2代入方程得出一个关于m 的方程求出方程的解即可【详解】解:把x =2代入方程5x+m =﹣2得:10+m =﹣2解得:m =﹣12故答案为:﹣12【点睛】本题考查了解一元一次方程和一元一解析:-12【分析】把x =2代入方程,得出一个关于m 的方程,求出方程的解即可.【详解】解:把x =2代入方程5x +m =﹣2得:10+m =﹣2,解得:m =﹣12,故答案为:﹣12.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的方程是解此题的关键. 15.或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解【详解】解:表示数轴上x 表示的点到-2的距离;表示数轴上x 表示的点到3的距离∵3-(-2)=5且∴x <-2或x >3当x <-2时解得:当x >3时解析:4-或5【分析】根据绝对值的意义及数轴上两点间的距离分析求解.【详解】解:|2|x +表示数轴上x 表示的点到-2的距离;|3|x -表示数轴上x 表示的点到3的距离 ∵3-(-2)=5且|2||3|9x x ++-=∴x <-2或x >3当x <-2时,|2||3|9x x ++-=239x x ---+=,解得:4x =-当x >3时,|2||3|9x x ++-=239x x ++-=,解得:5x =综上,x 的值为-4或5故答案为:-4或5.【点睛】本题考查一元一次方程的应用,根据数轴上两点间的距离数形结合思想解题是关键.16.【分析】如图为的中点为的三等分点设再利用线段的和差关系表示结合题意可得对应的数为对应的数为再求解从而可列方程求解于是可得的长【详解】解:如图为的中点为的三等分点设由题意得:对应的数为对应的数为故答案 解析:6.【分析】如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x == 再利用线段的和差关系表示11AM BN ,,结合题意可得1M 对应的数为4.5,1N 对应的数为17.5, 再求解11M N , 从而可列方程求解x ,于是可得MN 的长.【详解】解:如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x ==由题意得:1 1.5,AG BG BN x === ,AF FP PB x === 12,AM x =1123 1.5 6.5,M N x x x x ∴=++=1M 对应的数为4.5,1N 对应的数为17.5,1117.5 4.513M N ∴=-=,6.513,x ∴=2,x ∴=3 6.MN x ∴==故答案为:6.【点睛】本题考查的是线段的中点,线段的三等分点的含义,数轴上两点之间的距离,数轴上动点问题,一元一次方程的应用,掌握以上知识是解题的关键.17.【分析】①根据角平分线的定义计算即可;②根据题意先求出∠NOC=45°然后设∠AON=3t ∠AOC=30+5t 根据∠AOC ∠AON=∠CON 构建方程即可解决问题;【详解】解:①如图2中∵∠AOC=3解析:7.5【分析】①根据角平分线的定义计算即可;②根据题意,先求出∠NOC=45°,然后设∠AON=3t ,∠AOC=30+5t ,根据∠AOC -∠AON=∠CON ,构建方程即可解决问题;【详解】解:①如图2中,∵∠AOC=30°,∴∠BOC=180°-∠AOC=150°,∵OM 平分∠BOC ,∴∠COM=∠BOM=12∠BOC=75°, ∠AON=180°-90°-75°=15°,∴1553︒=︒s , 故答案为:5;②根据题意,如图:OC 平分∠MON ;∵∠MON=90°,∴∠NOC=1902⨯︒=45°, ∴45NOC AOC AON ∠=∠-∠=︒,∵三角板绕点O 以每秒3°的速度,射线OC 也绕O 点以每秒5°的速度旋转,设∠AON 为3t ,∠AOC 为30°+5t ,∴305345t t ︒+-=︒,解得:7.5t =,∴那么经过7.5秒,OC 平分MON ∠.故答案为:7.5.【点睛】此题考查了角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.18.150【分析】等量关系为:打九折的售价-打七折的售价=30根据这个等量关系可列出方程再求解【详解】解:设这件运动服的原价为x 元由题意得:09x-07x=30解得x=150故这件运动服的原价是150元解析:150【分析】等量关系为:打九折的售价-打七折的售价=30.根据这个等量关系,可列出方程,再求解.【详解】解:设这件运动服的原价为x元,由题意得:0.9x-0.7x=30,解得x=150.故这件运动服的原价是150元.故答案为:150.【点睛】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.19.2【分析】根据相遇时慢车行驶的总路程与快车行驶的总路程的和等于300列方程求解即可【详解】设快车开出x小时两车相遇根据题意得40×15+40x+80x=300解得x=2故填2【点睛】本题考查了一元一解析:2【分析】根据相遇时,慢车行驶的总路程与快车行驶的总路程的和等于300,列方程求解即可.【详解】设快车开出x小时,两车相遇,根据题意,得 40×1.5+40x+80x=300,解得x=2,故填2.【点睛】本题考查了一元一次方程应用中的相遇问题,把握相遇时的等时性是解题的关键. 20.【分析】设每分钟赶来的足球爱好者人数为人由4个检票口同时检票15分钟后排队现象消失列出方程可求每分钟赶来的足球爱好者人数再设7个检票口同时检票分钟排队现象消失列出方程可求解【详解】设每分钟赶来的足球解析:【分析】设每分钟赶来的足球爱好者人数为x人,由4个检票口同时检票,15分钟后排队现象消失,列出方程,可求每分钟赶来的足球爱好者人数,再设7个检票口同时检票,y分钟排队现象消失,列出方程,可求解.【详解】设每分钟赶来的足球爱好者人数为x人,x+=⨯⨯,由题意可得:151********x=,∴80∴每分钟赶来的足球爱好者人数为80人,设7个检票口同时检票,y 分钟排队现象消失,由题意可得:801200740y y +=⨯⨯,∴6y =,答:7个检票口同时检票,6分钟排队现象消失,故答案为:6.【点睛】本题考查了一元一次方程的应用,找出等量关系列出正确的方程是本题的关键.三、解答题21.(1)-5;(2)1;【分析】(1)先去分母,然后去括号,移项,合并同类项,系数化为1即可求解;(2)根据题意()()a b c d bc ad =-,※,,将()()32111x x --+,※,直接代入求值即可;【详解】(1)12146x x -+= 去分母得:()()31221x x -=+ ,去括号得:3342x x -=+ ,移项得:3423x x -=+ ,解得:x=-5(2)∵()()a b c d bc ad =-,※, ,()()()32111213121337x x x x x x --+=-++=-++=,※, , ∴ 1x = .【点睛】本题考查了解一元一次方程,解方程注意去分母时各项都乘以各分母的最小公倍数. 22.甲的速度为16千米/小时,乙的速度是5千米/小时【分析】设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,根据二人行走路程之和为A 、B 两地路程的二倍列出方程,解方程即可.【详解】解:设乙的速度是x 千米/小时,则甲的速度为(3x+1)千米/小时,由题意得 ()451313+3=252602x x ⎛⎫+-⨯ ⎪⎝⎭, 解得 x=5,3x+1=16,答:甲的速度为16千米/小时,乙的速度是5千米/小时.