中考数学作图画图题
中考数学作图题60例
中考数学作图题60例一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是三角形.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.10.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:线段c,直线l及l外一点A.求作:Rt△ABC,使直角边为AC(AC⊥l,垂足为C),斜边AB=c.11.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(2,﹣4),B(3,﹣2),C(6,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以M点为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.12.在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.13.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣1,1),B(﹣3,1),C(﹣1,4).(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC绕着点B顺时针旋转90°后得到△A2BC2,请在图中画出△A2BC2,并求出线段BC旋转过程中所扫过的面积(结果保留π).14.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)15.⊙O为△ABC的外接圆,请仅用无刻度的直尺,根据下列条件分别在图1,图2中画出一条弦,使这条弦将△ABC分成面积相等的两部分(保留作图痕迹,不写作法).(1)如图1,AC=BC;(2)如图2,直线l与⊙O相切于点P,且l∥BC.16.如图,在方格网中已知格点△ABC和点O.(1)画△A′B′C′和△ABC关于点O成中心对称;(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.17.下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长;(2)如图甲,把六边形ABCDEF沿EH,BG剪成①②③三部分,请在图甲中画出将②③与①拼成的正方形,然后标出②③变动后的位置,并指出②③属于旋转、平移和轴对称中的哪一种变换;(3)在图乙中画出一种与图甲不同位置的两条裁剪线,并在图乙中画出将此六边形剪拼成的正方形.18.如图,已知△ABC,∠C=Rt∠,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹);(2)连结AD,若∠B=37°,求∠CAD的度数.19.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(记过保留根号和π).21.如图,已知在△ABC中,∠A=90°(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切(保留作图痕迹,不写作法和证明).(2)若∠B=60°,AB=3,求⊙P的面积.22.如图,在△ABC中,AB=AC,∠DAC是△ABC的一个外角.实验与操作:根据要求进行尺规作图,并在图中标明相应字母(保留作图痕迹,不写作法)(1)作∠DAC的平分线AM;(2)作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AE,CF.猜想并证明:判断四边形AECF的形状并加以证明.23.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C (1,2).(1)在平面直角坐标系中画出△ABC关于x轴对称的△A1B1C1;(2)把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.①旋转角为多少度?②写出点B2的坐标.24.如图,在△ABC中,∠ACB=90°,AC=BC=AD.(1)作∠A的平分线交CD于E;(2)过B作CD的垂线,垂足为F;(3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.25.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=90°;(2)在图2中以格点为顶点画一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角形和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).26.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.27.如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法)(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.28.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.29.如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)30.如图,已知锐角△ABC.(1)过点A作BC边的垂线MN,交BC于点D(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若BC=5,AD=4,tan∠BAD=,求DC的长.31.如图,在平面直角坐标系中,△ABC的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.32.如图,已知BD平分∠ABF,且交AE于点D,(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,连接CD,当AC⊥BD时,求证:四边形ABCD 是菱形.33.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点三角形ABC(项点是网格线的交点).(1)先将△ABC竖直向上平移6个单位,再水平向右平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)将△A1B1C1绕B1点顺时针旋转90°,得△A2B1C2,请画出△A2B1C2;(3)线段B1C1变换到B1C2的过程中扫过区域的面积为.34.如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.35.阅读下面材料:在数学课上,老师提出如下问题:小芸的作法如下:老师说:“小芸的作法正确.”请回答:小芸的作图依据是.36.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80°B.90°C.100°D.105°37.已知在Rt△ABC中,∠ACB=90°,现按如下步骤作图:①分别以A,C为圆心,a为半径(a>AC)作弧,两弧分别交于M,N两点;②过M,N两点作直线MN交AB于点D,交AC于点E;③将△ADE绕点E顺时针旋转180°,设点D的像为点F.(1)请在图中直线标出点F并连接CF;(2)求证:四边形BCFD是平行四边形;(3)当∠B为多少度时,四边形BCFD是菱形.38.在每个小正方形的边长为1的网格中.点A,B,D均在格点上,点E、F分别为线段BC、DB上的动点,且BE=DF.(Ⅰ)如图①,当BE=时,计算AE+AF的值等于(Ⅱ)当AE+AF取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段AE,AF,并简要说明点E和点F的位置如何找到的(不要求证明).39.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆.延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFGH与矩形ABCD等积.理由:连接AH,EH.∵AE为直径,∴∠AHE=90°,∴∠HAE+∠HEA=90°.∵DH⊥AE,∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED,∴△ADH∽.∴,即DH2=AD×DE.又∵DE=DC∴DH2=,即正方形DFGH与矩形ABCD等积.(2)操作实践平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.如图②,请用尺规作图作出与▱ABCD等积的矩形(不要求写具体作法,保留作图痕迹).(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形名称),再转化为等积的正方形.如图③,△ABC的顶点在正方形网格的格点上,请作出与△ABC等积的正方形的一条边(不要求写具体作法,保留作图痕迹,不通过计算△ABC面积作图).(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为等积的n﹣1边形,…,直至转化为等积的三角形,从而可以化方.如图④,四边形ABCD的顶点在正方形网格的格点上,请作出与四边形ABCD等积的三角形(不要求写具体作法,保留作图痕迹,不通过计算四边形ABCD面积作图).40.定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD 是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD 的长.41.如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长.42.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.43.数学活动课上,四位同学围绕作图问题:“如图,已知直线l和l外一点P,用直尺和圆规作直线PQ,使PQ⊥l于点Q.”分别作出了下列四个图形.其中作法错误的是()A.B.C.D.44.在平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△AEF,点O、B的对应点分别是点E、F.(1)若点B的坐标是(﹣4,0),请在图中画出△AEF,并写出点E、F的坐标.(2)当点F落在x轴的上方时,试写出一个符合条件的点B的坐标.45.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(2,﹣4),B(4,﹣4),C(1,﹣1).(1)画出△ABC关于y轴对称的△A1B1C1,直接写出点A1的坐标;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).46.如图,已知△ABC三个顶点坐标分别是A(1,3),B(4,1),C(4,4).(1)请按要求画图:①画出△ABC向左平移5个单位长度后得到的△A1B1C1;②画出△ABC绕着原点O顺时针旋转90°后得到的△A2B2C2.(2)请写出直线B1C1与直线B2C2的交点坐标.47.如图,△ABC在平面直角坐标系内,顶点的坐标分别为A(﹣1,5),B(﹣4,1),C (﹣1,1)将△ABC绕点A逆时针旋转90°,得到△AB′C′,点B,C的对应点分别为点B′,C′,(1)画出△AB′C′;(2)写出点B′,C′的坐标;(3)求出在△ABC旋转的过程中,点C经过的路径长.48.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点B旋转到点B2所经过的路径长.49.数学课上,老师让学生尺规作图画Rt△ABC,使其斜边AB=c,一条直角边BC=a.小明的作法如图所示,你认为这种作法中判断∠ACB是直角的依据是()A.勾股定理B.直径所对的圆周角是直角C.勾股定理的逆定理D.90°的圆周角所对的弦是直径50.如图,已知△ABC,请用尺规过点A作一条直线,使其将△ABC分成面积相等的两部分.(保留作图痕迹,不写作法)51.如图,将线段AB放在边长为1的小正方形网格,点A点B均落在格点上,请用无刻度直尺在线段AB上画出点P,使AP=,并保留作图痕迹.(备注:本题只是找点不是证明,∴只需连接一对角线就行)52.图①,图②,图③都是4×4的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1.在图①,图②中已画出线段AB,在图③中已画出点A.按下列要求画图:(1)在图①中,以格点为顶点,AB为一边画一个等腰三角形;(2)在图②中,以格点为顶点,AB为一边画一个正方形;(3)在图③中,以点A为一个顶点,另外三个顶点也在格点上,画一个面积最大的正方形.53.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).54.手工课上,老师要求同学们将边长为4cm的正方形纸片恰好剪成六个等腰直角三角形,聪明的你请在下列四个正方形中画出不同的剪裁线,并直接写出每种不同分割后得到的最小等腰直角三角形面积(注:不同的分法,面积可以相等)55.如图是甲、乙两张不同的矩形纸片,将它们分别沿着虚线剪开后,各自要拼一个与原来面积相等的正方形,则()A.甲、乙都可以B.甲、乙都不可以C.甲不可以、乙可以D.甲可以、乙不可以56.将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;②可以拼成对角互补的四边形;③可以拼成五边形;④可以拼成六边形.其中所有正确结论的序号是.57.