第5章 一元一次方程检测题

合集下载

人教版七年级数学上册 第五章 一元一次方程 单元测试卷

人教版七年级数学上册  第五章 一元一次方程  单元测试卷

第五章一元一次方程(单元测试卷人教版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。

1.下列方程中,属于一元一次方程的是()A .0x =B .42x=C .2234x x -=D .43x y -=2.若()2326m m x --=是关于x 的一元一次方程,则m 的值是()A .1B .1-C .2D .1或23.已知关于x 的方程()2x m nx +=的解2x =,则m n -的值为()A .2-B .1-C .1D .24.解方程x 14x 123+=+,下列去分母的过程正确的()A .3(1)81x x +=+B .3(1)46x x +=+C .186x x +=+D .3(1)86x x +=+5.某车间有技工85人,平均每人每天能生产甲种零件16个或乙种零件10个.已知每2个甲种零件和3个乙种零件配成一套,通过合理安排,分配恰当的人数生产甲或乙种零件,可以使得每天生产的配套零件最多,最多为()A .200套B .201套C .202套D .203套6.根据如图所示的程序计算,若输入x 的值是1-时,输出的值是5.若输入x 的值是3,则输出值为()A .13B .0C .1-D .17.设,x y 为任意两个有理数,规定2x y xy x =-◎,若()1215m +=◎,则下列正确的是()A .5m =B .103m =C .133m =D .4m =8.某茶具生产车间共有22名工人,每人每天可生产30个茶壶或者100只茶杯,一个茶壶与4只茶杯配套.为使每天生产的茶壶和茶杯刚好配套,需要有_________名工人生产茶壶()A .8B .14C .10D .129.某环形跑道长400米,甲、乙两人练习跑步,他们同时反向从某处开始跑,甲每秒跑6米,乙每秒跑4米,x 秒后,甲、乙两人首次相遇,则依题意列出方程:①64400x x +=;②()64400x +=;③40064x x -=;④64400x x -=.其中正确的方程有()A .1个B .2个C .3个D .4个10.某电视机去年提价25%,今年想要恢复原价,则应降价().A .15%B .20%C .25%D .30%二、填空题:共8题,每题3分,共24分。