本题考查了一元一次方程的应用,理解题意,找到等量关系是解题关键.23.妈妈包的饺子和合子分别是90个和8个【分析】设妈妈包了x 个饺子,则合子为()98x -个,结合题意列一元一次方程并求解,即可得到答案.【详解】设妈妈包了x 个饺子,则合子为()98x -个根据题意得:()298106x x +-=∴90x =∴9898908x -=-=∴妈妈包的饺子和合子分别是90个和8个.【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,并运用到实际生活中,从而完成求解.24.(1)第一次需手续费0.5元,第二次需手续费1.5元;(2)第一次提现950元.【分析】(1)第一次:手续费=(提现金额-1000)×0.1%,第二次:手续费=提现金额×0.1%,计算即可求出结果;(2)根据表格中的数据结合所收手续费为超出金额的0.1%,可知第一次必定小于1000元,第二次部分需要手续费,设第一次提现x 元,可表示第二次提现金额和计算出第三次提现金额,根据第三次提现金额恰好等于前两次提现金额的差列出方程求解即可.【详解】解:(1)第一次: (1500-1000)×0.1%=0.5(元);第二次:1500×0.1%=1.5元,故第一次需手续费0.5元,第二次需手续费1.5元;(2)超过1000元的部分才有手续费,而第一次没有手续费,那必定小于1000元,则第二次部分需要手续费,设第一次提现x 元,∵第二次手续费为1.1元,∴超过1000元的部分为 1.111000.1%=元, ∴第二次提110010002100x x +-=-()元, 第三次提现金额为:0.2=2000.1%元, 由题意可知 2100200x x --=,解得x=950,所以,第一次提现950元.本题考查一元一次方程的应用.找准等量关系,正确列出方程是解题关键.25.(1)104t -+,22t +;(2)43t =;(3)6t =;(4) 1.5, 2.4t t == 【分析】(1)根据数轴上两点间的距离,在结合路程=速度⨯时间,即可解答(2)根据相反数的定义,在结合(1)的结论列方程即可(3)根据题意列方程求解即可(4)根据题意列方程求解即可【详解】解:(1)数轴上点P 表示的数为:104t -+;点Q 表示的数为:22t +(2)由题意得()()104220t t -+++= 解得43t =即43t =时,点P 表示的数和点Q 表示的数互为相反数 (3)由题意得42210t t =++-解得6t =即当点P 追上点Q 时,6t =(4)由题意得:()()()22104221043t t t --+=+--+⎡⎤⎣⎦或()()()12104221043t t t --+=+--+⎡⎤⎣⎦ 解得: 1.5t =或 2.4t =【点睛】本题考查了数轴,一元一次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出合适等量关系流出方程,在求解.26.(1)答案见解析;(2)63h v+千米/小时;(3)20a = 【分析】(1)凉亭可在观景台的左边,也可在观景台的右边,小卖部可在凉亭的左边,也可在凉亭的右边,由此标出小卖部P 所有可能的位置;(2)根据路程、速度、时间的关系即可求解;(3)根据路程、速度、时间的关系表示出方方同学上山实际时间,计算出下山前总花费时间从而得出下山的时间,根据路程相等列出方程,解方程即可.【详解】解:(1)设Q 表示凉亭的位置,凉亭可在观景台的左边,也可在观景台的右边,则1Q 可用数字0.5表示,2Q可用数字1.5表示,小卖部可在凉亭的左边,也可在凉亭的右边,小卖部P所有可能的位置,1P可用数字0.3表示,2P可用数字0.7表示,3P可用数字1.3表示,4P可用数字1.7表示,如图,;(2)圆圆下山用了3v小时,全程的平均速度为63hv+千米/小时.(3)上山实际时间:403=120⨯(分),下山前总花费时间:120+30+15+35=200(分),上午8:00到下午13:00共300分,300200100-=(分).设上山的速度是v千米/小时,根据题意得()1201001%v a v=+,解得20a=.【点睛】本题考查数轴表示数的意义和方法,两点间的距离,列代数式,一元一个方程的应用,需要注意到点的距离等于某一个数的点可以在这个点的左边,也可以在这个点的右边,这是本题容易出错的地方.。

(常考题)北师大版初中数学七年级数学上册第五单元《一元一次方程》检测卷(含答案解析)(1)

(常考题)北师大版初中数学七年级数学上册第五单元《一元一次方程》检测卷(含答案解析)(1)

一、选择题1.观察下列两行数:1,3,5,7,9,11,13,15,17,19,…1,4,7,10,13,16,19,22,25,28,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n 个相同的数是103,则n 等于( )A .17B .18C .19D .202.《九章算术》是中国古代数学专著,《九章算术》方程篇中有这样一道题:“今有善行者行八十步,不善行者行六十步,今不善行者先行一百步,善行者追之,问几何步及之?”把这道题翻译成现代文,意思就是:走路快的人走了80步的时候,走路慢的才走了60步;走路慢的人先走100步,然后走路快的人去追赶,问走路快的人要走多少步才能追上走路慢的人?设走路快的人走x 步就能追上走路慢的人,则下面所列方程正确的是( )A .1006080x x -=B .1008060x x -=C .1006080x x +=D .1008060x x += 3.如果1∠与2∠互为余角,1∠与3∠互为补角,那么下列结论:①3290∠-∠=︒,②3227021∠+∠=︒-∠,③3122∠-∠=∠,④312∠>∠+∠.其中正确的是( )A .①②B .①②③C .①③④D .①②③④ 4.一个长方形的周长为32cm ,若这个长方形的长减少2cm ,宽增加3cm 就变成了一个正方形,设长方形的长为xcm ,可列方程( ).A .()2323x x +=--B .()2163x x -=-+C .()2323x x -=-+D .()2163x x +=--5.整数a 满足36a <≤,若a 使得关于x 的方程()631ax x +=-的解为整数,则满足条件的所有整数a 的个数是( )A .1B .2C .3D .46.某商品的价格标签已丢失,售货员只知道它的进价为80元,打七折售出后,仍可获利5%,你认为标签上的价格为( )元.A .110B .120C .130D .1407.一益智游戏分两个阶段进行,其中第二阶段共有25题,答对一题得3分,答错一题扣2分,不作答得0分.若小明已在第一阶段得50分,且第二阶段答对了20题,则下列哪一个分数可能是小明在此益智游戏中所得的总分( )A .105分B .108 分C .109分D .112分 8.把9个数填入33⨯方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其x 的值为( )x 5-2- 0 1A .2B .1-C .3-D .4-9.甲计划用若干个工作日完成某项工作,从第二个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作的天数是( ) A .8天 B .7天 C .6天 D .5天10.某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t ;如用新工艺,则废水排量要比环保限制的最大量少100t .