昆明理工大学物理习题集(下)第十一章元答案
昆明理工大学物理习题集(下)第十四章元答案
S 1S 2 第十四章 光学一、选择题1. 有三种装置(1)完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2)同一盏钠光灯,用黑纸盖住其中部,将钠光灯分成上下两部分,同时照射到屏上;(3)用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行,且间距很小的两条狭缝,此二亮缝的光照射到屏上。
以上三种装置,能在屏上形成稳定干涉花样的是:[ A ](A )装置(3) (B )装置(2) (C )装置(1)、(3) (D )装置(2)(3)2. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为:[ A ](A )1.5λ (B )1.5λ/n (C )1.5n λ (D )3λ3. 在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中:[ C ](A )传播的路程相等,走过的光程相等; (B )传播的路程相等,走过的光程不相等;(C )传播的路程不相等,走过的光程相等; (D )传播的路程不相等,走过的光程不相等。
4. 如图,如果S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过厚度为t 2,折射率为n 2的另一介质板,其余部分为真空,光沿这两条路径的光程差等于:[ B ](A ) 222111()();r n t r n t +-+(B ) 222111[(1)][(1)];r n t r n t +--+- (C ) 222111()();r n t r n t ---(D ) 2211n t n t -5. 双缝干涉实验中,入射光波长为λ,用玻璃纸遮住其中一缝,若玻璃纸中光程比相同厚度的空气大λ5.2,则屏上原0级明纹中心处 [ B ](A ) 仍为明纹中心 (B ) 变为暗纹中心(C ) 不是最明,也不是最暗 (D ) 无法确定6. 如图所示,用波长600=λnm 的单色光做杨氏双缝实验,在光屏P 处产生第五级明纹极大,现将折射率n =1.5的薄透明玻璃片盖在其中一条缝上,此时P 处变成中央明纹极大的位置,则此玻璃片厚度为:[ B ](A ) 5.0×10-4cm (B ) 6.0×10-4cm(C ) 7.0×10-4cm (D ) 8.0×10-4cm7. 在照相机镜头的玻璃片上均匀镀有一层折射率n 小于玻璃的介质薄膜,以增强某一波长λ 的透射光能量。
昆明理工大学物理习题集(下)第十三章元答案
u
u2
(C) y Acos[(t x )] (D) y Acos[(t x) ]
u
u
5、一平面简谐波以波速 u 沿 x 轴正方向传播, O 为坐标原点。已知 P 点的振动方程为
y Acost ,则:[ CC ]
(A) O 点的振动方程为 y Acos(t l / u)
(B)波的表达式为 y Acos[t (l / u) (x / u)]
(A)λ
(B)λ/2
(C)3λ/4
(D)λ/4
12、若在弦线上的驻波表达式是 y 0.20sin 2x cos20t 。则形成该驻波的两个反向进行
的行波为:[ CC ]
(A)
y1
0.10cos[2
(10t
x)
2
]
y2
0.10cos[2
(10t
x)
2
]
(B)
y1
0.10cos[2
(10t
x)
4
S2
C
N
引起的振动
均干涉相消,则 S 2 的初相应为2
2k
3 2
,k
0,1,2,。
8.如图所示,一平面简谐波沿 x 轴正方向传播,波长为 ,若 P1 点处质点的振动方程
为 y1 Acos(2vt ) , 则 P2 点 处 质 点 的 振 动 方 程 为
y2
A c os [2v
2
(L1
L2 )]
]
y2
0.10cos[2
(10t
x)
3 4
]
(C)
y1
0.10
cos[2
(10t
x)
2
]
y2
0.10cos[2
大学物理第十一章气体动理论习题详细答案
第十一章 气体动理论习题详细答案一、选择题1、答案:B解:根据速率分布函数()f v 的统计意义即可得出。
()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。