2021 七年级数学 第5章 一元一次方程 章末检测卷

2021 七年级数学 第5章 一元一次方程 章末检测卷

第5章 一元一次方程 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2021·哈尔滨德强学校七年级期中)下列是一元一次方程的是( ) A .2x +1B .3+2=5C .x +2=3D .x 2=02.(2021·浙江七年级课时练习)若x y =,则下列式子:①11y x -=-;①33x y =-;①11x y -=-;①3223x y +=+,正确的有( ) A .1个B .2个C .3个D .4个3.(2021·河北七年级期末)整式2ax b +的值随x 的取值不同而不同,下表是当x 取不同的值时对应的整式的值,则关于x 的方程22ax b --=的解是( )1C .2x =-D .2x =4.(2021·绵阳市七年级课时练习)如果方程331157n x --=是关于x 的一元一次方程,则n 的值为( ) A .2B .4C .3D .15.(2021·浙江七年级单元测试)下列变形正确的是( ) A .方程54x =-的解是54x =-B .把方程532x x -=-移项得:352x x +=-C .把方程()2352x x --=去括号得:2352x x --=D .方程18233x x -=+的解是3x =6.(2021·重庆市天星桥中学七年级月考)某项工作甲单独做需4天完成,乙单独做需6天完成,若甲先做了一天,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111448x x -++= 7.(2021·浙江七年级期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A.3个B.4个C.5个D.6个8.(2021·山西七年级期末)数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h完成.现计划由一部分人先做4h,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x人先做4h.小亮列的方程是:48(2)14040x x++=,其中,“440x”表示的意思是“x人先做4h完成的工作量”,“8(2)40x+”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x⨯+=,其中,“(48)40x+”表示的意思是()A.先工作的x人前4小时和后8小时一共完成的工作量B.增加2人后,(x+2)人再做8小时完成的工作量C.增加2人后,新增加的2人完成的工作量D.x人先做4小时完成的工作量9.(2021·河南七年级期中)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是11222y y+=-小明翻看了书后的答案,此方程的解是y=53-,则这个常数是()A.1B.2C.3D.410.(2021·山东七年级期末)关于x的方程15142323mx x⎛⎫-=-⎪⎝⎭有负整数解,则符合条件的整数m的值可能是()A.-1B.3C.1D.2 11.(2021·江苏)如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为()A .63B .72C .99D .11012.(2021·江苏七年级期末)球赛积分表问题: 某次篮球联赛积分表:2分;③如果一个队胜m 场,则该队的总积分为()12m +分;④不可能有一个球队的胜场总积分等于它的负场总积分.以上说法正确的个数是( ) A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2020·浙江杭州市·七年级期末)已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______.14.(2021·湖北七年级期中)马小虎计算一个数乘以5,再加24,由于粗心,把乘号看成除号,加号看成减号,但得数是正确的.这道题的正确得数是__.15.(2021·浙江)实验室里,水平桌面上有半径相同的甲、乙、丙三个圆柱形容器(容器足够高),用两个相同的管子在容器的6cm 高度处连通(即管子底端离容器底6cm ).现三个容器中,只有甲中有水,水位高2cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升5c m 6,则开始注入_____分钟的水量后,乙的水位高度比甲的水位高度高0.5cm .16.(2021·重庆市天星桥中学七年级月考)(选自《课堂导报》30期)某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的23.已知7月份团体票每张20元,共售出团体票数的35,零售票每张24元,共售出零售票数的12;如果在8月份,团体票按每张25张售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张______________元. 17.(2021·湖南七年级期末)一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:0m n ==时,我们称使得2323m n m n ++=+成立的一对数,m n 为“相伴数对”,记为(,)m n . (1)若(2,)n 是“相伴数对”,则n =_______;(2)(,)m n 是“相伴数对”,则代数式321[(679)]433m n n m ---+++的值为_______. 18.(2021·浙江杭州外国语学校七年级期末)[)x 表示大于x 的最小整数,如[)[)3.24,32=-=-,则下列判断:①2563⎡⎫-=-⎪⎢⎣⎭;②[)x x -有最小值是-1;③[)x x -有最大值是0;④存在实数x ,使[)0.5x x -=-成立;⑤若m 为整数,m x 为任意实数,则[)[)m x m x +=+,其中正确的是___________(填编号).三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(2021·浙江七年级期末)解方程: (1)2143335x x x ---=- (2)0.20.40.050.20.50.03x x x ---=20.(2021·山西临汾市·七年级期中)阅读理解:已知a ,b 为有理数,且a ≠0,若关于x 的一元一次方程ax =b 的解为x =b +a ,我们就定义该方程为“和解方程”.例如:方程2x =﹣4的解为x =﹣2,因为﹣2=﹣4+2,所以方程2x =﹣4是“和解方程”.请根据上述定义解答下列问题:(1)方程3x =﹣6 “和解方程”;(填“是”或“不是”) (2)已知关于x 的一元一次方程5x =m 是“和解方程”,求m 的值;(3)已知关于x 的一元一次方程4x =ab +b 是“和解方程”,且它的解是x =b ,则a ,b 的值分别为 , .21.(2021·重庆七年级期末)阅读下列材料: 问题:怎样将0.8⋅表示成分数? 小明的探究过程如下:设0.8x ⋅=① 10100.8x ⋅=⨯②108.8x ⋅=③ 1080.8x ⋅=+④108x x =+⑤ 98x =⑥89x =⑦根据以上信息,回答下列问题:(1)从步骤①到步骤②,变形的依据是______ ;从步骤⑤到步骤⑥,变形的依据是______ ; (2)仿照上述探求过程,请你将0.36⋅⋅表示成分数的形式.22.(2021·江苏泰州市·高港实验学校七年级月考)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数--“好数”. 定义:对于三位自然数n ,若各位数字都不为0,且百位上的数字与十位上的数字之和恰好能被个位上的数字整除,则称这个三位自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除,所以426是“好数”:643不是“好数”,因为6+4=10,10不能被3整除,所以643不是“好数”.(1)判断134,614是否是“好数”?并说明理由;(2)求出百位上的数字比十位上的数字大7的所有“好数”.23.(2021·黑龙江)某中学库存若干套桌凳,准备修理后支援贫困山区学校,现有甲、乙两木工组,甲每天修桌凳16套,乙每天修桌凳比甲多8套,甲单独修完这些桌凳比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费.(1)问该中学库存多少套桌凳?(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:①由甲单独修理;②由乙单独修理;③甲、乙合作同时修理.请你通过计算说明哪种方案省钱.24.(2021·重庆实验外国语学校九年级二模)4月30日,某水果店购进了100千克水蜜桃和50千克苹果,苹果的进价是水蜜桃进价的1.2倍,水蜜桃以每千克16元的价格出售,苹果以每千克20元的价格出售,当天两种水果均全部售出,水果店获利1800元.(1)求水蜜桃的进价是每千克多少元?(2)5月1日,该水果店又以相同的进价购进了300千克水蜜桃,第一天仍以每千克16元的价格出售,售出了8a千克,且售出量已超过进货量的一半.由于水蜜桃不易保存,第二天,水果店将水蜜桃的价格降低了a%,到了晚上关店时,还剩20千克没有售出,店主便将剩余水蜜桃分发给了水果店员工们,结果这批水蜜桃的利润为2660元,求a的值.25.(2021·福建)某市居民生活用电实行分档累进递增的阶梯电价,按户月均用电量分三档,普通电价表如下:档电价基础上加价0.03元/度;低谷时段8:00—22:00以外时间,其电价在各档电价基础上加价-0.2元/度.小明家9月电表示数变化情况如下表:_______元/度:(2)①计算小明家这个月的普通电费;②若申请“峰谷电价”,9月份能省钱吗?省多少钱?(3)若小明家6月的用电量为350度且峰电量超过230度,他们申请“峰谷电价”后,能节约18.5元,问小明家6月份高峰时段、低谷时段用电量分别是多少?AB=,26.(2021·重庆市天星桥中学七年级月考)如图,在长方形ABCD中,12cm→→→的路线运动,点N以2cm/s 8cmBC=.点M以1cm/s的速度从A出发,沿A B C D→→→的路线运动,若点M,N同时出发,当点N到达A点的速度从D出发,沿D C B A时,M,N两点同时停止运动.运动时间为()s t.(1)当t为何值时,点M,N在运动路线上相遇:(2)当点M,点N在运动路线上相距的路程为11cm时,求t的值.(3)在M,N相遇之前,是否存在直线MN把矩形周长分为1:3的两部分,若存在,请直接写出此时t的值,若不存在,请说明理由;第5章 一元一次方程 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________ 注意事项:本试卷满分120分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2021·哈尔滨德强学校七年级期中)下列是一元一次方程的是( ) A .2x +1 B .3+2=5C .x +2=3D .x 2=0【答案】C【分析】利用一元一次方程定义解答即可.【详解】解:A 、2x +1不是方程,故此选项不合题意; B 、3+2=5,不含未知数,不是方程,故此选项不合题意; C 、x +2=3是一元一次方程,故此选项符合题意; D 、x 2=0是一元二次方程,故此选项不合题意;故选C .【点睛】本题主要考查了一元一次方程的定义,解题的关键在于能够熟练掌握一元一次方程的定义:只含有一个未知数,且未知数的次数为1.2.(2021·浙江七年级课时练习)若x y =,则下列式子:①11y x -=-;①33x y =-;①11x y -=-;①3223x y +=+,正确的有( ) A .1个 B .2个C .3个D .4个【答案】B【分析】根据等式的性质,等式的两边同时加上(或减去)同一个数(或整式),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或整式),等式仍成立. 【详解】解:①利用等式的基本性质1,两边都减1即可得到,故①正确; ①左边乘3,右边乘3-,故①错误;①由x y =两边都乘1-,得到x y -=-,两边再都加1,得到11x y -+=-+,即11x y -=-,故①正确;①左边乘3加2,右边乘2加3,故①错误.故选:B.【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或整式),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或整式),等式仍成立.掌握等式的基本性质是解题关键 .3.(2021·河北七年级期末)整式2ax b +的值随x 的取值不同而不同,下表是当x 取不同的值时对应的整式的值,则关于x 的方程22ax b --=的解是( )1C .2x =-D .2x =【答案】A【分析】根据图表求得一元一次方程−ax −2b =2为2x +2=2,即可得出答案. 【详解】解:∵当x =0时,ax +2b =−2,∴2b =−2,b =−1,∵x =−2时,ax +2b =2,∴−2a −2=2,a =−2,∴−ax −2b =2为2x +2=2,解得x =0.故选:A .【点睛】本题主要考查解一元一次方程,正确得出一元一次方程是解题的关键.4.(2021·绵阳市七年级课时练习)如果方程331157n x --=是关于x 的一元一次方程,则n 的值为( ) A .2 B .4 C .3 D .1【答案】B【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).根据未知数的指数为1可求出n 的值. 【详解】解:由方程是关于x 的一元一次方程可知x 的次数是1, 故31n -=,所以4n =.故选:B .【点睛】本题主要考查了一元一次方程的一般形式,未知数的指数是1,一次项系数不是0,特别容易忽视的一点就是系数不是0的条件.这是这类题目考查的重点. 5.(2021·浙江七年级单元测试)下列变形正确的是( ) A .方程54x =-的解是54x =-B .把方程532x x -=-移项得:352x x +=-C .把方程()2352x x --=去括号得:2352x x --=D .方程18233x x -=+的解是3x =【答案】D【分析】根据一元一次方程的解法分别判断即可.【详解】解:A 、方程54x =-的解是45x =-,故错误;B 、把方程532x x -=-移项得:352x x -=-,故错误;C 、把方程()2352x x --=去括号得:23152x x -+=,故错误;D 、方程18233x x -=+的解是3x =,故正确;故选D .【点睛】此题考查了解一元一次方程,熟练掌握方程的解法是解本题的关键.6.(2021·重庆市天星桥中学七年级月考)某项工作甲单独做需4天完成,乙单独做需6天完成,若甲先做了一天,然后甲、乙合作完成此项工作,若设甲一共做了x 天,所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111448x x -++= 【答案】C【分析】合作的天数减1即可确定乙工作的天数,利用总的工作量为1列出方程即可. 【详解】解:若甲先干一天,然后,甲、乙合作完成此项工作,若设甲一共做了x 天,乙工作的天数为(x -1),根据题意得:1146x x -+=,故选:C . 【点睛】本题考查了由实际问题抽象出一元一次方程,找到关键描述语,找到等量关系是解决问题的关键.工程问题中常用的关系式有:工作时间=工作总量÷工作效率.7.(2021·浙江七年级期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .3个B .4个C .5个D .6个【答案】B【分析】根据最后输出的结果,可计算出它前面的那个数,依此类推,可将符合题意的那个最小的正数求出.【详解】解:∵最后输出的数为656,∴5x +1=656,得:x =131>0, ∴5x +1=131,得:x =26>0,∴5x +1=26,得:x =5>0,∴5x +1=5,得:x =0.8>0;∴5x +1=0.8,得:x =-0.04<0,不符合题意, 故x 的值可取131,26,5,0.8共4个.故选:B .【点睛】本题立意新颖,借助新运算,实际考查一元一次方程的解法;解一元一次方程常见的过程有去括号、移项、系数化为1等.8.(2021·山西七年级期末)数学课堂上,老师出示了如下例题:整理一批图书,由一个人做要40h 完成.现计划由一部分人先做4h ,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?设安排x 人先做4h .小亮列的方程是:48(2)14040x x ++=,其中,“440x ”表示的意思是“x 人先做4h 完成的工作量”,“8(2)40x +”表示的意思是“增加2人后,(x+2)人再做8小时完成的工作量”.小宇列的方程是:()4+82814040x ⨯+=,其中,“(48)40x +”表示的意思是( )A .