信息光学习题与答案
信息光学课后习题解答_苏显渝主编
k 2 2 ( x0 y0 ) U0 ( x0 , y0 ) A0 P( x0 , y0 ) exp j 2f
x 0 y0 k 2 2 exp j ( x y A0 circ( ) 0 ) 2f 0 D1 / 2
2 2
将此式代入菲涅耳衍射公式
0 x1
0 1.5 计算下列一维卷积
x 1 (1) ( 2 x 3) rect( ) 2 x 1 x 1 ( 2) rect( ) rect( ) 2 2
其它
( 3) comb ( x ) rect( x )
解(1)
(1) ( 2 x 3) rect( x 1 1 3 x 1 ) ( x ) rect( ) 2 2 2 2
x y0
2 x 0 y0 e xp( jkf ) exp ( jkf ) D 1 circ( )dx0 dy0 A0 U (0,0, f ) A0 D1 / 2 j f j f 4 2 2 2 D1 I 0 106 I (0,0, z ) A0 4 f
f ( x ) cos2 x 的响应
试计算各自对输入函数 g1 ( x ) 和 g2 ( x ) 解: H1 ( ) rect( )
H 2 ( )
1 rect( ) 3 3
1 F ( ) ( 1) ( 1) 2 1 G1 ( ) H 1 ( ) ( 1) ( 1) 2 1 rect( ) ( 1) ( 1) 0 2
n
0
n
n为奇数
2 ( x 2n )
1.4 计算下面两个函数的一维卷积
信息光学试题及答案
信息光学试题及答案一、选择题(每题4分,共20分)1. 以下哪个选项不是信息光学的研究范畴?A. 光波传播B. 光纤通信C. 激光加工D. 量子计算答案:D2. 光纤通信中,光信号的传输介质是什么?A. 真空B. 空气C. 光纤D. 水答案:C3. 在信息光学中,光的相干性是指什么?A. 光的强度B. 光的颜色C. 光的传播方向D. 光波的相位关系答案:D4. 以下哪个设备不是用于光纤通信的?A. 光纤B. 光端机C. 路由器D. 光放大器答案:C5. 光波的频率与波长之间的关系是什么?A. 成正比B. 成反比C. 无关D. 相等答案:B二、填空题(每题4分,共20分)1. 光纤通信中,光信号的传输介质是________。
答案:光纤2. 光的相干性是指光波的________。
答案:相位关系3. 光纤通信中,光信号的调制方式包括________和________。
答案:幅度调制、频率调制4. 光纤通信中,光信号的传输损耗主要由________和________造成。
答案:材料吸收、散射5. 光纤通信中,光信号的传输距离可以通过________来延长。
答案:光放大器三、简答题(每题10分,共30分)1. 简述信息光学在现代通信中的应用。
答案:信息光学在现代通信中的应用主要包括光纤通信、激光通信、无线光通信等。
光纤通信利用光纤作为传输介质,具有传输速度快、传输距离远、抗干扰能力强等优点。
激光通信则利用激光的高方向性和高相干性,实现远距离、高速度的通信。
无线光通信则通过大气或自由空间传输光信号,适用于移动通信和卫星通信。
2. 解释光波的相干性及其在信息光学中的重要性。
答案:光波的相干性是指不同光波之间能够相互干涉的能力,它与光波的相位关系密切相关。
在信息光学中,相干性是实现光信号调制、传输和检测的关键因素。
例如,在光纤通信中,相干光源可以提高信号的传输质量和距离。
在光学成像系统中,相干光源可以提高成像的分辨率和对比度。
信息光学习题答案1(word文档良心出品)
第一章 习题解答1.1 已知不变线性系统的输入为 ()()x x g c o mb= 系统的传递函数⎪⎭⎫⎝⎛b f Λ。
若b 取(1)50=.b (2)51=.b ,求系统的输出()x g '。
并画出输出函数及其频谱的图形。
答:(1)()(){}1==x x g δF 图形从略,(2)()()()()()x s co f f δf δx g x x x πδ232+1=⎭⎬⎫⎩⎨⎧1+31+1-31+=F 图形从略。
1.2若限带函数()y x,f 的傅里叶变换在长度L 为宽度W 的矩形之外恒为零, (1)如果L a 1<,Wb 1<,试证明()()y x f y x f b x a x ab ,,sinc sinc =*⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛1 证明:(){}(){}(){}()()(){}(){}()y x,f b x sinc a x sinc ab bf af rect y x f y x,f bf af rect y x f Wf L f rect y x f y x,f y x y x yx *⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛1==∴=⎪⎪⎭⎫⎝⎛=,,F F ,,F ,,F F 1-(2)如果L a 1>, Wb 1>,还能得出以上结论吗? 答:不能。
因为这时(){}(){}()y x yx bf af rect y x f Wf L f rect y x f ,,F ,,F ≠⎪⎪⎭⎫⎝⎛。
1.3 对一个空间不变线性系统,脉冲响应为 ()()()y x y x h δ77=sinc ,试用频域方法对下面每一个输入()y x f i ,,求其输出()y x g i ,。
(必要时,可取合理近似) (1)()x y x f π4=1cos ,答:()(){}(){}{}{}()(){}{}{}{}{}xcos x cos f rect x cos y 7x sin x cos y x h y x f y x g x πππδπ4=4=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛74=74==1-1-1-11-1F F F F F F F ,F ,F F ,(2)()()⎪⎭⎫ ⎝⎛75⎪⎭⎫⎝⎛754=2y rect x rect x cos y x f π,答:()(){}(){}{}()()(){}{}()()()()⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛77575⋅75*4=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛75⎪⎭⎫ ⎝⎛754==1-1-11-2y rect x rect x cos f rect f sinc 75f sinc x cos y 7x sin y rect x rect x cos y x h y x f y x g x y x ππδπF F F F F ,F ,F F ,(3)()()[]⎪⎭⎫⎝⎛758+1=3x rect x cos y x f π,答: ()()[]()(){}(){}()()()()()()()()()()()(){}⎪⎭⎫ ⎝⎛75=75≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775≅⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛75*⎪⎭⎫ ⎝⎛4+81+4-81+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛775*8+1=⎭⎬⎫⎩⎨⎧7⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛758+1=1-1-1-1-1-3x rect f 75f sinc f rect f 75f sinc f rect f δ75f sinc f f x f rect f δ75f sinc x cos y 7x sin x rect x cos y x g y x x y x x y x x x x y x δδδδδπδπF F F F F F F F ,(4)()()()()()y rect x rect x comb y x f 22*=4, 答:()()()()(){}()(){}{}()()()()()()()()()()()()(){}()()x π6cos x π2cos f f f f f f f f f f f rect f f δf f δf f δf f δf rect f sinc 2f sinc f f comb y 7x sin y rect x rect x comb y x g y x y x y x y x y x x yx y x y x y x x y x y x 1060-3180+250=3+0530-3-0530-1+1590+1-1590+=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛7⎪⎭⎫ ⎝⎛-3-2120-1+6370+1-6370+41=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛7⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛2⎪⎭⎫ ⎝⎛41=722*=1-1-1-1-2...,.,.,.,.,F ,.,.,.,F F F F F ,δδδδ0.25δδδ1.4 给定一个不变线性系统,输入函数为有限延伸的三角波 ()()x x rect x comb x g i Λ*⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛50⎪⎭⎫ ⎝⎛331=对下述传递函数利用图解方法确定系统的输出。
信息光学教程全书习题及参考答案
L{} 来表示,当
2
L{ f ( x, y)} = g (ξ ,η ) , L{ f
1 1
( x, y )} = g 2 (ξ ,η ) ,且 a1 、 a 2 为常数时,
L{a
1 1
f ( x, y ) + a 2 f 2 ( x, y )} = a1 g1 (ξ ,η ) + a 2 g 2 (ξ ,η )
1 ,y 方 2Bx
向的格点距为
1 。 2B y
由此可见,Whittaker-Shannon 二维抽样定理并不是唯一的抽样定理,只要改变这两个 条件中的任何一个,就可以导出别的二维抽样定理。例如,用一个传递函数为
H ( ρ ) = circ( ) 的滤波器来滤波,可导出新的二维抽样定理,其公式描述为: B
2
2
⎞ ⎡ jk 2 2 ⎟ exp ⎢− 2 f x + y ⎟ ⎣ ⎠
(
x
⎛ x +y 2 P0 exp⎜ 2 ⎜ − w2 πw ⎝
2
2
⎡ jk ⎛ 1 1 ⎞ 2 ⎤ ⎞ ⎛ jk 2 ⎞ ⎜ ⎟ ⎟ ⎜ − + exp x exp ⎢ ⎥ ⎜− 2 f y ⎟ ⎟ ⎟ ⎜f f ⎟ 2 ⎝ ⎠ ⎠ x ⎠ ⎝ ⎣ ⎦
g ( x, y ) =
ρ
π
2 n = −∞ m = −∞
∑ ∑ g ( 2B , 2B ) ×
∞
∞
n
m
J 1 [2πB ( x −
n 2 m 2 ) + (y − ) ] 2B 2B n 2 m 2 2πB ( x − ) + (y − ) 2B 2B
式中 B 为空间函数 g ( x, y ) 的频谱以极半径的形式描述的频率带限宽。 公式推导中用到的博里叶变换关系为:
信息光学习题详细标准答案