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()A.B.C.D.58.一张菱形纸片按如图1、图2依次对折后,再按如图3打出一个圆形小孔,则展开铺平后的图案是()A.B.C.D.59.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有()A.2种B.3种C.4种D.5种60.如图,在边上为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.2015年全国中考数学作图题60例参考答案与试题解析一、解答题(共60小题)1.如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.考点:作图—复杂作图;平行四边形的性质.专题:作图题.分析:(1)根据角平分线上的点到角的两边距离相等知作出∠A的平分线即可;(2)根据平行四边形的性质可知AB=CD=5,AD∥BC,再根据角平分线的性质和平行线的性质得到∠BAE=∠BEA,再根据等腰三角形的性质和线段的和差关系即可求解.解答:解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.点评:考查了作图﹣复杂作图,关键是作一个角的角平分线,同时考查了平行四边形的性质,角平分线的性质,平行线的性质和等腰三角形的性质的知识点.2.图①是我们常见的地砖上的图案,其中包含了一种特殊的平面图形﹣正八边形.(1)如图②,AE是⊙O的直径,用直尺和圆规作⊙O的内接正八边形ABCDEFGH(不写作法,保留作图痕迹);(2)在(1)的前提下,连接OD,已知OA=5,若扇形OAD(∠AOD<180°)是一个圆锥的侧面,则这个圆锥底面圆的半径等于.考点:正多边形和圆;圆锥的计算;作图—复杂作图.专题:作图题.分析:(1)作AE的垂直平分线交⊙O于C,G,作∠AOG,∠EOG的角平分线,分别交⊙O于H,F,反向延长FO,HO,分别交⊙O于D,B顺次连接A,B,C,D,E,F,G,H,八边形ABCDEFGH即为所求;(2)由八边形ABCDEFGH是正八边形,求得∠AOD=3=135°得到的长=,设这个圆锥底面圆的半径为R,根据圆的周长的公式即可求得结论.解答:(1)如图所示,八边形ABCDEFGH即为所求,(2)∵八边形ABCDEFGH是正八边形,∴∠AOD=3=135°,∵OA=5,∴的长=,设这个圆锥底面圆的半径为R,∴2πR=,∴R=,即这个圆锥底面圆的半径为.故答案为:.点评:本题考查了尺规作图,圆内接八边形的性质,弧长的计算,圆的周长公式的应用,会求八边形的内角的度数是解题的关键.3.如图,在10×10的正方形网格中,点A,B,C,D均在格点上,以点A为位似中心画四边形AB′C′D′,使它与四边形ABCD位似,且相似比为2.(1)在图中画出四边形AB′C′D′;(2)填空:△AC′D′是等腰直角三角形.考点:作图-位似变换.专题:作图题.分析:(1)延长AB到B′,使AB′=2AB,得到B的对应点B′,同样得到C、D的对应点C′,D′,再顺次连接即可;(2)利用勾股定理求出AC′2=42+82=80,AD′2=62+22=40,C′D′2=62+22=40,那么AD′=C′D′,AD′2+C′D′2=AC′2,即可判定△AC′D′是等腰直角三角形.解答:解:(1)如图所示:(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.点评:本题考查了作图﹣位似变换.画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.同时考查了勾股定理及其逆定理等知识.熟练掌握网格结构以及位似变换的定义是解题的关键.4.如图,在边长均为1的正方形网格纸上有一个△ABC,顶点A、B、C及点O均在格点上,请按要求完成以下操作或运算:(1)将△ABC向上平移4个单位,得到△A1B1C1(不写作法,但要标出字母);(2)将△ABC绕点O旋转180°,得到△A2B2C2(不写作法,但要标出字母);(3)求点A绕着点O旋转到点A2所经过的路径长.考点:作图-旋转变换;弧长的计算;作图-平移变换.专题:作图题.分析:(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出△ABC绕点O旋转180°后得到的△A2B2C2;(3)根据弧长的计算公式列式即可求解.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示:(3)∵OA=4,∠AOA2=180°,∴点A绕着点O旋转到点A2所经过的路径长为=4π.点评:本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.也考查了弧长的计算.5.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0);(3)△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.专题:作图题.分析:(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:(1)如图所示:C1(2,﹣2);故答案为:(2,﹣2);(2)如图所示:C2(1,0);故答案为:(1,0);(3)∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.点评:此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.6.如图,一条公路的转弯处是一段圆弧().(1)用直尺和圆规作出所在圆的圆心O;(要求保留作图痕迹,不写作法)(2)若的中点C到弦AB的距离为20m,AB=80m,求所在圆的半径.考点:作图—复杂作图;勾股定理;垂径定理的应用.专题:作图题.分析:(1)连结AC、BC,分别作AC和BC的垂直平分线,两垂直平分线的交点为点O,如图1;(2)连接OA,OC,OC交AB于D,如图2,根据垂径定理的推论,由C为的中点得到OC⊥AB,AD=BD=AB=40,则CD=20,设⊙O的半径为r,在Rt△OAD中利用勾股定理得到r2=(r﹣20)2+402,然后解方程即可.解答:解:(1)如图1,点O为所求;(2)连接OA,OC,OC交AB于D,如图2,∵C为的中点,∴OC⊥AB,∴AD=BD=AB=40,设⊙O的半径为r,则OA=r,OD=OD﹣CD=r﹣20,在Rt△OAD中,∵OA2=OD2+BD2,∴r2=(r﹣20)2+402,解得r=50,即所在圆的半径是50m.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了勾股定理和垂径定理.7.各顶点都在方格纸格点(横竖格子线的交错点)上的多边形称为格点多边形.如何计算它的面积?奥地利数学家皮克(G•Pick,1859~1942年)证明了格点多边形的面积公式S=a+b﹣1,其中a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积.如图,a=4,b=6,S=4+×6﹣1=6(1)请在图中画一个格点正方形,使它的内部只含有4个格点,并写出它的面积.(2)请在图乙中画一个格点三角形,使它的面积为,且每条边上除顶点外无其它格点.(注:图甲、图乙在答题纸上)考点:作图—应用与设计作图.专题:作图题.分析:(1)根据皮克公式画图计算即可;(2)根据题意可知a=3,b=3,画出满足题意的图形即可.解答:解:(1)如图所示,a=4,b=4,S=4+×4﹣1=5;(2)因为S=,b=3,所以a=3,如图所示,点评:本题考查了应用与设计作图,关键是理解皮克公式,根据题意求出a、b的值.8.如图,△ABC是直角三角形,∠ACB=90°.(1)尺规作图:作⊙C,使它与AB相切于点D,与AC相交于点E,保留作图痕迹,不写作法,请标明字母.(2)在你按(1)中要求所作的图中,若BC=3,∠A=30°,求的长.考点:作图—复杂作图;切线的性质;弧长的计算.专题:作图题.分析:(1)过点C作AB的垂线,垂足为点D,然后以C点为圆心,CD为半径作圆即可;(2)先根据切线的性质得∠ADC=90°,则利用互余可计算出∠DCE=90°﹣∠A=60°,∠BCD=90°﹣∠ACD=30°,再在Rt△BCD中利用∠BCD的余弦可计算出CD=,然后根据弧长公式求解.解答:解:(1)如图,⊙C为所求;(2)∵⊙C切AB于D,∴CD⊥AB,∴∠ADC=90°,∴∠DCE=90°﹣∠A=90°﹣30°=60°,∴∠BCD=90°﹣∠ACD=30°,在Rt△BCD中,∵cos∠BCD=,∴CD=3cos30°=,∴的长==π.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法;解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的性质和弧长公式.9.如图,在△ABC中,∠C=60°,∠A=40°.(1)用尺规作图作AB的垂直平分线,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);(2)求证:BD平分∠CBA.。
2023年九年级数学中考专题:尺规作图类训练题(含简单答案)
2023年九年级数学中考专题:尺规作图类训练题一、单选题1.如图,Rt ABC △中,由90ACB ∠=︒,30B ∠=︒,要求用圆规和直尺作图,分成两个三角形,其中至少有一个三角形是等腰三角形.其作法错误的是( )A .B .C .D .2.如图,在ABC 中,已知45B ∠=︒,30C ∠=︒,分别以点A 、C 为圆心,大于12AC长为半径画弧,两弧在AC 两侧分别交于P 、Q 两点,作直线PQ 交BC 于点D ,交AC 于点E .若3DE =,则AB 的长为( )A .B .5C .6D .3.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N ,作直线MN ,交AC 于点D ,交BC 于点E ,连接BD ,则ABD △的周长为( )A .AB BC + B .BC AC + C .+AB ACD .AB AC BC ++4.请仔细观察用直尺和圆规作一个角等于已知角的示意图如图所示,请你根据所学的三角形全等有关的知识,说明画出D O C DOC '''∠=∠的依据是( )A .SASB .AASC .SSSD .SSA5.如图,已知AOB ∠,以点O 为圆心,以任意长为半径画弧①,分别交OA ,OB 于点 E ,F , 再以点 E 为圆心,以EF 长为半径画弧,交弧①于点 D ,画射线OD .若28AOB ∠︒=,则BOD ∠的补角的度数为( )A .124︒B .39︒C .56︒D .144︒6.王师傅用角尺平分一个角,如图①,学生小顾用三角尺平分一个角,如图①,他们都在AOB ∠两边上分别取OM ON =,前者使角尺两边相同刻度分别与M ,N 重合,角尺顶点为P ;后者分别过M ,N 作OA ,OB 的垂线,交点为P ,则射线OP 平分AOB ∠,均可由OMP ONP ≌△△得知,其依据分别是( )A .SSS ;SASB .SAS ;SSSC .SSS ;HLD .SAS ;HL7.如图,在Rt ABC △中,90B ,分别以A 、C 为圆心,大于AC 长的一半为半径画弧,两弧相交于点M 、N ,连接MN ,与AC 、BC 分别相交于点D 、E ,连接AE ,当3AB =,5AC =时,ABE 周长为( )A .7B .8C .9D .108.如图,已知AOB ∠.按照以下步骤作图:①以点O 为圆心,以适当的长为半径作弧,分别交AOB ∠的两边于C ,D 两点,连接CD .①分别以点C ,D 为圆心,以大于线段OC 的长为半径作弧,两弧在AOB ∠内交于点E ,连接CE ,DE .①连接OE 交CD 于点M .下列结论中不正确的是( )A .CEO DEO ∠=∠B .CM MD =C .OCD ECD ∠=∠D .12OCED S CD OE =⋅四边形二、填空题9.如图,在ABC 中,AC BC =,以点A 为圆心,AB 长为半径作弧交BC 于点D ,交AC 于点E ,再分别以点C ,D 为圆心,大于CD 的长为半径作弧,两弧相交于F ,G两点,作直线FG .若直线FG 经过点E ,则C ∠的度数为______︒,AEG ∠的度数为______︒.10.如图,Rt ABC △中,90C ∠=︒,13AB =,5BC =,利用尺规在AC ,AB 上分别截取AD ,AE ,使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP的最小值为______.11.如图,在ABC 中,90C ∠=︒.按以下步骤作图:①以点A 为圆心,适当长为半径作圆弧,分别交边AB 、AC 于点M 、N ;①分别以点M 和点N 为圆心、大于MN 一半的长为半径作圆弧,在BAC ∠内,两弧交于点P ;①作射线AP 交边BC 于点D .若DAC ABC ∽△△,则B ∠的大小为______度.12.如图,在Rt ABC △中,90C ∠=︒,以顶点B 为圆心,BC 长为半径画弧,交AB 于点D ,再分别以点C ,D 为圆心,大于12CD 长为半径画弧,两弧交于点E ,作射线BE交AC 于点F .若12BC =,15AB =,若BCF △的面积为24,则ABC 的面积为__________.13.如图,在四边形ABCD 中,30A ∠=︒,AB AD =,取大于12AB 的长为半径,分别以点A ,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E (作图痕迹如图所示),连接BE ,BD .则EBD ∠的度数为______.14.