新、旧工艺的废水排量之比为2:5,两种工艺的废水排量各是多少?如果设新工艺的废水排量为2xt ,旧工艺的废水排量为5xt .那么下面所列方程正确的是( )A .52002100x x -=+B .52002100x x +=-C .52002100x x +=+D .52002100x x -=- 11.商场销售某品牌冰箱,若按标价的八折销售,每件可获利200元,其利润率为10%,若按标价的九折销售,每件可获利( )A .475元B .875元C .562.5元D .750元 12.下列等式变形不正确的是( )A .如果3x=6y ,则x=2yB .如果2x-1=3y+2,则2x=3y+3C .如果x-2y=1,则2x-4y=2D .如果4x=9y 则x=32y 二、填空题13.如图1,OP 为一条拉直的细线,长为16cm ,A 、B 两点在OP 上且OB BP <,点A 在点B 的左侧.若先握住点B ,将OB 折向BP ,使得OB 重叠在BP 上,如图2.再从图2的A .点及与...A .点重叠处一起剪开........,使得细线分成三段.若这三段的长度由短到长之比为1∶3∶4,其中以点P 为一端的那段细线最长,则OB 的长为____________cm .14.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件仍获利(每件商品的利润是商品售价与商品成本价的差)15元,如果设每件商品的成本价为x 元,那么每件服装的标价是____元,每件服装的实际售价为___元,每件服装的利润可表示为____,则列方程:_____.15.某糕点厂要制作一批盒装蛋糕,每盒中装2块大蛋糕和4块小蛋糕,制作1块大蛋糕要用0.05kg 面粉,1块小蛋糕要用0.02kg 面粉.现共有面粉450kg ,用_________kg 面粉制作大蛋糕,才能生产最多的盒装蛋糕.16.如图,有一根木棒MN 放置在数轴上,它的两端M 、N 分别落在点A 、B 处.将木棒在数轴上水平移动,当MN 的中点移动到点B 时,点N 所对应的数为175.,当MN 的右三等分点移动到点A 时,点M 所对应的数为4.5,则木棒MN 的长度为_______.17.我国古代数学著作《孙子算经》中记载了这样一个有趣的数学问题“今有五等诸侯,共分橘子60颗,人别加三颗,问五人各得几何?”题目大意是:诸侯五人,共同分60个橘子,若后面的每个人总比他前一个人多分3个,问每个人各分得多少个橘子?若设中间的那个人分得x 个橘子,依题意可列方程为__________.18.一件衣服售价为 200元,现六折销售,仍可获利20%,则这件衣服的进价是____元. 19.在有理数范围内定义运算“*”,其规则为22a b a b +*=,则方程(32)(4)8x **=的解为x =__________.20.若关于x 的方程13x a -=与23304x a +-=的解相同,则a =____________. 三、解答题21.解方程(1)3118x 342x -=- (2)0.5x-0.7=6.5-1.3x (3)()123x 6365x -=- (4)1231337x x -+=- 22.已知12x =是方程21423x m x m ---=的解,求m 的值.23.解下列方程:(1)2(3)4(5)x x -=-+(2)2145135y y ---= 24.某快递公司每件普通物品的收费标准如下表:例如:寄往省内一件1.7千克的物品,运费总额为:()1080.50.5=18+⨯+元. 寄往省外一件3.2千克的物品,运费总额为:()151220.5=45+⨯+元.(1)小丁同时寄往省内一件2千克的物品和省外一件2.7千克的物品,各需付运费多少元?(2)小丽同时寄往省内和省外同一件a 千克的物品,已知a 超过2,且a 的整数部分是m ,小数部分小于0.5,请用含字母的代数式表示这两笔运费的差.(3)某日小丁和小丽同时在该快递公司寄物品,小丁寄往省外,小丽寄往省内,小丁的运费比小丽的运费多43元,物品的重量比小丽多1.5千克,则小丁和小丽共需付运费多少元?25.某学校准备订购一批篮球和跳绳,经查阅发现篮球每个定价100元,跳绳每条定价20元.现有A 、B 两家公司提出了各自的优惠方案.A 公司:买一个篮球送一条跳绳;B 公司:篮球和跳绳都按定价的90%付款.已知要购买篮球30个,跳绳x 条(x >30). (1)若分别在A 、B 公司购买,各需费用多少元(用含x 的代数式表示);(2)若在两家公司购买的总费用一样,请求出此时x 的值;(3)当x =50,若两家公司可以自由选择,请给出最省钱的购买方案,并计算需要费用多少元.26.(1)()()3 71323x x x --=-+(2)53312423x x x -+-=-【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】先分别表示:第1个相同的数是:0611,⨯+= 第2个相同的数是:1617,⨯+= 第3个相同的数是:26113,⨯+= 第4个相同的数是:36119,⨯+= …,再总结出规律,利用规律列方程即可得到答案.【详解】解:探究规律:第1个相同的数是:0611,⨯+=第2个相同的数是:1617,⨯+=第3个相同的数是:26113,⨯+=第4个相同的数是:36119,⨯+=…总结并归纳:第n 个相同的数是:()61165,n n -+=-运用规律:65103,n -=6108,n ∴=18.n ∴=故选:.B【点睛】本题考查的是数字的规律探究,一元一次方程的解法,掌握列代数式表示规律,利用方程思想解决问题是解题的关键.2.B解析:B【分析】设走路快的人要走x 步才能追上走路慢的人,根据走路快的人走80步的时候,走路慢的才走了60步可得走路快的人与走路慢的人速度比为80:60,利用走路快的人追上走路慢的人时,两人所走的步数相等列出方程,然后根据等式的性质变形即可求解.【详解】设走路快的人要走x 步才能追上走路慢的人,而此时走路慢的人走了6080x 步, 根据题意,得x =6080x +100,整理,得:1008060x x -= 故选:B .【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 3.D解析:D【分析】由1∠与2∠互为余角,1∠与3∠互为补角,可得1290,∠+∠=︒ 13180,∠+∠=︒ 再利用等式的基本性质逐一判断各选项即可得到答案.【详解】 解: 1∠与2∠互为余角,1∠与3∠互为补角,1290,∴∠+∠=︒ 13180,∠+∠=︒()()131********,∴∠+∠-∠+∠=︒-︒=︒3290,∴∠-∠=︒ 故①符合题意;1290,∠+∠=︒ 13180,∠+∠=︒121318090270,∴∠+∠+∠+∠=︒+︒=︒2+3=27021,∴∠∠︒-∠ 故②符合题意;1290,∠+∠=︒ 13180,∠+∠=︒21+22=180∴∠∠︒,21+22=1+3∴∠∠∠∠,3122,∴∠-∠=∠ 故③符合题意;1290,∠+∠=︒ 13180,∠+∠=︒1∴∠<90,3︒∠>90,︒∴ 312∠>∠+∠,故④符合题意;故选:.D【点睛】本题考查的是互余,互补的含义,等式的基本性质,掌握以上知识是解题的关键. 4.B解析:B【分析】根据长方形的长为xcm ,得到长方形的宽,结合题意列方程,即可得到答案.