先工作的x 人前4小时和后8小时一共完成的工作量B .增加2人后,(x+2)人再做8小时完成的工作量C .增加2人后,新增加的2人完成的工作量D .x 人先做4小时完成的工作量 【答案】A【分析】根据先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,解答即可.【详解】解:∵设安排x 人先做4h ,然后增加2人与他们一起做8小时,完成这项工作. ∴可得先工作的x 人共做了(4+8)小时,∴列式为:先工作的x 人共做了(4+8)小时的工作量+后来2人8小时的工作量=1,而x 人1小时的工作量为40x,∴x 人(4+8)小时的工作量为(48)40x+, ∴(48)40x+表示先工作的x 人前4h 和后8h 一共完成的工作量,故选A . 【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键. 9.(2021·河南七年级期中)小明在做解方程作业时,不小心将方程中的一个常数污染得看不清楚,被污染的方程是11222y y +=-小明翻看了书后的答案,此方程的解是y =53-,则这个常数是( )A .1B .2C .3D .4【答案】B【分析】设所缺的部分为x ,2y +12=12y -x ,把y=- 53代入,即可求得x 的值.【详解】解:设所缺的部分为x , 则2y +12=12y -x , 把y =-53 代入, 求得x =2. 故选B .【点睛】 考查了一元一次方程的解的定义,解决本题的关键是要熟练掌握一元一次方程的解的定义.10.(2021·山东七年级期末)关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,则符合条件的整数m 的值可能是( ) A .-1 B .3 C .1 D .2【答案】A【分析】由题意可得21x m =-,根据关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解可得2与1m -是倍数关系,进而求解即可得.【详解】解:由15142323mx x ⎛⎫-=- ⎪⎝⎭可得:21x m =-,∵关于x 的方程15142323mx x ⎛⎫-=- ⎪⎝⎭有负整数解,且m 为整数,∴11m -=-或-2,∴0m =或-1,故选:A .【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键. 11.(2021·江苏)如图,是由7块正方形组成的长方形,已知中间小正方形的边长为1,则这个长方形的面积为( )A .63B .72C .99D .110【答案】A【分析】设出正方形A 的边长,进而表示出其他正方形的边长,根据长方形的长相等列出方程,求出方程的解得到x 的值,进而求出长方形的面积即可.【详解】解:设正方形A 的边长为x ,则正方形B 的边长为1x +,正方形C 的边长为2x +,正方形D 的边长为3x +,根据图形得:2331x x x x +++=++,解得:2x =, 则长方形的面积为(23)(12)(25)(23)9763x x x x x x ++++++=++=⨯=.故选:A .【点睛】此题考查了一元一次方程的应用,弄清图形中的数量关系是解本题的关键. 12.(2021·江苏七年级期末)球赛积分表问题: 某次篮球联赛积分表:①负一场积1分; ②胜一场积2分;③如果一个队胜m 场,则该队的总积分为()12m +分; ④不可能有一个球队的胜场总积分等于它的负场总积分. 以上说法正确的个数是( ) A .1 B .2C .3D .4【答案】C【分析】根据钢铁队的积分情况可判断①,根据东方队的积分情况可判断②,根据负一场和胜一场的积分可判断③,设某队胜a 场,根据题意列出方程,解之即可.【详解】解:①∵钢铁队胜场为0,负场为12,积分为12,∴12÷12=1,即负一场记1分,故正确;②根据东方队胜场为10,负场为2,积分为22,∴(22-2)÷10=2,即胜一场记2分,故正确;③如果一个队胜m 场,则该队的总积分为2m+(12-m )=12+m (分),故正确;④设某队胜a 场,则负12-a 场,由题意得2a=12-a ,解得:a=4,因为a 是整数,所以存在某队胜场总积分能等于它的负场总积分,故错误;故选C . 【点睛】此题考查一元一次方程的实际运用,看清表格中蕴含的数量关系是解决问题的关键. 二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2020·浙江杭州市·七年级期末)已知关于x 的一元一次方程点320212021xx a +=+①与关于y 的一元一次方程()3232021322021y y a --=--②,若方程①的解为2021x =,则方程②的解为______. 【答案】y =-673【分析】根据题意得出-(3y -2)的值,进而得出答案. 【详解】解:∵关于x 的一元一次方程320212021xx a +=+①的解为x =2021, ∴关于y 的一元一次方程()3232021322021y y a --=--②中-(3y -2)=2021, 解得:y =-673,故答案为:y =-673.【点睛】此题主要考查了一元一次方程的解,正确得出-(3y -2)的值是解题关键. 14.(2021·湖北七年级期中)马小虎计算一个数乘以5,再加24,由于粗心,把乘号看成除号,加号看成减号,但得数是正确的.这道题的正确得数是__. 【答案】﹣26.【分析】设这个数为x ,则由题目中的得数相等列方程,即可求解. 【详解】设这个数为x ,则由题意可列方程:5x +24=15x ﹣24,5x ﹣15x =﹣24﹣24,245x =﹣48,x =﹣10,∴这个数为﹣10,∴这道题的正确得数是:5×(﹣10)+24=﹣26,故答案为:﹣26.【点睛】本题考了一元一次 方程的运用,解题的关键是找准等量关系,列出一元一次方程. 15.(2021·浙江)实验室里,水平桌面上有半径相同的甲、乙、丙三个圆柱形容器(容器足够高),用两个相同的管子在容器的6cm 高度处连通(即管子底端离容器底6cm ).现三个容器中,只有甲中有水,水位高2cm ,如图所示,若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位上升5c m 6,则开始注入_____分钟的水量后,乙的水位高度比甲的水位高度高0.5cm .【答案】3或9.3【分析】在容器乙中的水未注入容器甲之前,注入的水仅存放在乙、丙容器内;在容器乙中的水注入容器甲之后,注入容器乙和丙中的水流入到甲容器中,在注入的过程中产生0.5cm 的高度差.【详解】解:当容器乙中的水未注入容器甲之前,由题意,注入单个容器中水位上升的高度与时间的关系为5c m 6/分钟, 所以当乙中水位为2.5cm 时满足条件,所用时间为:2.5÷56=3(分钟);当容器乙中的水注入容器甲之后,当甲容器中的水位为5.5cm ,容器乙中的水位为6cm 时, 满足题意,设注水时间为x ,则2×56x +2=2×6+5.5,解得x =9.3(分钟),要使乙中水位高出甲0.5cm ,则需注水的时间为:9.3分钟.故答案为:3或9.3. 【点睛】此题考查了一元一次方程的应用,根据题意分析产生水位差的两种情况是解答本题的关键点,建立方程时要注意甲容器中原有的水.16.(2021·重庆市天星桥中学七年级月考)(选自《课堂导报》30期)某音乐厅在暑假期间举办学生专场音乐会,入场券分团体票和零售票,团体票占总票数的23.已知7月份团体票每张20元,共售出团体票数的35,零售票每张24元,共售出零售票数的12;如果在8月份,团体票按每张25张售出,并计划在8月份售出全部票.那么为了使这两个月的票款总收入相等,零售票应按每张______________元. 【答案】32【分析】设总票数为a 张,8月份零售票按每张x 元定价,则团体票数为23a ,零售票数为13a ,根据等量关系7月份票款数8=月份票款数,列出方程,再求解.【详解】解:设总票数为a 张,8月份零售票按每张x 元定价,由题意得:321232122024()25(1)()53235323a a a a a a x ⨯⨯⨯+⨯-=⨯-⨯+-,2018436a a a ax ∴+=+,∴11663x =.32x ∴=. 即:零售票应按每张32元定价,才能使这两个月的票款总收入相等.故答案是:32. 【点睛】此题考查一元一次方程的实际运用,设出参数,找出题目蕴含的数量关系列出方程解决问题.17.(2021·湖南七年级期末)一般情况下2323m n m n++=+不成立,但有些数可以使得它成立,例如:0m n ==时,我们称使得2323m n m n ++=+成立的一对数,m n 为“相伴数对”,记为(,)m n . (1)若(2,)n 是“相伴数对”,则n =_______;(2)(,)m n 是“相伴数对”,则代数式321[(679)]433m n n m ---+++的值为_______. 【答案】92- -2【分析】(1)根据“相伴数对”的定义可得222323n n++=+,解此方程即可求解;(2)根据“相伴数对”的定义可得2323m n m n ++=+,则可求出940m n +=,然后先将原式化简,代入计算即可求值.【详解】解:(1)∵(2,)n 是“相伴数对”, ∴222323n n ++=+解得92n =-.故答案为:92-.(2)∵(,)m n 是“相伴数对”, ∴2323m n m n++=+,解得940m n +=, ∵321[(679)]433m n n m ---+++327[23]433m n n m =---+++32723433m n n m=-+---155243m n =--- ()594212m n =-+-,∴原式=502212-⨯-=-.故答案为:-2. 【点睛】本题考查了一元一次方程的应用,解决本题的关键是理解题目中“相伴数对”的定义. 18.(2021·浙江杭州外国语学校七年级期末)[)x 表示大于x 的最小整数,如[)[)3.24,32=-=-,则下列判断:①2563⎡⎫-=-⎪⎢⎣⎭;②[)x x -有最小值是-1;③[)x x -有最大值是0;④存在实数x ,使[)0.5x x -=-成立;⑤若m 为整数,m x 为任意实数,则[)[)m x m x +=+,其中正确的是___________(填编号).【答案】②④⑤【分析】根据题意[x )表示大于x 的最小整数,结合各项进行判断即可得出答案. 【详解】解:①2553⎡⎫-=-⎪⎢⎣⎭,故本判断错误;②当x 为整数时,[)1x x -=-,当x 为小数时,[)10x x -<-<∴[)x x -最小为-1;故本判断正确; ③由②得,[)0x x -≠,故本判断错误; ④存在实数x ,使[)0.5x x -=-成立,故本判断正确;⑤[)[)3210-+=-= [)32330-+=-+= [)[)5 3.28.28--=-=-[)()5 3.2538-+-=-+-=-∴[)[)m x m x +=+成立,∴正确的判断是②④⑤故答案为:②④⑤【点睛】此题考查了解一元一次不等式,仔细审题,理解[x )表示大于x 的最小整数是解答本题的关键.三、解答题(本大题共8小题,共66分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(2021·浙江七年级期末)解方程: (1)2143335x x x ---=- (2)0.20.40.050.20.50.03x x x ---=【答案】(1)x =197-;(2)x =4417【分析】(1)方程去分母,去括号,移项,合并同类项,把未知数系数化为1即可. (2)方程整理后,去分母,去括号,移项,合并同类项,把未知数系数化为1即可. 【详解】解:(1)2143335x x x ---=-, 去分母得45-5(2x -1)=3(4-3x )-15x , 去括号得45-10x +5=12-9x -15x , 移项得-10x +9x +15x =12-45-5, 合并得14x =-38, 系数化为1得x =197-; (2)0.20.40.050.20.50.03x x x ---=, 方程组化简为:2452053x x x ---=, 去分母得3(2x -4)-15x =5(5x -20), 去括号得6x -12-15x =25x -100, 移项得6x -15x -25x =-100+12, 合并同类项得-34x =-88, 系数化为1得x =4417. 【点睛】本题考查了解一元一次方程:掌握解一元一次方程的步骤(去分母、去括号、移项、合并同类项、系数化为1);针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a形式转化.20.(2021·山西临汾市·七年级期中)阅读理解:已知a ,b 为有理数,且a ≠0,若关于x 的一元一次方程ax =b 的解为x =b +a ,我们就定义该方程为“和解方程”.例如:方程2x =﹣4的解为x =﹣2,因为﹣2=﹣4+2,所以方程2x =﹣4是“和解方程”.请根据上述定义解答下列问题:(1)方程3x =﹣6 “和解方程”;(填“是”或“不是”) (2)已知关于x 的一元一次方程5x =m 是“和解方程”,求m 的值;(3)已知关于x 的一元一次方程4x =ab +b 是“和解方程”,且它的解是x =b ,则a ,b 的值分别为 , . 【答案】(1)不是(2)254m =-(3)3,43-. 【分析】(1)先解方程,再根据“和解方程“的定义判断,(2)根据“和解方程“的定义得出x =5+m ,再将其代入方程5x =m 之中进一步求解即可; (3)根据“和解方程“的定义得出4x ab b =++,结合方程的解为x =b ,进一步得出4ab =-,然后代入原方程得43b =-,之后进一步求解a 即可.【详解】(1)∵36x =-的解为2x =-,而2633-≠-+=- ∴方程3x =﹣6不是“和解方程” 故答案为:不是; (2)依题意,方程解为5mx =, ∵一元一次方程5x =m 是“和解方程”,∴5x m =+, ∴将5m x =代入方程5x m =+,解得254m =-,故答案为:254-; (3)依题意,方程解为4x ab b =++,又x b =,∴4ab =-,∴把x b =,4ab =-代入原方程4x ab b =+得:,解得:43b =-,∵4ab =-,∴3a =,故答案为:3,43-.【点睛】本题主要考查了一元一次方程的求解,根据题意准确得知“和解方程”的基本性质是解题关键.21.(2021·重庆七年级期末)阅读下列材料: 问题:怎样将0.8⋅表示成分数? 小明的探究过程如下:设0.8x ⋅=① 10100.8x ⋅=⨯②108.8x ⋅=③ 1080.8x ⋅=+④108x x =+⑤ 98x =⑥89x =⑦根据以上信息,回答下列问题:(1)从步骤①到步骤②,变形的依据是______ ;从步骤⑤到步骤⑥,变形的依据是______ ; (2)仿照上述探求过程,请你将0.36⋅⋅表示成分数的形式.【答案】(1)等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等 等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等;(2)114x =【分析】(1)根据等式的性质进行填空;(2)设0.36x =,两边同时乘以100,可得10036x x =+,解方程可得结论.【详解】解:1()从步骤①到步骤②,变形的依据是:等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等⋯从步骤⑤到步骤⑥,变形的依据是:等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等.⋯故答案为:等式的基本性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等;等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等.2()设0.36,..x = 100100036x ⋅⋅=⨯⋯., 1003636x ⋅⋅=.,10036x x =+⋯, 9936x =,411x =. 【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.22.(2021·江苏泰州市·高港实验学校七年级月考)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数--“好数”. 定义:对于三位自然数n ,若各位数字都不为0,且百位上的数字与十位上的数字之和恰好能被个位上的数字整除,则称这个三位自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除,所以426是“好数”:643不是“好数”,因为6+4=10,10不能被3整除,所以643不是“好数”. (1)判断134,614是否是“好数”?并说明理由;(2)求出百位上的数字比十位上的数字大7的所有“好数”.【答案】(1)134是“好数”, 614不是“好数”,理由见解析;(2)百位上的数字比十位上的。