如图,在t R ABC 中,90C ∠=︒,以点B 为圆心,以任意长为半径作弧,分别交,AB BC于点M ,N ;①分别以M ,N 为圆心12MN 的长为半径作弧,两弧在ABC ∠内交于点P ,交AC 于点D .若16,8ABDSAB ==,则线段CD 的长为 ___________.15.如图,在ABCD 中,以A 为圆心,AB 长为半径画弧交AD 于F ,分别以F 、B 为圆心,大于12BF 长为半径画弧,两弧交于点G ,作射线AG 交BC 于点E ,6BF =,5AB =,则AE 的长为 ___________.16.如图,四边形ABCD 是平行四边形,以点B 为圆心,BC 的长为半径作弧交AD 于点E ,分别以点C ,E 为圆心、大于12CE 的长为半径作弧,两弧交于点P ,作射线BP交AD 的延长线于点F ,60CBE ∠=︒,6BC =,则BF =___________.三、解答题17.如图,在ABC 中,50A ∠=︒,30C ∠=,请用尺规作图法,在AC 上求作一点D ,使得BDC ABC ∽.(保留作图痕迹,不写作法)18.(1)操作实践:ABC 中,90A ∠=︒,22.5B ∠=︒,请画出一条直线把ABC 分割成两个等腰三角形,并标出分割成两个等腰三角形底角的度数;(要求画出一种分割方法即可)(2)分类探究:ABC 中,最小内角24B ∠=︒,若ABC 被一直线分割成两个等腰三角形,请画出相应示意图并写出ABC 最大内角的所有可能值;(3)猜想发现:若一个三角形能被一直线分割成两个等腰三角形,需满足什么条件?(请你至少写出两个条件,无需证明)19.如图,在ABC 中,点P ,Q 分别在边BC 及CB 的延长线上,且BQ CP =.(1)实践与探索:利用尺规按下列要求作图(不写作法,保留作图痕迹). ①作PQM CBA ∠=∠,且点M 在QC 的上方; ①在QM 上截取QR BA =; ①连接PR .(2)猜想与验证:试猜想线段AC 和RP 的数量关系,并证明你的猜想.20.如图,点D 是等边ABC 内部一点,且DB DC =,请仅用无刻度的直尺......,分别按下列要求画图.(1)在图①中BC 上找一点E ,使12BE BC =; (2)若2BDC A ∠=∠,在图①中AB AC 、边上分别找点M 、N ,使12MN BC =.参考答案:1.B2.A3.C4.C5.A6.C7.A8.C9.3612610.12 511.30 12.54 13.45︒14.4 15.816.18.(2)ABC的最大内角可能值是117︒或108︒或90︒或84︒;19.(2)RP AC=,答案第1页,共1页。
2024年中考数学复习--圆的尺规作图问题专项练习
圆的尺规作图问题专项练习核心知识点1 作三角形的外接圆和内切圆知识赋能1.熟悉五种基本的尺规作图方法,并能灵活应用.2.把复杂的尺规作图问题转化为几个基本的尺规作图问题来解决.例1 (1)作△ABC的外接圆(要求:尺规作图,保留作图痕迹,不写作法);(2)若△ABC是直角三角形,则其外接圆的圆心在 .例2 作三角形△ABC的内切圆.核心知识点2 圆的等分知识赋能1.掌握圆的等分问题等价的背后原理,再用尺规作图实现.2.掌握由简单到复杂、由特殊到一般的思考问题方法.例3 如图,请用尺规作图确定圆的圆心P,保留作图痕迹,不要求写作法.例4 作二等分弧(用尺规作图,保留作图痕迹).例5 用尺规将圆六等分以及八等分.六等分:八等分:核心知识点 3 尺规作图应用知识赋能1.把握需要解决的问题的本质特征,利用尺规作图辅助解决过程中的某些问题.2. 网格问题中,关注网格特点,设未知数,利用勾股定理列方程解决问题.例6 如图,M为⊙O内一点,请你利用直尺和圆规作一条弦AB,使得M为AB的中点(不写作法,保留作图痕迹).例7 (1)操作实践:如图,用无刻度直尺与圆规在矩形ABCD 的内部作出一点 P,使得∠BPC=∠BEC,且PB=PC(不写作法,保留作图痕迹);(2)迁移应用:已知在△ABC中, ∠A>∠B,∠C=60°,AB=4,,求BC 的取值范围.例8 如图,在每个小正方形的边长均为1的网格中,△ABC的顶点A, B, C均落在格点上.(1)△ABC的面积为 ;(2)请在如图1所示的网格中,用无刻度的直尺在AC上找出一点 M,使以M为圆心, MC 为半径的⊙M 与AB 相切, 并求出⊙M 的半径r=;(3)已知在四边形ABCD中, ∠D=∠C=45°,, P是CD边上一点, 且△ADP∪△PCB,在图2中用直尺和圆规作出所有满足条件的点P(保留作图痕迹,不写作法).中考满分学力训练1. 已知A,B是直线l上的两点. 作△ABC,,使得点C在直线l上方,且∠ACB=150°.使用直尺和圆规,依作法补全图形(保留作图痕迹).2. 在Rt△ABC中, ∠C=90°. 点 E 在 BC边上, 且△ACE的周长为AC+BC,以线段AE上一点O 为圆心的⊙O恰与AB,BC边都相切.请用无刻度的直尺和圆规确定点E, O的位置.3. 如图1, 在Rt△GMN中, ∠M=90°, P为MN的中点.(1)将线段MP绕着点M逆时针旋转60°得到线段MQ,点 P的对应点为Q,若点 Q刚好落在GN上,①在图1中画出示意图;②试问:以线段MQ 为直径的圆是否与GN 相切?请说明理由.(2)如图2, 用直尺和圆规在GN边上求作点 Q, 使得∠GQM=∠PQN.4. 如图, 点E为正方形 ABCD 边BC上一点, ⊙O 是△ABE 的外接圆, 与 AD 交于点 F.(1)尺规作图,在CD上求作点G,使△ABE∼△FDG(保留作图痕迹).(2)在(1)的条件下, ①证明: 直线 FG与⊙O 相切; ②若AB=4,DG=1,,求半径OA 的长.5. (1)如图1, AB是⊙O的直径, C, D是⊙O上两点, 且BC=BD,AD=CD.求证:∠ADC=2∠BDC.(2)如图2, AB是⊙O的直径, 点C在⊙O 上. 若平面内的点 D满足. AD=CD,且∠ADC=2∠BDC:①利用直尺和圆规在图2中作出所有满足条件的点 D(保留作图痕迹,不写作法);②若AB=4, BC长度为m(0<m<4),则平面内满足条件的点D 的个数随着m 的值变化而变化,请直接写出满足条件点 D的个数及对应m的取值范围.自主招生能力挑战6. 如图1, 在△ABC中, AB=5,AC=3√2,BC=7,半径为r的⊙O经过点A且与BC相切,切点M在线段 BC上(包含点M与点 B,点C重合的情况).(1)半径r的最小值等于;(2)设BM=x,,求半径r关于x的函数表达式;(3)当BM=11时,请在图2中作点M及满足条件的⊙O(尺规作图,不写作法,保留作图痕迹,并用2B铅笔或黑色水笔加黑加粗).7. 如图1, AE 是△ABC 的角平分线, D 是直线BC上一点, 如果点 D 满足. DA=DE,那么点 D叫做△ABC的边 BC上的“阿氏点”.(1)在图2中,利用直尺和圆规作△ABC 的边 BC 上的“阿氏点”,用字母 D 表示(不写作法,保留作图痕迹).(2)在(1)中, 求证: △DAB∽△DCA.(3)如图3, 四边形 ABCD 内接于⊙O, 对角线AC, BD 相交于点 E, 以D为圆心,DA为半径的圆恰好经过点C,且与BD交于点 F.①求证: 点 D 是△ABE的边 BE 上的“阿氏点”;,DE=2,AE=3,求⊙D和⊙O的半径长.②若BE=528. 如图1,已知线段AB和直线l,用直尺和圆规在l上作出所有的点P,使得∠APB=30°,如图2,小明的作图方法如下.第一步:分别以点A,B为圆心,AB长为半径作弧,两弧在AB上方交于点O;第二步: 连接OA, OB;第三步: 以O为圆心, OA长为半径作⊙O, 交l于P₁, P₂, 图2中P₁, P₂即为所求的点.(1)如图3,用直尺和圆规在矩形ABCD内作出所有的点P,使得∠BPC=45°(不写作法,保留作图痕迹).(2)已知矩形ABCD, 若. BC=2,AB=m,, P为AD边上的点, 满足∠BPC=45°的点P恰有两个,则m的取值范围为 .9.如图,将⊙O 沿弦AB 折叠,使折叠后的劣弧 AB̂恰好经过圆心O ,连接AO 并延长交⊙O 于点 C, 点P 是优弧 ACB ̅̅̅̅̅̅上的动点, 连接A P, PB.(1)如图1,用尺规画出折叠后的劣弧 AB̂所在圆的圆心 O ′,并求出 ∠APB 的度数; (2)如图1, 若AP 是( ⊙O ′的切线, OA =4,求线段AP 的长;(3)如图2, 连接PC, 过点B 作BP 的垂线, 交PC 的延长线于点D, 求证: √3PC + PA =2PB.。
中考数学尺规作图专题复习含标准答案.doc
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线, 角平分线、画等长的线段,画等角。
1. 直线垂线的画法:【分析】:以点 C 为圆心,任意长为半径画弧交直线与A ,B 两点,再分别以点 A , B 为圆心,大于1AB 的长为半径画圆弧,分别交直线l 两侧于点 M ,N ,2连接 MN ,则 MN 即为所求的垂线2. 线段垂直平分线的画法【分析】:作法如下:分别以点 A ,B 为圆心,大于1AB 的长为半径画圆弧,2分别交直线 AB 两侧于点 C ,D ,连接 CD ,则 CD 即为所求的线段 AB 的垂直平分 线.3. 角平分线的画法【分析】 1. 选角顶点 O 为圆心, 任意长为半径画圆, 分别交角两边 A ,B 点, 再分别以 A , B 为圆心,大于 1AB 的长为半径画圆弧,交H 点,连接 ,并延2OH长,则射线 OH 即为所求的角平分线 .4. 等长的线段的画法直接用圆规量取即可。
5. 等角的画法【分析】以 O 为圆心,任意长为半径画圆,交原角的两边为A,B 两点,连接 AB ;画一条射线 l ,以上面的那个半径为半径,l 的顶点 K 为圆心画圆,交l与L,以 L 为圆心, AB为半径画圆,交以 K 为圆心, KL 为半径的圆与 M点,连接KM,则角 LKM即为所求 .备注: 1. 尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题 1. 已知线段 a,求作△ ABC,使 AB=BC=AC=a.解:作法如下 :①作线段 BC=a;(先作射线 BD,BD截取 BC=a) . ②分别以 B、 C 为圆心,以 a 半径画弧,两弧交于点 A;③连接AB、 AC.则△ ABC要求作三角形 .例 2. 已知线段 a 和∠α,求作△ ABC,使 AB=AC=a,∠ A=∠α .解:作法如下:①作∠ MAN=∠α;②以点 A 为圆心, a 为半径画弧,分别交射线③连接 B, C.△ ABC即为所求作三角形. AM, AN于点B, C.例3.( 深圳中考 ) 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得 PA+PC= BC,则下列选项中,正确的是( D)【解析】由题意知,做出AB的垂直平分线和BC的交点即可。
(完整版)中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学尺规作图专题复习(含答案)
中考尺规作图专题复习(含答案)尺规作图定义:用无刻度的直尺和圆规画图,中考中常见画的图是线段的垂线,垂直平分线,角平分线、画等长的线段,画等角。
1.直线垂线的画法:【分析】:以点C为圆心,任意长为半径画弧交直线与A,B两点,再分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线l两侧于点M,N,连接MN,则MN即为所求的垂线2.线段垂直平分线的画法【分析】:作法如下:分别以点A,B为圆心,大于12AB的长为半径画圆弧,分别交直线AB两侧于点C,D,连接CD,则CD即为所求的线段AB的垂直平分线.3.角平分线的画法【分析】1.选角顶点O为圆心,任意长为半径画圆,分别交角两边A,B点,再分别以A,B为圆心,大于12AB的长为半径画圆弧,交H点,连接OH,并延长,则射线OH即为所求的角平分线.4.等长的线段的画法直接用圆规量取即可。
5.等角的画法【分析】以O为圆心,任意长为半径画圆,交原角的两边为A,B两点,连接AB;画一条射线l,以上面的那个半径为半径,l的顶点K为圆心画圆,交l与L,以L为圆心,AB 为半径画圆,交以K为圆心,KL为半径的圆与M点,连接KM,则角LKM即为所求.备注:1.尺规作图时,直尺主要用作画直线,射线,圆规主要用作截取相等线段和画弧;2.求作一个三角形,其实质是依据三角形全等的基本事实或判定定理来进行的;3.当作图要满足多个要求时,应逐个满足,取公共部分.例题讲解例题1.已知线段a,求作△ABC,使AB=BC=AC=a.解:作法如下:①作线段BC=a;(先作射线BD,BD截取BC=a).②分别以B、C为圆心,以a半径画弧,两弧交于点A;③连接AB、AC.则△ABC 要求作三角形.例2.已知线段a 和∠α,求作△ABC ,使AB=AC=a ,∠A=∠α.解:作法如下:①作∠MAN=∠α;②以点A 为圆心,a 为半径画弧,分别交射线AM ,AN 于点B ,C. ③连接B ,C.△ABC 即为所求作三角形.例3.(深圳中考)如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA +PC =BC ,则下列选项中,正确的是(D )【解析】由题意知,做出AB 的垂直平分线和BC 的交点即可。
中考数学作图题---精选
1、作图:(不写作法,但要保留作图痕迹)如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短.2、如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)3、有一块三角形的土地,现要平均分给四个农户种植.请给出两种分法.(在下列所给的图形上画图,不要求写作法,保留作图痕迹且要有简要分法的说明)4、画图题.如图:求作一点P,使PC=PD,并且P到∠AOB两边的距离相等.(不写作法,保留作图痕迹.)5、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,且到∠AOB 的两边的距离相等.(要求用尺规画图,保留作图痕迹)6、如图,AC 、BD 为正方形ABCD 对角线,相交于点O,点D 为BC 边的中点,正方形边长为2cm,在BD 上找点P ,使DP+CP 之和最小,且最小值为________。