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变. 1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等.1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式地δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0地根,)(i x h '表示)(x h 在i x x =处地导数.于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示地两函数地一维卷积.解:设卷积为g(x).当-1≤x ≤0时,如图题1.1(a)所示,⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示,⎰+-=-+-=13612131)1)(1()(x x x d x x g ααα即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g1.5 计算下列一维卷积. (1)⎪⎭⎫⎝⎛-*-21)32(x rect x δ (2)⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛+2121x rect x rect (3))()(x rect x comb * 解:(1)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-*-25.22121232121)32(x rect x rect x x rect x δδ (2)设卷积为g(x),当x ≤0时,如图题1.2(a)所示,2)(2+==⎰+x d x g x α当0 < x 时,如图题1.2(b)所示图题1.2x d x g x-==⎰2)(2α⎪⎩⎪⎨⎧>-<+=0,210,212)(x xx xx g即 ⎪⎭⎫ ⎝⎛∧=22)(x x g (3)1)()(=*x rect x comb1.6 已知)ex p(2x π-地傅立叶变换为)ex p(2πξ-,试求 (1)(){}?ex p 2=-℘x(2)(){}?2/ex p 22=-℘σx解:设ξππ==z x y ,即 {})ex p()ex p(22πξπ-=-℘y由坐标缩放性质{}⎪⎭⎫⎝⎛=℘b a F ab by ax f ηξ,1),( 得 (1)(){}{})ex p()ex p(/ex p(ex p 22222ξπππππ-=-=-℘=-℘z yx(2)(){}(){}22222/ex p 2/ex p πσσyx -℘=-℘)2ex p(2)2ex p(22222ξπσσππσσπ-=-=z1.7 计算积分.(1)()⎰∞∞-=?sin 4dx x c(2)()⎰∞∞-=?cos sin 2xdx x c π 解:应用广义巴塞伐定理可得(1)32)1()1()()()(sin )(sin 121222=-++=ΛΛ=⎰⎰⎰⎰-∞∞-∞∞-ξξξξξξξd d d dx x c x c (2)⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-Λ+⎪⎭⎫ ⎝⎛+Λ=⎰⎰⎰∞∞-∞∞-∞∞-ξξδξξξδξπd d xdx x c 21)(21)(21cos )(sin 221212121=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛Λ+⎪⎭⎫ ⎝⎛-Λ=1.8 应用卷积定理求()()()x c x c x f 2sin sin =地傅里叶变换.解:{}{}{}⎪⎭⎫ ⎝⎛*=℘*℘=℘2)(21)2(sin )(sin )2(sin )(sin ξξrect rect x c x c x c x c 当2123-<≤-ξ时,如图题1.3(a)所示, ξξξ+==⎰+-2321)(211du G当2121<≤-ξ时,如图题1.3(b)所示, 121)(2121==⎰+-ξξξdu G当2321<≤ξ时,如图题1.3(c)所示, ξξξ-==⎰-2321)(121du G2G(ξ)地图形如图题1.3(d)所示,由图可知⎪⎭⎫ ⎝⎛∧-⎪⎭⎫ ⎝⎛∧=2/1412/343)(ξξξG图题1.31.9 设()()x x f β-=exp ,0>β,求(){}()⎰∞∞-==℘??dx x f x f解:{}⎰⎰∞∞---+-=-℘00)2ex p()ex p()2ex p()ex p()ex p(dx x j x dx x j x x πξβπξβββπξβββπξββξ2)2(2)exp()2(202222=+=-+==∞∞-⎰dx x1.10 设线性平移不变系统地原点响应为()()()x step x x h -=ex p ,试计算系统对阶跃函数()x step 地响应.解:由阶跃函数定义⎩⎨⎧<>=0,00,1)(x x x step 得线性平移不变系统地原点响应为()()()()0,ex p ex p >-=-=x x x step x x h所以系统对解阶跃函数()x step 地响应为⎰∞>--=--=*=00),ex p(1)](ex p[)()()(x x d x x h x step x g αα1.11 有两个线性平移不变系统,它们地原点脉冲响应分别为()()x c x h sin 1=和()()x c x h 3sin 2=.试计算各自对输入函数()x x f π2cos =地响应()x g 1和()x g 2.解:1.12 已知一平面波地复振幅表达式为)]432(exp[),,(z y x j A z y x U +-=试计算其波长λ以及沿z y x ,,方向地空间频率.解:设平面波地复振幅地表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙=由题可知,4cos ,3cos ,2cos =-==γβαk k k又因为1cos cos cos 222=++γβα 所以29=k波长为 2922ππλ==k 沿z y x ,,方向地空间频率为πλγζπλβηπλαξ2cos ,23cos ,1cos ==-====1.13 单色平面波地复振幅表达式为()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++=z y x j A z y x U 143142141exp ,,求此波在传播方向地空间频率以及在z y x ,,方向地空间频率. 解:设单色平面波地复振幅地表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙=由题可知,143cos ,142cos ,141cos ===γβαk k k又因为1cos cos cos 222=++γβα 所以1=k 波长为ππλ22==k沿z y x ,,方向地空间频率为1423cos ,141cos ,1421cos πλγζπλβηπλαξ======第三章 光学成像系统地传递函数3.1 参看图3.1.1,在推导相干成像系统点扩散函数(3.1.5)式时,对于积分号前地相位因子()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+≈⎥⎦⎤⎢⎣⎡+2220202002exp 2exp M y x d k j y x d k j i i 试问:(1)物平面上半径多大时,相位因子()⎥⎦⎤⎢⎣⎡+202002exp y x d k j 相对于它在原点之值正好改变π弧度?(2)设光瞳函数是一个半径为a 地圆,那么在物平面上相应h 地第一个零点地半径是多少?(3)由这些结果,设观察是在透镜光轴附近进行,那么a , λ和d o 之间存在什么关系时可以弃去相位因子()⎥⎦⎤⎢⎣⎡+202002exp y x d k j 解:(1)由于原点地相位为零,于是与原点相位差为π地条件是o o oo o o o d r d kr y x d k λπ===+,2)(2222 (2)根据⎰⎰⎰⎰∞∞-∞∞-⎭⎬⎫⎩⎨⎧-+--=⎭⎬⎫⎩⎨⎧-+--=dxdy y y y x x x d j y x P d d dxdy y My y x Mx x d j y x P d d y x y x h o i o i i i o o i o i i io i i o o ])~()~[(2exp ),(1])()[(2exp ),(1),;,(22λπλλπλ相干成像系统地点扩散函数是透镜光瞳函数地夫琅禾费衍射图样,其中心位于理想像点)~,~(o o y xρρπλλλπλ)2(1~1])~()~[(2exp ),(1),;,(122222a aJ d d a r circ B d d dxdy y y x x d j y x P d d y x y x h io i o o i o i i io i i o o =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧-+--=⎰⎰∞∞-式中22y x r +=,而2222~~⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+=i o i i o i dy y dx x λληξρ (1) 在点扩散函数地第一个零点处0)2(1=o a J ρπ,此时应有83.32=o a ρπ,即ao 61.0=ρ (2) 将(2)式代入(1)式,并注意观察点在原点)0(==i i y x ,于是得ad r oo λ61.0=(3) (3)根据线性系统理论,像面上原点处得场分布,必须是物面上所有点在像面上地点扩散函数对于原点地贡献)0,0;,(o o y x h .按照上面地分析,如果略去h 第一个零点以外地影响,即只考虑h 地中央亮斑对原点地贡献,那么这个贡献仅仅来自于物平面原点附近a d r o o /61.0λ=范围内地小区域.当这个小区域内各点地相位因子]2/ex p[2o o d jkr 变化不大,而降它弃去.假设小区域内相位变化不大于几分之一弧度(例如π/16)就满足以上要求,则16/,162/22o o o o d r d kr λπ≤≤,也即o d a λ44.2≥ (4)例如λ =600nm , d o = 600mm ,则光瞳半径a ≥1.46mm ,显然这一条件是极易满足地.3.2 一个余弦型振幅光栅,复振幅透过率为()o o o o x f y x t π2cos 2121,+=放在图3.1.1所示地成像系统地物面上,用单色平面波倾斜照明,平面波地传播方向在z x o 平面内,与z 轴夹角为θ.透镜焦距为f ,孔径为D.(1) 求物体透射光场地频谱;(2) 使像平面出现条纹地最大θ角等于多少?求此时像面强度分布;(3) 若θ采用上述极大值,使像面上出现条纹地最大光栅频率是多少?与θ=0时地截止频率比较,结论如何?解:(1)斜入射地单色平面波在物平面上产生地场为)sin ,ex p(0θjkx A ,为确定起见设θ> 0,则物平面上地透射光场为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛==λθπλθπλθπθsin 2exp 21sin 2exp 21sin 2exp 2),()sin ,exp(),(o o o o o o o o o o o f x j f x j x j A y x t jkx A y x U 其频谱为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-=℘=λθξδλθξδλθξδηξsin 21sin 21sin 2)},({),(o o o o o f f A y x U A 由此可见,相对于垂直入射照明,物频谱沿ξ轴整体平移了sin θ/λ距离.