平方和与立方和公式推导

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6

利用立方差公式

n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

=n^2+(n-1)^2+n^2-n

=2*n^2+(n-1)^2-n 2^3-1^3

=2*2^2+1^2-2

3^3-2^3=2*3^2+2^2-3

4^3-3^3=2*4^2+3^2-4

......

n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加

n^3-1^3

=2*(2^2+3^2+...+n^2)+[1^2+2^2+...

+(n-1)^2]-(2+3+4+...+n) n^3-1

=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...

+(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1

=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2

=(n/2)(2n^2+2n+n+1)

=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2

(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]

=(2n^2+2n+1)(2n+1)

=4n^3+6n^2+4n+1

2^4-1^4=4*1^3+6*1^2+4*1+1

3^4-2^4=4*2^3+6*2^2+4*2+1

4^4-3^4=4*3^3+6*3^2+4*3+1

......

(n+1)^4-n^4=4*n^3+6*n^2+4*n+1

各式相加有

n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n

=[n(n+1)]^2

1^3+2^3+...+n^3=[n(n+1)/2]^2 1^2+2^2+3^2+……+n^2=n(n+1)(2n+1)/6

利用立方差公式

n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]

=n^2+(n-1)^2+n^2-n

=2*n^2+(n-1)^2-n 2^3-1^3

=2*2^2+1^2-2

3^3-2^3=2*3^2+2^2-3

4^3-3^3=2*4^2+3^2-4

......

n^3-(n-1)^3=2*n^2+(n-1)^2-n

各等式全相加

n^3-1^3

=2*(2^2+3^2+...+n^2)+[1^2+2^2+...

+(n-1)^2]-(2+3+4+...+n) n^3-1

=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...

+(n-1)^2+n^2]-n^2-(2+3+4+...+n) n^3-1

=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1

n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2

3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2

=(n/2)(2n^2+2n+n+1)

=(n/2)(n+1)(2n+1)

1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

1^3+2^3+3^3+……+n^3=[n(n+1)/2]^2

(n+1)^4-n^4=[(n+1)^2+n^2][(n+1)^2-n^2]

=(2n^2+2n+1)(2n+1)

=4n^3+6n^2+4n+1

2^4-1^4=4*1^3+6*1^2+4*1+1

3^4-2^4=4*2^3+6*2^2+4*2+1

4^4-3^4=4*3^3+6*3^2+4*3+1

......

(n+1)^4-n^4=4*n^3+6*n^2+4*n+1

各式相加有

n+1)^4-1=4*(1^3+2^3+3^3...+n^3)+6*(1^2+2^2+ ...+n^2)+4*(1+2+3+...+n)+n 4*(1^3+2^3+3^3+...+n^3) =(n+1)^4-1+6*[n(n+1)(2n+1)/6]+4*[(1+n)n/2]+n

=[n(n+1)]^2

1^3+2^3+...+n^3=[n(n+1)/2]^2

相关文档
最新文档