2、答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,后面三个选项的说法都是对的,而只有而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。
正确。
3、答案: A 解:2rms 1.73RT v v M ==,据题意得222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。
正确。
4、 由理想气体分子的压强公式23k p n e =可得压强之比为:可得压强之比为:A p ∶B p ∶C p =n A kA e ∶n B kB e ∶n C kC e =1∶1∶1 5、 氧气和氦气均在标准状态下,二者温度和压强都相同,而氧气的自由度数为5,氦气的自由度数为3,将物态方程pV RT n =代入内能公式2iE RT n =可得2iE pV =,所以氧气和氦气的内能之比为5 : 6,故答案选C 。
6、 解:理想气体状态方程PV RTn =,内能2iU RT n =(0m M n =)。
由两式得2UiP V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。
正确。
7、 由理想气体物态方程'm pV RT M=可知正确答案选D 。
8、 由理想气体物态方程pV NkT =可得气体的分子总数可以表示为PV N kT =,故答案选C 。
9、理想气体温度公式21322k m kT e u ==给出了温度与分子平均平动动能的关系,表明温度是气体分子的平均平动动能的量度。
大物下册课后习题答案
大物下册课后习题答案大物下册课后习题答案大学物理是一门重要的基础学科,它涉及到我们周围的自然现象和物质运动规律的研究。
作为学习大学物理的学生,课后习题是巩固知识、提高能力的重要途径。
下面将为大家提供大物下册课后习题的答案,希望对大家的学习有所帮助。
第一章:运动的描述1. 速度与位移的区别是什么?答:速度是描述物体在单位时间内位移的快慢,是矢量量,有大小和方向;位移是描述物体从一个位置到另一个位置的距离和方向,是矢量量,有大小和方向。
2. 什么是匀速直线运动?答:匀速直线运动是指物体在相等时间内位移相等的运动。
在匀速直线运动中,速度大小和方向保持不变。
3. 什么是加速度?答:加速度是描述物体速度变化率的物理量,是矢量量,有大小和方向。
加速度的大小等于速度变化量与时间的比值。
第二章:牛顿定律与运动学1. 牛顿第一定律是什么?答:牛顿第一定律,也称为惯性定律,指出当物体受力为零时,物体将保持静止或匀速直线运动的状态。
2. 什么是牛顿第二定律?答:牛顿第二定律指出,物体的加速度与作用在物体上的力成正比,与物体的质量成反比。
即F=ma,其中F为物体所受合力,m为物体的质量,a为物体的加速度。
3. 什么是牛顿第三定律?答:牛顿第三定律指出,任何一个物体受到的作用力都有一个大小相等、方向相反的反作用力作用在另一个物体上。
第三章:动能、功和能量守恒定律1. 动能是什么?答:动能是物体由于运动而具有的能量,它与物体的质量和速度的平方成正比。
动能的表达式为:K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。
2. 什么是功?答:功是描述力对物体做功的物理量,它等于力与物体位移的乘积。
功的表达式为:W=Fs,其中W为功,F为力,s为物体的位移。
3. 能量守恒定律是什么?答:能量守恒定律指出,在一个封闭系统内,能量的总量是不变的。
能量可以相互转化,但不能被创造或破坏。
第四章:动量和碰撞1. 动量是什么?答:动量是物体运动的量度,它等于物体的质量与速度的乘积。
大学物理(下)练习题
大学物理(下)练习题大学物理习题集第六章 光的干涉6.1 在空气中做杨氏双缝干涉实验,缝间距为d = 0.6mm ,观察屏至双缝间距为D = 2.5m ,今测得第3级明纹与零级明纹对双缝中心的张角为2.724×10-3rad ,求入射光波长及相邻明纹间距.[解答]根据双缝干涉公式sin θ = δ/d ,其中sin θ≈θ,d = kλ = 3λ,可得波长为 λ = d sin θ/k = 5.448×10-4(mm) = 544.8(nm).再用公式sin θ = λ/d = Δx/D ,得相邻明纹的间距为 Δx = λD/d = 2.27(mm).