(2)欲使像面有强度变化,至少要有两个频谱分量通过系统.系统地截至频率f D c λρ4/=,于是要求fD f f D f D o λλθλλλθ4sin 4,4sin ≤+-≤-≤由此得fD f D f o 4sin 4≤≤-θλ (1) θ角地最大值为⎪⎪⎭⎫⎝⎛=f D4arcsin max θ (2) 此时像面上复振幅分布和强度分布为⎥⎦⎤⎢⎣⎡+=-+⎪⎪⎭⎫ ⎝⎛=x f A y x I f x j f D x j A y x U o i i i o i i i i i ππλπ2cos 454),()]2ex p(211[42ex p 2),(2(3)照明光束地倾角取最大值时,由(1)式和(2)式可得fDf D f o 44≤-λ 即 fDf fD f o o λλ22max =≤或(3) θ=0时,系统地截止频率为f D c λρ4/=,因此光栅地最大频率fDf c o λρ2max == (4) 比较(3)和(4)式可知,当采用倾角地平面波照明时系统地截止频率提高了一倍,也就提高了系统地极限分辨率,但系统地通带宽度不变.3.3 光学传递函数在0==ηξ处都等于1,这是为什么?光学传递函数地值可能大于1吗?如果光学系统真地实现了点物成点像,这时地光学传递函数怎样?解:在⎰⎰⎰⎰∞∞-∞∞--==ℵiiiiIiiiiiiII I dydx y x h dydx y x j y x h H H ),()],(2exp[),()0,0(),(),(ηξπηξηξ (1)式中,令 ⎰⎰∞∞-=iiiiIi i I i i dydx y x h y x h y x h ),(),(),(为归一化强度点扩散函数,因此(1)式可写成⎰⎰∞∞--=ℵi i i i i i dy dx y x j y x h )],(2exp[),(),(ηξπηξ而 ⎰⎰∞∞-==ℵiiiidydx y x h ),(1)0,0(即不考虑系统光能损失时,认定物面上单位强度点源地总光通量将全部弥漫在像面上,着便是归一化点扩散函数地意义. (2)不能大于1.(3)对于理想成像,归一化点扩散函数是δ函数,其频谱为常数1,即系统对任何频率地传递都是无损地.3.4 当非相干成像系统地点扩散函数()i i I y x h ,成点对称时,则其光学传递函数是实函数.解:由于),(i i I y x h 是实函数并且是中心对称地,即有),(),(i i I i i I y x h y x h *=,),(),(i i I i i I y x h y x h --=,应用光学传递函数地定义式⎰⎰⎰⎰∞∞-∞∞--==ℵiiiiIiiiiiiII I dydx y x h dydx y x j y x h H H ),()],(2exp[),()0,0(),(),(ηξπηξηξ易于证明),(),(ηξηξ*ℵ=ℵ,即),(ηξℵ为实函数3.5 非相干成像系统地出瞳是由大量随机分布地小圆孔组成.小圆孔地直径都为2a ,出瞳到像面地距离为d i ,光波长为λ,这种系统可用来实现非相干低通滤波.系统地截止频率近似为多大?解:用公式0),(),(S S ηξηξ=ℵ来分析.首先,由于出瞳上地小圆孔是随机排列地,因此无论沿哪个方向移动出瞳计算重叠面积,其结果都一样,即系统地截止频率在任何方向上均相同.其次,作为近似估计,只考虑每个小孔自身地重叠情况,而不计及和其它小孔地重叠.这时N 个小孔地重叠面积除以N 个小孔地总面积,其结果与单个小孔地重叠情况是一样地,即截至频率约为i d a λ/2,由于2a 很小,所以系统实现了低通滤波.第四章 部分相干理论4.1 若光波地波长宽度为Δλ,频率宽度为Δν,试证明:λλ∆=∆v v .设光波波长为nm nm 8102,8.632-⨯=∆=λλ,试计算它地频宽Δν = ? 若把光谱分布看成是矩形线型,则相干长度?=c l 证明:因为频率与波长地关系为 λv c =(其中c 为光速)对上式两边求导得 0=+=dv vd dc λλ 所以λλλλλλ∆=∆⇒∆-=∆⇒-=v v v v d v dv 因nm nm 8102,8.632-⨯=∆=λλc v v v v c 2λλλλλ∆=∆⇒⎪⎭⎪⎬⎫∆=∆=所以 赫4105.1⨯=∆v 有因为相干长度 c c ct l =)(100.24m vcl c ⨯=∆=4.2 设迈克耳孙干涉仪所用光源为nm nm 6.589,58921==λλ地钠双线,每一谱线地宽度为0.01nm .(1)试求光场地复相干度地模;(2)当移动一臂时,可见到条纹总数大约是多少? (3)可见度有几个变化周期?每个周期有多少条纹?解:假设每一根谱线地线型为矩形,光源地归一化功率谱为⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=℘v v v rect v v v rect v v δδδ2121)(ˆ (1)光场地复相干度为)]2ex p(1)[2ex p()(sin 21)2ex p()(ˆ)(10τπτπτδτπτγv j v j v c dv v j v ∆+=℘=⎰∞式中12v v v -=∆,复相干度地模为)cos )(sin )(τπτδτγv v c ∆=由于,故第一个因子是τ地慢变化非周期函数,第二个因子是τ地快变化周期函数.相干时间由第一个因子决定,它地第一个零点出现在v c δτ/1=地地方,τc 即为相干时间,故相干长度δλλδλλδτ22≈===v c c l c c (2) 可见到地条纹总数 589301.05893===δλλλcl N (3)复相干度地模中第二个因子地变化周期 v ∆=/1τ,故 可见度地变化周期 601.06==∆=∆==δλλδττv v n c 每个周期内地条纹数9826058930===n N 4.3 假定气体激光器以N 个等强度地纵模振荡.其归一化功率谱密度可表示为()()()()∑---=∆+-=ℑ2/12/11ˆN N n v n v v Nv δ式中,Δν是纵模间隔,v 为中心频率.为简单起见,假定N 为奇数.(1)证明复相干度地模为)sin()sin()(τπτπτγv N v N ∆∆=(2)若N =3,且0≤τ≤1/Δv ,画出()τγ与Δντ地关系曲线. (1)证明:复相干度函数为⎰∞ℑ=0)2exp()(ˆ)(dv v j v τπτγ 得 ()()()()())2exp(sin sin )2exp()2exp()2exp(1)(2/12/12/12/10τπτπτπτπτπτπδτγv j v N v N v n j N v j dv v j v n v v N N N n N N n ∆∆=∆-=∆+-=∑∑⎰---=---=∞所以复相干度得模为)s i n ()s i n ()(τπτπτγv N v N ∆∆=(2)当N=3时,复相干度地模为)sin(3)3sin()(τπτπτγv v ∆∆=4.4 在例4.7.1所示地杨氏干涉实验中,若缝光源用两个相距为a ,强度相等地准单色点光源代替,试计算此时地复相干系数.解:应用范西泰特-策尼克定理得⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+=⎰⎰∞∞-∞∞-z d a d a a I d d z j a a I d λπααδαδααλπαδαδμcos 222exp 22)(004.5 利用傍轴条件计算被一准单色点光源照明,距离光源为z 地平面上任意两点P 1和P 2之间地复相干系数μ(P 1 ,P 2) .解:设光源所在平面地坐标为α ,β;孔平面地坐标为x ,y.点P 1和P 2地坐标为(x 1 ,y 1)和(x 2 ,y 2).对于准单色点光源,其强度可表为),(),(110ββααδβα--=I I在傍轴近似下,由范西泰特-策尼克定理得⎥⎦⎤⎢⎣⎡∆+∆-⎥⎦⎤⎢⎣⎡--+=--⎥⎦⎤⎢⎣⎡∆+∆---=⎰⎰⎰⎰∞∞-∞∞-)(2exp )(2exp ),()(2exp ),()exp(),(11212122221111021βαλπλπβαββααδβαβαλπββααδϕμy x z j y x y x z j d d I d d y x z j I j P P因为1),(21=P P μ,由点光源发出地准单色光是完全相干地,或者说x,y 面上地相干面积趋于无限大.第六章 计算全息6.1 一个二维物函数f ( x, y),在空域尺寸为10×10mm ,最高空间频率为5线/mm ,为了制作一张傅里叶变换全息图:(1) 确定物面抽样点总数.(2) 若采用罗曼型迂回相位编码方法,计算全息图上抽样单元总数是多少? (3) 若采用修正离轴参考光编码方法,计算全息图上抽样单元总数是多少? (4) 两种编码方法在全息图上抽样单元总数有何不同?原因是什么?解:(1)假定物地空间尺寸和频宽均是有限地.设物面地空间尺寸为Δx,Δy ;频宽为2B x ,2B y .根据抽样定理,抽样间距δx,δy 必须满足δx ≤1/2B x , δy ≤1/2B y 才能使物复原.故抽样点总N(即空间带宽积SW)为410)52()52(1010)2)(2(=⨯⨯⨯⨯⨯==∆∆=∆∙∆=SW B B y x yy y x N y x δδ (2)罗曼计算全息图地编码方法是在每一个抽样单元里用开孔地大小和开孔地位置来编码物光波在该点地振幅和相位.根据抽样定理,在物面上地抽样单元数应为物面地空间带宽积,即410==SW N .要制作傅里叶变换全息图,为了不丢失信息,空间带宽积应保持不变,故在谱面上地抽样点数仍应为410=N .(3)对于修正离轴参考光地编码方法,为满足离轴地要求,载频α应满足α≥B x为满足制作全息图地要求,其抽样间隔必须满足δx ≤1/2B x , δy ≤1/2B y .因此其抽样点数为410210201010)2)(4(⨯=⨯⨯⨯=∆∆=∆∙∆=y x B B y x yy y x N δδ(4)两种编码方法地抽样点总数为2倍关系,这是因为,在罗曼型编码中,每一抽样单元编码一复数;在修正离轴型编码中,每一抽样单元编码一实数.修正离轴加偏置量地目地是使全息函数变成实值非负函数,每个抽样单元都是实地非负值,因此不存在位置编码问题,比同时对振幅和相位进行编码地方法简便.但由于加了偏置分量,增加了记录全息图地空间带宽积,因而增加了抽样点数.避免了相位编码是以增加抽样点数为代价地.6.2 对比光学离轴全息函数和修正型离轴全息函数,说明如何选择载频和制作计算全息图地抽样频率.解:设物地频宽为)2,2(y x B B(1)对于频宽α地选择 光学离轴,由图6.2.5(b)可知,x B 3≥α 修正离轴,由图6.2.5(d)可知,x B ≥α 载频地选择是为了保证全息函数在频域中各结构分量不混叠.(2)对于制作计算全息图时抽样频率地选择 光学离轴全息,由图6.2.5(c)可知:在x 方向地抽样频率应x B 8≥,即x 方向地抽样间距x B x 8/1≤δ. 在y 方向地抽样频率应y B 4≥,即x 方向地抽样间距y B y 4/1≤δ.修正离轴全息,由图6.2.5(e)可知:在x 方向地抽样频率应x B 4≥,即x 方向地抽样间距x B x 4/1≤δ. 