7、如图,点P 在∠AOB 内部,问如何在射线OA 、OB 上分别找点C 、D ,使PC+CD+DP 之和最小?请简要说明。
8、如图,P 是∠AOB 内任一点,分别在OA 、OB 上,求作两点P 1,P 2,使△PP 1P 2的周长最小(简要说明作法).9、如图,在边长为1个单位长度的小正方形组成的两格中,点A 、B 、C 都是格点.(1)将△ABC 向左平移6个单位长度得到得到△A 1B 1C 1;(2)将△ABC 绕点O 按逆时针方向旋转180°得到△A 2B 2C 2,请画出△A 2B 2C 2.A B C D D O P 0P BA。
重庆中考数学 尺规作图(55题)
尺规作图(55题)1.如图,在平行四边形ABCD中,AB>AD.(1)尺规作图:在AB上截取AE,使得AE=AD;作∠BCD的平分线交AB于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE交CF于点P,求证:△CDP为直角三角形.(请补全下面的证明过程,不写证明理由)证明:∵AE=AD,∴∵四边形ABCD是平行四边形,∴AB∥CD,∴∠AED=∠EDC,∴∵CF平分∠BCD,∴又∵AD∥CB,∴∠ADC+∠BCD=180°,∴∠ADC+∠BCD=90°,∴∴∠CPD=90°,∴△CDP是直角三角形.2.如图,在▱ABCD中,AB<AD.(1)用尺规完成以下基本作图:在AD上截取AE,使AE=AB;作∠BCD的平分线交AD于点F.(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接BE交CF于点G,证明:AF=DE.∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD∴∠DFC=∠BCF∵CF平分∠BCD∴∠BCF=∠DCF∴∠DFC=∴CD=又∵AB=AE∴AB=CD=DF=AE∴AE﹣EF=﹣即AF=DE.3.如图,在▱ABCD中AD>AB.(1)尺规作图:在AD上截取AE,使得AE=AB.作∠ADC的平分线交BC于点F(保留作图痕迹,不写作法);(2)在(1)所作图形中,连接BE,求证:四边形BEDF是平行四边形.(请补全下面的证明过程,不写证明理由).证明:∵DF平分∠ADC,∴∵在▱ABCD中,BC∥AD,∴∴∠CDF=∠CFD,∴CD=CF.∵在▱ABCD中,AB=CD,又∵AE=AB,∴AE=CF.∵在▱ABCD中,AD=BC,∴AD﹣AE=BC﹣CF,即又∵∴四边形BEDF是平行四边形.4.如图,∠BAM+∠ABN=180°.(1)用尺规完成基本作图:作∠BAM的角平分线AC交BN于点C,在射线AM上截取AD=AB,连接CD.(保留作图痕迹,不写作法、不下结论).(2)求证:四边形ABCD为菱形.(请补全下面的证明过程)证明:∵∠BAM+∠ABN=180°∴AM∥∴∠DAC=∠BCA∵AC平分∠BAD∴∠DAC=∠BAC∴∠BAC=∴AB=BC∴AD=AB∴=AD∵BC∥AD∴四边形ABCD是平行四边形∵AB=BC∴平行四边形ABCD是菱形()(填推理依据).。
中考数学作图题50例
2021年全国中考数学作图题50例一、解答题〔共50小题〕1.〔2021•XX〕如图,在Rt△ABC中,∠ACB=90°.〔1〕用尺规在边BC上求作一点P,使PA=PB〔不写作法,保存作图痕迹〕〔2〕连接AP,当∠B为_________度时,AP平分∠CAB.2.〔2021•XX〕如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:〔画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC〕〔1〕在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是_________度和_________度;〔2〕在图2中画2条线段,使图中有4个等腰三角形;〔3〕继续按以上操作发现:在△ABC中画n条线段,那么图中有_________个等腰三角形,其中有_________个黄金等腰三角形.3.〔2021•XX〕利用对称变换可设计出美丽图案,如图,在方格纸中每一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成以下问题:〔1〕图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕0点按顺时针旋转90°;〔2〕完成上述图案设计后,可知这个图案的面积等于_________.4.〔2021•XX〕如图,:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O〔保存作图痕迹,不写作法,注意最后用墨水笔加黑〕,并直接写出旋转角度是_________.5.〔2021•XX〕如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔﹣2,1〕,B〔﹣1,4〕,C〔﹣3,2〕.〔1〕画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;〔2〕以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;〔3〕如果点D〔a,b〕在线段AB上,请直接写出经过〔2〕的变化后点D的对应点D2的坐标.6.〔2021•义乌市〕在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是〔﹣1,1〕,〔0,0〕和〔1,0〕.〔1〕如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;〔2〕在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.〔写出2个即可〕7.〔2021•XX〕如图,在Rt△ABC中,∠ACB=90°.〔1〕先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O〔要求:尺规作图,保存作图痕迹,不写作法〕;〔2〕请你判断〔1〕中AB与⊙O的位置关系,并证明你的结论.8.〔2021•XX〕在边长为1的小正方形网格中,△AOB的顶点均在格点上,〔1〕B点关于y轴的对称点坐标为_________;〔2〕将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;〔3〕在〔2〕的条件下,A1的坐标为_________.9.〔2021•XX〕如图,在直角坐标系中,A〔0,4〕,C〔3,0〕.〔1〕①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;〔2〕假设直线y=kx平分〔1〕中四边形ABCD的面积,请直接写出实数k的值.10.〔2021•XX〕〔1〕如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.〔这个比值叫做AE与AB的黄金比.〕〔2〕如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.〔注:直尺没有刻度!作图不要求写作法,但要求保存作图痕迹,并对作图中涉及到的点用字母进展标注〕11.〔2021•XX〕如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形〔顶点在方格顶点处〕,请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.〔1〕图甲中的格点正方形ABCD;〔2〕图乙中的格点平行四边形ABCD.注:分割线画成实线.12.〔2021•XX〕:△ABC在直角坐标平面内,三个顶点的坐标分别为A〔0,3〕、B〔3,4〕、C〔2,2〕〔正方形网格中每个小正方形的边长是一个单位长度〕.〔1〕画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是_________;〔2〕以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是_________;〔3〕△A2B2C2的面积是_________平方单位.13.〔2021•XX〕在平面直角坐标系中,点A〔﹣3,1〕,B〔﹣1,0〕,C〔﹣2,﹣1〕,请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.14.〔2021•XX〕:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.15.〔2021•XX〕在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔﹣2,1〕,B〔﹣4,5〕,C〔﹣5,2〕.〔1〕画出△ABC关于y轴对称的△A1B1C1;〔2〕画出△ABC关于原点O成中心对称的△A2B2C2.16.〔2021•XX〕如图,△ABC三个顶点的坐标分别为A〔1,1〕,B〔4,2〕,C〔3,4〕.〔1〕请画出△ABC向左平移5个单位长度后得到的△A1B1C1;〔2〕请画出△ABC关于原点对称的△A2B2C2;〔3〕在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.17.〔2021•XX〕梯形ABCD,请使用无刻度直尺画图.〔1〕在图1中画出一个与梯形ABCD面积相等,且以CD为边的三角形;〔2〕图2中画一个与梯形ABCD面积相等,且以AB为边的平行四边形.18.〔2021•XX〕在△ABC中,AB=AC=5,BC=6,以AC为一边作正方形ACDE,过点D作DF⊥BC交直线BC 于点F,连接AF,请你画出图形,直接写出AF的长,并画出表达解法的辅助线.19.〔2021•眉山〕如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A〔﹣3,2〕,B〔﹣1,4〕,C〔0,2〕.〔1〕将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;〔2〕平移△ABC,假设A的对应点A2的坐标为〔﹣5,﹣2〕,画出平移后的△A2B2C2;〔3〕假设将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.20.〔2021•龙东地区〕如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A〔﹣2,2〕,B〔0,5〕,C〔0,2〕.〔1〕将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形.〔2〕平移△ABC,使点A的对应点A2坐标为〔﹣2,﹣6〕,请画出平移后对应的△A2B2C2的图形.〔3〕假设将△A1B1C绕某一点旋转可得到△A2B2C2,请直接写出旋转中心的坐标.21.〔2021•六盘水〕如图,在△ABC中,利用尺规作图,画出△ABC的外接圆或内切圆〔任选一个.不写作法,必须保存作图痕迹〕22.〔2021•凉山州〕如下图,正方形网格中,△ABC为格点三角形〔即三角形的顶点都在格点上〕.〔1〕把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;〔2〕把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;〔3〕如果网格中小正方形的边长为1,求点B经过〔1〕、〔2〕变换的路径总长.23.〔2021•XX〕如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC绕点A按顺时针方向旋转90°得到△AB′C′.〔1〕在正方形网格中,画出△AB′C′;〔2〕计算线段AB在变换到AB′的过程中扫过区域的面积.24.〔2021•XX〕如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O〔用尺规作图,不写作法,保存作图痕迹,并把作图痕迹用黑色签字笔加黑〕25.〔2021•来宾〕如图,BD是矩形ABCD的一条对角线.〔1〕作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.〔要求用尺规左图,保存作图痕迹,不要求写作法〕;〔2〕求证:DE=BF.26.〔2021•XX〕如图,在边长为1个单位长度的小正方形组成的网格中,按要求作图.〔1〕利用尺规作图在AC边上找一点D,使点D到AB、BC的距离相等.〔不写作法,保存作图痕迹〕〔2〕在网格中,△ABC的下方,直接画出△EBC,使△EBC与△ABC全等.27.〔2021•XX〕在数学活动课上,王教师发给每位同学一X半径为6个单位长度的圆形纸板,要求同学们:〔1〕从带刻度的三角板、量角器和圆规三种作图工具中任意选取作图工具,把圆形纸板分成面积相等的四局部;〔2〕设计的整个图案是某种对称图形.王教师给出了方案一,请你用所学的知识再设计两种方案,并完成下面的设计报告.名称四等分圆的面积方案方案一方案二方案三选用的工具带刻度的三角板画出示意图简述设计方案作⊙O两条互相垂直的直径AB、CD,将⊙O的面积分成相等的四份.指出对称性既是轴对称图形又是中心对称图形28.