[注意]当θ是第一级明纹的张角时,结合干涉图形,用公式sin θ = λ/d = Δx/D 很容易记忆和推导条纹间隔公式.6.2 如图所示,平行单色光垂直照射到某薄膜上,经上下两表面反射的两束光发生干涉,设薄膜厚度为e ,n 1>n 2,n 2<n 3,入射光在折射率为n 1的媒质中波长为λ,试计算两反射光在上表面相遇时的位相差.[解答]光在真空中的波长为λ0 = n 1λ. 由于n 1>n 2,所以光从薄膜上表面反射时没有半波损失;由于n 1>n 2,所以光从薄膜下表面反射时会产生半波损失,所以两束光的光程差为 δ = 2n 2e +λ0/2,位相差为:21012/222n e n n λδϕππλλ+∆==.6.3用某透明介质盖在双缝干涉装置中的一条缝,此时,屏上零级明纹移至原来的第5条明纹处,若入射光波长为589.3nm ,介质折射率n = 1.58,求此透明介质膜的厚度.[解答]加上介质膜之后,就有附加的光程差δ = (n – 1)e , 当δ = 5λ时,膜的厚度为:e = 5λ/(n – 1) = 5080(nm) = 5.08(μm).6.4 为测量在硅表面的保护层SiO 2的厚度,可将SiO 2的表面磨成劈尖状,如图所示,现用波长λ = 644.0nm 的镉灯垂直照射,一共观察到8根明纹,求SiO 2的厚度.[解答]由于SiO 2的折射率比空气的大,比Si 的小,所以半波损失抵消了,光程差为:δ = 2ne . 第一条明纹在劈尖的棱上,8根明纹只有7个间隔,所以光程差为:δ = 7λ. SiO 2的厚度为:e = 7λ/2n = 1503(nm) = 1.503(μm).6.5 折射率为1.50的两块标准平板玻璃间形成一个劈尖,用波长λ = 5004nm 的单色光垂直入射,产生等厚干涉条纹.当劈尖内充满n = 1.40的液体时,相邻明纹间距比劈尖内是空气时的间距缩小Δl = 0.1mm ,求劈尖角θ应是多少?[解答]空气的折射率用n 0表示,相邻明纹之间的空气的厚度差为Δe 0 = λ/2n 0;明纹之间的距离用ΔL 0表示,则:Δe 0 = θΔL 0, 因此:λ/2n 0 = θΔL 0.当劈尖内充满液体时,相邻明纹之间的液体的厚度差为:Δe = λ/2n ; 明纹之间的距离用ΔL 表示,则:Δe = θΔL ,n 1 n 2 λ n 3(1) (2)图6.2n 1=1.00 n 2=3.42 λn =1.50 Si SiO 2图6.4因此:λ/2n = θΔL .由题意得Δl = ΔL 0 – ΔL ,所以劈尖角为00()11()22n n l n nlnn λλθ-=-=∆∆= 7.14×10-4(rad).6.6 某平凹柱面镜和平面镜之间构成一空气隙,用单色光垂直照射,可得何种形状的的干涉条纹,条纹级次高低的大致分布如何?[解答]这种情况可得平行的干涉条纹,两边条纹级次低,越往中间条纹级次越高,空气厚度增加越慢,条纹越来越稀.6.7设牛顿环实验中平凸透镜和平板玻璃间有一小间隙e 0,充以折射率n 为1.33的某种透明液体,设平凸透镜曲率半径为R ,用波长为λ0的单色光垂直照射,求第k 级明纹的半径.[解答] 第k 级明纹的半径用r k 表示,则 r k 2= R 2 – (R – e )2 = 2eR .光程差为δ = 2n (e + e 0) + λ0/2 = kλ0,解得0012()22e k e n λ=--, 半径为: 001[()2]2k r k e R nλ=--.6.8 白光照射到折射率为1.33的肥皂上(肥皂膜置于空气中,若从正面垂直方向观察,皂膜呈黄色(波长λ = 590.5nm ),问膜的最小厚度是多少?[解答]等倾干涉光程差为:δ = 2nd cos γ + δ`,从下面垂直方向观察时,入射角和折射角都为零,即γ = 0;由于肥皂膜上下两面都是空气,所以附加光程差δ` = λ/2.对于黄色的明条纹,有δ = kλ,所以膜的厚度为:(1/2)2k d nλ-=.当k = 1时得最小厚度d = 111(nm).6.9光源发出波长可继续变化的单色光,垂直射入玻璃板的油膜上(油膜n = 1.30),观察到λ1 = 400nm 和λ2 = 560nm 的光在反射中消失,中间无其他波长的光消失,求油膜的厚度.[解答]等倾干涉光程差为;δ = 2nd cos γ + δ`,其中γ = 0,由于油膜的折射率比空气的大、比玻璃的小,所以附加光程差δ` = 0.