【详解】∵长方形的长为xcm∴长方形的宽为:()16x -cm根据题意得:()2163x x -=-+【点睛】本题考查了一元一次方程的知识;解题的关键是熟练掌握一元一次方程的性质,从而完成求解.5.C解析:C【分析】由整数a 满足36a <≤,先确定6,5,4,4,5,6a =---,由方程()631ax x +=-的解为整数,可得93x a =--,由3a -是9的约数931±±±,,, 求出6,0,2,4,6,12a =-,结合条件求出6,4,6a =-即可. 【详解】∵整数a 满足36a <≤,∴36a <≤或63-≤<-a ,∴6,5,4,4,5,6a =---,∵()631ax x +=-,整理得()39a x -=-, ∴93x a =--, ∵3a -是9的约数931±±±,,,∴6,0,2,4,6,12a =-,∴6,4,6a =-,则满足条件的所有整数a 的个数是3个.故选择:C .【点睛】本题考查有条件限定的一元方程的整数解问题,掌握方程整数解的求法,关键是方程变形为93x a =--,转化为9的约数来解是解题关键. 6.B解析:B【分析】设标签上的价格为x 元,根据打折后售价=成本+利润即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设标签上的价格为x 元,根据题意得:0.7x =80×(1+5%),解得:x =120.【点睛】本题考查了一元一次方程的应用,解题的关键是根据数量关系售价=成本+利润列出一元一次方程.7.B解析:B【分析】如果想要求出小明两个阶段的总得分,就要知道第一阶段的得分和第二阶段的得分,已知第一阶段的得分为50分,那么关键是求出第二阶段的得分,已知第二阶段答对了20道题,可得60分,那么就要看剩下的5道题中,有多少题是错误的,有多少题是不作答的,可设答错的题有x 道,那么不作答的题就有(5)x -道,由于不作答和答错的题数目最少也不能是负数,因此可得出0x ≥,50x -≥,由此可得出自变量的取值,然后根据两阶段的总得分为50602x +-,可计算出小明在此益智游戏中的总得分.【详解】设剩下的5道题中有x 道答错,则有(5)x -道不作答,小明的总得分是506021102x x +-=-,∵50x -≥,且0x ≥,则05x ≤≤,即0x =或1或2或3或4或5,当0x =时,小明的总得分为1102110x -=分,当1x =时,小明的总得分为1102108x -=分,当2x =时,小明的总得分为1102106x -=分,当3x =时,小明的总得分为1102104x -=分,当4x =时,小明的总得分为1102102x -=分,当5x =时,小明的总得分为1102100x -=分,答案中,只有B 符号.故选:B .【点睛】能够根据未知数的取值范围进行分析,要擅于利用题中答题个数不能为负数等隐藏的条件进行求解.8.A解析:A【分析】根据题意求出“九宫格”中的a ,b ,再求出x 即可求解.【详解】解:如下表,由题意得20125a -+=--,解得:4a =-;1125b a ++=--,即41125b -+=--,解得:3b =-;5125b x +-=--,即35125x -+-=--,解得:2x =;故选A .9.B解析:B【分析】设甲计划完成此项工作的天数为x ,根据甲先干一天后甲乙合作完成比甲单独完成提前3天,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设甲计划完成此项工作的天数为x ,根据题意得:1(1)32x x --+=, 解得:x=7,所以,甲计划完成此项工作的天数是7天.故选:B .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 10.A解析:A【分析】设新工艺的废水排量为2xt ,旧工艺的废水排量为5xt ,根据如用旧工艺,则废水排量要比环保限制的最大量还多200t ;如用新工艺,则废水排量要比环保限制的最大量少100t 列方程.【详解】设新工艺的废水排量为2xt ,旧工艺的废水排量为5xt ,由题意得52002100x x -=+,故选:A .【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.11.A解析:A【分析】利用进价=利润÷利润率可求出该品牌冰箱的进价,设该品牌冰箱的标价为x元,根据“若按标价的八折销售,每件可获利200元”,即可得出关于x的一元一次方程,解之即可求出x的值,再将其代入(90%x﹣2000)中即可求出结论.【详解】解:该品牌冰箱的进价为200÷10%=2000(元).设该品牌冰箱的标价为x元,依题意得:80%x﹣2000=200,解得:x=2750,∴90%x﹣2000=90%×2750﹣2000=475(元).故选:A.【点睛】本题考查了一元一次方程的运用,找准等量关系,正确列出一元一次方程是解题的关键.12.D解析:D【分析】直接用等式的性质进行判断即可,等式左右两边同时加上减去乘以或除以(不为0)的一个数,等式不变;【详解】A、如果3x=6y,则x=2y,故此选项不符合题意;B、如果2x-1=3y+2,则2x=3y+3,故此选项不符合题意;C、如果x-2y=1,则2x-4y=2,故此选项不符合题意;D、如果4x=9y,则94x y,故此选项符合题意;故选:D.【点睛】本题考查了等式的性质,熟练掌握等式的性质是解题的关键;二、填空题13.5或7【分析】根据题意可知剪断后的三段可以表示为OA2ABPB-AB而根据题设可设三段分别为m3m4m由总长度为16cm求出m的值再分两种情况讨论OA=m或OA=3m从而求出各线段的长【详解】解:由解析:5或7【分析】根据题意可知剪断后的三段可以表示为OA、2AB、PB-AB,而根据题设可设三段分别为m,3m,4m,由总长度为16cm求出m的值,再分两种情况讨论OA=m或OA=3m,从而求出各线段的长.【详解】解:由题意可知剪断后的三段可以表示为OA、2AB、PB-AB,而这三段的长度由短到长之比为1:3:4,于是可设三段分别为m,3m,4m∵OA+2AB+PB-AB=OP=16即m+3m+4m=16∴m=2∴剪断后的三条线段的长分别为2cm,6cm,8cm又∵以点P为一端的那段细线最长∴PB-AB=8,于是分类若OA=2,则2AB=6,PB-AB=8∴AB=3,PB=11此时OB=OA+AB=5若2AB=2,则OA=6,PB-AB=8∴OA=6,AB=1,PB=9此时OB=OA+AB=7综上,OB的长为5或7故答案为:5或7.【点睛】本题考查的线段的长度之间的运算,根据图形对线段进行和、差、倍、分的运算是解题的关键.14.4x;112x;012x;(1+40)x×08-x=15;【分析】根据题意可得每件衣服的标价售价利润关于x的代数式根据售价﹣标价=利润列出方程即可【详解】解:设每件服装的成本价为x元那么每件服装的标解析:4x; 1.12x; 0.12x;(1+40%)x×0.8- x=15;【分析】根据题意可得每件衣服的标价、售价、利润关于x的代数式,根据售价﹣标价=利润列出方程即可.【详解】解:设每件服装的成本价为x元,那么每件服装的标价为:(1+40%)x=1.4x;每件服装的实际售价为:1.4x×0.8=1.12x;每件服装的利润为:1.12x–x=0.12x;由此,列出方程:(1+40%)x×0.8- x=15;【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题意,根据题目给出的条件,找出题中的等量关系列出方程.15.;【分析】利用制作的大小月饼正好装成整盒进而得出等式求出即可【详解】解:设用xkg面粉制作大蛋糕则利用(450x)kg制作小蛋糕根据题意得出:解得:x=250∴用250kg面粉制作大蛋糕才能生产最多解析:;【分析】利用制作的大小月饼正好装成整盒,进而得出等式求出即可.