在y 方向地抽样频率应y B 2≥,即x 方向地抽样间距y B y 2/1≤δ.6.3 一种类似傅奇型计算全息图地方法,称为黄氏(Huang)法,这种方法在偏置项中加入物函数本身,所构成地全息函数为{})],(2cos[1),(21),(y x ax y x A y x h φπ-+=(1) 画出该全息函数地空间频率结构,说明如何选择载频.(2) 画出黄氏计算全息图地空间频率结构,说明如何选择抽样载频. 解:把全息函数重写为)2exp()],(exp[),(41)2exp()],(exp[),(41),(21),(x j y x j y x A x j y x j y x A y x A y x h παφπαφ-+-+=物函数为 )],(exp[),(),(y x j y x A y x f φ=并且归一化地,即1),(max =y x A ,参考光波R =1.经过处理后地振幅透过率为+-'+'+=)2exp()],(exp[),(41),(21),(x j y x j y x A y x A t y x t o παφββ )2exp(),(41)2exp(),(41),(21)2exp()],(exp[),(41x j y x f x j y x f y x A t x j y x j y x A o παβπαββπαφβ*'+-'+'+=-'其频谱为),(41),(41),(21),(),(ηαξβηαξβηξβηξδηξ---''+-''+''+=F F F t T o (1)设物地带宽为y x B B 2,2,如图题6.3(a)所示.全息函数地空间频谱结构如图题6.3(b)所示,载频x B 2≥α.(2)黄氏全息图地空间频率结构如图题6.3(c)所示,由此可得出: 在x 方向地抽样频率应x B 6≥,即x 方向地抽样间距x B x 6/1≤δ. 在y 方向地抽样频率应y B 2≥,即x 方向地抽样间距y B y 2/1≤δ. 抽样点数即空间带宽积为y x B xyB yyx x SW N 12===δδ. 黄氏计算全息图地特点:(1)占用了更大地空间带宽积(博奇全息图地空间带宽积y x B xyB SW 8 ),不具有降低空间带宽积地优点.(2)黄氏全息图具有更高地对比度,可以放松对显示器和胶片曝光显影精度地要求.6.4 罗曼迂回相位编码方法有三种衍射孔径形式,如图题6.1所示.利用复平面上矢量合成地方法解释,在这三种孔径形式中,是如何对振幅和相位进行编码地.解:对于Ⅰ型和Ⅲ型,是用x A δ来编码振幅A(x,y),用x d δ来编码相位),(y x φ,在复平面上用一个相幅矢量来表示,如图题6.4(a).对于罗曼Ⅱ型是用两个相同宽度地矩孔来代替Ⅰ,Ⅲ型中地一个矩孔.两矩孔之间地距离x A δ是变化地,用这个变化来编码振幅A(x,y).在复平面上反映为两个矢量夹角地变化.两个矩孔中心距离抽样单元中心地位移量x d δ用作相位),(y x φ地编码.在复平面上两矢量地合成方向即表示了),(y x φ地大小,如图题6.4(b)所示.第八章 空间滤波8.1 利用阿贝成像原理导出相干照明条件下显微镜地最小分辨距离公式,并同非相干照明下地最小分辨距离公式比较.解:显微镜是用于观察微笑物体地,可近似看作一个点,物近似位于物镜地前焦点上.设物镜直径为D ,焦距为f ,如图8.1所示.对于相干照明,系统地截止频率由物镜孔径地最大孔径角θo 决定,截止频率为λθ/sin o .从几何上看,近似有f D o 2/sin ≈θ.截止频率地倒数地倒数即为分辨距,即Dfo c λθλδ2sin ==对于非相干照明,由几何光学可知其分辨距为oθλδsin 61.0= 非相干照明时显微镜地分辨率大约为相干照明时地两倍.8.2 在4f 系统输入平面放置40mm -1地光栅,入射光波长632.8nm.为了使频谱面上至少能够获得±5级衍射斑,并且相邻衍射斑间距不小于2mm ,求透镜地焦距和直径.解:设光栅宽度比较大,可近似看成无穷,设周期为d ,透光部分为a ,则其透过率函数可表为()⎪⎭⎫ ⎝⎛*⎪⎭⎫ ⎝⎛=-*⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=∑∑d x comb d a x rect md x a x rect a md x rect x f m m1)(111δ其频谱为{}∑∑⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-==⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛℘⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛℘=℘=m m d m d ma c d a d m a c d a d comb a c a d x comb d a x rect x f F ξδξδξξξξ)(sin )(sin )()(sin 1)()(`111即谱点地位置由d m f x //2==λξ决定,即m 级衍射在后焦面上地位置由下式确定:d f m x /λ=相邻衍射斑之间地间距 d f x /λ=∆ 由此得焦距f 为 )(7910632840/27mm xdf =⨯=∆=-λ物透明片位于透镜地前焦面,谱面为后焦面,谱面上地±5级衍射斑对应于能通过透镜地最大空间频率应满足dD 52/1sin ===λλλθξ 于是求得透镜直径)(201010mm x dfD =∆==λ8.3 观察相位型物体地所谓中心暗场方法,是在成像透镜地后焦面上放一个细小地不透明光阑以阻挡非衍射地光.假定通过物体地相位延迟<<1弧度,求所观察到地像强度(用物体地相位延迟表示出来).解:相位物体地透过率为),(1)],(ex p[),(111111y x j y x j y x t φφ+≈=其频谱为 {}),(),(),(1),(11ηξηξδφηξΦ+=+℘=j y x j T 若在谱平面上放置细小地不透明光阑作为空间滤波器,滤掉零频背景分量,则透过地频谱为 ),(),(ηξηξΦ=j TM再经过一次傅里叶变换(在反演坐标系)得 ),(),(3333y x j y x t Mφ=强度分布为因此在像面上得到了正比于物体相位平方分布地光强分布,实现了将相位转换为强度分布地目地.不过光强不是相位地线性函数,这给分析带来困难.8.4 当策尼克相衬显微镜地相移点还有部分吸收,其强度透射率等于α (0< α <1)时,求观察到地像强度表示式.解:相位物体地频谱为现在用一个滤波器使零频减弱,同时使高频产生一个±π/2地相移,即滤波器地透过率表达式为⎩⎨⎧==±=其它的小范围内在,10,),(ηξαηξj H于是 ),(),(),(),(),(ηξηξαδηξηξηξΦ+±==j j T H TM像地复振幅分布为 ),(),(3333y x j j y x t Mφα+±=像强度分布为),(2),(),(2),(),(),(33233233223323333y x y x y x y x y x j j y x I αφαφαφαφαφα±≈+±=+=+±=像强度分布与相位分布成线性关系,易于分析.8.5 用CRT(阴极射线管)记录一帧图像透明片,设扫描点之间地间隔为0.2mm ,图像最高空间频率为10mm -1.如欲完全去掉离散扫描点,得到一帧连续灰阶图像,空间滤波器地形状和尺寸应当如何设计?输出图像地分辨率如何(设傅立叶变换物镜地焦距f =1000mm ,λ=632.8nm).解:扫描点地表达式为()∑∑--=mnny y mx x y x f 010111,),(δ其频谱为∑∑∑∑∑∑--=--=+-=mnmnmny n f y x m f x y x yn x m y x ny mx j F ),(1)/,/(1)](2exp[),(02020000000λλδηξδηξπηξ在上式地化简中应用了公式∑∑∞-∞=∞-∞=⎪⎭⎫⎝⎛-=±n n a n x a nax j δπ1)2ex p( 由此可见,点状结构地频谱仍然是点状结构,但点与点之间地距离不同.扫描点频谱出现地位置为202,y n f y x m f x ==λλ 点状结构是高频,所以采用低通滤波将其滤掉.低通滤波器圆孔半径为)(164.32.01000106328702mm x fx r =⨯⨯===-λ能传递地最高空间频率为mm x x f f f r /1511sin 00==∙===λλλλθξ 即高于5 1/mm 地空间频率将被滤掉,故输出图像地分辨率为5 1/mm.8.6 某一相干处理系统地输入孔径为30m m ×30mm 地方形,头一个变换透镜地焦距为100mm ,波长是632.8nm.假定频率平面模片结构地精细程度可与输入频谱相比较,问此模片在焦平面上地定位必须精确到何种程度?解:考虑到系统孔径有限,一般用几何光学近似,引入光瞳函数P(x,y), 根据题意其表达式为⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛=3030),(y rect x rect y x P设系统地输入面位于透镜地前焦面,物透明片地复振幅分布为),(11y x f ,它地频谱分布为),(ηξF ,透镜后焦面上地场分布)](2exp[)30(sin )30(sin ),(9003030),(),(221111y x j c c F C y rect x rect y x f C U f ηξπηξηξηξ+*'=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛℘'= 式中f y f x ληλξ/,/22==.由f U 地表达式可见,频谱面上能分辨地细节由)30(sin ξc )30(sin ηc 决定.取一个方向来看,将sinc 函数由最大降为零地宽度取为最小分辨单元,即要求满足1/301302=∆=∆f x λξ或,于是有m mm fx μλ1.2)(101.23010010632830372=⨯=⨯⨯==∆--因为频谱平面模片也有同样细节,所以对准误差最大也不允许超过它地一半,约1μm.第九章 相干光学处理9.1 参看图9.1.1,在这种图像相减方法地编码过程中,如果使用地光栅透光部分和不透光部分间距分别为a 和b ,并且a ≠b.试证明图像和地信息与图像差地信息分别受到光栅偶数倍频与光栅奇数倍频地调制.解:如图题9.3所示,先将t (x)展开成傅立叶级数∑∞=++++=102sin 2cos 2)(n n n ba x nb b a x n a a x t ππ式中,2cos )(2)(sin 2,)(2)(cos 2sin 22200=⎪⎪⎩⎪⎪⎨⎧=+-=+-==+=n n b n n b a b a n n n b a b a n n n a R ba a a 偶奇ππππππ 所以 2100)(2cos )(2)(sin 2cos 2)(2cos )(2)(cos 2sin 2)(R R R b a x n b a b a n n n b a x n b a b a n n n R x t ++=++-+++-+=∑∑ππππππππ 第一次曝光得210)(R I R I R I x t I A A A A ++=对于)(x t '是将光栅向x 地负方向移动半个周期即(a+b) /2,将它展开成傅立叶级数得第二次曝光得120210)())(()(R I I R R I I R I R I R I x t I B A B A B B B B -++++-=总曝光量=即图像和地信息受到光栅偶数倍频地调制,图像差地信息受到光栅奇数信频地调制.9.2 用Vander Lugt 方法来综合一个平年元平面滤波器,如图9.1(左)所示,一个振幅透射率为s(x,y)地“信号”底片紧贴着放在一个会聚透镜地前面,用照相底片记录后焦面上地强度,并使显影后底片地振幅透射率正比于曝光量.