对于暗条纹,有δ = (2k + 1)λ/2, 即 2nd = (2k 1 + 1)λ1/2 = (2k 2 + 1)λ2/2.由于λ2 > λ1,所以k 2 < k 1,又因为两暗纹中间没有其他波长的光消失,因此k 2 = k 1 – 1.光程差方程为两个:2nd /λ1 = k 1 + 1/2,2nd /λ2 = k 2 + 1/2, 左式减右式得:2nd /λ1 - 2nd /λ2 = 1,解得:12212()d n λλλλ=-= 535.8(nm).6.10 牛顿环实验装置和各部分折射率如图所示,试大致画出反射光干涉条纹的分布. [解答]右边介质的折射率比上下两种介质的折射率大,垂直入射的光会有半波损失,中间出现暗环;左边介质的折射率 介于上下两种介质的折射率之间,没有半波损失, 平面镜 柱面镜图6.6λ 图6.71.621.50 1.75 1.62 1.50 图6.10λR r e 0e中间出现明环.因此左右两边的明环和暗是交错的, 越往外,条纹级数越高,条纹也越密.6.11 用迈克尔逊干涉仪可测量长度的微小变化,设入射光波长为534.9nm ,等倾干涉条纹中心冒出了1204条条纹,求反射镜移动的微小距离.[解答]反射镜移动的距离为Δd = mλ/2 = 3.22×105nm = 0.322(mm).6.17 在迈克尔逊干涉仪一支光路中,放入一折射率为n 的透明膜片,今测得两束光光程差改变为一个波长λ,求介质膜的厚度.[解答]因为δ = 2(n – 1)d = λ,所以d = λ/2(n – 1).第七章 光的衍射7.1 在某个单缝衍射实验中,光源发出的光含有两种波长λ1和λ2,并垂直入射于单缝上.假如λ1的第一级衍射极小与λ2的第三级衍射极小相重合,试问:(1)这两种波长之间有什么关系;(2)在这两种波长的光所形成的衍射图样中,是否还有其他极小相重合? [解答](1)单缝衍射的暗条纹形成条件是δ = a sin θ = ±k`λ,(k` = 1,2,3,…),当条纹重合时,它们对应同一衍射角,因此λ1 = 3λ2.(2)当其他极小重合时,必有k 1`λ1 = k 2`λ2, 所以 k 2` = 3k 1`.7.2 单缝的宽度a = 0.40mm ,以波长λ = 589nm 的单色光垂直照射,设透镜的焦距f = 1.0m .求:(1)第一暗纹距中心的距离; (2)第二明纹的宽度;(3)如单色光以入射角i = 30º斜射到单缝上,则上述结果有何变动? [解答](1)单缝衍射的暗条纹分布规律是`f y k aλ=±,(k` = 1,2,3,…),当k` = 1时,y 1 = fλ/a = 1.4725(mm).(2)除中央明纹外,第二级明纹和其他明纹的宽度为Δy = y k`-1 - y k` = fλ/a = 1.4725(mm). (3)当入射光斜射时,光程差为 δ = a sin θ – a sin φ = ±k`λ,(k` = 1,2,3,…). 当k` = 1时,可得 sin θ1 = sin φ ± λ/a = 0.5015和0.4985, cos θ1 = (1 – sin 2θ1)1/2 = 0.8652和0.8669.两条一级暗纹到中心的距离分别为y 1 = f tan θ1 = 579.6(mm)和575.1(mm). 当k` = 2时,可得sin θ2 =a sin φ ± λ/a = 0.5029和0.4971,cos θ2 = (1 – sin 2θ2)1/2= 0.8642和0.8677. 两条二级暗纹距中心的距离分别为:y 2 = f tan θ2 = 581.9(mm)和572.8(mm).φ θ a O第二明纹的宽度都为Δy = y 2 – y 1 = 2.3(mm),比原来的条纹加宽了.7.3 一单色平行光垂直入射于一单缝,若其第三级衍射明纹位置正好和波长为600 nm 的单色光垂直入射该缝时的第二级衍射明纹位置一样,求该单色光的波长.[解答]除了中央明纹之外,单缝衍射的条纹形成的条件是sin (21)2a k λδθ==±+,(k = 1,2,3,…).当条纹重合时,它们对应同一衍射角,因此(2k 1 + 1)λ1 = (2k 2 + 1)λ2, 解得此单色光的波长为12122121k k λλ+=+= 428.6(nm).7.4 以某放电管发出的光垂直照射到一个光栅上,测得波长λ1 = 669nm 的谱线的衍射角θ = 30º.