【详解】解:设用x kg 面粉制作大蛋糕,则利用(450-x )kg 制作小蛋糕,根据题意得出: 145010.0520.024x x -⨯=⨯, 解得:x=250,∴用250kg 面粉制作大蛋糕,才能生产最多的盒装蛋糕.故答案为:250.【点睛】本题考查了一元一次方程的应用,根据题意得出正确的等量关系是解题关键.16.【分析】如图为的中点为的三等分点设再利用线段的和差关系表示结合题意可得对应的数为对应的数为再求解从而可列方程求解于是可得的长【详解】解:如图为的中点为的三等分点设由题意得:对应的数为对应的数为故答案 解析:6.【分析】如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x == 再利用线段的和差关系表示11AM BN ,,结合题意可得1M 对应的数为4.5,1N 对应的数为17.5, 再求解11M N , 从而可列方程求解x ,于是可得MN 的长.【详解】解:如图,G 为AB 的中点,,F P 为AB 的三等分点,设3,MN AB x ==由题意得:1 1.5,AG BG BN x === ,AF FP PB x === 12,AM x =1123 1.5 6.5,M N x x x x ∴=++=1M 对应的数为4.5,1N 对应的数为17.5,1117.5 4.513M N ∴=-=,6.513,x ∴=2,x ∴=3 6.MN x ∴==故答案为:6.【点睛】本题考查的是线段的中点,线段的三等分点的含义,数轴上两点之间的距离,数轴上动点问题,一元一次方程的应用,掌握以上知识是解题的关键.17.或【分析】设中间的那个人分得个橘子根据题意第一个人分(x-6)个第二个人分(x-3)个第三个人分x 个第四个人分(x+3)个第五个人分(x+6)个将几个人的数量相加等于60即可【详解】设中间的那个人分解析:(6)(3)(3)(6)60x x x x x -+-+++++=,或560x =【分析】设中间的那个人分得x 个橘子,根据题意第一个人分(x-6)个,第二个人分(x-3)个,第三个人分x 个,第四个人分(x+3)个,第五个人分(x+6)个,将几个人的数量相加等于60即可.【详解】设中间的那个人分得x 个橘子,根据题意得(6)(3)(3)(6)60x x x x x -+-+++++=或560x =,故答案为:(6)(3)(3)(6)60x x x x x -+-+++++=,或560x =.【点睛】此题考查一元一次方程的实际应用,正确理解题意恰当设中间的那个人分得x 个橘子是解题的关键.18.100【分析】设这件衣服的进价是x 元由题意得(1+20)x=200求解即可【详解】解:设这件衣服的进价是x 元由题意得(1+20)x=200解得x=100故答案为:100【点睛】此题考查一元一次方程的解析:100【分析】设这件衣服的进价是x 元,由题意得(1+20%)x=2000.6⨯,求解即可.【详解】解:设这件衣服的进价是x 元,由题意得(1+20%)x=2000.6⨯,解得x=100故答案为:100.【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.19.【分析】根据新规则先计算的值再计算的值最后将二者结果相乘积为列方程解题即可【详解】即故答案为:【点睛】本题考查新定义运算解一元一次方程等知识是常见考点难度较易掌握相关知识是解题关键 解析:27【分析】根据新规则先计算(32)*的值,再计算(4)x *的值,最后将二者结果相乘,积为8,列方程解题即可.【详解】22a b a b +*=∴32273222+⨯*== 4242x x +*= 742(32)(4)822x x +∴**=⨯= 即7(42)84x += 7(42)32x ∴+= 32427x ∴+=32247x ∴=- 427x ∴=27x ∴= 故答案为:27. 【点睛】本题考查新定义运算、解一元一次方程等知识,是常见考点,难度较易,掌握相关知识是解题关键.20.【分析】求方程的解代入中解方程即可【详解】解:x-a=3x=3+a ∵方程与的解相同∴将x=3+a 代入得∴6+5a-12=0解得a=故答案为:【点睛】此题考查同解方程正确解方程是解题的关键 解析:65【分析】求方程13x a -=的解,代入23304x a +-=中解方程即可. 【详解】 解:13x a -=, x-a=3,x=3+a ,∵方程13x a -=与23304x a +-=的解相同, ∴将x=3+a 代入23304x a +-=, 得2(3)3304a a ++-=, ∴6+5a-12=0,解得a=65, 故答案为:65. 【点睛】此题考查同解方程,正确解方程是解题的关键.三、解答题21.(1)910x =-;(2)x=4;(3)x=-20;(4)67x 23= 【分析】(1)根据去分母、移项、合并同类项、未知数的系数化为1的步骤求解即可(2)根据移项、合并同类项、未知数的系数化为1的步骤求解即可(3)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可 (4)根据去分母、去括号、移项、合并同类项、未知数的系数化为1的步骤求解即可【详解】 (1)3118x 342x -=-, 去分母,得3-32x=12-22x ,移项,得-32x+22x=12-3,合并同类项,得-10x=9,系数化为1,得 910x =-; (2)0.5x-0.7=6.5-1.3x ,移项,得0.5x+1.3x=6.5+0.7,合并同类项,得1.8x=7.2,系数化为1,得x=4;(3)()123x 6365x -=-, 去分母,得 ()53x 61290x -=-,去括号,得15x-30=12x-90,移项,得15x-12x=-90+30,合并同类项,得3x=-60,系数化为1,得x=-20;(4)1231337x x -+=-, 去分母,得7(1-2x)=3(3x+1)-63,去括号,得7-14x=9x+3-63,移项,得-14x-9x=3-63-7,合并同类项,得-23x=-67,系数化为1,得 67x 23=. 【点睛】 本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.22.【分析】 把12x =代入方程,转化为关于m 的一元一次方程,解方程即可. 【详解】 ∵12x =是方程21423x m x m ---=的解,∴1112423m m ---=, ∴3(1-m )-6=2-4m ,解方程,得m=5.【点睛】本题考查了一元一次方程的解,解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键.23.(1)13x =-;(2)52y =-. 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母 ,去括号,移项合并,把x 系数化为1,即可求出解;【详解】(1)2(3)4(5)x x -=-+解:去括号得:62420x x -=--移项得 :24206x x -+=--合并同类项得 :226x =-系数化为1得 :13x =- (2)2145135y y ---= 解:去分母得 :5(21)153(45)y y --=- 去括号得 :105151215y y --=-移项得:101215515y y -=-++合并同类项得 :25y -=系数化为1得 :52y =-【点睛】本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解即可;24.