MATLAB 函数解优化问题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MATLAB 函数在优化问题中的应用

§1 线性规划模型

一、线性规划课题:

实例1:生产计划问题

假设某厂计划生产甲、乙两种产品,现库存主要材料有A类3600公斤,B类2000公斤,C类3000公斤。每件甲产品需用材料A类9公斤,B类4公斤,C类3公斤。每件乙产品,需用材料A类4公斤,B类5公斤,C类10公斤。甲单位产品的利润70元,乙单位产品的利润120元。问如何安排生产,才能使该厂所获的利润最大。

建立数学模型:

设x1、x2分别为生产甲、乙产品的件数。f为该厂所获总润。

max f=70x1+120x2

s.t 9x1+4x2≤3600

4x1+5x2≤2000

3x1+10x2≤3000

x1,x2≥0

实例2:投资问题

某公司有一批资金用于4个工程项目的投资,其投资各项目时所得的净收益(投入资金锪百分比)如下表:

工程项目收益表

由于某种原因,决定用于项目A的投资不大于其他各项投资之和而用于项目B和C的投资要大于项目D的投资。试确定全文该公司收益最大的投资分配方案。

建立数学模型:

设x 1、 x 2 、x 3 、x 4分别代表用于项目A 、B 、C 、D 的投资百分数。 max f=0.15x 1+0.1x 2+0.08 x 3+0.12 x 4 s.t x 1-x 2- x 3- x 4≤0 x 2+ x

3- x 4≥0 x 1+x 2+x 3+ x 4=1 x j ≥0 j=1,2,3,4 实例3:运输问题

有A 、B 、C 三个食品加工厂,负责供给甲、乙、丙、丁四个市场。三个厂每天生产食品箱数上限如下表:

四个市场每天的需求量如下表:

从各厂运到各市场的运输费(元/每箱)由下表给出:

求在基本满足供需平衡的约束条件下使总运输费用最小。

建立数学模型:

设a i j为由工厂i运到市场j的费用,x i j 是由工厂i运到市场j的箱数。b i是工厂i的产量,d j是市场j的需求量。

b= ( 60 40 50 ) d= ( 20 35 33 34 )

s.t

x i j≥0

当我们用MATLAB软件作优化问题时,所有求maxf 的问题化为求min(-f )来作。约束g i (x)≥0,化为–g i≤0来作。

上述实例去掉实际背景,归结出规划问题:目标函数和约束条件都是变量x的线性函数。

形如:(1) min f T X

s.t A X≤b

Aeq X =beq

lb≤X≤ub

其中X为n维未知向量,f T=[f1,f2,…f n]为目标函数系数向量,小于等于约束系数矩阵A为m×n矩阵,b为其右端m维列向量,Aeq为等式约束系数矩阵,beq为等式约束右端常数列向量。lb,ub为自变量取值上界与下界约束的n维常数向量。

二.线性规划问题求最优解函数:

调用格式:x=linprog(f,A,b)

x=linprog(f,A,b,Aeq,beq)

x=linprog(f,A,b,Aeq,beq,lb,ub)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0)

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options)

[x,fval]=linprog(…)

[x, fval, exitflag]=linprog(…)

[x, fval, exitflag, output]=linprog(…)

[x, fval, exitflag, output, lambda]=linprog(…)

说明:x=linprog(f,A,b)返回值x为最优解向量。

x=linprog(f,A,b,Aeq,beq) 作有等式约束的问题。若没有不等式约束,则令A=[ ]、b=[ ] 。

x=linprog(f,A,b,Aeq,beq,lb,ub,x0,options) 中lb ,ub为变量x的下界和上界,x0为初值点,options为指定优化参数进行最小化。

Options的参数描述:

Display 显示水平。选择’off’ 不显示输出;选择’iter’显示每一步迭代过程的输出;选择’final’ 显示最终结果。

MaxFunEvals 函数评价的最大允许次数

Maxiter 最大允许迭代次数

TolX x处的终止容限

[x,fval]=linprog(…) 左端fval 返回解x处的目标函数值。

[x,fval,exitflag,output,lambda]=linprog(f,A,b, Aeq,beq,lb,ub,x0) 的输出部分:

exitflag描述函数计算的退出条件:若为正值,表示目标函数收敛于解x处;若为负值,表示目标函数不收敛;若为零值,表示已经达到函数评价或迭代的最大次数。

output 返回优化信息:output.iterations表示迭代次数;output.algorithm表示所采用的算法;outprt.funcCount表示函数评价次数。

lambda返回x处的拉格朗日乘子。它有以下属性:

lambda.lower-lambda的下界;

lambda.upper-lambda的上界;

lambda.ineqlin-lambda的线性不等式;

lambda.eqlin-lambda的线性等式。

三.举例

例1:求解线性规划问题:

max f=2x1+5x2

s.t

先将目标函数转化成最小值问题:min(-f)=- 2x1-5x2

程序:

f=[-2 -5];

A=[1 0;0 1;1 2];

b=[4;3;8];

[x,fval]=linprog(f,A,b)

f=fval*(-1)

结果:x = 2

3

相关文档
最新文档