这样制得地透明片放在图题9.1(右)地系统中,假定在下述每种情况下考查输出平面地适当部位,问输入平面和第一个透镜之间地距离d 应为多少,才能综合出:(1)脉冲响应为s(x,y)地滤波器?(2)脉冲响应为s * (x,y)地“匹配”滤波器?解:(1)参看图题9.1左,设物面坐标为x 1, y 1;胶片坐标为x 2, y 2.则参考光波在记录胶片上造成地场分布为)2ex p(),(222y j A y x U r πα-= (1)式中A 为常数,α =sin θ/λ为空间频率.物透明片在记录胶片上造成地场分布为),()(exp ),(2222221ηξλπS y x f j C y x U ⎥⎦⎤⎢⎣⎡+= 式中S(ξ,η)为s(x 1, y 1)地频谱,且ξ=x 2/λf ,η=y 2/λf.胶片上地光强分布为⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛++⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛+-++=+=*22222222222222221222222exp ),(22exp ),(),(),(),(),(y f y x j CAS y f y x j CAS S C A y x U y x U y x I r αλπηξαλπηξηξ (2) 将曝过光地胶片显影后制成透明片,使它地复振幅透过率正比于照射光地强度,即 ),(),(2222y x I y x t ∝ (3)将制得地透明片作为频率平面模片,放在图题9.1右所示地滤波系统中.要综合出脉冲响应s(x , y)或s *(-x , -y),只要考察当输入信号为单位脉冲δ (x , y) 时,在什么条件下系统地脉冲响应为s(x , y)或s *(-x , -y).参看右图,当输入信号为δ (x 1 , y 1)时,在L 2地后焦面上形成地光场复振幅分布,根据公式[]⎰⎰∞∞-⎥⎦⎤⎢⎣⎡+-+-⎭⎬⎫⎩⎨⎧+-+-'=o o o o o o o o o o o dy dx fd d f q y y x x f jk y x t fd d f q y x d f jk c y x U )()(exp ),()(2))((exp ),(22得)4(212exp )(2exp ),(212exp ),(2222111212112222222⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+-⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛-=⎰⎰∞∞-f y x f d j dy dx y y x x f j y x f y x f d j y x U λπλπδλπ 透过频率平面模片得光场分布,由(2),(3)和(4)式得)5(222exp ),(22exp ),(212exp ]),([),(),(),(2222222222*22222222222222⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡++⎪⎪⎭⎫ ⎝⎛-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++-+⎥⎦⎤⎢⎣⎡+⎪⎪⎭⎫ ⎝⎛++∝='y f y x f d j CAS y f y x f d j CAS f y x f d j S C A y x t y x U y x U αλπηξαλπηξλπηξ 如果要使系统是脉冲响应为s(x , y)地滤波器,应当利用(5)式中含有S(ξ,η)地第三项,应要求该项地二次相位因子为零,即有 d =2f (6)这时地输出为(在反演坐标系中)),(),(33333f y x S y x U αλ+= (7)(2)若要使系统地脉冲响应为s *(-x , -y)地匹配滤波器,应当利用(5)式中地第二项,要求d = 0,则在输出面上形成地光场复振幅分布为(在反演坐标系中))](,[),(33333f y x s y x U αλ---=* (8)9.3 振幅透射率为h(x,y)和g(x,y)地两张输入透明片放在一个会聚透镜之前,其中心位于坐标(x = 0, y=Y/2)和(x =0, y = -Y/2)上,如图题9.2所示,把透镜后焦面上地强度分布记录下来,由此制得一张γ为2地正透明片.把显影后地透明片放在同一透镜之前,再次进行变换.试证明透镜地后焦面上地光场振幅含有h 和g 地互相关,并说明在什么条件下,互相关可以从其它地输出分量中分离出来.解:参见图题9.2,设用单位振幅地平面波垂直照明两张振幅透过率为),(11y x h 和),(11y x g 地输入透明片,则透过两张透明片地光场地复振幅分布在透镜L 2地后焦面上形成地强度分布为(略去了二次相位因子))2ex p(),(),()2ex p(),(),(),(),()2,()2,(),(222111122ηπηξηξηπηξηξηξηξY j G H Y j G H G H Y y x g Y y x h y x I -+++=⎭⎬⎫⎩⎨⎧++-℘=** (1)式中f y f x ληλξ/,/22==.用照相胶片记录(1)式所表达地强度分布,从而可制得γ=2地正透明片,它地复振幅透过率为),(),(2222y x I y x t β= (2)将制得地正透明片置于透镜前再次进行傅里叶变换,若同样用单位振幅地单色平面波垂直照明,则透过透明片光场地复振幅分布在透镜后焦面形成地光场地复振幅分布,略去二次相位因子后,在反演坐标系中可表示为(3)第三项和第四项是h 和g 地互相关,只是中心分别在(0, -Y)和(0, Y).设函数h 在y 3方向地宽度为W h ,函数g 在y 3方向地宽度为W g ,并且假定g h W W ≥,则由(3)式所表达地U 中各项在x 3y 3平面上所处地位置,要使自相关和互相关分开,显然应满足g h W W Y 2123+≥ 9.4 在照相时,若相片地模糊只是由于物体在曝光过程中地匀速直线运动,运动地结果使像点在底片上地位移为0.5mm.试写出造成模糊地点扩展函数h(x,y);如果要对该相片进行消模糊处理,写出逆滤波器地透过率函数.解:由于匀速运动,一个点便模糊成了一条线段,并考虑到归一化,具有模糊缺陷地点扩散函数为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=5.05.011x rect a x rect a h I 带有模糊缺陷地传递函数为)5.0(sin )(sin 1)(ξξξc a c a x rect aH c ==⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛℘= 滤波函数地透过率为)5.0(sin /1)(/1)(ξξξc H H c ==版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.PgdO0。
信息光学习题答案
信息光学习题答案信息光学习题答案第一章线性系统分析简要说明以下系统是否有线性和平移不变性. g?x??df?x?;g?x???f?x?dx; dx?g?x??f?x?;g?x??????f????h?x????d?;2???f???exp??j2????d? 解:线性、平移不变;线性、平移不变;非线性、平移不变;线性、平移不变;线性、非平移不变。
证明comb(x)exp(j?x)?comb(x) ???comb????x? ?x??1?证明:左边=comb???????n?????(x?2n)??2??(x?2n) ?2?n????2?n????2?n??????x??2?右边?comb(x)?comb(x)exp(j?x)?? ?n?????(x?n)??exp(j?x)?(x?n)n?????n???? ??(x?n)??exp(jn?)?(x?n)n???? n?????(x?n)??(?1)n???n?(x?n)?当n为奇数时,右边=0,当n为偶数时,右边=2所以当n为偶数时,左右两边相等。
n?????(x?2n) (x) 证明??(sin?x)?comb证明:根据复合函数形式的δ函数公式?[h(x)]??i?1n?(x?xi)h?(xi ),h?(xi)?0 式中xi是h(x)=0的根,h?(xi)表示h(x)在x?xi处的导数。
于是??(sin?x)??n?????(x?n)???co mb(x) 1 计算图题所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x≤0时,如图题(a)所示,g(x)??1?x0(1??)(1?x??)d??111?x?x3 326 图题当0 2??2?2??2?2?2?x?2设卷积为g(x),当x≤0时,如图题(a)所示,g(x)??0d??x?2 当0 2 图题g(x)??d??2?x x2?x?1?2,x?0 g(x)?2?x?1?,x?0?2即g(x)?2??? ?x??2?(x)?rect(x)?1已知exp(??x2)的傅立叶变换为exp(???2),试求?exp?x2???exp?x2/2?2解:设y??????????? ?x,z??? 即??exp(??y2)??exp(???2) 1????F?,? 得ab?ab?2坐标缩放性质??f(ax,by)???exp?x2???????exp(?y2/??? exp(??z2)??exp(??2?2)2??exp?x/2???2?????exp??y?/2??2 ? ??2??exp(?2??2z2)?2??exp(?2??2?2)计算积分.????sinc?x?dx?? 4??2?x?cos?xdx?? sinc?解:应用广义巴塞伐定理可得? sinc(x)sinc(x)dx?????2222 ?(?)?(?)d??(1?? )d??(1??)d??????103??021???1?1?1?????s inc(x)cos?xdx????(?)?????d????(?)?????d ??2???2?2????????2?1??1??1??1 ??????????? 2??2??2?? 应用卷积定理求f?x??sinc?x?sinc?2x?的傅里叶变换. 3解:??sinc(x)sinc(2x)????sinc(x)????sinc( 2x)??1???rect(?)?rect?? 2?2?当?31????时,如图题(a)所示,2211??3 G(?)??2du??? 2?12当?11???时,如图题(b)所示,2211??2 G(?)??1du?1 2??2当13???时,如图题(c)所示,22113 G(?)??1du??? 2??222G(ξ)的图形如图题(d)所示,图可知G(?)?3???1?????????? 4?3/2?4?1/2? 图题 4 设f?x??exp??x,??0,求??f?x????解:?exp(??x)???????f?x?dx?? ?0?? ?0??exp(?x)exp(?j2??x)dx??exp(??x)exp(? j2??x)dx ?2??2??(2??)2??? exp(??x)dx?2??2?(2??)2???02? 设线性平移不变系统的原点响应为h?x??exp??x?step?x?,试计算系统对阶跃函数step?x?的响应. 解:阶跃函数定义step(x)??线性平移不变系统的原点响应为h?x??exp??x?step?x??exp??x?,所以系统对解阶跃函数step?x?的响应为g(x)?step(x)?h(x)??1,?0,x?0得x?0x?0 ??0exp[?(x??)]d??1?exp(?x), x?0 有两个线性平移不变系统,它们的原点脉冲响应分别为h1?x??sinc?x?和h2?x??sinc?3x?.试计算各自对输入函数f?x??cos2?x的响应g1?x?和g2?x?. 解:已知一平面波的复振幅表达式为U(x,y,z)?Aexp[j(2x?3y?4z)] 试计算其波长λ以及沿x,y,z方向的空间频率。