第五章《一元一次方程》单元测试(含答案)

第五章《一元一次方程》单元测试(含答案)

第五章一元一次方程单元测试一、单选题(共10题;共30分)1、已知关于x的方程2x+a-9=0的解是x=2,则a的值为()A、2B、3C、4D、52、某书店把一本新书按标价的九折出售,仍可获得20%.若该书的进价为21元,则标价为()A、26元B、27元C、28元D、29元3、武汉市对城区主干道进行绿化,计划把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的问隔相等.如果每隔5米栽l棵,则树苗缺21棵;如果每隔6米栽l棵,则树苗正好用完.设原有树苗x棵,则根据题意列出方程正确的是()A、5(x+21-1)=6(x-1) ;B、5(x+21)=6(x-1) ;C、5(x+21-1)=6xD、5(x+21)=6x4、方程3x+6=0的解是()A、2B、-2C、3D、-35、方程=1时,去分母正确的是().A、4(2x-1)-9x-12=1B、8x-4-3(3x-4)=12C、4(2x-1)-9x+12=1D、8x-4+3(3x-4)=126、一益智游戏分二阶段进行,其中第二阶段共有25题,答对一题得3分,答错一题扣2分,不作答得0分.若小明已在第一阶段得50分,且第二阶段答对了20题,则下列哪一个分数可能是小明在此益智游戏中所得的总分()A、103分B、106分C、109分D、112分7、某种商品的进价为1200元,标价为1575元,后来由于该商品积压,商店准备打折出售,但要保持利润不低于5%,则至多可打()A、6折B、7折C、8折D、9折8、小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是()A、25斤B、20斤C、30斤D、15斤9、若关于x的一元一次方程k(x+4)﹣2k﹣x=5的解为x=﹣3,则k的值是()A、﹣2B、2C、D、﹣10、下列方程中是一元一次方程的是()A、B、x2=1 C、2x+y=1 D、二、填空题(共8题;共30分)11、甲乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.(1)当两人同时同地背向而行时,经过________秒钟两人首次相遇;(2)两人同时同地同向而行时,经过________ 秒钟两人首次相遇.12、无论x取何值等式2ax+b=4x-3恒成立,则a+b=________。