(1)18元和39元;(2)(4m +3)元;(3)143元【分析】(1)根据表中给出的运费计算方式分别计算运费即可;(2)利用已知条件分别求出同一件a 千克的物品寄往省内和省外需付的运费,再用寄往省外付的运费-寄往省内付的运费即可求解;(3)设小丽的物品重(x +a )千克,x 为正整数,a 为小数部分,则小丁的物品重(x +a +1.5)千克,分①0<a≤0.5时,②0.5<a <1时两种情况,根据小丁的运费比小丽的运费多43元列出方程求解,再列式计算求出小丁和小丽共需付的运费.【详解】解:(1)寄往省内一件2千克的物品需付运费:10+8=18(元)∵超过1千克即要续重,续重以0.5千克为计重单位(不足0.5千克按0.5千克计算) ∴寄往省外一件2.7千克的物品需付运费:15+12×2=39(元);(2)省内:()()10810.5=8+6m m +-+元省外:()()151210.5=12+9m m +-+元()()129861298643m m m m m +-+=+--=+元;(3)设小丽的物品重(x +a )千克,x 为正整数,a 为小数部分,小丁的物品重(x +a +1.5)千克①0<a≤0.5时,小丽:()()10+810.5886x x -+⨯=+元小丁:()()15+1212121227x x -+⨯=+元()12278643x x +-+=解得: x =5.5(不是正整数,舍去);②0.5<a <1时,小丽:()()10+8118810x x -+⨯=+元小丁:()()15+121 2.5121233x x -+⨯=+元()123381043x x +-+=解得:x =5,小丁和小丽共需付运费:8×5+10+12×5+33=143(元).【点睛】本题考查了列代数式,一元一次方程的应用,解决问题的关键是读懂题意,根据表中给出的运费计算方式分别列出寄往省内和省外需付的运费的代数式.25.(1)A :(20x +2400)元,B :(18x +2700)元;(2)150;(3)3360元【分析】(1)根据A 、B 两个公司的优惠方案所提供的数量关系直接列代数式化简即可; (2)根据在两家公司购买的总费用一样,列出方程可求x 的值;(3)先到A 公司买30个篮球,获赠30条跳绳,再到B 公司购买50﹣30=20条跳绳,更为合算.【详解】解:(1)由A 公司的优惠方案得,买30个篮球,x 条跳绳(x >30)的总费用为:100×30+20(x ﹣30)=(20x +2400)元; 由B 公司的优惠方案得,买30个篮球,x 条跳绳(x >30)的总费用为:100×90%×30+20×90%x =(18x +2700)元; (2)依题意有20x +2400=18x +2700,解得:x =150.故此时x 的值为150;(3)先到A 公司买30个篮球,获赠30条跳绳,再到B 公司购买50﹣30=20条跳绳所用的总费用为:100×30+20×90%×(50﹣30)=3000+360=3360(元).故需要费用3360元.【点睛】本题考查一元一次方程的应用,列代数式,根据数量关系列出代数式是正确计算的前提,理解各个公司的优惠方案是解决问题的关键.26.(1)5x =;(2)1x =-【分析】(1)先去括号,再移项、合并同类项即可求解;(2)先去分母,再去括号,最后移项、合并同类项即可求解.【详解】解:(1)()()3 71323x x x --=-+去括号,得:3 77326x x x -+=--,移项、合并同类项,得:210x =,系数化为1,得:5x =;(2)53312423x x x -+-=- 去分母,得:()()()35363142x x x -=+--,去括号,得:15918684x x x -=+-+,移项、合并同类项,得:77x =-,系数化为1,得:1x =-.【点睛】本题考查解一元一次方程,掌握一元一次方程的求解方法是解题的关键.。

第五章一元一次方程单元测试(北师大版)

第五章一元一次方程单元测试(北师大版)

第五章 一元一次方程综合检测一、选择题1.下列方程是一元一次方程的是 ( )A 、x+2y=9 B.x 2-3x=1 C.11=x D.x x 3121=-2.某商品的进价是3000元,标价是4500元,商店要求利润不低于5%的售价打折出售,最低可以打( )折出售此商品。

A 、8折B 、7折C 、7.5折D 、8.5折3.方程3(x+1)=2x-1的解是 ( )A 、x=-4 B.x=1 C.x=2 D.x=-24.在一张日历上,任意圈出数列上三个数的和不可能是 ( )A 、63B 、39C 、50D 、575.方程13521=--x x ,去分母得 ( )A .3x -2x+10=1 B.3x -2x -10=1 C.3x -2x -10=6 D.3x -2x+10=66、. 下列说法中,正确的个数是 ( )① 若,则;②若,则;③ 若,则;④若,则(A ) 1个 (B )2个 (C )3个 (D )4个7.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑按原售价降低m 元后,以降低20%,现售价为n 元,那么该电脑的原售价为 ( )A .(m n +54)元 B.(m n +45)元 C.(5m+n)元 D.(5n+m)元8.甲商品进价为1000元,按标价1200元9折出售,乙商品进价为400元,按标价600元7.5折出售,则甲、乙两商品的利润率 ( )A 、甲高B 、乙高C 、一样高D 、无法比较9、.如果方程53x 2n -7-71=1是关于x 的一元一次方程,则n 的值为( ) A.2 B.4 C.3 D.110、一件风衣,按成本价提高50%后标价,后因季节关系按标价的8折出售,每件卖180元,这件风衣的成本价是 ( )A.150元B.80元C.100元D.120元11、初一(1)班举行了一次集邮展览,展出的邮票比平均每人3张多24张,比平均每人4张少26张,这个班共展出邮票的张数是 ( )A.164B.178C.168D.17412、某人上山的速度为a 千米/小时,后又沿原路下山,下山速度为b 千米/小时,那么这个人上山和下山的平均速度是 ( )。

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中,解为x=3的方程是()A.y−3=0B.x+2=1C.2x−2=3D.2x=x+32.下列变形符合方程的变形规则的是()A.若2x−3=7,则2x=7−3B.若3x−2=x+1,则3x−x=1−2C.若−3x=5,则x=5+3D.若−1x=1,则x=−443.已知x=1是方程x+m=3的解,则m的值是()A.1 B.2 C.−2D.34.小丽同学在做作业时,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x=9,请问这个被污染的常数■是()A.4 B.3 C.2 D.15.甲、乙两个工程队共同承接了某村“煤改气”工程,甲队单独施工需10天完成,乙队单独施工需15天完成.若甲队先做5天,剩下部分由两队合做,则完成该工程还需要()A.8天B.5天C.3天D.2天6.红星中学初三②班十几名同学毕业前和数学老师合影留念,一张彩色底片要0.6元,扩印一张相片0.5元,每人分一张,免费送老师一张(由学生出钱),每个学生交0.6元刚好,相片上共有多少人()A.13个B.12个C.11个D.无法确定7.