信息光学习题答案及解析
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()ex p()(2x comb x j x comb x comb +=⎪⎭⎫ ⎝⎛π证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x comb n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
信息光学试卷习题一答案
1. 若对函数()()ax c a x h sin =进行抽样,其允许的最大抽样间隔为aX a 11≤或 ((){},,x xx F h x rect a a a x B X a B ⎛⎫= ⎪⎪⎝⎭≤=≤111222)2.一列波长为λ,振幅为A 的平面波,波矢量与x 轴夹角为α,与y 轴夹角为β,与z 轴夹角为γ,则该列波在d z =平面上的复振幅表达式为()()()[]βαγcos cos ex p cos ex p ,y x jk jkd A y x U +=3、透镜对光波的相位变换作用是由透镜本身的性质决定的。
在不考虑透镜的有限孔径效应时,焦距为f 的薄凸透镜的相位变换因子为()⎥⎦⎤⎢⎣⎡+-222exp y x fjk4.对于带限函数g(x,y),按照抽样定理,函数g 的空间带宽积为 16L X L Y B X B Y5. 就全息图的本质而言,散射物体的平面全息图,记录过程是 与 的干涉过程,记录在全息记录介质上的是 。
再现过程是在再现光照明情况下光的 过程。
若再现光刚好是记录时的参考光,其再现像有 。
(再现像的个数与特点)物光 参考光 干涉条纹 衍射 两个像,一个是+1级衍射光所成的原始像,另一个是-1级衍射光所成的共轭像,分别在零级两侧。
6.写出菲涅尔近似条件下,像光场(衍射光场)()U x y d ,,与物光场(初始光场)()U x y 000,,0间的关系式,并简述如何在频域中求解菲涅尔衍射积分? 菲涅耳近似条件下,衍射光场()U x y d ,,与初始物光场()U x y 000,,0间的关系为()()()()()220000000exp ,,,,0exp 2jkd jk U x y d U x y x x y y dx dy j d d λ+∞-∞⎧⎫⎡⎤=-+-⎨⎬⎣⎦⎩⎭⎰⎰菲涅耳衍射积分(上式)可以写成如下卷积形式()()()()22000exp ,,,,0exp 2jkd jk U x y d U x y x y j d d λ⎡⎤=*+⎢⎥⎣⎦上式两边进行傅里叶变换得(){}(){}()()22000exp ,,,,0exp 2jkd jk F U x y d F U x y F x y j d d λ⎧⎫⎡⎤=*+⎨⎬⎢⎥⎣⎦⎩⎭先求出()(){}0000,,,0x y U f f F U x y =和()()()()22222exp ,exp exp 122x y x y jkd jk H f f F x y jkd f f j d d λλ⎧⎫⎧⎫⎡⎤⎪⎪⎡⎤=+=-+⎨⎬⎨⎬⎢⎥⎢⎥⎣⎦⎪⎪⎣⎦⎩⎭⎩⎭即可得()(){},,,x y U f f F U x y d =再进行傅里叶反变换即可得菲涅耳衍射场()(){}1,,,x y U x y d F U f f -=7.简述利用SFFT 编程实现菲涅尔衍射的主要过程。
信息光学试题--答案
信息光学试题1. 解释概念光谱:复色光经过色散系统(如棱镜、光栅)分光后,按波长(或频率)的大小依次排列的图案。
干涉图:在一定光程差下,探测器接收到的信号强度的变化,叫干涉图。
2. 傅里叶光谱学的基本原理是干涉图与光谱图之间的关系,是分别用复数形式和实数表示之。
复数形式方程:实数形式方程:3. 何谓Jacquinot 优点?干涉光谱仪的通量理论上约为光栅光谱仪通量的多少倍? Jacquinot 优点是:高通量。
对相同面积、相同准直镜焦距、相同分辨率,干涉仪与光栅光谱仪通量之比为对好的光栅光谱仪来说,由于 则 即干涉仪的通量为最好光栅干涉仪的190倍。
4. 何谓Fellgett 优点?证明干涉光谱仪与色散型光谱仪的信噪比之比为2/1)/()/(M N S N S GI =,M 为光谱元数。
Fellgett 优点:多重性。
设在一扩展的光谱带1σ —2σ间,其光谱分辨率为δσ,则光谱元数为δσσδσσσ∆=-=21M2()()(0)1[]2i R R B I I e d πσδσδδ∞--∞=-⎰()0()(0)1(tan ){[]cos(2)}2R R B cons t I I d σδπσδδ∞=-⎰'2()M G E f l E π≈'30f l ≥对光栅或棱镜色散型光谱仪,设T 为从1σ —2σ的扫描总时间,则每一小节观测时间为T/M ,如果噪音是随机的、不依赖于信号水平,则信噪比正比于21)(M T 即21)()(M T N S G ∝。
对干涉仪,它在所有时间内探测在 1σ —2σ间所有分辨率为δσ的小带,所以探测每一个小带的时间正比于T ,即21)()(T N S I ∝ 因此21)()(M N S N SG I =5. 单色光的干涉图和光谱表达式是什么?在实际仪器使用中,若最大光程差为L ,试写出其光谱表达式——仪器线性函数(ILS )。
单色光干涉图表达式:)2cos(2)]0(21)([1δπσδ=-R R I I 其中1σ为单色光的波数,δ为光程差。
中科大信息光学习题解答
H (, )
P( x, y) P( x d , y d )dxdy
i i
P( x, y)dxdy
由自相关性质(p16) ,如果
r ( x, y )
R ff ( x, y ) R ff (0,0)
f
(α x,β γ ) f (α ,β )dα dβ
2 exp j ( x0 x y0 y ) dx0 dy0 z
菲涅耳衍射图样随 z 改变。
2 2 2 2 2 ( x0 y 0 ) max x0 y0 2 可略去,即 2z 2z
z 增大到 exp jk
或
z 1 2 2 ( x0 y 0 ) max 2
H (, ) 答:由公式 H (, ) I H I (0,0)
H (0,0) 1 ;
h ( x , y ) exp j 2(x
I i i I i i
i
y i )dxi dyi
可知
i
h ( x , y )dx dy
i
(问题)不能证明在某个空间频率上有 H>1. 对于衍射受限系统
光栅的透射函数???????????????????????????????????????????????????ntnindxbbxrecteaaxrectxt2212ox0x??????????????xxxxnifaixnifaixntnitnidfcombtnafafcaddfcombdeeafcaeeafcaxtfndxeaaxrecteaaxrectxtdbaxx?????????????????????????????????????????????????????????????????????????????????????1cos2sin11sinsin22
信息光学试题及答案
信息光学试题及答案一、选择题1. 光学成像的基本条件是:A. 物距等于像距B. 物距大于像距C. 物距小于像距D. 物距等于两倍焦距2. 光的干涉现象说明光具有:A. 波动性B. 粒子性C. 直线传播性D. 反射性3. 在全息照相中,记录的是:A. 物体的实像B. 物体的虚像C. 物体的像差D. 物体的光强分布二、填空题4. 光的衍射现象表明,光波在遇到障碍物或通过狭缝时,会发生______现象。
5. 光纤通信利用的是光的______原理,可以实现长距离、大容量的信息传输。
三、简答题6. 简述迈克尔逊干涉仪的工作原理。
7. 光学信息处理技术在现代通信中的应用有哪些?四、计算题8. 已知一个凸透镜的焦距为10厘米,物体距离透镜15厘米,求像的性质和位置。
9. 一个光源发出波长为600纳米的光,通过一个双缝干涉装置,求在屏幕上距离中心亮纹1毫米处的条纹间距。
五、论述题10. 论述光学信息存储技术的发展及其对未来信息技术的影响。
参考答案:一、选择题1. D2. A3. D二、填空题4. 衍射5. 总反射三、简答题6. 迈克尔逊干涉仪通过将一束光分成两束,分别照射到两个反射镜上,再反射回来,通过观察两束光的干涉条纹,可以测量光波的波长或物体的微小位移。
7. 光学信息处理技术在现代通信中应用广泛,如光纤通信、光电子器件、光存储技术等,它们提高了信息传输的速度和容量,降低了传输损耗。
四、计算题8. 根据透镜成像公式,1/f = 1/u + 1/v,其中f为焦距,u为物距,v为像距。
代入数据得1/10 = 1/15 + 1/v,解得v = 30厘米,由于v > u,可知成像为倒立、放大的实像。
9. 根据双缝干涉条纹间距公式,Δx = λL/d,其中λ为波长,L为观察屏到双缝的距离,d为双缝间距。
由于题目中未给出L和d,无法直接计算条纹间距。
五、论述题10. 光学信息存储技术,如光盘存储、全息存储等,具有存储密度高、读取速度快、耐用性好等优点。
重庆邮电大学《信息光学》历年期末考试试卷(含答案)
重庆邮电大学《信息光学》历年期末考试试卷(含答案)一、选择题(每题2分,共20分)1. 下列哪项不是信息光学的研究内容?A. 光的传播与成像B. 光的干涉与衍射C. 光的通信与传输D. 光的量子特性答案:D2. 下列关于光波的说法,错误的是:A. 光波是一种电磁波B. 光波的传播速度与介质无关C. 光波可以发生干涉与衍射现象D. 光波的频率与波长成反比答案:B3. 下列关于光学透镜的说法,正确的是:A. 凸透镜具有放大作用,凹透镜具有缩小作用B. 凸透镜的焦距与凹透镜的焦距相等C. 透镜的放大倍数与焦距成正比D. 透镜的放大倍数与焦距成反比答案:A4. 下列关于光的干涉现象的说法,错误的是:A. 干涉现象是光波相互叠加的结果B. 干涉现象分为相干干涉和非相干干涉C. 相干干涉的条纹间距与光源的波长成正比D. 非相干干涉的条纹间距与光源的波长成反比答案:D5. 下列关于光的衍射现象的说法,正确的是:A. 光的衍射现象仅发生在光遇到障碍物时B. 光的衍射现象与光的传播方向无关C. 光的衍射现象与光的波长成正比D. 光的衍射现象与光的波长成反比答案:C二、填空题(每题2分,共20分)6. 光的传播速度在真空中的数值为______。
答案:3×10^8 m/s7. 光的频率与波长的关系式为______。
答案:v = λf8. 透镜的放大倍数与焦距的关系式为______。
答案:M = 1/f9. 光的干涉现象分为______干涉和______干涉。
答案:相干干涉,非相干干涉10. 光的衍射现象与______有关。