〔2021•XX〕图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点,点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动〔1〕请在图①中用圆规画出光点P经过的路径;〔2〕在图①中,所画图形是_________图形〔填“轴对称〞或“中心对称〞〕,所画图形的周长是_________〔结果保存π〕.29.〔2021•XX〕两个城镇A、B与两条公路ME,MF位置如下图,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部〔1〕那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.〔不写、求作、作法,只保存作图痕迹〕〔2〕设AB的垂直平分线交ME于点N,且MN=2〔+1〕km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.30.〔2021•XX〕在直角坐标系中,设x轴为直线l,函数y=﹣x,y=x的图象分别是直线l1,l2,圆P〔以点P为圆心,1为半径〕与直线l,l1,l2中的两条相切.例如〔,1〕是其中一个圆P的圆心坐标.〔1〕写出其余满足条件的圆P的圆心坐标;〔2〕在图中标出所有圆心,并用线段依次连接各圆心,求所得几何图形的周长.31.〔2021•XX〕把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.〔1〕不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形〔用给定的单位长度,不写作法,保存作图痕迹〕;〔2〕求出〔1〕中所作三角形外接圆的周长.32.〔2021•XX〕如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.〔1〕在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;〔2〕请直接写出△AEF与四边形ABCD重叠局部的面积.33.〔2021•XX〕在▱ABCD中,对角线AC、BD交于点O,过点O作直线EF分别交线段AD、BC于点E、F.〔1〕根据题意,画出图形,并标上正确的字母;〔2〕求证:DE=BF.34.〔2021•贵港〕如图,在△ABC中,AB=BC,点点D在AB的延长线上.〔1〕利用尺规按以下要求作图,并在图中标明相应的字母〔保存作图痕迹,不写作法〕.①作∠CBD的平分线BM;②作边BC上的中线AE,并延长AE交BM于点F.〔2〕由〔1〕得:BF与边AC的位置关系是_________.35.〔2021•XX〕如图,△ABC中,AB=AC=4,cosC=.〔1〕动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E〔保存作图痕迹,不写作法〕;〔2〕综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.36.〔2021•XX〕如图,点D在△ABC的AB边上,且∠ACD=∠A.〔1〕作∠BDC的平分线DE,交BC于点E〔用尺规作图法,保存作图痕迹,不要求写作法〕;〔2〕在〔1〕的条件下,判断直线DE与直线AC的位置关系〔不要求证明〕.37.〔2021•XX〕在校园文化建立活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD的邻边长分别为1,a〔a>1〕的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a的值.38.〔2021•XX〕如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A〔5,4〕,B〔1,3〕,将△AOB绕点O逆时针旋转90°后得到△A1OB1.〔1〕画出△A1OB1;〔2〕在旋转过程中点B所经过的路径长为_________;〔3〕求在旋转过程中线段AB、BO扫过的图形的面积之和.39.〔2021•抚州〕如图,△ABC与△DEF关于直线l对称,请仅用无刻度的直尺,在下面两个图中分别作出直线l.40.〔2021•XX〕如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC和△DEF的顶点都在格点上,结合所给的平面直角坐标系解答以下问题:〔1〕画出△ABC向上平移4个单位长度后所得到的△A1B1C1;〔2〕画出△DEF绕点O按顺时针方向旋转90°后所得到的△D1E1F1;〔3〕△A1B1C1和△D1E1F1组成的图形是轴对称图形吗?如果是,请直接写出对称轴所在直线的解析式.41.〔2021•XX〕如图,在平面直角坐标系中,△ABC的三个顶点坐标为A〔1,﹣4〕,B〔3,﹣3〕,C〔1,﹣1〕.〔每个小方格都是边长为一个单位长度的正方形〕〔1〕将△ABC沿y轴方向向上平移5个单位,画出平移后得到的△A1B1C1;〔2〕将△ABC绕点O顺时针旋转90°,画出旋转后得到的△A2B2C2,并直接写出点A旋转到点A2所经过的路径长.42.〔2021•XX〕如图,在四边形ABCD中,〔1〕画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;〔2〕画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O中心对称;〔3〕四边形A1B1C1D1与四边形A2B2C2D2是否对称,假设对称请在图中画出对称轴或对称中心.43.〔2021•XX〕如图,△ABC中AB=AC.〔1〕作图:在AC上有一点D,延长BD,并在BD的延长线上取点E,使AE=AB,连AE,作∠EAC的平分线AF,AF交DE于点F〔用尺规作图,保存作图痕迹,不写作法〕;〔2〕在〔1〕的条件下,连接CF,求证:∠E=∠ACF.44.〔2021•XX〕在13×13的网格图中,△ABC和点M〔1,2〕.〔1〕以点M为位似中心,位似比为2,画出△ABC的位似图形△A′B′C′;〔2〕写出△A′B′C′的各顶点坐标.45.〔2021•XX〕在平面直角坐标系xOy中,如图,Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按以下要求画图〔保存作图痕迹〕:〔1〕将△ODE绕O点按逆时针方向旋转90°得到△OMN〔其中点D的对应点为点M,点E的对应点为点N〕,画出△OMN;〔2〕将△ABC沿x轴向右平移得到△A′B′C′〔其中点A,B,C的对应点分别为点A′,B′,C′〕,使得B′C′与〔1〕中的△OMN的边NM重合;〔3〕求OE的长.46.〔2021•XX地区〕在以下网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.〔1〕试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;〔2〕假设点B的坐标为〔﹣3,5〕,试在图中画出直角坐标系,并标出A、C两点的坐标;〔3〕根据〔2〕的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.47.〔2021•XX〕△ABC中,∠A=25°,∠B=40°.〔1〕求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.〔要求尺规作图,保存作图痕迹,不必写作法〕〔2〕求证:BC是〔1〕中所作⊙O的切线.48.〔2021•XX〕如图,△ABC中,∠C=90°,∠A=30°.〔1〕用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.〔保存作图痕迹,不要求写作法和证明〕;〔2〕连接BD,求证:BD平分∠CBA.49.〔2021•XX〕如图,在平面直角坐标系xOy中,△ABC三个顶点坐标分别为A〔﹣2,4〕,B〔﹣2,1〕,C〔﹣5,2〕.〔1〕请画出△ABC关于x轴对称的△A1B1C1.〔2〕将△A1B1C1的三个顶点的横坐标与纵坐标同时乘以﹣2,得到对应的点A2,B2,C2,请画出△A2B2C2.〔3〕求△A1B1C1与△A2B2C2的面积比,即:=_________〔不写解答过程,直接写出结果〕.50.〔2021•XX〕如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC〔顶点是网格线的交点〕.〔1〕将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;〔2〕请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.2021年全国中考数学作图题50例参考答案与试题解析一、解答题〔共50小题〕1.〔2021•XX〕如图,在Rt△ABC中,∠ACB=90°.〔1〕用尺规在边BC上求作一点P,使PA=PB〔不写作法,保存作图痕迹〕〔2〕连接AP,当∠B为30度时,AP平分∠CAB.考点:作图—根本作图;线段垂直平分线的性质.专题:作图题.分析:〔1〕运用根本作图方法,中垂线的作法作图,〔2〕求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.解答:解:〔1〕如图,〔2〕如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,那么∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为:30.点评:此题主要考察了根本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.2.〔2021•XX〕如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:〔画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC〕〔1〕在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是108度和36度;〔2〕在图2中画2条线段,使图中有4个等腰三角形;〔3〕继续按以上操作发现:在△ABC中画n条线段,那么图中有2n个等腰三角形,其中有n个黄金等腰三角形.考点:作图—应用与设计作图;黄金分割.专题:作图题;探究型.分析:〔1〕利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;〔2〕利用〔1〕种思路进而得出符合题意的图形;〔3〕利用当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形,进而得出规律求出答案.解答:解:〔1〕如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,那么∠A=∠ABE=36°,那么∠AEB=108°,那么∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;〔2〕如图2所示:〔3〕如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,那么图中有2n个等腰三角形,其中有n个黄金等腰三角形.故答案为:2n,n.点评:此题主要考察了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键.3.〔2021•XX〕利用对称变换可设计出美丽图案,如图,在方格纸中每一个顶点都在格点上的四边形,且每个小正方形的边长都为1,完成以下问题:〔1〕图案设计:先作出四边形关于直线l成轴对称的图形,再将你所作的图形和原四边形绕0点按顺时针旋转90°;〔2〕完成上述图案设计后,可知这个图案的面积等于20.考点:利用旋转设计图案;利用轴对称设计图案.专题:作图题.分析:〔1〕首先找出对称点的坐标,然后画图即可;〔2〕首先利用割补法求出每一个小四边形的面积,再乘以4即可.解答:解:〔1〕如下图:〔2〕面积:〔5×2﹣2×1×﹣2×1×﹣3×1××2〕×4=20,故答案为:20.点评:此题主要考察了利用轴对称和旋转作图,以及求不规那么图形的面积,关键是在作图时,找出关键点的对称点.4.〔2021•XX〕如图,:BC与CD重合,∠ABC=∠CDE=90°,△ABC≌△CDE,并且△CDE可由△ABC逆时针旋转而得到.请你利用尺规作出旋转中心O〔保存作图痕迹,不写作法,注意最后用墨水笔加黑〕,并直接写出旋转角度是90°.考点:作图-旋转变换.专题:作图题.分析:分别作出AC,CE的垂直平分线进而得出其交点O,进而得出答案.解答:解:如下图:旋转角度是90°.故答案为:90°.点评:此题主要考察了旋转变换,得出旋转中心的位置是解题关键.5.〔2021•XX〕如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A〔﹣2,1〕,B〔﹣1,4〕,C〔﹣3,2〕.〔1〕画出△ABC关于y轴对称的图形△A1B1C1,并直接写出C1点坐标;〔2〕以原点O为位似中心,位似比为1:2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出C2点坐标;〔3〕如果点D〔a,b〕在线段AB上,请直接写出经过〔2〕的变化后点D的对应点D2的坐标.考点:作图-位似变换;作图-轴对称变换.专题:作图题.分析:〔1〕利用关于y轴对称点的性质得出各对应点位置,进而得出答案;〔2〕利用位似变换的性质得出对应点位置,进而得出答案;〔3〕利用位似图形的性质得出D点坐标变化规律即可.解答:解:〔1〕如下图:△A1B1C1,即为所求,C1点坐标为:〔3,2〕;〔2〕如下图:△A2B2C2,即为所求,C2点坐标为:〔﹣6,4〕;〔3〕如果点D〔a,b〕在线段AB上,经过〔2〕的变化后D的对应点D2的坐标为:〔2a,2b〕.