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x张做盒身,则下列所列方程正确的是( )A.18(28−x)=12x B.18(28−x)=2×12xC.18(14−x)=12x D.2×18(28−x)=12x8.在如图所示的三阶幻方中,填写了一些数、式子和汉字(其中每个式子或汉字都表示一个数),若每一横行,每一竖列,以及每条对角线上的3个数之和都相等,则“诚实守信”这四个字表示的数之和为()A.20B.21C.30D.31二、填空题9.若x=2是方程3x−2a=5的解,则a=.10.当x= 时,代数式3−2x2与2−x3互为相反数.11.甲乙两城市相距420千米,客车与轿车分别从甲乙两城市同时出发,相向而行.已知客车每小时行70千米,轿车每小时行110千米,经过小时客车与轿车相距60千米.12.小军在解关于x的方程2−2x3=3x−m7+3去分母时,方程右边的3未乘21,由此求得方程的解为x=1423,则这个方程的正确的解应为.13.小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,则该文具店中这种大笔记本的单价为元.三、计算题14.解方程:(1)5x−14=7−2x;(2)x−22−3−x5=4四、解答题15.已知x=2是方程ax−4=0的解(1)求a的值;(2)检验x=3是不是方程2ax−5=3x−4a的解.16.一六三学校六、七、八年级参加春游的师生一共有900人,租一辆45座的小客车租金为250元,租一辆60座的大客车租金为300元.如果租用的大客车比小客车多1辆,恰好坐满.(1)需要租用的大客车和小客车各多少辆?(2)应付租金多少元?17.定义:如果两个一元一次方程的解之和为1,我们就称这两个方程为“美好方程”.例如:方程2x−1=3和x+1=0为“美好方程”.(1)请判断方程4x−(x+5)=1与方程−2y−y=3是否互为“美好方程”;(2)若关于x方程12023x−1=0与12023x+1=3x+k是“美好方程”,求关于y的方程12023(y+2)+1=3y+k+6的解.18.小明每天早晨在8时前赶到离家1千米的学校上学.一天,小明以80米/分的速度从家出发去学校,5分钟后,小明爸爸发现小明的语文书落在家里,于是,立即以180米/分的速度去追赶.问:(1)小明爸爸出发多少时间后追上小明?(请用列方程的方法解)(2)追上小明时,他们距离学校还有多远?19.希腊数学家丢番图(公元3--4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿子死后,他在极度悲痛中度过了四年,也与世长辞了.”根据以上信息,请你求出:(1)丢番图的寿命;(2)儿子死时丢番图的年龄.参考答案1.D2.D3.B4.C5.C6.B7.B8.B9.1210.13811.2或8312.x=−213.814.(1)解:5x−14=7−2x5x+2x=7+147x=21x=3;(2)解:x−22−3−x5=45(x−2)−2(3−x)=405x−10−6+2x=407x=40+167x=56x=8.15.(1)a=2;(2)不是16.(1)解:设租小客车x辆,大客车(x+1)辆45x+60(x+1)=900解得:x=8x+1=8+1=9辆答:租小客车8辆,大客车9辆;(2)解:250×8+300×9=4700(元)答:应付租金4700元.17.(1)方程4x−(x+5)=1与方程−2y−y=3互为“美好方程”.(2)−2024.18.(1)解:设爸爸追上小明用了x 分则由题意可得:5×80+80x=180x解得x=4答:小明爸爸出发4分钟后能追上小明;(2)解:1000-4×180=280(米)答:追上小明时,他们距离学校的距离为280米.19.(1)84岁;(2)80岁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 一元一次方程检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A.243x x -=B.0x =C.23x y +=D.11x x-=2.(2013•福建晋江中考)已知关于x 的方程2x a --5=0的解是2x =-,则a 的值为( ) A .1 B .-1 C .9 D .-93.已知方程235x +=,则610x +等于( )A.15B.16C.17D.344.甲、乙两人练习赛跑,甲每秒跑7 m ,乙每秒跑6.5 m ,甲让乙先跑5 m ,设x s 后甲可追上乙,则下列四个方程中不正确的是( )A.7 6.55x x =+B.75 6.5x x +=C.(7 6.5)5x -=D.6.575x x =-5.如果三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )A.56B.48C.36D.126.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定7.已知21(35)m --有最大值,则方程5432m x -=+的解是x =( ) A.79 B.97 C.79- D.97- 8.(2013•山西中考)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33 825元.设王先生存入的本金为x 元,则下面所列方程正确的是( )A.x +3×4.25%x =33 825B.x +4.25%x =33 825C.3×4.25%x =33 825D.3( 4.25)x x +=33 825二、填空题(每小题3分,共24分)9.如果31a +=,那么a = .10.如果关于x 的方程340x +=与方程3418x k +=是同解方程,则k = .11.已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________. 12.已知方程233m x x -=+的解满足10x -=,则m ________. 13.若52x +与29x -+互为相反数,则2x -的值为 .14.(2013•四川凉山中考)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是 元.15.(2012•四川自贡中考)某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m ,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m ,则需更换新型节能灯 盏.16.当日历中同一行中相邻三个数的和为63,则这三个数分别为 .三、解答题(共52分)17.(12分)解下列方程:(1)10(1)5x -=; (2)7151322324x x x -++-=-;(3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=.18.(6分)m 为何值时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍?19.(6分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h ,乙单独做需要4 h ,甲先做30 min ,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?20.