人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案

人教版七年级数学上册《第五章一元一次方程》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________(满分100分,限时60分钟)一、选择题(每小题3分,共30分)1.下列式子是一元一次方程的是()A.6x-5B.2−x3=1C.xy=5D.2x-1x=32.下列方程中,解为x=4的方程是()A.x-1=4B.4x=1C.4x-1=3x+3D.2(x-1)=13.下列变形中,正确的是()A.若a=b,则a+1=b-1B.若a-b+1=0,则a=b+1C.若a=b,则ax =b xD.若a3=b3,则a=b4.方程x2-1=2的解是() A.x=2 B.x=3C.x=5D.x=65.对于方程-3x-7=12x+6,下列移项正确的是()A.-3x-12x=6+7B.-3x+12x=-7+6C.-3x-12x=7-6D.12x-3x=6+76.选项中的变形,正确的是()A.将5x-4=2x+6移项,得5x-2x=6-4B.将4x=2系数化为1,得x=12C.将2(x-3)=-3(-x+6)去括号,得2x-6=-3x-18D.将12-x+13=1去分母,得3-2(x +1)=17.若单项式-2x 5yz n +1和13x 2m +1yz 3是同类项,则m +n 的值为 ( )A.3B.4C.6D.58.若☆是规定的新运算符号,定义a ☆b =ab +a +b ,则在3☆x =-9中,x 的值是 ( )A.3B.-3C.4D.-49.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问:人数、物价各是多少?若设物价是x 钱,则根据题意列一元一次方程,正确的是 ( )A.x−38=x+47B.x+38=x−47C.x−48=x+37D.x+48=x−3710.某种商品每件的进价为120元,标价为180元.为了拓展销路,商店准备打折销售.若使利润率为20%,则商店应打( )A.五折B.六折C.七折D.八折 二、填空题(每小题3分,共30分)11.写出一个解是x =2 023的一元一次方程: . 12.若(m -1)x |m |=7是关于x 的一元一次方程,则m = . 13.当a = 时,2(2a -3)的值比3(a +1)的值大1.14.已知4m +2n -5=m +5n ,利用等式的性质比较m 与n 的大小关系:m n (填“>”“<”或“=”). 15.若方程-x+n 3=34-2x+14的解是-5的相反数,则n = .16.一个两位数,十位数字是个位数字的3倍,将两个数字对调后得到的新两位数比原来的两位数小36,则原来的两位数是 .17我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是跑得快的马每天走240里(1里=0.5千米),跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x 天可以追上慢马,根据题意,可列方程为 .18.有一则故事,大致内容是某人工作一年的报酬是年终给他一件农具和11枚银币,但他干满8个月就决定不再继续干了,结账时,给了他一件农具和5枚银币,则这件农具值 枚银币.19.小马同学在解关于x 的方程2a -5x =21时,误将“-5x ”看成了“+5x ”,得方程的解为x =3,则原方程的解为 . 20.小敏两岁时父亲28岁,现在父亲的年龄是小敏年龄的2倍,现在小敏的年龄是 岁. 三、解答题(共40分) 21(6分)解下列方程: (1)x +x2+2x =180-x ; (2)x−12=1-3x+25.22.(8分)学习了一元一次方程的解法,下面是一道解方程的问题及小明同学解题过程的第一步: 解方程:2x−0.30.5-x+0.40.3=1.解:原方程可化为20x−35-10x+43=1.(1)小明解题的第一步依据是 ;(填“等式的性质”或“分数的性质”) (2)请写出完整的解题过程.23.(8分)在数轴上,点A 表示的数为a ,点B 表示的数为b ,且a ,b 满足|a +2|+(b -3)2=0.点C 在数轴上表示的数为x ,且x 满足方程23x -7=2x +1.求BC -AB 的值.24.(8分)一条公路,若由甲工程队单独修建需3个月完成,每月耗资12万元;若由乙工程队单独修建需6个月完成,每月耗资5万元.(1)甲、乙两工程队合作修建需几个月完成?共耗资多少万元?(2)若要求最迟4个月完成修建任务,请你设计一种方案,既保证按时完成任务,又最大限度节省资金.(时间按整月计算) 25.(10分)下表中有两种移动电话计费方式:月使用费(元)主叫限定 时间(min) 主叫超时费(元/min)方式一 58 200 a 方式二884000.25其中,月使用费固定收,主叫不超过限定时间不再收费,主叫超过部分加收主叫超时费. (1)如果某月的主叫时间为500 min,按方式二计费应交费 元; (2)当某月的主叫时间为350 min 时,两种方式收费相同,求a 的值; (3)在(2)的条件下,如果每月主叫时间超过400 min,选择哪种方式更省钱?答案全解全析一、选择题1.B 6x -5不含等号,不是方程.2−x 3=1,是一元一次方程.xy =5,有两个未知数,不是一元一次方程.2x -1x =3,分母中含未知数,不是一元一次方程.故选B .2.C 将x =4分别代入方程的左右两边,左右两边相等的是4x -1=3x +3. 3.D a 3=b 3,等式两边同乘3,得a =b.4.Dx 2-1=2,移项,得x2=2+1合并同类项,得x2=3系数化为1,得x =6,故选D . 5.A 移项得-3x -12x =6+7,故选A. 6.B 将5x -4=2x +6移项,得5x -2x =6+4; 将4x =2系数化为1,得x =12;将2(x -3)=-3(-x +6)去括号,得2x -6=3x -18; 将12-x+13=1去分母,得3-2(x +1)=6.故选B .7.B 由-2x 5yz n +1和13x 2m +1yz 3是同类项,得2m +1=5,n +1=3,解得m =2,n =2,所以m +n =4. 8.B 根据题中的新定义得3x +3+x =-9 移项,得3x +x =-9-3 合并同类项,得4x =-12 系数化为1,得x =-3.9.B 本题根据人数不变可列出一元一次方程.已知物价是x 钱,根据题意,得x+38=x−47.10.D 设商店打x 折,依题意,得180×0.1x -120=120×20%,解得x =8.故商店应打八折.故选D . 二、填空题11.2x =4 046(答案不唯一) 12.-1解析 因为方程(m -1)x |m |=7是关于x 的一元一次方程,所以m -1≠0且|m |=1,解得m =-1. 13.10解析 根据题意,得2(2a -3)-3(a +1)=1 去括号,得4a -6-3a -3=1 移项,得4a -3a =1+6+3 合并同类项,得a =10. 14.>解析 移项、合并同类项,得3m -3n =5 等式的两边都除以3,得m -n =53,因为53>0 所以m >n. 15.1解析 根据题意得x =-(-5)=5 把x =5代入-x+n 3=34-2x+14得-5+n 3=34-10+14,解得n =1.16.62解析 设原来两位数的个位数字是x ,则它的十位数字是3x ,根据题意得10×3x +x -(10x +3x )=36 解得x =2,所以3x =6 所以原来的两位数是62. 17.(240-150)x =150×12解析 本题等量关系为“快马比慢马每天多走的路程×快马走的天数=慢马每天走的路程×12”,故可列方程为(240-150)x =150×12. 18.7解析 设这件农具值x 枚银币,依题意,得x+1112=x+58,解得x =7,故这件农具值7枚银币.19.x =-3解析 根据题意,可得x =3是方程2a +5x =21的解.所以2a +15=21 解得a =3,即原方程为6-5x =21,解得x =-3. 20.26解析 设小敏现在的年龄为x 岁,则父亲现在的年龄是2x 岁,由题意得2x -x =28-2,解得x =26. 故小敏现在的年龄为26岁. 三、解答题21.解析 (1)移项,得x +x2+2x +x =180 合并同类项,得9x2=180系数化为1,得x =40.(2)去分母,得5(x -1)=10-2(3x +2) 去括号,得5x -5=10-6x -4 移项,得5x +6x =10-4+5 合并同类项,得11x =11 系数化为1,得x =1. 22.解析 (1)分数的性质.(2)原方程可化为20x−35-10x+43=1去分母,得3(20x -3)-5(10x +4)=15 去括号,得60x -9-50x -20=15 移项,得60x -50x =15+9+20 合并同类项,得10x =44 系数化为1,得x =4.4. 23.解析 因为|a +2|+(b -3)2=0 所以a +2=0,b -3=0 解得a =-2,b =3所以点A ,B 表示的数分别为-2,3. 解23x -7=2x +1得x =-6 所以点C 表示的数为-6因为点A 表示的数为-2,点B 表示的数为3 所以AB =3-(-2)=5,BC =3-(-6)=9 所以BC -AB =9-5=4.24.解析 (1)设甲、乙两工程队合作修建需x 个月完成 根据题意,得(13+16)x =1解得x =2.(12+5)×2=34(万元).答:甲、乙两工程队合作修建需2个月完成,共耗资34万元.(2)设甲、乙两工程队合作修建y 个月,剩下的由乙工程队来完成,且恰好4个月完工. 根据题意,得(13+16)y +4−y 6=1,解得y =1,则4-y =3.故甲、乙两工程队合作修建1个月,剩下的再由乙工程队来修建3个月,就可以保证按时完成任务且最大限度节省资金.25.解析(1)113.(2)由题意得,58+(350-200)a=88,解得a=0.2所以a的值为0.2.(3)设每月主叫时间为x分钟.当x>400时,按方式二计费应交费88+0.25(x-400)=(0.25x-12)元.按方式一计费应交费58+0.2(x-200)=(0.2x+18)元.当0.2x+18=0.25x-12时,解得x=600所以当400<x<600时,选择计费方式二更省钱;当x=600时,两种计费方式收费相同;当x>600时,选择计费方式一更省钱.。

浙教版第五章一元一次方程单元测试题

浙教版第五章一元一次方程单元测试题

第五章 一元一次方程 单元评估一、 选择题(每小题3分,共30分) 1.下列等式中是一元一次方程的是 ( )A .S=21ab B. x -y=0 C. x=2x -3 D .321+x =1 2.下列方程中,解是2x =的是 ( ) A .2 4.x = B .1 4.2x = C .4 2.x = D .1 2.4x = 3.下列解方程过程中,变形正确的是 ( ) A.由2x-1=3得2x=3-1 B.由4x +1=1.013.0+x +1.2得4x +1=1103+x +12 C.由-75x=76得x=-7675 D.由3x -2x =1 得2x-3x=6 4.已知x=-3是方程k(x+4)-x = 5的解,则k 的值是 ( ) A.-2 B.2 C.3 D.5 5.若代数式x -31x +的值是2,则x 的值是 ( ) (A)0.75 (B)1.75 (C)1.5 (D) 3.5 6.方程∣2x -6∣=0的解是 ( ) A.3 B.-3 C.±3 D.31 7.若代数式3a 4b x 2与0.2 a 4b 13-x 是同类项,则x 的值是 ( ) A.21 B.1 C.31 D.0 8. X=-2是下列方程中哪一个方程的解? ( ) A.-2X+5=3X+10 B.X 2-4=4X C.X(X-2)=-4X D.5X-3=6X-2 9.初一(1)班举行了一次集邮展览,展出的邮票比平均每人3张多24张, 比平均每人4张少26张,这个班共展出邮票的张数是 ( ) A.164 B.178 C.168 D.174 10.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是 ( ) (A)0.4 (B)2.5 (C)-0.4 (D)-2.5 二、填空题(每小题3分,共30分)1、一个数的3倍比它的2倍多10,若设这个数为x ,可得到方程_______________。