点评:此题主要考察了轴对称变换以及位似变换以及位似图形的性质,利用位似图形的性质得出对应点变化规律是解题关键.6.〔2021•义乌市〕在棋盘中建立如图的直角坐标系,三颗棋子A,O,B的位置如图,它们分别是〔﹣1,1〕,〔0,0〕和〔1,0〕.〔1〕如图2,添加棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴;〔2〕在其他格点位置添加一颗棋子P,使A,O,B,P四颗棋子成为一个轴对称图形,请直接写出棋子P的位置的坐标.〔写出2个即可〕考点:利用轴对称设计图案;坐标与图形性质.专题:作图题.分析:〔1〕根据A,B,O,C的位置,结合轴对称图形的性质进而画出对称轴即可;〔2〕利用轴对称图形的性质得出P点位置.解答:解:〔1〕如图2所示,C点的位置为〔﹣1,2〕,A,O,B,C四颗棋子组成等腰梯形,直线l为该图形的对称轴;〔2〕如图1所示:P〔0,﹣1〕,P′〔﹣1,﹣1〕都符合题意.点评:此题主要考察了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.7.〔2021•XX〕如图,在Rt△ABC中,∠ACB=90°.〔1〕先作∠ABC的平分线交AC边于点O,再以点O为圆心,OC为半径作⊙O〔要求:尺规作图,保存作图痕迹,不写作法〕;〔2〕请你判断〔1〕中AB与⊙O的位置关系,并证明你的结论.考点:作图—复杂作图;直线与圆的位置关系.专题:作图题.分析:〔1〕根据角平分线的作法求出角平分线BO;〔2〕过O作OD⊥AB交AB于点D,先根据角平分线的性质求出DO=CO,再根据切线的判定定理即可得出答案.解答:解:〔1〕如图:〔2〕AB与⊙O相切.证明:作OD⊥AB于D,如图.∵BO平分∠ABC,∠ACB=90°,OD⊥AB,∴OD=OC,∴AB与⊙O相切.点评:此题主要考察了复杂作图以及切线的判定等知识,正确把握切线的判定定理是解题关键.8.〔2021•XX〕在边长为1的小正方形网格中,△AOB的顶点均在格点上,〔1〕B点关于y轴的对称点坐标为〔﹣3,2〕;〔2〕将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;〔3〕在〔2〕的条件下,A1的坐标为〔﹣2,3〕.考点:作图-平移变换;关于x轴、y轴对称的点的坐标.专题:作图题.分析:〔1〕根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;〔2〕根据网格构造找出点A、O、B向左平移后的对应点A1、O1、B1的位置,然后顺次连接即可;〔3〕根据平面直角坐标系写出坐标即可.解答:解:〔1〕B点关于y轴的对称点坐标为〔﹣3,2〕;〔2〕△A1O1B1如下图;〔3〕A1的坐标为〔﹣2,3〕.故答案为:〔1〕〔﹣3,2〕;〔3〕〔﹣2,3〕.点评:此题考察了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格构造准确找出对应点的位置是解题的关键.9.〔2021•XX〕如图,在直角坐标系中,A〔0,4〕,C〔3,0〕.〔1〕①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;〔2〕假设直线y=kx平分〔1〕中四边形ABCD的面积,请直接写出实数k的值.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:〔1〕①根据关于y轴对称的点的横坐标互为相反数确定出点B的位置,然后连接AB即可;②根据轴对称的性质找出点A关于直线x=3的对称点,即为所求的点D;〔2〕根据平行四边形的性质,平分四边形面积的直线经过中心,然后求出AC的中点,代入直线计算即可求出k值.解答:解:〔1〕①如下图;②直线CD如下图;〔2〕∵A〔0,4〕,C〔3,0〕,∴平行四边形ABCD的中心坐标为〔,2〕,代入直线得,k=2,解得k=.点评:此题考察了利用旋转变换作图,利用轴对称变换作图,还考察了平行四边形的判定与性质,是根底题,要注意平分四边形面积的直线经过中心的应用.10.〔2021•XX〕〔1〕如图1,Rt△ABC中,∠B=90°,AB=2BC,现以C为圆心、CB长为半径画弧交边AC于D,再以A为圆心、AD为半径画弧交边AB于E.求证:=.〔这个比值叫做AE与AB的黄金比.〕〔2〕如果一等腰三角形的底边与腰的比等于黄金比,那么这个等腰三角形就叫做黄金三角形.请你以图2中的线段AB为腰,用直尺和圆规,作一个黄金三角形ABC.〔注:直尺没有刻度!作图不要求写作法,但要求保存作图痕迹,并对作图中涉及到的点用字母进展标注〕考点:作图—应用与设计作图;黄金分割.专题:作图题.分析:〔1〕利用位置数表示出AB,AC,BC的长,进而得出AE的长,进而得出答案;〔2〕根据底与腰之比均为黄金比的等腰三角形,画图即可.解答:〔1〕证明:∵Rt△ABC中,∠B=90°,AB=2BC,∴设AB=2x,BC=x,那么AC=x,∴AD=AE=〔﹣1〕x,∴==.〔2〕解:底与腰之比均为黄金比的等腰三角形,如图:.点评:此题主要考察了黄金三角形的作法以及黄金三角形的性质,根据得出底边作法是解题关键.11.〔2021•XX〕如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形〔顶点在方格顶点处〕,请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.〔1〕图甲中的格点正方形ABCD;〔2〕图乙中的格点平行四边形ABCD.注:分割线画成实线.考点:作图—应用与设计作图.专题:作图题.分析:〔1〕利用三角形的形状以及各边长进而拼出正方形即可;〔2〕利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:〔1〕如图甲所示:〔2〕如图乙所示:点评:此题主要考察了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.12.〔2021•XX〕:△ABC在直角坐标平面内,三个顶点的坐标分别为A〔0,3〕、B〔3,4〕、C〔2,2〕〔正方形网格中每个小正方形的边长是一个单位长度〕.〔1〕画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是〔2,﹣2〕;〔2〕以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是〔1,0〕;〔3〕△A2B2C2的面积是10平方单位.考点:作图-位似变换;作图-平移变换.专题:作图题.分析:〔1〕利用平移的性质得出平移后图象进而得出答案;〔2〕利用位似图形的性质得出对应点位置即可;〔3〕利用等腰直角三角形的性质得出△A2B2C2的面积.解答:解:〔1〕如下图:C1〔2,﹣2〕;故答案为:〔2,﹣2〕;〔2〕如下图:C2〔1,0〕;故答案为:〔1,0〕;〔3〕∵A2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.点评:此题主要考察了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.13.〔2021•XX〕在平面直角坐标系中,点A〔﹣3,1〕,B〔﹣1,0〕,C〔﹣2,﹣1〕,请在图中画出△ABC,并画出与△ABC关于y轴对称的图形.。
2024年中考数学总复习:尺规作图(附答案解析)
的实数来表示,则以下选项中,可能是此四点在纸上数轴表示的实数是( )
A.1,2,4,8B.3,4,6,9C.1,5,8,9D.1,7,9,10
22.已知△ABC(AC<BC),用尺规作图的方法在BC上确定一点P,使PA+PB=BC,则符合要求的作图痕迹是( )
8.如图,由作图痕迹做出如下判断,其中正确的是( )
A.FH=HGB.FH>HGC.FH<HGD.FH≤HG
9.如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图的痕迹推断,以下结论错误的是( )
A.AD=CDB.∠ABP=∠CBPC.∠BPC=115°D.∠PBC=∠ACD
17.如图,在△ABC中,根据尺规作图痕迹,下列说法不一定正确的是( )
A.AF=BFB.∠AFD+∠FBC=90°
C.DF⊥ABD.∠BAF=∠CAF
18.如图,在△ABC中,∠A=30°,∠C=90°.下列尺规作图痕迹中,不能将△ABC的面积平分的是( )
A. B.
C. D.
19.如图,△ABC中,AB<AC<BC,如果要用尺规作图的方法在BC上确定一点P,使PA+PB=BC,那么符合要求的作图痕迹是( )
2024年中考数学总复习:尺规作图
一.选择题(共25小题)
1.如图,在已知的△ABC中,按以下步骤作图:
①分别以B,C为圆心,以大于BC的一半长为半径作弧,两弧相交于两点M,N;
②作直线MN交AB于点D,连接CD.
若CD=AC,∠A=50°,则∠ACB=( )
A.80°B.25°C.105°D.95°
中考数学专题练习:尺规作图(含答案)
中考数学专题练习:尺规作图(含答案)1.(·随州)如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是( )A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧2.(·河北) 尺规作图要求,Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.做线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线.Ⅳ.作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①—Ⅳ,②—Ⅱ,③—Ⅰ,④—ⅢB.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—ⅠC.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—ⅠD.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ3.(·潍坊) 如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是( ) A. ∠CBD=30°B. S △BDC =34AB 2 C. 点C 是△ABD 的外心 D. sin 2A +cos 2D =14. (·湖州) 尺规作图特有魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r 的⊙O 六等分,依次得到A 、B 、C 、D 、E 、F 六个分点; ②分别以A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点; ③连接OG.问:OG 的长是多少?大臣给出的正确答案应是( ) 3rB. (1+22)r C. (1+32)rD. 2r5. (·河南) 如图,已知▱AOBC 的顶点O(0,0),A(-1,2),点B 在x 轴正半轴上按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D ,E ;②分别以点D ,E 为圆心,大于12DE 的长为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G.则点G 的坐标为( )A.(5-1,2) B. (5,2)C.(3-5,-2) D. (5-2,2)6.(·南通) 如图,Rt△ABC中,∠ACB=90°,CD平分∠ACB交AB于点D,按下列步骤作图.步骤1:分别以点C和点D为圆心,大于12CD的长为半径作弧,两弧相交于M,N两点;步骤2:作直线MN,分别交AC,BC于点E,F;步骤3:连接DE,DF.若AC=4,BC=2,则线段DE的长为( )A. 53B.32C. 2D.437.(·南京) 如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC于点D、E,连接DE.若BC=10 cm,则DE=________cm.8.(·山西) 如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于12CD长为半径作弧,两弧在∠NA B内交于点E;③作射线AE交PQ于点F.若AB=2,∠ABP=60°,则线段AF的长为______.9.(·创新) 下面是“作一个30°角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°.作图:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD,∠DAB即为所求的角.请回答:该尺规作图的依据是__________________________________________________________________________________________________________.10.(·广东) 如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.11.(·福建)求证:相似三角形对应边上的中线之比等于相似比.要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A).以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得:△A′B′C′∽△ABC.不写作法,保留作图痕迹;②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.12.(·北京) 下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线及直线外一点P.