(6分)有一列火车要以每分钟600 m 的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5 s 时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50 m ,试求两座铁桥的长分别为多少?21.(5分)某生态食品加工厂收购了一批质量为10 000 kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000 kg ,求粗加工的该种山货质量.22.(5分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,求两校各植树多少棵.23.(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.24.(6分)(2013•长沙中考)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24 km和2号线22 km共需投资265亿元,若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8 km的地铁线网.据预算,这91.8 km地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?一元一次方程检测题参考答案 1.B 解析:243x x -=中,未知数的次数是2,所以不是一元一次方程;23x y +=中,有两个未知数,所以不是一元一次方程;11x x-=是分式方程.故选B. 2.D 解析:将2x =-代入方程,得450a ---=,解得9a =-.故选D. 3.B 解析:解方程235x +=,可得1x =.将1x =代入610x +,可得61061016x +=+=.4.B 解析:x s 后甲可追上乙,是指x s 时,甲跑的路程等于乙跑的路程,所以可列方程7 6.55x x =+,所以A 正确;将7 6.55x x =+移项、合并同类项,可得(7 6.5)5x -=,所以C 正确;将7 6.55x x =+移项,可得6.575x x =-,所以D 正确.故选B.5.B 解析:设这三个正整数为,2,4x x x .根据题意,得2484x x x ++=.解得12x =.所以这三个数中最大的数是448x =,故选B.6.B 解析:设此商人赚钱的那件衣服的进价为x 元,则x (1+25%)=120.解得96x =.设此商人赔钱的那件衣服进价为y 元,则y (1-25%)=120.解得160y =.所以他一件衣服赚了120-96=24(元),一件衣服赔了160-120=40(元),所以卖这两件衣服,总共赔了40-24=16(元).故选B.7.A 解析:由21(35)m --有最大值,可得350m -=,则53m =,554323x ⨯-=+,解得79x =.故选A. 8.A 解析:根据题意,得x +3×4.25%x =33 825.故选A .9.-2或-4 解析:因为31a +=,根据绝对值的意义知31a +=或31a +=-.解得2a =-或4a =-. 10.112解析:由340x +=可得43x =-.又因为340x +=与3418x k +=是同解方程,所以43x =-也是3418x k +=的解代入可求得112k =. 11.137解析:由23252x x -+=-,得2420(515)x x -=-+.解得97x =. 所以9133277b =⨯-=. 12.-6或-12 解析:由10x -=,得1x =±.当1x =时,由233m x x -=+,得2313m -=+,解得6m =-; 当1x =-时,由233m x x -=+,得2313m --=-,解得12m =-. 综上可知,6m =-或12m =-. 13.173- 解析:由题意可列方程52(29)x x +=--+,解得11.3x =- 所以11172233x -=--=-.14.20 解析:设原价为x 元.由题意得0.9x -0.8x =2.解得x =20.15.71 解析:设需更换的新型节能灯有x 盏,则54(x -1)=36×(106-1),54x =3 834,x =71,故需更换的新型节能灯有71盏.16.20,21,22 解析:设中间一个数为x ,则与它相邻的两个数为1,1x x -+.根据题意,得1163x x x -+++=.解得21x =.所以这三个数分别为20,21,22.17.解:(1)10(1)5x -=.去括号,得10105x -=.移项,得1015x =.系数化为1,得32x =. (2)7151322324x x x -++-=-. 去分母,得4(71)6(51)243(32)x x x --+=-+.去括号,得2843062496x x x ---=--.移项,得2830924664x x x -+=-++.合并同类项,得728x =.系数化为1,得4x =.(3)2(2)3(41)9(1)y y y +--=-.去括号,得2412399y y y +-+=-.移项,得2129934y y y -+=--.合并同类项,得2y -=.系数化为1,得2y =-.(4)0.89 1.33511.20.20.3x x x --+-=. 去分母,得(0.89)6(1.33)451)x x x ---=+(. 去括号,得0.897.818204x x x --+=+.移项,得9182047.80.8x x x -+-=+-.合并同类项,得1111x -=.系数化为1,得1x =-.18.解:关于x 的方程4231x m x -=-的解为21x m =-.关于x 的方程23x x m =-的解为3x m =.因为关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,所以2123m m -=⨯,所以14m =-. 19.解:设甲、乙一起做还需要x h 才能完成工作. 根据题意,得111116264x ⎛⎫⨯++= ⎪⎝⎭.解得115x =. 115h=2 h 12 min. 答:甲、乙一起做还需要2 h 12 min 才能完成工作.20.解:设第一座铁桥的长为x m ,则第二座铁桥的长为(250)x -m ,过完第一座铁桥所需要的时间为600x min ,过完第二座铁桥所需要的时间为250600x -min .依题意,可列出方程600x +560=250600x -.解得100x =. 所以250210050150x -=⨯-=. 答:第一座铁桥长100 m ,第二座铁桥长150 m .21.解:设粗加工的该种山货质量为x kg.根据题意,得(32000)10000 x x ++=.解得2000 x =.答:粗加工的该种山货质量为2 000 kg .22.解:设励东中学植树x 棵.根据题意,得(23)834x x +-=,解得279x =.2322793555x -=⨯-=.答:励东中学植树279棵,海石中学植树555棵.23.解:设这一天有x 名工人加工甲种零件,则这一天加工甲种零件5x 个,乙种零件4(16)x - 个.根据题意,得165244(16)1440 x x ⨯+⨯-=.解得6x =.答:这一天有6名工人加工甲种零件.24.解:(1)设1号线、2号线每千米的平均造价分别是x 亿元、y 亿元,由题意得2422265,0.5. x y x y +⎧⎨-⎩==解得6,5.5.x y ⎧⎨⎩== 答:1号线、2号线每千米的平均造价分别是6亿元和5.5亿元;(2)由(1)得出91.8×6×1.2=660.96(亿元).答:还需投资660.96亿元.。

相关文档
最新文档