2.请写出一个解为x=5的一元一次方程: .3、方程5x -3=7的解是__________.4、关于x 的两个方程5x -3=4x 与ax -12=0的解相同,则a=_______。

七年级数学上册第5章一元一次方程检测卷作业新版浙教版

七年级数学上册第5章一元一次方程检测卷作业新版浙教版

21.(10 分)对于有理数 a,b,规定一种新运算: a*b=ab+2b. (1)计 算 : ( - 4)*5= ________, 4*[(- 3)*2]= ________; (2)已知方程(x-4)*1 =x-4,求 x 的值.
2
解:(1)∵a*b=ab+2b∴(-4)*5=(-4)×5+2
上车,若每辆客车乘 62 人,则最后一辆车空了 8
个座位.在下列四个方程①60m+10=62m-8;②
60m+10=62m+8;③n-10 =n+8 ;④n+10 =
60
62
60
n-8 中,其中正确的有( 62
A
)
A.①③ B.②④ C.①④ D.②③
10.甲、乙两人完成一项工作,甲先做了 3 天, 然后乙加入合作完成剩下的工作,设工作总量为 1,
三、解答题(共 66 分) 17.(6 分)解方程: (1)3(x-2)+6x=5;
解:去括号得:3x-6+6x=5,移项合并得:9x =11,解得:x=11 ;
9
(2)1.5x-2 -0.5=5x .
3
3
解:去分母得:3x-4-3=10x,移项合并得:-
7x=7,解得:x=-1.
18.(8 分)当 x 为何值时,代数式x+1 比代数式 2
工作进度如下表:则完成这项工作共需( A )
天数 第3天 工作进度
第5天
A.9 天 B.10 天 C.11 天 D.12 天
二、填空题(每小题 4 分,共 24 分) 11.已知关于 x 的方程(|m|-2)x2+(m+2)x-9
=0 为一元一次方程,则 m=__2____.
12.已知 x=1 是方程 x+2m=7 的解,则 m=__3__.

最新【浙教版】七年级上册数学第5章《一元一次方程》检测试卷(含答案)

最新【浙教版】七年级上册数学第5章《一元一次方程》检测试卷(含答案)

【浙教版】七年级数学上册一元一次方程测试卷(含答案)阶 段 性 测 试(一)([考查范围:5.1~5.3 总分:100分]一、选择题(每小题4分,共32分)1.下列叙述中正确的是( B ) A .方程是含有未知数的式子 B .方程是等式C .只有含有字母x ,y 的等式才叫方程D .带等号和字母的式子叫方程2.若代数式x +2的值为1,则x 等于( B ) A .1B .-1C .3D .-33.下列等式的变形正确的是( D ) A .如果s =v t ,那么v =ts B .如果12x =6,那么x =3 C .如果-x -1=y -1,那么x =y D .如果a =b ,那么a +2=2+b4.下列方程中是一元一次方程的是( A ) A .4x -5=0B .3x -2y =3C .3x 2-14=2D.1x -2=35.利用等式的性质解方程-23x =32时,应在方程的两边( C ) A .同乘-23 B .同除以-32 C .同乘-32D .同减去-236.运用等式性质的变形,正确的是( B ) A .如果a =b ,那么a +C =b -C B .如果a c =bc ,那么a =b C .如果a =b ,那么a c =bc D .如果a =3,那么a 2=3a 2 7.下列方程中变形正确的是( A )①3x +6=0变形为x +2=0;②2x +8=5-3x 变形为x =3;③x2+x3=4去分母,得3x +2x =24;④(x +2)-2(x -1)=0去括号,得x +2-2x -2=0.A .①③B .①②③C .①④D .①③④8.在解方程x -12-2x +33=1时,去分母正确的是( A ) A .3(x -1)-2(2x +3)=6 B .3(x -1)-2(2x +3)=1 C .3(x -1)-2(2x +3)=3D .2(x -1)-2(2x +3)=6二、填空题(每小题5分,共20分) 9.已知x -3y =3,则7+6y -2x =__1__.10.若(a -1)x |a |=3是关于x 的一元一次方程,则a =__-1__. 11.已知y 1=x +3,y 2=2-x ,当x =__2__时,y 1比y 2大5. 12.在如图所示的运算流程中,若输出的数y =7,则输入的数x =__28或27__.第12题图【解析】当x 是偶数时,有x ÷4=7, 解得:x =28,当x 是奇数时,有(x +1)÷4=7. 解得:x =27.故答案为28或27. 三、解答题(共48分)13.(8分)方程2-3(x +1)=0的解与关于x 的方程k +x2-3k -2=2x 的解互为倒数,求k 的值.解:解方程2-3(x +1)=0得:x =-13, -13的倒数为-3,把x =-3代入方程k +x2-3k -2=2x , 得:k -32-3k -2=-6, 解得:k =1.14.(12分)(1)已知方程2x -12=4与关于x 的方程4x -a2=-2()x -1的解相同,求a 的值.(2)x -2x +56=1-2x -32. (3)x -20.2-x +10.5=3.解:(1)解方程2x -12=4得x =92, 把x =92代入方程4x -a2=-2(x -1),得4×92-a2=-2⎝ ⎛⎭⎪⎫92-1, 解得a =50.(2)6x -(2x +5)=6-3(2x -3), 6x -2x -5=6-6x +9, 6x -2x +6x =6+9+5, 10x =20, x =2.(3)5(x -2)-2(x +1)=3, 5x -10-2x -2=3,5x -2x =3+10+2, 3x =15, x =5.15.(10分)下面是某同学解方程的过程,请你仔细阅读,然后回答问题.解:x +12-1=2+2-x 4, x +12-1×4=2+2-x4×4, ① 2x +2-4=8+2-x , ② 2x +x =8+2+2+4, ③ 3x =16, ④ x =163. ⑤(1)该同学有哪几步出现错误? (2)请你写出正确的解答过程. 解:(1)观察得:第①、②、③步出错. (2)正确解法为:去分母得:2x +2-4=8+2-x , 移项得:2x +x =8+2-2+4,合并得:3x =12, 解得:x =4.16.(8分)小明解方程2x -15+1=x +a2时,由于粗心大意,在去分母时,方程左边的1没有乘10,由此求得的解为x =4,试求a 的值,并正确求出方程的解.解:由题意可知(在去分母时,方程左边的1没有乘10,由此求得的解为x =4),2(2x -1)+1=5(x +a ), 把x =4代入得:a =-1,将a =-1代入原方程得:2x -15+1=x -12, 去分母得:4x -2+10=5x -5, 移项合并得:-x =-13,解得:x =13.17.(10分)【阅读】|4-1|表示4与1差的绝对值,也可以理解为4与1两数在数轴上所对应的两点之间的距离;|4+1|可以看做|4-(-1)|,表示4与-1的差的绝对值,也可以理解为4与-1两数在数轴上所对应的两点间的距离.(1)|4-(-1)|=__5__. (2)|5+2|=__7__.(3)利用数轴找出所有符合条件的整数x ,使得|x +3|=5,则x =__x =2或-8__.(4)利用数轴找出所有符合条件的整数x ,使得|x +3|+|x -2|=5,这样的整数是哪些?第17题图解:(4)∵-3与2两数在数轴上所对应的两点之间的距离是5, ∴使得|x +3|+|x -2|=5成立的整数是-3和2之间的所有整数(包括-3和2),∴这样的整数是-3、-2、-1、0、1、2.阶 段 性 测 试(二)[考查范围:5.1~5.4 总分:100分]一、选择题(每小题4分,共32分)1.若代数式x +2的值为1,则x 等于( B ) A .1B .-1C .3D .-32.下列各题正确的是( D )A .由7x =4x -3移项得7x -4x =3B .由2x -13=1+x -32去分母得2(2x -1)=1+3(x -3) C .由2(2x -1)-3(x -3)=1去括号得4x -2-3x -9=1 D .由2(x +1)=x +7去括号、移项、合并同类项得x =5 3.小明今年11岁,爸爸今年39岁,x 年后爸爸年龄是小明年龄的3倍,则x 的值为( B )A .2B .3C .4D .54.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( D )A.22x=16(27-x)B.16x=22(27-x)C.2×16x=22(27-x)D.2×22x=16(27-x)5.(安徽)2 014年我省财政收入比2 013年增长8.9%,2 015年比2014年增长9.5%,若2 013年和2 015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为(C)A.b=a(1+8.9%+9.5%)B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%)D.b=a(1+8.9%)2(1+9.5%)6.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为200元,按标价的五折销售,仍可获利10%,设这件商品的标价为x元,根据题意列出方程(A)A.0.5x-200=10%×200B.0.5x-200=10%×0.5xC.200=(1-10%)×0.5xD.0.5x=(1-10%)×2007.如图,水平桌面上有个内部装水的长方体箱子,箱内有一个与底面垂直的隔板,且隔板左右两侧的水面高度分别为40公分,50公分,今将隔板抽出,若过程中箱内的水量未改变,且不计箱子及隔板厚度,则根据图中的数据,隔板抽出后水面静止时,箱内的水面高度为(B)第7题图A.43公分B.44公分C.45公分D.46公分8.(宁德)如图,用十字形方框从日历表中框出5个数,已知这5个数的和为5a-5,a是方框①,②,③,④中的一个数,则数a所在的方框是(C)第8题图A.①B.②C.③ D.④【解析】解法一:设中间位置的数为A,则①位置数为A-7,④位置为A+7,左②位置为A-1,右③位置为A+1,其和为5A=5a-5,∴a =A +1,即a 为③位置的数; 解法二:5a -5=5(a -1), 则中间的数为a -1,因为方框③表示的数比中间的数大1,所以方框③表示的数就是a ,即数a 所在的方框就是③;故选C.二、填空题(每小题5分,共20分)9.小明同学在解方程x 6-x 2=53时,他是这样做的:解:⎝ ⎛⎭⎪⎫16-12x =53,……①-13x =53,……② x =-5,……③∴x =-5是原方程的解.同桌小洪同学对小明说:“你做错了,第①步应该去分母”,你认为小明做__对__(填“对”或“错”)了,他第①步变形是在__合并同类项__.10.(金华)若a b =23,则a +b b =__53__.【解析】根据等式的性质:两边都加1,a b +1=23+1,则a +b b =53.11.初三某班学生在会议室看录像,每排坐13人,则有1人无处坐,每排坐14人,则空12个座位,则这间会议室共有座位的排数是__13__.12.如图,在数轴上,点A,B分别在原点O的两侧,且到原点的距离都为2个单位长度,若点A以每秒3个单位长度,点B以每秒1个单位长度的速度均向右运动,当点A与点B重合时,它们所对应的数为__4__.第12题图【解析】设点A、点B的运动时间为t,根据题意知-2+3t=2+t,解得:t=2,∴当点A与点B重合时,它们所对应的数为-2+3t=-2+6=4,故答案为4.三、解答题(共48分)13.(8分)(安徽)《九章算术》中有一道阐述“盈不足术”的题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.解:设共有x 人,可列方程为:8x -3=7x +4. 解得x =7,∴8x -3=53,答:共有7人,这个物品的价格是53元.14.(8分)有一列数,按一定的规律排列成-2,4,-8,16,…,其中某三个相邻的数的和为-384,求这三个数.解:设第一个数为x ,则第二个数为-2x ,第三个数为4x . 由题意,得x -2x +4x =-384,解得x =-128,∴-2x =256,4x =-512. 则这三个数分别为-128,256,-512.15.(8分)已知关于x 的方程2(x +1)-m =-m -22的解比方程5(x -1)-1=4(x -1)+1的解大2.(1)求第二个方程的解. (2)求m 的值.解:(1)5(x -1)-1=4(x -1)+1, 5x -5-1=4x -4+1, 5x -4x =-4+1+1+5, x =3.(2)由题意得:方程2(x +1)-m =-m -22的解为x =3+2=5, 把x =5代入方程2(x +1)-m =-m -22得: 2(5+1)-m =-m -22,12-m =-m -22,解得m =22.16.(12分)目前节能灯在各城市已基本普及,今年某市面向县级及农村地区推广,为响应号召,朝阳灯饰商场用了4 200元购进甲型和乙型两种节能灯.这两种型号节能灯的进价、售价如表:特别说明:毛利润=售价-进价(1)朝阳灯饰商场销售甲型节能灯一只毛利润是__5__元. (2)朝阳灯饰商场购买甲、乙两种节能灯共100只,其中买了甲型节能灯多少只?(3)现在朝阳灯饰商场购进甲型节能灯m 只,销售完节能灯时所获的毛利润为y 元.当y =1 080时,求m 的值.解:(2)设买了甲型节能灯x 只,根据题意得 25x +45(100-x )=4 200, 解得x =15,答:买了甲型节能灯15只.(3)购进甲型节能灯m 只,则购进乙型节能灯的数量为4 200-25m45只,根据题意,得:5m +15×4 200-25m 45=1 080, 解得:m =96.17.(12分)“十一”期间,小明跟父亲一起去杭州旅游,出发前小明从网上了解到杭州市出租车收费标准如下:(1)若甲、乙两地相距10千米,乘出租车从甲地到乙地需要付款多少元?(2)小明和父亲从火车站乘出租车到旅馆,下车时计费表显示18元,请你帮小明算一算从火车站到旅馆的距离有多远.(3)小明的母亲乘飞机来到杭州,小明和父亲从旅馆乘出租车到机场去接母亲,到达机场时计费表显示72元,接完母亲,立即沿原路返回旅馆(接人时间忽略不计),请帮小明算一下乘原车返回和换乘另外的出租车各需多少钱.解:(1)根据题意得:10+(10-3)×2=10+14=24(元).答:乘出租车从甲地到乙地需要付款24元.(2)由(1)可知:因为18<24,得出火车站到旅馆的距离超过3千米,但少于10千米,设火车站到旅馆的距离有x千米,则10+2×(x-3)=18,解得:x=7,答:火车站到旅馆的距离有7千米.(3)由(1)可知,出租车行驶的路程超过10千米,设出租车行驶的路程为x千米,根据题意得:10+2(10-3)+3(x-10)=72,解得:x=26,乘原车返回需要花费:24+3×(26×2-10)=150(元),换乘另一辆出租车需要花费:72×2=144(元),∵150>144,∴小明换乘另外的出租车更便宜.阶段性测试(三)[考查范围:6.1~6.4 总分:100分]一、选择题(每小题4分,共32分)1.七棱柱的面数、顶点数、棱数分别是(C)A.9,14,18B.7,14,21C.9,14,21 D.7,14,212.如图,把左边的图形绕着给定的直线旋转一周后形成的几何体是(D)第2题图3.七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是(C)第3题图4.根据“反向延长线段CD”这句话,下列图中表示正确的是(C)5.下列语句正确的是( B ) A .延长线段AB 到C ,使BC =AC B .反向延长线段AB ,得到射线BA C .取直线AB 的中点D .连结A 、B 两点,并使直线AB 经过C 点6.如图,线段AB =D E ,点C 为线段A E 的中点,下列式子不正确的是( D )第6题图A .BC =CDB .CD =12A E -AB C .CD =AD -C ED .CD =D E7.下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设;④把弯曲的公路改直,就能缩短路程.其中可用“两点确定一条直线”来解释的现象有( B ) A .1个B .2个C .3个D .4个8.在平面上,如果点A 和点B 到点C 的距离分别为3和4,那么A,B两点的距离d应该是(D)A. d=1B. d=5C. d=7D. 1≤d≤7【解析】若三点在同一条直线上,则d=1或者d=7;若不在同一条直线上,即构成一个三角形,则1≤d≤7,故选D.二、填空题(每小题5分,共20分)9.如图,在一条直线上有A、B、C、D四个点,则图中共有__6__条不同的线段.第9题图10.如图所示,M是AC的中点,N是BC的中点,若A M=1 cm,BC=3 cm,则A N=__3.5__ cm.第10题图11.如图,已知B是线段AC上的一点,M是线段AB的中点,N是线段AC的中点,P为N A的中点,Q为M A的中点,则MN∶PQ 等于__2__.第11题图12.如图,在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a-b|=3,且A O=2B O,则a+b的值为__-1__.第12题图三、解答题(共48分)13.(8分)如图,已知点C 为AB 上一点,AC =12 cm ,CB =23AC ,D 、E 分别为AC 、AB 的中点,求D E 的长.第13题图解:根据题意,AC =12 cm ,CB =23AC , 所以CB =8 cm ,所以AB =AC +CB =20 cm , 又D 、E 分别为AC 、AB 的中点, 所以D E =A E -AD =12(AB -AC)=4 cm.14.(10分)如图是一个长为4 cm ,宽为3 cm 的长方形纸片,该长方形纸片分别绕长、宽所在直线旋转一周(如图1、图2),会得到两个几何体,请你通过计算说明哪种方式得到的几何体的体积大(结果保留π).第14题图解:如图1,绕长边旋转得到的圆柱的底面半径为3 cm ,高为4 cm ,体积=π×32×4=36π cm 3;如图2,绕短边旋转得到的圆柱底面半径为4 cm ,高为3 cm ,体积=π×42×3=48π cm 3.所以绕短边旋转得到的圆柱体积大.15.(10分)指出下列句子的错误,并加以改正: (1)如图1,在线段AB 的延长线上取一点C.(2)如图2,延长直线AB ,使它与直线CD 相交于点P . (3)如图3,延长射线O A ,使它和线段BC 相交于点D.第15题图解:(1)如图1,应为:在线段BA 的延长线上取一点C. (2)如图2,应为:直线AB 与直线CD 相交于点P . (3)如图3,反向延长射线O A ,使它和线段BC 相交于点D. 16.(8分)如图所示,AB =10 cm ,D 为AC 的中点,DC =2 cm ,B E =13BC ,求C E 的长.第16题图解:∵D 为AC 的中点,DC =2 cm. ∴AC =2DC =4 cm.由图可知:BC =AB -AC =10 cm -4 cm =6 cm. ∴B E =13BC =2 cm. ∴C E =BC -B E =4 cm.17.(12分)将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起:(1)若∠DC E=35°,则∠ACB的度数为__145°__;(2)若∠ACB=140°,求∠DC E的度数;(3)猜想∠ACB与∠DC E的大小关系,并说明理由;(4)三角尺ACD不动,将三角尺BC E的C E边与CA边重合,然后绕点C按顺时针或逆时针方向任意转动一个角度,当∠AC E(0°<∠AC E<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AC E角度所有可能的值,不用说明理由.第17题图解:(1)∵∠ACD=∠ECB=90°,∴∠ACB=180°-35°=145°.(2)∵∠ACD=∠ECB=90°,∴∠DCE=180°-140°=40°.(3)∵∠ACE+∠ECD+∠DCB+∠ECD=180.∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠DCE=180°,即∠ACB与∠DCE互补.(4)30°、45°、60°、75°.。