求作:PQ,使得PQ∥l.作法:如图,①在直线上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.∴直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=________,CB=________,∴PQ∥l(____________________________________)(填推理的依据).13.(·绥化) 如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,D、E分别是斜边AB、直角边BC上的点,把△ABC沿着直线DE折叠.(1)如图1,当折叠后点B和点A重合时,用直尺和圆规作出直线DE (不写作法和证明,保留作图痕迹).(2)如图2,当折叠后点B落在AC边上点P处,且四边形PEBD是菱形时,求折痕DE的长.参考答案【基础训练】1.D 2.D 3.D 4.D 5.A 6.D7.5 8.2 39.直径所对的圆周角是直角,等边三角形的每个内角为60°,直角三角形两锐角互余等10.解:(1)如解图所示;(2)∵菱形ABCD,∠CBD=75°,∴CD=CB,∠CBD=∠CDB=75°,∴∠C=180°-∠CBD-∠CDB=180°-75°-75°=30°,∴∠A=∠C=30°,∵EF是AB的垂直平分线,∴∠A=∠FBA=30°,∵∠ABD=∠CBD=75°,∴∠DBF=∠ABD-∠FBA=75°-30°=45°.11.解:①如解图,△A′B′C′即为所求作的三角形.②已知:△A′B′C′∽△ABC,CD和C′E分别为AB和A′B′边上的中线,求证:CDC′E=BCB′C′.证明:∵C D和C′E分别为AB和A′B′边上的中线,∴BD=12AB,B′E=12A′B′,∴BDAB=B′EA′B′=12,∴BDB′E=ABA′B′,∵△A′B′C′∽△ABC,∴∠CBA=∠C′B′A′,BCB′C′=ABA′B′,∴BDB′E=BCB′C′,∴△B′C′E∽△BCD,∴CDC′E=BCB′C′.12.解:(1)尺规作图如解图所示:(2)PA,CQ,三角形中位线平行于三角形的第三边.13.解:(1)如解图1,DE为所求作的直线.(2)如解图2,连接BP,∵四边形PEBD是菱形,∴PE=BE,设CE=x,则BE=PE=4-x,∵PE∥AB,∴△PCE∽△ACB,∴CECB=PEAB,∴x4=4-x5,∴x=169,∴CE=169,∴BE=PE=209,在Rt△PCE中,∵PE=209,CE=169,∴PC=43在Rt△PCB中,∵PC=43,BC=4,∴BP=4310,又∵S菱形PEBD =BE·PC=12DE·BP,∴12×4310DE=209×43,∴DE=4910.。
中考数学复习微专题:利用圆的相关性质作图
利用圆的相关性质作图作图题是考查学生动手操作能力的重要题型之一.现在许多作图题不仅仅只停留在尺规作图、方格内作图上,更多的是要巧妙利用已学过的概念、性质、定理等知识作图,这大大加大了作图题的难度,也提高了学生知识的理解、掌握、运用程度.下面列举几道利用圆的相关性质来作图的题目,希望对同学们的学习有所启发.例1 如图1,已知△ABC是⊙O的内接三角形,AB=AC,D是圆上任一点,请你只用无刻度的直尺,画出∠D的平分线(用虚线表示).分析显然,这里不能用“作一个角的角平分线”这一尺规作图的常规方法来作∠D的平分线,我们观察题设条件,得出OA=OB=OC,则O必在△ABC三边的中垂线上,由AB=AC和等腰三角形“三线合一”这一性质,可知AO⊥BC.连结AO,并延长交劣弧BC于点E,则由垂径定理可知BE EC,所以有∠BDE=∠EDC,因此DE就是∠D的平分线,例2 如图2,△ABC的三个顶点分别在正方形网格中的格点上,请在网格中找一个格点P,连结PB,PC,使∠BPC=12∠BAC,并简要说明理由.分析1 如图2,延长BA至点P,使得PA=PB,连结PC,则∠BPC=∠BAC.试问满足条件的P点是否只有一个呢?分析2 要使∠BPC=∠BAC,并且∠BPC,∠BAC都对着线段BC,于是联想到圆心角与圆周角的关系,自然马上就会想到以点A为圆心,AB或AC的长为半径画⊙A,⊙A经过格点P1,P2,P3,P4,P5,P6(如图3).取其中任一个点P与点B、C相连,必然∠BPC=12∠BAC.例3(2022江西中考题)如图4,AB是半圆的直径,图4(1)中点C在半圆外;图4(2)中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图4(1)中,画出△ABC的三条高的交点;(2)在图4(2)中,画出△ABC中AB边上的高.解(1)要用无刻度的直尺来作高显然难度较大,若利用“直径所对的圆周角是直角”这一性质来作图,这个问题就迎刃而解了.假设AC,BC与半圆分别交于点D,E,连结BD,AE,得到交点P即为三条高的交点.(2)当点C在半圆内时,AC,BC没有直接与半圆相交,此时△ABC就相当于图4(2)中△ABC的位置,因此延长AC,BC必与半圆相交,设交点分别为E,F,则∠AEB=∠AFB=90°.再次延长AF和BE相交于点P,则C必为△ABP三条边高的交点,因此,连结PC并延长交AB于点D,必有CD⊥AB,如图4(2)所示,CD即为所求.。
人教版九年级数学中考总复习 专题一 作图专题 含解析及答案
专题一作图专题1.如图所示,小明利用一块平面镜使此时的太阳光水平射入隧道内。
请你通过作图画出平面镜并标出反射角的角度。
答案:如图所示解析:根据光的反射定律,反射角等于入射角,作反射光线和入射光线夹角的角平分线就是法线的位置;由图知,反射光线和入射光线的夹角为180°-60°=120°,则反射角等于入射角等于60°。
2.图中的A'B'是物体AB经过平面镜M后所成的像,请在图中画出该物体。
答案:如图所示3.如图所示,点光源S置于平面镜前,请画出点光源S的成像光路图。
答案:如图所示解析:从点光源S向镜面任意发出两条入射光线,入射点分别是O1、O2;根据光的反射定律,画出这两条入射光线的反射光线;将这两条反射光线反向延长,相交于点S',点S'即为点光源S在平面镜中所成的像。
4.如图所示,在平静的湖边上方有一盏路灯,潜水员在水下E处看到了路灯的像,图中A、B两点,其中一点是路灯的发光点,另一点是路灯的像点。
请你区分发光点、像点,在图中画出水下E处的潜水员看到路灯的光路图。
答案:如图所示解析:根据光从空气中斜射入水中时,折射角小于入射角,可知A为路灯的发光点,B为像点,连接EB与界面的交点即为入射点,光路图如图所示。
5.如图所示,平面镜垂直于凸透镜主光轴且在凸透镜左侧焦点上,请完成光路图。
答案:如图所示6.如图所示,请在图中画出力F的力臂l及物体所受重力的示意图。
答案:如图所示7.如图所示,某人在A处提起物体,请在图中画出最省力的绳子绕法。
答案:如图所示解析:从动滑轮上挂钩开始,依次绕过定滑轮和动滑轮,绳端回到人的手中,提升物体绳子条数为3,是最省力的绕法。
8.根据下面左侧电路实物图,在下面右侧方框内画出对应的电路图。
答案:如图所示9.设计一个病床呼叫电路。
要求:开关S1控制指示灯L1和电铃,开关S2控制指示灯L2和电铃。
请在图中连线,形成符合要求的完整电路图。
中考数学总复习《尺规作图》专项测试卷带答案
中考数学总复习《尺规作图》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是( )A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是( )A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;(2)指出小丽作法中存在的问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是( )AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点(k>0,x>0)的图象经过C(4,n),D两A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=kx点.(1)求反比例函数的解析式;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.参考答案A层·基础过关1.(2024·深圳中考)在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是(B)A.①②B.①③C.②③D.只有①2.(2024·呼伦贝尔、兴安盟中考)如图,在△ABC中,∠C=90°,∠B=30°,以点A为圆心,适当长为半径画弧分别交AB,AC于点M和点N,再分别以点M,N为圆心,大于1MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D.若△ACD的面2积为8,则△ABD的面积是(B)A.8B.16C.12D.243.(2024·广西中考)如图,在△ABC中,∠A=45°,AC>BC.(1)尺规作图:作线段AB的垂直平分线l,分别交AB,AC于点D,E;(要求:保留作图痕迹,不写作法,标明字母)【解析】(1)图形如图所示:(2)在(1)所作的图中,连接BE,若AB=8,求BE的长.【解析】(2)∵DE垂直平分线段AB,∴EB=EA∴∠EBA=∠A=45°,∴∠BEA=90°AB=4∵BD=DA,∴DE=DB=DA=12∴BE=√2BD=4√2.4.(2024·浙江中考)尺规作图问题:如图1,点E是▱ABCD边AD上一点(不包含A,D),连接CE.用尺规作AF∥CE,F是边BC上一点.小明:如图2以C为圆心,AE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小丽:以点A为圆心,CE长为半径作弧,交BC于点F,连接AF,则AF∥CE.小明:小丽,你的作法有问题.小丽:哦…我明白了!(1)证明:AF∥CE;【解析】(1)根据小明的作法知,CF=AE∵四边形ABCD是平行四边形∴AD∥BC,又∵CF=AE∴四边形AFCE是平行四边形∴AF∥CE;(2)指出小丽作法中存在的问题.【解析】(2)以A为圆心,EC为半径画弧,交BC于点F,此时可能会有两个交点,只有其中之一符合题意.故小丽的作法有问题.B层·能力提升AC的5.(2024·济南莱芜区模拟)如图,在矩形ABCD中,分别以点A,C为圆心,大于12长为半径画弧,两弧相交于M,N两点;作直线MN,分别交AD,BC于点E,F,连接AF 和CE.已知DE=3,AB=4,则以下四个结论中正确的是(B)AC·EF;②AE=5;①S四边形AFCE=12③∠F AC=∠ACF=30°;④EF=2√5.A.①②③B.①②④C.②③④D.①②6.(2024·武汉中考)如图是由小正方形组成的3×4网格,每个小正方形的顶点叫格点.△ABC三个顶点都是格点.仅用无刻度的直尺在给定网格中完成四个画图任务,每个任务的画线不得超过三条.(1)在图(1)中,画射线AD交BC于点D,使AD平分△ABC的面积;(2)在(1)的基础上,在射线AD上画点E,使∠ECB=∠ACB;(3)在图(2)中,先画点F,使点A绕点F顺时针旋转90°到点C,再画射线AF交BC 于点G;(4)在(3)的基础上,将线段AB绕点G旋转180°,画对应线段MN(点A与点M对应,点B与点N对应).【解析】(1)如图(1)中,线段AD即为所求;(2)如图(1)中,点E即为所求;(3)如图(2)中,点C,射线AF,点G即为所求;(4)如图(2)中,线段MN即为所求.7.(2024·绥化中考)已知:△ABC.(1)尺规作图:画出△ABC的重心G.(保留作图痕迹,不要求写作法和证明)【解析】(1)分别作出AB边和BC边的垂直平分线,与AB和BC边分别交于点N 和点M连接AM和CN如图所示,点G即为所求作的点.(2)在(1)的条件下,连接AG,BG.已知△ABG的面积等于5 cm2,则△ABC的面积是_________cm2.答案:15【解析】(2)∵点G是△ABC的重心∴AG=2MG∵△ABG的面积等于5 cm2∴△BMG的面积等于2.5 cm2∴△ABM的面积等于7.5 cm2.又∵AM是△ABC的中线∴△ABC的面积等于15 cm2.C层·素养挑战8.(2024·淄博淄川区二模)如图,在四边形ABCD中,AB=AD,AB⊥AD,顶点A(0,2),B(1,0)分别在y轴、x轴上反比例函数y=k(k>0,x>0)的图象经过C(4,n),D两x点.(1)求反比例函数的解析式;【解析】(1)过点D作DT⊥OA于点T.∵A(0,2),B(1,0)∴OA=2,OB=1∵AB⊥AD,DT⊥OT∴∠DTA=∠DAB=∠AOB=90°∵∠DAT+∠OAB=90°,∠OAB+∠ABO=90°,∴∠DAT=∠ABO ∵AD=AB∴△DTA≌△AOB(AAS)∴AT=OB=1,DT=AO=2∴OT=OA+AT=3∴D(2,3)∵反比例函数y=kx (k>0,x>0)的图象经过D点,∴3=k2,∴k=6∴反比例函数解析式为y=6x;(2)请用无刻度的直尺和圆规作出线段BC的垂直平分线;(要求:不写作法,保留作图痕迹)【解析】(2)如图,直线MN即为所求;(3)线段BC与(2)中所作的垂直平分线分别与BC,AD交于点M,N两点.求点M的坐标.【解析】(3)∵C(4,n)在y=6x的图象上∴n=32∴C(4,32)∵BM=CM,B(1,0)∴M(4+12,32+02)即M(52,34).第11页共11页。
中考数学尺规作图专项练习_20200617115930 - 副本(2)