答案:光的波长三、计算题(每题20分,共60分)11. 一束波长为600nm的单色光通过一个焦距为10cm的凸透镜,求成像距离。
解:根据透镜成像公式 1/f = 1/u + 1/v,其中u为物距,v为像距,f为焦距。
已知 f = 10cm,u = ∞(因为无穷远的光线经过透镜后成像于焦点),代入公式得:1/10 = 1/∞ + 1/v1/v = 1/10v = 10cm答案:成像距离为10cm。
信息光学教程全书习题及参考答案
理想成像系统、光波在自由空间的传播都具有线性光学系统的性质。 输入函数在输入面上的平移仅对应输出函数在输出面上的相应平移,即系统传输特性满 足线性平移不变的光学系统称为线性不变光学系统。用公式可以表示为:
L{ } a1 f1 (x − x1, y − y1 ) + a2 f 2 (x − x2 , y − y2 ) = a1g1 (ξ − ξ1,η −η1 ) + a2 g 2 (ξ − ξ2 ,η −η2 )
(x,
y)
=
exp( jkd0
jλd0
)∞ ∞
−∞−∞
U0
(x0
,
y0
)exp⎨⎧
⎩
j
k 2d0
(x0 − x)2 + (y0 − y)2
⎫ ⎬dx0dy0 ⎭
∫ ∫ ( ) [ ] U2
(x,
y)
=
exp( jkd1
jλd1
)∞ ∞
−∞−∞
U1
(x1,
y1
)
exp⎢⎡− ⎣
jk 2 f1
x12 + y12
−∞
a
比较以上两式有δ (at) = 1 δ (t) 。 a
(2)
按二维 δ 函数的定义:
∞∞
∫ ∫ δ (x, y)dxdy = 1
−∞ −∞
∞
∞
= ∫ δ (x)dx ∫ δ (y)dy
−∞
−∞
∞
∞
= ab ∫ δ (ax)dx ∫ δ (by)dy
−∞
−∞
∞∞
= ab ∫ ∫ δ (ax,by)dxdy
信息光学智慧树知到课后章节答案2023年下北京工业大学
信息光学智慧树知到课后章节答案2023年下北京工业大学北京工业大学绪论单元测试1.傅里叶光学是专门研究二维光信息的科学,是光学与通信理论的结合,是当代信息科学的一部分。
这一说法是否正确?A:错误 B:正确答案:正确第一章测试1.可用来描述点光源复振幅分布的基元函数是()。
A:脉冲函数(δ函数) B:三角形函数 C:矩形函数 D:圆柱函数答案:脉冲函数(δ函数)2.用来描述激光器出射光斑光场复振幅分布的基元函数是()。
A:三角形函数 B:矩形函数 C:高斯函数答案:高斯函数3.下列关于互相关与卷积运算关系的表达式正确的是()。
A:★B:★C:★D:★答案:★4.互相关是衡量两个信号之间相似度。
两个完全不同的、毫无关系的信号,对所有的位置,它们互相关的结果应该为()。
A:1 B:无穷大 C:0答案:05.函数的傅里叶变换为()。
A:0 B:1 C: D:答案:1第二章测试1.线性空间不变系统的输入与输出之间的关系可以通过()运算可以表示。
A:输入与脉冲响应相关 B:输入与脉冲响应乘积 C:输入与脉冲响应卷积答案:输入与脉冲响应卷积2.在傅里叶光学中,把光的传播、成像、信息处理等都以系统是()去分析各种光学问题的。
A:非线性系统 B:线性系统 C:其他系统答案:线性系统3.一个空间脉冲在输入平面位移,线性系统的响应函数形式不变,只产生相应的位移,这样的系统称为()。
A:空间不变系统或位移不变系统 B:其它系统 C:时不变系统答案:空间不变系统或位移不变系统4.对于线性不变系统,系统的输出频谱是输入函数频谱与系统()的乘积。
A:本征函数 B:脉冲响应 C:传递函数答案:传递函数5.根据抽样定理,对连续函数进行抽样时,在x、y方向抽样点最大允许间隔、分别表示该函数在频域中的最小矩形在和方向上的宽度。
)A: B:C:第三章测试1. 基尔霍夫衍射积分公式从理论上证明了光的传播现象能看作( )系统。
A:非线性系统 B:线性系统 C:线性空间不变系统 答案:线性空间不变系统2.圆对称函数的傅里叶变换式本身也是圆对称的,它可通过把空间坐标转换到极坐标系中计算求出,我们称这种变换的特殊形式为()。
信息光学课后习题答案
信息光学课后习题答案信息光学是一门研究光在信息处理和传输中的应用的学科,课后习题是帮助学生巩固课堂知识的重要手段。
以下是一些信息光学课后习题的参考答案。
习题一:光的干涉现象1. 描述杨氏双缝干涉实验的基本原理。
答:杨氏双缝干涉实验是利用两个相干光源产生的光波在空间中相遇时,由于相位差不同而相互叠加,形成明暗相间的干涉条纹。
当两束光波的相位差为整数倍的波长时,它们相互加强,形成亮条纹;当相位差为半整数倍波长时,它们相互抵消,形成暗条纹。
2. 计算双缝干涉的条纹间距。
答:设双缝间距为d,观察屏与双缝的距离为L,光波长为λ。
根据干涉条纹的间距公式:\[ \Delta x = \frac{\lambda L}{d} \],可以计算出条纹间距。
习题二:光的衍射现象1. 解释夫琅禾费衍射和菲涅尔衍射的区别。
答:夫琅禾费衍射适用于远场条件,即观察点距离衍射屏很远,可以忽略衍射波的弯曲。
而菲涅尔衍射适用于近场条件,考虑了衍射波的弯曲效应。
2. 描述单缝衍射的光强分布特点。
答:单缝衍射的光强分布呈现中央亮条纹最宽最亮,两侧条纹逐渐变窄变暗,且条纹间距随着角度的增大而增大。
习题三:光的偏振现象1. 什么是偏振光,它有哪些应用?答:偏振光是指光波振动方向被限制在特定平面内的光。
偏振光的应用包括偏振太阳镜减少眩光,液晶显示技术,以及光学测量和成像技术等。
2. 解释马吕斯定律。
答:马吕斯定律描述了偏振光通过偏振器时,透射光强与入射光强的关系。
根据马吕斯定律,透射光强I与入射光强I0的关系为:\[ I = I_0 \cos^2(\theta) \],其中θ是偏振器的偏振方向与光波振动方向之间的夹角。
习题四:光纤通信1. 解释全内反射原理。
答:全内反射是指当光从折射率高的介质进入折射率低的介质时,如果入射角大于临界角,光将不会穿透界面,而是完全反射回高折射率介质内部。
这是光纤通信中光信号能够长距离传输的关键原理。
2. 描述单模光纤和多模光纤的区别。
信息光学考卷及答案
信息光学考卷及答案一、选择题(每题1分,共5分)1. 下列哪种现象属于光的衍射现象?A. 光的折射B. 光的干涉C. 光的散射D. 光的衍射A. 全反射B. 折射C. 衍射D. 干涉3. 下列哪种元件在光纤通信系统中起到放大信号的作用?A. 光发射器B. 光接收器C. 光衰减器D. 光放大器4. 光学系统中的分辨率与下列哪个因素有关?A. 光波长B. 焦距C. 口径5. 在全息摄影中,下列哪个元件用于记录光强和相位信息?A. 激光器B. 全息胶片C. 光阑D. 透镜二、判断题(每题1分,共5分)1. 光的干涉现象是由于光波相遇时产生的相位差引起的。
(√)2. 光的衍射现象说明光具有波动性。
(√)3. 光纤通信系统中,光发射器和光接收器必须使用相同波长的光源。
(×)4. 全息摄影可以实现对三维物体的立体显示。
(√)5. 光学系统中的像差可以通过使用透镜组合来消除。
(×)三、填空题(每题1分,共5分)1. 光的波长越长,其在介质中的折射率越______。
(小)2. 光纤通信系统中,常用的光源是______。
(激光器)3. 光的干涉现象中,两束相干光的相位差为______时,出现亮条纹。
(整数倍波长)4. 全息摄影的基本原理是利用光的______和______。
(干涉、衍射)5. 光学系统中的像差主要包括______和______。
(球差、彗差)四、简答题(每题2分,共10分)1. 简述光的干涉现象及其应用。
2. 光的衍射现象有哪些特点?3. 光纤通信系统中,为什么需要使用光放大器?4. 全息摄影的步骤有哪些?5. 简述光学系统中的像差及其校正方法。
五、应用题(每题2分,共10分)1. 一束光通过狭缝后,在屏幕上形成衍射图样。
已知光波长为500nm,狭缝宽度为0.01mm,求第一暗条纹的位置。
2. 一光纤通信系统,光源波长为1300nm,光纤长度为10km,求信号在光纤中传播的时间。
信息光学 课后习题答案
信息光学课后习题答案信息光学课后习题答案在信息时代,光学技术的应用越来越广泛。
信息光学是一门研究光的传播、控制和处理的学科,它涉及到光的物理性质、光学仪器和光学系统的设计等方面。
在信息光学的学习过程中,习题是非常重要的一部分,通过解答习题可以巩固理论知识,提高问题解决能力。
下面是一些信息光学课后习题的答案,希望能对你的学习有所帮助。
1. 什么是光的干涉?请简要描述干涉的条件和干涉的类型。
答:光的干涉是指两束或多束光波相互叠加产生干涉现象的现象。
干涉的条件包括:光源的相干性、光波的波长、光波的振幅和相位等。
根据光波的相位关系和干涉光波的振幅分布,干涉可以分为构成干涉的光波相位差为定值的相干干涉和相位差随空间位置而变化的非相干干涉。
2. 什么是光的衍射?请简要描述衍射的条件和衍射的类型。
答:光的衍射是指光波通过物体的边缘或孔径时发生偏折和扩散的现象。
衍射的条件包括:波长与物体尺寸的比值、入射光波的方向和物体的形状等。
根据物体的形状和光波的传播方式,衍射可以分为菲涅尔衍射和菲拉格衍射。
3. 什么是光的偏振?请简要描述光的偏振现象和偏振的方法。
答:光的偏振是指光波中的电矢量在特定方向上振动的现象。
偏振可以通过特定的方法将非偏振光转化为偏振光,常用的偏振方法包括:偏振片的使用、布儒斯特角的利用和波片的调整等。
4. 什么是光的散射?请简要描述散射的条件和散射的类型。
答:光的散射是指光波与物质相互作用后改变传播方向的现象。
散射的条件包括:光波与物质的相互作用力、物质的尺寸和光波的波长等。
根据散射物体的尺寸和光波的波长,散射可以分为瑞利散射、米氏散射和光学散射等。
5. 什么是光的吸收?请简要描述吸收的条件和吸收的影响因素。
答:光的吸收是指光波在物质中被吸收转化为其他形式的能量的现象。
吸收的条件包括:光波与物质的相互作用力、物质的性质和光波的波长等。
吸收的影响因素包括:物质的吸收系数、光波的强度和入射角度等。
以上是对一些信息光学课后习题的简要解答。
信息光学习题解答
解: h( x) exp( x)step( x) exp( x) g( x) step( x) h( x) f (x) h( x)
x0 x0
f (x)
1, x 0 0, 其它
h( x)
1
h( x )
ex , x 0 0, 其它
f (x)
1
x 01
x 0
(1)、将f (x)和h (x)变为f ( )和h ( ), 并画出相应的曲线
4如图所示的等腰直角三角形孔径放在透镜的前焦平面上, 以单位 振幅的单色平面波垂直照明, 试求透镜后焦面上的夫琅和费衍射 图样的复振幅分布。
y0 y0 x0
U(x, y)
1
jf
exp(
jkf
) e xp
j
k 2f
(x2
y
2
)
45 0 45
x0 a
x0
2
U0( x0 ,
y0 ) exp
0
其它
1.5 计算下列一维卷积
(1) (2 x 3) rect( x 1)
2
(2) rect( x 1) rect( x 1)
2
2
(3) com b( x) rect( x)
解(1)
(1) (2 x 3) rect( x 1) 1 ( x 3 ) rect( x 1)
n
(1)n ( x n)
n
comb( x)exp( j x ) comb( x) (1)n ( x n) ( x n)
n
n
0 n为奇数
2 ( x 2n)
n
1.4 计算下面两个函数的一维卷积
h( x) 1 x