第五章《一元一次方程》检测题B

第五章《一元一次方程》检测题B

第五章《一元一次方程》检测题B一.选择题(共12小题)1.下列结论不成立的是()A.若x=y,则m﹣x=m﹣y B.若x=y,则mx=myC.若mx=my,则x=y D.若,则nx=ny2.下列说法:①若a+b=0,且ab≠0,则x=1是方程ax+b=0的解;②若a﹣b=0,且ab≠0,则x=﹣1是方程ax+b=0的解;③若ax+b=0,则x=﹣;④若(a﹣3)x|a﹣2|+b=0是一元一次方程,则a=1.其中正确的结论是()A.只有①②B.只有②④C.只有①③④D.只有①②④3.下列说法:①0是最小的有理数;②一个有理数不是正数就是负数;③没有绝对值最大的负数;④没有最大的负数;⑤6x+8是一元一次方程;⑥a与2a是同类项.其中,正确的说法有()个?A.4个B.3个C.2个D.1个4.阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程•a=﹣(x﹣6)无解,则a的值是()A.1 B.﹣1 C.±1 D.a≠15.解方程=x﹣时,去分母正确的是()A.3(x+1)=x﹣(5x﹣1)B.3(x+1)=12x﹣5x﹣1C.3(x+1)=12x﹣(5x﹣1)D.3x+1=12x﹣5x+16.已知方程2﹣=+3﹣x与方程4﹣=3k﹣的解相同,则k的值为()A.0 B.2 C.1 D.﹣17.已知关于x的方程x﹣=﹣1的解是正整数,则符合条件的所有整数a的积是()A.12 B.36 C.﹣4 D.﹣128.把方程的分母化为整数,以下变形正确的是()A.B.C.D.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)10.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人D.大、小和尚各100人11.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在()A.边BC B.边CD C.边DE D.边EF12.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航行需2小时,水速是3千米每小时,则轮船在静水中的速度是()A.18千米∕小时B.15千米∕小时C.12千米∕小时D.20千米∕小时二.填空题(共6小题)13.一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,…根据观察得到的规律,写出其中解是x=2017的方程:.14.若(m﹣2)x|m|﹣1=3是关于x的一元一次方程,则m的值是.15.规定运算:=ad﹣bc,例如=2×5﹣3×4=﹣2,若=6x﹣5,则x的值是.16.如图,在1000个“〇”中依次填入一列数字m1,m2,m3…,m1000使得其中任意四个相邻“〇”中所填数字之和都等于﹣10,已知m25=x﹣1,m999=﹣2x,可得x 的值为.17.根据图中提供的信息,可知一个杯子的价格是元.18.甲乙二人在环形跑道上同时同地出发,同向运动.若甲的速度是乙的速度的2倍,则甲运动2周,甲、乙第一次相遇;若甲的速度是乙的速度3倍,则甲运动周,甲、乙第一次相遇;若甲的速度是乙的速度4倍,则甲运动周,甲、乙第一次相遇,…,以此探究正常走时的时钟,时针和分针从0点(12点)同时出发,分针旋转周,时针和分针第一次相遇.三.解答题(共9小题)19.解方程;(1)3(x﹣4)+1=x﹣5(2)1+=(3)=﹣1(4)x﹣=2﹣20.如图,已知点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b﹣2)2=0.(1)求A、B所表示的数;(2)点C在数轴上对应的数为x,且x是方程2x+1=x﹣8的解①求线段BC的长;②在数轴上是否存在点P,使PA+PB=BC?求出点P对应的数;若不存在,说明理由.21.阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即|x|=|x﹣0|;这个结论可以推广为|x1﹣x2|表示在数轴上数x1,x2对应点之间的距离.绝对值的几何意义在解题中有着广泛的应用:例1:解方程|x|=4.容易得出,在数轴上与原点距离为4的点对应的数为±4,即该方程的x=±4;例2:解方程|x+1|+|x﹣2|=5.由绝对值的几何意义可知,该方程表示求在数轴上与﹣1和2的距离之和为5的点对应的x的值.在数轴上,﹣1和2的距离为3,满足方程的x对应的点在2的右边或在﹣1的左边.若x对应的点在2的右边,如图(25﹣1)可以看出x=3;同理,若x对应点在﹣1的左边,可得x=﹣2.所以原方程的解是x=3或x=﹣2.例3:解不等式|x﹣1|>3.在数轴上找出|x﹣1|=3的解,即到1的距离为3的点对应的数为﹣2,4,如图(25﹣2),在﹣2的左边或在4的右边的x值就满足|x﹣1|>3,所以|x﹣1|>3的解为x<﹣2或x>4.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)方程|x﹣2017|+|x+1|=2020的解为;(3)若|x+4|+|x﹣3|≥11,求x的取值范围.22.《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?请解答上述问题.23.某市对供水范围内的居民用水实行“阶梯收费”,具体收费标准如表:水费单价(单位:元/立方米)一户居民一个月用水为x立方米x≤22a超出22立方米的部分a+1.1某户居民三月份用水10立方米时,缴纳水费23元(1)求a的值;(2)若该户居民四月份所缴水贵为71元,求该户居民四月份的用水量.24.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”;乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”;请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少?25.我们知道,有理数包括整数、有限小数和无限循环小数,事实上,所有的有理数都可以化为分数形式(整数可看作分母为1的分数),那么无限循环小数如何表示为分数形式呢?请看以下示例:例:将0.化为分数形式由于0.=0.777…,设x=0.777…①则10x=7.777…②②﹣①得9x=7,解得x=,于是得0.=.同理可得0.==,1.=1+0.=1+=根据以上阅读,回答下列问题:(以下计算结果均用最简分数表示)【基础训练】(1)0.=,5.=;(2)将0.化为分数形式,写出推导过程;【能力提升】(3)0.1=,2.0=;(注:0.1=0.315315…,2.0=2.01818…)【探索发现】(4)①试比较0.与1的大小:0.1(填“>”、“<”或“=”)②若已知0.8571=,则3.1428=.(注:0.857l=0.285714285714…)答案与解析一.选择题1.【分析】根据等式的性质:等式两边加同一个数(或式子)结果仍得等式;等式两边乘同一个数或除以一个不为零的数,结果仍得等式进行分析即可.【解答】解:A、若x=y,则m﹣x=m﹣y成立;B、若x=y,则mx=my成立;C、若mx=my,则x=y不一定成立,应说明m≠0;D、若,则mx=my成立;故选:C.2.【分析】使方程左右两边的值相等的未知数的值是该方程的解.因此检验一个数是否为相应的方程的解,就是把这个数代替方程中的未知数,看左右两边的值是否相等,如果左边=右边,那么这个数就是该方程的解;反之,这个数就不是该方程的解.【解答】解:①ab≠0,所以一次项系数不是0,则x=1是方程ax+b=0的解;同理,②若a﹣b=0,且ab≠0,则x=﹣1是方程ax+b=0的解;④若(a﹣3)x|a﹣2|+b=0是一元一次方程,则a=1也是正确的.③若ax+b=0,则x=﹣没有说明a≠0的条件.其中正确的结论是只有①②④.故选:D.3.【分析】根据有理数的分类、绝对值的性质、一元一次方程的定义、同类项的定义即可作出判断.【解答】解:①没有最小的有理数,原来的说法错误;②一个有理数是正数、0、负数,原来的说法错误;③没有绝对值最大的负数是正确的;④没有最大的负数是正确的;⑤6x+8不是一元一次方程,原来的说法错误;⑥a与2a是同类项是正确的.故选:B.4.【分析】要把原方程变形化简后再讨论没有解时a的值应该是什么.【解答】解:去分母得:2ax=3x﹣(x﹣6),去括号得:2ax=2x+6移项,合并得,x=,因为无解;所以a﹣1=0,即a=1.故选:A.5.【分析】根据解一元一次方程的方法,方程两边都乘以分母的最小公倍数12即可.【解答】解:方程两边都乘以12,去分母得,3(x+1)=12x﹣(5x﹣1).故选:C.6.【分析】根据同解方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由2﹣=+3﹣x解得x=1,由方程2﹣=+3﹣x与方程4﹣=3k﹣的解相同,得4﹣=3k﹣,解得k=1.故选:C.7.【分析】利用解一元一次方程的一般步骤解出方程,根据题意求出a的值,计算即可.【解答】解:x﹣=﹣1去分母,6x﹣4+ax=2x+8﹣6移项、合并同类项,(4+a)x=6,x=,由题意得,a=﹣3、﹣2、﹣1、2,则符合条件的所有整数a的积是﹣12,故选:D.8.【分析】把方程中的分子与分母同时乘以一个数,使分母变为整数即可.【解答】解:把的分子分母同时乘以10,的分子分母同时乘以100得,=﹣1,即=﹣1.故选:A.9.【分析】设分配x名工人生产螺栓,则(27﹣x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【解答】解:设分配x名工人生产螺栓,则(27﹣x)名生产螺母,∵一个螺栓套两个螺母,每人每天生产螺母16个或螺栓22个,∴可得2×22x=16(27﹣x).故选:D.10.【分析】根据100个和尚分100个馒头,正好分完.大和尚一人分3个,小和尚3人分一个得到等量关系为:大和尚的人数+小和尚的人数=100,大和尚分得的馒头数+小和尚分得的馒头数=100,依此列出方程即可.【解答】解:设大和尚有x人,则小和尚有(100﹣x)人,根据题意得:3x+=100,解得x=25则100﹣x=100﹣25=75(人)所以,大和尚25人,小和尚75人.故选:A.11.【分析】设正六边形的边长为1,乙的速度为x,则甲的速度为3x,根据路程=速度×时间结合点甲、乙的第2018次相遇时甲比乙多跑的路程,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设正六边形的边长为1,乙的速度为x,则甲的速度为3x,根据题意得:3x﹣x=2017×6+1,解得:x=6052=1008×6+4,∴甲、乙的第2018次相遇在点F.故选:D.12.【分析】设轮船在静水中的速度是x千米/小时,根据路程=速度×时间结合A、B两港之间路程不变,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设轮船在静水中的速度是x千米/小时,根据题意得:3(x﹣3)=2(x+3),解得:x=15.答:轮船在静水中的速度是15千米/小时.故选:B.二.填空题13.【分析】根据观察,可发现规律:第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,可得答案.【解答】解:由一列方程如下排列:=1的解是x=2,=1的解是x=3,=1的解是x=4,得第一个的分子是x分母是解的二倍,第二个分子是x减比解小1的数,分母是2,解是x=2017的方程:+=1,故答案为:+=1.14.【分析】根据一元一次方程的定义列出关于m的不等式组,求出m的值即可.【解答】解:∵(m﹣2)x|m|﹣1=3是关于x的一元一次方程,∴,解得m=﹣2.故答案为:﹣2.15.【分析】已知等式利用题中的新定义化简,计算即可求出x的值.【解答】解:根据题中的新定义化简得:3x﹣3+2x=6x﹣5,移项合并得:﹣x=﹣2,解得:x=2,故答案为:216.【分析】由于任意四个相邻数之和都是﹣10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a2=a6=a10=…=x ﹣1,a3=a7=a11=…﹣7,a3=a7=a11=…=﹣2x,a4=a8=a12=…=0,所以已知a999=a3=﹣2x,a25=a1=x﹣1,由此联立方程求得x即可.【解答】解:∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x﹣1,同理可得a2=a6=a10=…=﹣7,a3=a7=a11=…=﹣2x,a4=a8=a12= 0∵a1+a2+a3+a4=﹣10,∴﹣2x﹣7+x﹣1+0=﹣10,解得:x=2.故答案为:2.17.【分析】设一盒杯子x元,一个暖瓶45﹣x元,根据图示可得方程求解.【解答】解:设一盒杯子x元,可得:2x+3(45﹣x)=99,解得:x=9.答:一个杯子的价格是9元,故答案为:918.【分析】直接利用时针和分针第一次相遇,则时针比分针少转了一周,再利用分针转动一周60分钟,时针转动一周720分钟,进而得出等式求出答案.【解答】解:设分针旋转x周后,时针和分针第一次相遇,则时针旋转了(x﹣1)周,根据题意可得:60x=720(x﹣1),解得:x=.故答案为:.三.解答题(共9小题)19.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(1)【解答】解:3(x﹣4)+1=x﹣53x﹣12+1=x﹣53x﹣x=﹣5+12﹣12x=6x=3;(2)【解答】解:1+=12+2(x﹣2)=3(3x+7)12+2x﹣4=9x+212x﹣9x=21﹣12+4﹣7x=13x=﹣.(3)【解答】解:3(3x+2)=2(2x+1)﹣69x+6=4x+2﹣65x=﹣10x=﹣2(4)【解答】解:12x﹣4(x﹣1)=24﹣3(x+3)12x﹣4x+4=24﹣3x﹣911x=11x=120.【分析】(1)根据|a+3|+(b﹣2)2=0,可以求得a、b的值,从而可以求得点A、B表示的数;(2)①根据2x+1=x﹣8可以求得x的值,从而可以得到点C表示的数,从而可以得到线段BC的长;②根据题意可以列出关于点P表示的数的关系式,从而可以求得点P表示的数.