中考数学尺规作图专项练习一.解答题(共30小题)1.尺规作图:已知点D为△ABC的边AB的中点,用尺规在△ABC的边上找一点E,使S:S△ABC=1:4.(保留作图痕迹,不写作法)△ADE2.尺规作图:如图,AC为⊙O的直径.求作:⊙O的内接正方形ABCD.(要求:不写作法,保留作图痕迹).3.如图,已知△ABC,点D在AB边上,且∠ACD=90°,请用尺规作图法在BC边上求作一点P,使得∠APC=∠ADC.(保留作图痕迹,不写作法)4.如图,在△ABC中,D为AB的中点,请用尺规作图法,在边AC上求作一点E,使DE =BC(保留作图痕迹,不写作法).5.如图,已知在△ABC中,∠A=90°,请用尺规作⊙P,使得圆心P在AC边上,且⊙P 与AB,BC两边都相切(保留作图痕迹,不写作法).6.尺规作图:如图△ABC中,CD⊥AB于D,在AC上求作一点P,使S△CDP=S△CBD(保留作图痕迹,不写作法).7.已知矩形ABCD,请用直尺和圆规在BC上方作一个以BC为斜边的Rt△BPC其中∠PBC =30°.(保留作图痕迹,不写作法)8.已知,如图,直线AB与直线BC相交于点B,点D是直线BC上一点,用尺规作图作出直线DE∥AB.(不写作法,保留作图痕迹)9.已知如图,△ABC中,AB=AC,用尺规在BC边上求作一点P,使△BP A∽△BAC(保留作图痕迹,不写作法).10.如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)11.赵凯想利用一块三角形纸片ABC裁剪一个菱形ADEF,要求一个顶点为A,顶点D在三角形的AC边上,点E在三角形的BC边上,点F在三角形的AB边上,请你利用尺规作图把这个菱形作出来.(不写作法,保留作图痕迹)12.在△ABC中,∠ABC=80°,∠ACB=60°,利用尺规作图在AC边上求作一点D,使得△ABC∽△BDC.(不写作法,保留作图痕迹)13.如图,在△ABC内部有一点D,利用尺规过点D作一条直线,使其平行于BC.(保留作图痕迹,不写作法)14.尺规作图:如图,已知△ABC,D为BC上一点,求作⊙O,使得⊙O同时与AB,BC 相切,且与BC相切于D点.(不写作法,保留作图痕迹)15.如图,已知△ABC,请用尺规作出它的内切圆(不写做法,保留作图痕迹).16.如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)17.已知点P是△ABC边AC上的一点,请你在AC边上求作点Q,使得=(要求:尺规作图,保留作图痕迹,不写作法)18.如图,已知点P为△ABC边BC上一点.请用直尺和圆规作一条直线EF,使得A关于EF的对称点为P.(保留作图痕迹,不写作法)19.如图,已知△ABC,点D是AB上一点,连接CD,请用尺规在边AC上求作点P,使得△PBC的面积与△DBC的面积相等(保留作图痕迹,不写作法).20.图,四边形ABCD是矩形,在矩形ABCD内部求作一点P,使得△ADP是以AD为斜边的等腰直角三角形.(不写作法,保留作图痕迹)21.如图,请用尺规作图在△ABC中边上找到点D,使得BD+AD=AC(不写作法,保留作图痕迹).22.请利用尺规作图在△ABC的AB、AC边上分别找点M、点N,连接MN,使得S△AMN =S△ABC(保留作图痕迹,不写作法).23.如图,已知矩形ABCD,分别在边AD,BC上找一点E和F,使四边形DEBF是菱形.24.如图,在等腰Rt△ABC中,∠ACB=90°,CD是AB边上的中线.请利用尺规过点A 作一条射线AE,使其交BC于点E,交CD于点F,且CE=CF.(保留作图痕迹,不写作法)25.如图,∠ACB=∠CDB=90°,在线段CD上求作一点P,使△APC∽△CDB.(不写作法,保留作图痕迹)26.如图,已知△ABC,作⊙O,使它过点A、B、C(保留作图痕迹,不写作法)27.如图,已知四边形ABCD中,AD<BC,AD∥BC,∠B为直角,将这个四边形折叠使得点A与点C重合,请用尺规作图法找出折痕所在的直线.(保留作图痕迹,不写作法)28.如图,△ABC中,点D,E分别在边AB,AC上,求作线段DE,使DE∥BC,且DE=DB(保留作图痕迹,不写作法)29.如图,已知△ABC,用尺规作出BC边上的高AD(保留作图痕迹,不写作法).30.已知:如图,∠ABC,射线BC上一点D.求作:等腰△PBD,使线段BD为等腰△PBD的底边,点P在∠ABC内部,且点P到∠ABC两边的距离相等.。
中考数学复习综合性试题精选之尺规作图
中考数学复习综合性试题精选之尺规作图1.如图,方格纸中每个小正方形的边长均为1.线段AB的两个端点在小正方形的顶点上.(1)在图中画一个以AB为腰的等腰三角形△ABC,点C在小正方形的顶点上,且tan B =3;(2)在图中画一个以AB为底的等腰三角形△ABD,点D在小正方形的顶点上,且△ABD 是锐角三角形.连接CD,请直接写出线段CD的长.2.如图,已知∠AOB,点M为OB上一点.(1)画MC⊥OA,垂足为C;(2)画∠AOB的平分线,交MC于D;(3)过点D画DE∥OB,交OA于点E.(注:不需要写出作法,只需保留作图痕迹)3.如图,在每个小正方形的边长均为1的方格纸中有线段AC和EF,点A、C、E、F均在小正方形的顶点上.(1)在方格纸中画出一个以AC为对角线的菱形ABCD,点D在直线AC的下方,且点B、D都在小正方形的顶点上;(2)在方格纸中画出以EF为底边,面积为6的等腰三角形EFG,且点G在小正方形的顶点上;(3)在(1)、(2)的条件下,连接DG,请直接写出线段DG的长.4.如图,在△ABC中,AB=BC,∠ABC=90°,动点E在∠ABC外部,且∠ABC=2∠AEC.(1)利用尺规作图在图1中作出一个符合题意的点E;(不写作法,保留作图痕迹)(2)如图2,若F是AC的中点,线段BE与线段EF的长度存在怎样的等量关系?请说明理由.5.(1)如图(1),在△ABC,AB=AC,O为△ABC内一点,且OB=OC,求证:直线AO 垂直平分BC.以下是小明的证题思路,请补全框图中的分析过程.(2)如图(2),在△ABC中,AB=AC,点D、E分别在AB、AC上,且BD=CE.请你只用无刻度的直尺画出BC边的垂直平分线(不写画法,保留画图痕迹).(3)如图(3),在五边形ABCDE中,AB=AE,BC=DE,∠B=∠E,请你只用无刻度的直尺画出CD边的垂直平分线,并说明理由.6.如图1,已知直线EF与直线AB交于点E,直线EF与直线CD交于点F,EM平分∠AEF 交直线CD于点M,且∠FEM=∠FME.点G是射线MD上的一个动点(不与点M、F 重合),EH平分∠FEG交直线CD于点H,过点H作HN∥EM交直线AB于点N,设∠EHN=α,∠EGF=β.(1)求证:AB∥CD;(2)当点G在点F的右侧时,①依据题意在图1中补全图形;②若β=80°,则α=度;(3)当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.7.【认识】(1)如图①,∠1、∠2是四边形ABCD的两个外角,求证:∠1+∠2=∠A+∠C.【操作】(2)如图②,已知∠α和∠AOB,点M、N分别在∠AOB的边OA、OB上.请利用无刻度直尺和圆规在∠AOB的内部求作一点P,使得∠AOB+∠MPN=∠α.(保留作图痕迹,不写作法)8.定义:如图,E,F,G,H四点分别在四边形ABCD的四条边上,若四边形EFGH为菱形,我们称菱形EFGH为四边形ABCD的内接菱形.(1)如图,矩形ABCD,AB=5,点E在线段AB上且EB=2,四边形EFGH是矩形ABCD 的内接菱形,求GC的长度;(2)如图,平行四边形ABCD,AB=5,∠B=60°,点E在线段AB上且EB=2,请你在图中画出平行四边形ABCD的内接菱形EFGH,点F在边BC上;(尺规作图,保留痕迹)当BF最短时,请求出BC的长.9.已知HD∥GE,点A、C分别在直线上.(1)如图1,请直接写出∠BCE、∠ABC、∠BAD三个角满足的数量关系.(2)如图2,分别作∠BAH与∠BCG的角平分线,交于点F,探索∠B与∠F的数量关系并予以证明.(3)在图3中完成作图并填空:分别作∠ABC与∠BCE的角平分线,交于点M,过点B 作BN∥CM,设∠BAD=m°,请直接写出∠NBM的度数(用含m的式子表示).10.已知三角形ABC和同一平面内的点D.(1)如图1,点D在边BC上,过点D作DE∥BA,交AC于点E,DF∥CA,交AB于点F.①依题意,在图1中补全图形;②若∠EDF=89°,求∠A的度数;③通过图形说明∠A+∠B+∠C=180°(三角形的内角和为180°);(2)如图2,若点D在BC的延长线上,DE∥CA,DE在BC上方,且∠EDF=∠A,判断DE与BA的位置关系,并证明;(3)若D是三角形ABC外部的一个动点(不在三角形三条边所在的直线上),过点D作DE∥BA交直线AC于点E,DF∥CA交直线AB于点F,直接写出∠EDF与∠A的数量关系.11.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:根据以上情境,解决下列问题:①老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.12.如图1,由于保管不善,长为40米的拔河比赛专用绳AB左右两端各有一段(AC和BD)磨损了,磨损后的麻绳不再符合比赛要求.已知磨损的麻绳总长度不足20米.只利用麻绳AB和一把剪刀(剪刀只用于剪断麻绳)就可以得到一条长20米的拔河比赛专用绳EF.请你按照要求完成下列任务:(1)在图1中标出点E、点F的位置,并简述画图方法;(2)说明(1)中所标EF符合要求.13.如图,在边长为1的正方形网格中,点A、C为格点,点B在网格线上,以AB为直径作半圆,点D在半圆上,连接AC、BC.请用无刻度直尺完成下列作图,不写画法,保留画图痕迹(用虚线表示画图过程,实线表示画图结果)(1)分别在AB、AC取点E、F,使EF∥BC,EF=12BC;(2)作△ABC的角平分线BM;(3)在△ABC的角平分线BM取一点N,使CN+DN最小.14.图1、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.(1)在图1中确定点C(点C在小正方形的顶点上),要求以A、B、C为顶点的三角形为锐角等腰三角形,画出此三角形(画出一个即可);(2)在图2中确定点D(点D在小正方形的顶点上),要求以A、B、D为顶点的三角形是以AB为斜边的直角三角形,画出此三角形(画出一个即可),并直接写出此三角形的周长15.最短路径问题:例:如图1所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图2,A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(2011.盐城)已知二次函数y = -12 x 2 -x +32
. (1)在给定的直角坐标系中,画出这个函数的图象;
(2)根据图象,写出当y
< 0时,x 的取值范围; (3)若将此图象沿x 轴向右平移3个单位,请写出
平移后图象所对应的函数关系式.
2.(2010.盐城)图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的
顶点上.
(1)以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A ′B ′C ′;
(2)△A ′B ′C ′绕点B ′顺时针旋转 90,画出旋转后得到的△A ″B ′C ″,并求边A ′B ′在旋
转过程中扫过的图形面积.
3. (2012.泰州) 如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA =5,OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C .
(1)试判断线段AB 与AC 的数量关系,并说明理由;
(2)若PC =52,求⊙O 的半径和线段PB 的长;
(3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,求⊙O 的半径r 的取值
4.(2012.南京)如图,在直角三角形ABC 中,90ABC ∠=︒,点D 在BC 的延长线上,且BD =AB ,过B 作BE ⊥AC ,与BD 的垂线DE 交于点E ,
(1)求证:ABC BDE ∆≅∆
(2)三角形BDE 可由三角形ABC 旋转得到,利用尺规
作出旋转中心O (保留作图痕迹,不写作法)
A B C
C E D
B A
5.(2008.盐城)如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T (1,1)、 A (2,3)、B (4,2).
(1)以点T (1,1)为位似中心,按比例尺(T A′∶TA )3∶1在位似中心的同侧将△TAB 放大为△T A′B′,放大后点A 、B 的对应点分别为A′、B′.画出△T A′B′,并写出点A′、B′的坐标;
(2)在(1)中,若C (a ,b )为线段AB 上任一点,写出变化后点C 的对应点C ′的坐标.
6.(2012。
盐城)知识迁移
当0a >且0x >时,因
为2≥0,所
以a x x -≥0, 从而a x x
+
≥
当x =). 记函数(0,0)a y x a x x
=+>>,
由上述结论可知:当x =,
该函数有最小值为直接应用 已知函数1(0)y x x =>与函数21(0)y x x =
>, 则当x =_________时,12y y +取得最小值为_________.
变形应用
已知函数11(1)y x x =+>-与函数22(1)4(1)y x x =++>-,求
21y y 的最小值,并指出取得该最小值时相应的x 的值.
实际应用
已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃
油费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设该汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每...千米..的运输成本.....
最低?最低是多少元?。