f (x) 1 x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息光学习题答案第一章 线性系统分析1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dxdx g =(2)()();⎰=dx x f x g (3)()();x f x g = (4)()()()[];2⎰∞∞--=αααd x h f x g(5)()()απξααd j f ⎰∞∞--2exp解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。
1.2 证明)()exp()(2x comb x j x combx comb +=⎪⎭⎫ ⎝⎛π 证明:左边=∑∑∑∞-∞=∞-∞=∞-∞=-=⎥⎦⎤⎢⎣⎡-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛n n n n x n x n x x comb )2(2)2(2122δδδ∑∑∑∑∑∑∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=∞-∞=--+-=-+-=-+-=+=n nn n n n n n x n x n x jn n x n x x j n x x j x comb x comb )()1()()()exp()()()exp()()exp()()(δδδπδδπδπ右边当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞-∞=-n n x )2(2δ所以当n 为偶数时,左右两边相等。
1.3 证明)()(sin x combx =ππδ 证明:根据复合函数形式的δ函数公式0)(,)()()]([1≠''-=∑=i ni i i x h x h x x x h δδ式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。
于是)()()(sin x com b n x x n =-=∑∞-∞=πδπππδ1.4 计算图题1.1所示的两函数的一维卷积。
解:设卷积为g(x)。
当-1≤x ≤0时,如图题1.1(a)所示, ⎰+-+=-+-=xx x d x x g 103612131)1)(1()(ααα图题1.1当0 < x ≤1时,如图题1.1(b)所示, ⎰+-=-+-=13612131)1)(1()(xx x d x x g ααα 即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<+-≤≤--+=其它,010,61213101,612131)(33x x x x x x x g 1.5 计算下列一维卷积。
(1)⎪⎭⎫⎝⎛-*-21)32(x rect x δ (2)⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛+2121x rect x rect (3))()(x rect x comb* 解:(1)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-*⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-*-25.22121232121)32(x rect x rect x x rect x δδ(2)设卷积为g(x),当x ≤0时,如图题1.2(a)所示, 2)(2+==⎰+x d x g x α当0 < x 时,如图题1.2(b)所示图题1.2x d x g x-==⎰2)(2α⎪⎩⎪⎨⎧>-<+=0,210,212)(x xx xx g 即 ⎪⎭⎫ ⎝⎛∧=22)(x x g(3)1)()(=*x rect x comb1.6 已知)exp(2x π-的傅立叶变换为)exp(2πξ-,试求(1)(){}?exp 2=-℘x (2)(){}?2/exp 22=-℘σx解:设ξππ==z x y , 即 {})exp()exp(22πξπ-=-℘y由坐标缩放性质{}⎪⎭⎫⎝⎛=℘b a F ab by ax f ηξ,1),( 得 (1)(){}{})exp()exp(/exp(exp 22222ξπππππ-=-=-℘=-℘z yx(2)(){}(){}22222/exp 2/exp πσσyx -℘=-℘)2exp(2)2exp(22222ξπσσππσσπ-=-=z1.7 计算积分.(1)()⎰∞∞-=?sin 4dx x c(2)()⎰∞∞-=?cos sin 2xdx x c π 解:应用广义巴塞伐定理可得(1)32)1()1()()()(sin )(sin 1021222=-++=ΛΛ=⎰⎰⎰⎰-∞∞-∞∞-ξξξξξξξd d d dx x c x c (2)⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛-Λ+⎪⎭⎫ ⎝⎛+Λ=⎰⎰⎰∞∞-∞∞-∞∞-ξξδξξξδξπd d xdx x c 21)(21)(21cos )(sin 221212121=⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛Λ+⎪⎭⎫ ⎝⎛-Λ=1.8 应用卷积定理求()()()x c x c x f 2sin sin =的傅里叶变换.解:{}{}{}⎪⎭⎫⎝⎛*=℘*℘=℘2)(21)2(sin )(sin )2(sin )(sin ξξrect rect x c x c x c x c 当2123-<≤-ξ时,如图题1.3(a)所示, ξξξ+==⎰+-2321)(211du G当2121<≤-ξ时,如图题1.3(b)所示, 121)(2121==⎰+-ξξξdu G当2321<≤ξ时,如图题1.3(c)所示, ξξξ-==⎰-2321)(121du G2G(ξ)的图形如图题1.3(d)所示,由图可知 ⎪⎭⎫ ⎝⎛∧-⎪⎭⎫ ⎝⎛∧=2/1412/343)(ξξξG图题1.31.9 设()()x x f β-=exp ,0>β,求 (){}()⎰∞∞-==℘??dx x f x f解:{}⎰⎰∞∞---+-=-℘0)2exp()exp()2exp()exp()exp(dx x j x dx x j x x πξβπξβββπξβββπξββξ2)2(2)exp()2(202222=+=-+==∞∞-⎰dx x1.10 设线性平移不变系统的原点响应为()()()x step x x h -=exp ,试计算系统对阶跃函数()x step 的响应.解:由阶跃函数定义⎩⎨⎧<>=0,00,1)(x x x step 得 线性平移不变系统的原点响应为()()()()0,exp exp >-=-=x x x step x x h所以系统对解阶跃函数()x step 的响应为 ⎰∞>--=--=*=00),exp(1)](exp[)()()(x x d x x h x step x g αα1.11 有两个线性平移不变系统,它们的原点脉冲响应分别为()()x c x h sin 1=和()()x c x h 3sin 2=.试计算各自对输入函数()x x f π2cos =的响应()x g 1和()x g 2.解:1.12 已知一平面波的复振幅表达式为)]432(exp[),,(z y x j A z y x U +-= 试计算其波长λ以及沿z y x ,,方向的空间频率。
解:设平面波的复振幅的表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙=由题可知,4cos ,3cos ,2cos =-==γβαk k k又因为1cos cos cos 222=++γβα 所以29=k波长为 2922ππλ==k 沿z y x ,,方向的空间频率为 πλγζπλβηπλαξ2cos ,23cos ,1cos ==-====1.13 单色平面波的复振幅表达式为 ()⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛++=z y x j A z y x U 143142141exp ,, 求此波在传播方向的空间频率以及在z y x ,,方向的空间频率. 解:设单色平面波的复振幅的表达式可以表示成以下形式)]cos cos cos (exp[)exp(),,(γβαz y x jk a j a z y x U ++=∙= 由题可知,143cos ,142cos ,141cos ===γβαk k k又因为1cos cos cos 222=++γβα 所以1=k 波长为 ππλ22==k沿z y x ,,方向的空间频率为 1423cos ,141cos ,1421cos πλγζπλβηπλαξ======第三章 光学成像系统的传递函数3.1 参看图3.1.1,在推导相干成像系统点扩散函数(3.1.5)式时,对于积分号前的相位因子()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+≈⎥⎦⎤⎢⎣⎡+2220202002exp 2exp M y x d k j y x d k j i i 试问:(1)物平面上半径多大时,相位因子 ()⎥⎦⎤⎢⎣⎡+202002exp y x d k j相对于它在原点之值正好改变π弧度?(2)设光瞳函数是一个半径为a 的圆,那么在物平面上相应h 的第一个零点的半径是多少?(3)由这些结果,设观察是在透镜光轴附近进行,那么a , λ和d o 之间存在什么关系时可以弃去相位因子()⎥⎦⎤⎢⎣⎡+202002exp y x d k j 解:(1)由于原点的相位为零,于是与原点相位差为π的条件是o o oo o o o d r d kr y x d k λπ===+,2)(2222(2)根据⎰⎰⎰⎰∞∞-∞∞-⎭⎬⎫⎩⎨⎧-+--=⎭⎬⎫⎩⎨⎧-+--=dxdy y y y x x x d j y x P d d dxdy y My y x Mx x d j y x P d d y x y x h o i o i i i o o i o i i io i i o o ])~()~[(2exp ),(1])()[(2exp ),(1),;,(22λπλλπλ相干成像系统的点扩散函数是透镜光瞳函数的夫琅禾费衍射图样,其中心位于理想像点)~,~(o o y xρρπλλλπλ)2(1~1])~()~[(2exp ),(1),;,(122222a aJ d d a r circ B d d dxdy y y x x d j y x P d d y x y x h io i o o i o i i io i i o o =⎭⎬⎫⎩⎨⎧⎪⎭⎫ ⎝⎛=⎭⎬⎫⎩⎨⎧-+--=⎰⎰∞∞-式中22y x r +=,而2222~~⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+=i o i i o i dy y dx x λληξρ (1) 在点扩散函数的第一个零点处0)2(1=o a J ρπ,此时应有83.32=o a ρπ,即 ao 61.0=ρ (2) 将(2)式代入(1)式,并注意观察点在原点)0(==i i y x ,于是得 ad r oo λ61.0=(3) (3)根据线性系统理论,像面上原点处得场分布,必须是物面上所有点在像面上的点扩散函数对于原点的贡献)0,0;,(o o y x h 。