【解答】解:(1)∵|a+3|+(b﹣2)2=0,∴a+3=0,b﹣2=0,解得,a=﹣3,b=2,即点A表示的数是﹣3,点B表示的数是2;(2)①2x+1=x﹣8解得,x=﹣6,∴BC=2﹣(﹣6)=8,即线段BC的长为8;②存在点P,使PA+PB=BC,设点P的表示的数为m,则|m﹣(﹣3)|+|m﹣2|=8,∴|m+3|+|m﹣2|=8,当m>2时,解得,m=3.5,当﹣3<m<2时,无解,当x<﹣3时,m=﹣4.5,即点P对应的数是3.5或﹣4.5.21.【分析】(1)根据例1的方法,求出方程的解即可;(2)根据例2的方法,求出方程的解即可;(3)根据例3的方法,求出x的范围即可.【解答】解:(1)方程|x+3|=5的解为x=2或x=﹣8;故答案为:x=2或x=8;(2)方程|x﹣2017|+|x+1|=2020的解为x=﹣2或x=2018;故答案为:x=﹣2或x=2018;(3)∵|x+4|+|x﹣3|表示的几何意义是在数轴上分别与﹣4和3的点的距离之和,而﹣4与3之间的距离为7,当x在﹣4和3时之间,不存在x,使|x+4|+|x﹣3|≥11成立,当x在3的右边时,如图所示,易知当x≥5时,满足|x+4|+|x﹣3|≥11,当x在﹣4的左边时,如图所示,易知当x≤﹣6时,满足|x+4|+|x﹣3|≥11,所以x的取值范围是x≥5或x≤﹣6.22.【分析】设城中有x户人家,根据鹿的总数是100列出方程并解答.【解答】解:设城中有x户人家,依题意得:x+=100解得x=75.答:城中有75户人家.23.【分析】(1)由三月份的水费=水费单价×用水量,即可得出关于a的一元一次方程,解之即可得出结论;(2)设该户居民四月份的用水量为x立方米,先求出当用水量为22立方米时的应缴水费,比较后可得出x>22,再根据四月份的水费=2.3×22+(2.3+1.1)×超出22立方米的部分,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:10a=23,解得:a=2.3.答:a的值为2.3.(2)设该户居民四月份的用水量为x立方米.∵22×2.3=50.6(元),50.6<71,∴x>22.根据题意得:22×2.3+(x﹣22)×(2.3+1.1)=71,解得:x=28.答:该户居民四月份的用水量为28立方米.24.【分析】可以设三环路车流量每小时x辆,那么四环路车流量每小时(x+2000)辆,然后根据三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍即可列出关于x的方程,解方程就可以求出三环路、四环路的车流量.【解答】解:设三环路车流量每小时x辆,那么四环路车流量每小时(x+2000)辆,依题意得:3x﹣(x+2000)=2×10000,∴x=11000,x+2000=13000.答:三环路车流量为11000辆,四环路车流量为13000辆.25.【分析】根据阅读材料可知,每个整数部分为零的无限循环小数都可以写成分式形式,如果循环节有n位,则这个分数的分母为n个9,分子为循环节.【解答】解:(1)由题意知0.=、5.=5+=,故答案为:、;(2)0.=0.232323……,设x=0.232323……①,则100x=23.2323……②,②﹣①,得:99x=23,解得:x=,∴0.=;(3)同理0.1==,2.0=2+=故答案为:,(4)①0.==1故答案为:=②3.1428=3+=3+=故答案为:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 一元一次方程检测题【本检测题满分:100分,时间:90分钟】一、选择题(每小题3分,共24分)1.下列方程中,是一元一次方程的是( )A.243x x -=B.0x =C.23x y +=D.11x x-=2.(2013•福建晋江中考)已知关于x 的方程2x a --5=0的解是2x =-,则a 的值为( ) A .1 B .-1 C .9 D .-93.已知方程235x +=,则610x +等于( )A.15B.16C.17D.344.甲、乙两人练习赛跑,甲每秒跑7 m ,乙每秒跑6.5 m ,甲让乙先跑5 m ,设x s 后甲可追上乙,则下列四个方程中不正确的是( )A.7 6.55x x =+B.75 6.5x x +=C.(7 6.5)5x -=D.6.575x x =-5.如果三个正整数的比是1:2:4,它们的和是84,那么这三个数中最大的数是( )A.56B.48C.36D.126.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( )A.赚16元B.赔16元C.不赚不赔D.无法确定7.已知21(35)m --有最大值,则方程5432m x -=+的解是x =( ) A.79 B.97 C.79- D.97- 8.(2013•山西中考)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33 825元.设王先生存入的本金为x 元,则下面所列方程正确的是( )A.x +3×4.25%x =33 825B.x +4.25%x =33 825C.3×4.25%x =33 825D.3( 4.25)x x +=33 825二、填空题(每小题3分,共24分)9.如果31a +=,那么a = .10.如果关于x 的方程340x +=与方程3418x k +=是同解方程,则k = .11.已知方程23252x x -+=-的解也是方程32x b -=的解,则b =_________. 12.已知方程233m x x -=+的解满足10x -=,则m ________. 13.若52x +与29x -+互为相反数,则2x -的值为 .14.(2013•四川凉山中考)购买一本书,打八折比打九折少花2元钱,那么这本书的原价是 元.15.(2012•四川自贡中考)某公路一侧原有路灯106盏,相邻两盏灯的距离为36 m ,为节约用电,现计划全部更换为新型节能灯,且相邻两盏灯的距离变为54 m ,则需更换新型节能灯 盏.16.当日历中同一行中相邻三个数的和为63,则这三个数分别为 .三、解答题(共52分)17.(12分)解下列方程:(1)10(1)5x -=; (2)7151322324x x x -++-=-;(3)2(2)3(41)9(1)y y y +--=-; (4)0.89 1.33511.20.20.3x x x --+-=.18.(6分)m 为何值时,关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍?19.(6分)将一批工业最新动态信息输入管理储存网络,甲单独做需要6 h ,乙单独做需要4 h ,甲先做30 min ,然后甲、乙一起做,则甲、乙一起做还需要多长时间才能完成工作?20.(6分)有一列火车要以每分钟600 m 的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5 s 时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50 m ,试求两座铁桥的长分别为多少?21.(5分)某生态食品加工厂收购了一批质量为10 000 kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量3倍还多2 000 kg ,求粗加工的该种山货质量.22.(5分)植树节期间,两所学校共植树834棵,其中海石中学植树的数量比励东中学的2倍少3棵,求两校各植树多少棵.23.(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1 440元,•求这一天有几名工人加工甲种零件.24.(6分)(2013•长沙中考)为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北、东西的地铁1、2号线.已知修建地铁1号线24 km和2号线22 km共需投资265亿元,若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线、2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8 km的地铁线网.据预算,这91.8 km地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?一元一次方程检测题参考答案 1.B 解析:243x x -=中,未知数的次数是2,所以不是一元一次方程;23x y +=中,有两个未知数,所以不是一元一次方程;11x x-=是分式方程.故选B. 2.D 解析:将2x =-代入方程,得450a ---=,解得9a =-.故选D. 3.B 解析:解方程235x +=,可得1x =.将1x =代入610x +,可得61061016x +=+=.4.B 解析:x s 后甲可追上乙,是指x s 时,甲跑的路程等于乙跑的路程,所以可列方程7 6.55x x =+,所以A 正确;将7 6.55x x =+移项、合并同类项,可得(7 6.5)5x -=,所以C 正确;将7 6.55x x =+移项,可得6.575x x =-,所以D 正确.故选B.5.B 解析:设这三个正整数为,2,4x x x .根据题意,得2484x x x ++=.解得12x =.所以这三个数中最大的数是448x =,故选B.6.B 解析:设此商人赚钱的那件衣服的进价为x 元,则x (1+25%)=120.解得96x =.设此商人赔钱的那件衣服进价为y 元,则y (1-25%)=120.解得160y =.所以他一件衣服赚了120-96=24(元),一件衣服赔了160-120=40(元),所以卖这两件衣服,总共赔了40-24=16(元).故选B.7.A 解析:由21(35)m --有最大值,可得350m -=,则53m =,554323x ⨯-=+,解得79x =.故选A. 8.A 解析:根据题意,得x +3×4.25%x =33 825.故选A .9.-2或-4 解析:因为31a +=,根据绝对值的意义知31a +=或31a +=-.解得2a =-或4a =-. 10.112解析:由340x +=可得43x =-.又因为340x +=与3418x k +=是同解方程,所以43x =-也是3418x k +=的解代入可求得112k =. 11.137解析:由23252x x -+=-,得2420(515)x x -=-+.解得97x =. 所以9133277b =⨯-=. 12.-6或-12 解析:由10x -=,得1x =±.当1x =时,由233m x x -=+,得2313m -=+,解得6m =-; 当1x =-时,由233m x x -=+,得2313m --=-,解得12m =-. 综上可知,6m =-或12m =-. 13.173- 解析:由题意可列方程52(29)x x +=--+,解得11.3x =- 所以11172233x -=--=-.14.20 解析:设原价为x 元.由题意得0.9x -0.8x =2.解得x =20.15.71 解析:设需更换的新型节能灯有x 盏,则54(x -1)=36×(106-1),54x =3 834,x =71,故需更换的新型节能灯有71盏.16.20,21,22 解析:设中间一个数为x ,则与它相邻的两个数为1,1x x -+.根据题意,得1163x x x -+++=.解得21x =.所以这三个数分别为20,21,22.17.解:(1)10(1)5x -=.去括号,得10105x -=.移项,得1015x =.系数化为1,得32x =. (2)7151322324x x x -++-=-. 去分母,得4(71)6(51)243(32)x x x --+=-+.去括号,得2843062496x x x ---=--.移项,得2830924664x x x -+=-++.合并同类项,得728x =.系数化为1,得4x =.(3)2(2)3(41)9(1)y y y +--=-.去括号,得2412399y y y +-+=-.移项,得2129934y y y -+=--.合并同类项,得2y -=.系数化为1,得2y =-.(4)0.89 1.33511.20.20.3x x x --+-=. 去分母,得(0.89)6(1.33)451)x x x ---=+(. 去括号,得0.897.818204x x x --+=+.移项,得9182047.80.8x x x -+-=+-.合并同类项,得1111x -=.系数化为1,得1x =-.18.解:关于x 的方程4231x m x -=-的解为21x m =-.关于x 的方程23x x m =-的解为3x m =.因为关于x 的方程4231x m x -=-的解是23x x m =-的解的2倍,所以2123m m -=⨯,所以14m =-. 19.解:设甲、乙一起做还需要x h 才能完成工作. 根据题意,得111116264x ⎛⎫⨯++= ⎪⎝⎭.解得115x =. 115h=2 h 12 min. 答:甲、乙一起做还需要2 h 12 min 才能完成工作.20.解:设第一座铁桥的长为x m ,则第二座铁桥的长为(250)x -m ,过完第一座铁桥所需要的时间为600x min ,过完第二座铁桥所需要的时间为250600x -min .依题意,可列出方程600x +560=250600x -.解得100x =. 所以250210050150x -=⨯-=. 答:第一座铁桥长100 m ,第二座铁桥长150 m .21.解:设粗加工的该种山货质量为x kg.根据题意,得(32000)10000 x x ++=.解得2000 x =.答:粗加工的该种山货质量为2 000 kg .22.解:设励东中学植树x 棵.根据题意,得(23)834x x +-=,解得279x =.2322793555x -=⨯-=.答:励东中学植树279棵,海石中学植树555棵.23.解:设这一天有x 名工人加工甲种零件,则这一天加工甲种零件5x 个,乙种零件4(16)x - 个.根据题意,得165244(16)1440 x x ⨯+⨯-=.解得6x =.答:这一天有6名工人加工甲种零件.24.解:(1)设1号线、2号线每千米的平均造价分别是x 亿元、y 亿元,由题意得2422265,0.5. x y x y +⎧⎨-⎩==解得6,5.5.x y ⎧⎨⎩== 答:1号线、2号线每千米的平均造价分别是6亿元和5.5亿元;(2)由(1)得出91.8×6×1.2=660.96(亿元).答:还需投资660.96亿元.。

相关文档
最新文档