如果在同样的θ角处出现波长λ2 = 446nm 的更高级次的谱线,那么光栅常数最小为多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2,方程可化为两个:(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为:212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 3/2,所以当k 1 = 2时,. k 2 = 3,因此光栅常数最小值为:2112()sin a b λλλλθ+=-= 2676(nm).7.5 一衍射光栅,每厘米有400条刻痕,刻痕宽为1.5×10-5m ,光栅后放一焦距为1m 的的凸透镜,现以λ = 500nm 的单色光垂直照射光栅,求:(1)透光缝宽为多少?透光缝的单缝衍射中央明纹宽度为多少? (2)在该宽度内,有几条光栅衍射主极大明纹? [解答](1)光栅常数为:a + b = 0.01/400 = 2.5×10-5(m), 由于刻痕宽为b = 1.5×10-5m ,所以透光缝宽为:a =(a + b ) – b = 1.0×10-5(m).根据单缝衍射公式可得中央明纹的宽度为:Δy 0 = 2fλ/a = 100(mm). (2)由于:(a + b )/a = 2.5 = 5/2,因此,光栅干涉的第5级明纹出现在单缝衍射的第2级暗纹处,因而缺级;其他4根条纹各有两根在单缝衍射的中央明纹和一级明纹中,因此单缝衍射的中央明纹宽度内有5条衍射主极大明纹,其中一条是中央衍射明纹.7.6 波长为600 nm 的单色光垂直入射在一光栅上,第二、第三级主极大明纹分别出现在sin θ = 0.2及sin θ = 0.3处,第四级缺级,求:(1)光栅常数;(2)光栅上狭缝的宽度;(3)屏上一共能观察到多少根主极大明纹? [解答](1)(2)根据光栅方程得:(a + b )sin θ2 = 2λ; 由缺级条件得(a + b )/a = k/k`,其中k` = 1,k = 4.解缺级条件得b = 3a ,代入光栅方程得狭缝的宽度为:a = λ/2sin θ2 = 1500(nm). 刻痕的宽度为:b = 3a = 4500(nm), 光栅常数为:a + b = 6000(nm).(3)在光栅方程(a + b )sin θ = kλ中,令sin θ =1,得:k =(a + b )/λ = 10. 由于θ = 90°的条纹是观察不到的,所以明条纹的最高级数为9.又由于缺了4和8级明条纹,所以在屏上能够观察到2×7+1 = 15条明纹.7.7 以氢放电管发出的光垂直照射在某光栅上,在衍射角θ = 41º的方向上看到λ1 =656.2nm 和λ2 = 410.1nm 的谱线重合,求光栅常数的最小值是多少?[解答]根据光栅方程得:(a + b )sin θ = k 1λ1 = k 2λ2, 方程可化为两个(a + b )sin θ/λ1 = k 1和 (a + b )sin θ/λ2 = k 2,解得光栅常数为;212112()()sin k k a b λλλλθ-+=-.由于k 2/k 1 = λ1/λ2 = 1.6 = 16/10 = 8/5,所以当k 1 = 5时,. k 2 = 8,因此光栅常数最小值为:21123()sin a b λλλλθ+=-= 5000(nm).其他可能值都是这个值的倍数.7.8 白光中包含了波长从400nm 到760nm 之间的所有可见光谱,用白光垂直照射一光栅,每一级衍射光谱是否仍只有一条谱线?第一级衍射光谱和第二级衍射光谱是否有重叠?第二级和第三级情况如何?[解答]方法一:计算法.根据光栅方程(a + b )sin θ = kλ,对于最短波长λ1 = 400nm 和最长波长λ2 = 760nm 的可见光,其衍射角的正弦为sin θ1 = kλ1/(a + b )和sin θ2 = kλ2/(a + b ),数值如下表所示.可见第一级衍射光谱与第二级衍射光谱没有重叠,第二级衍射光谱与第三级衍射光谱从量值1200到1520是重叠的,第三级衍射光谱与第四级衍射光谱从量值1600到2280是重叠的.方法二:曲线法。
昆明理工大学物理习题集(下)第十二章元答案
第十二章 振动一.选择题1、劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为: [ C ](A )21212)(2k k k k m T +=π (B )212k k m T +=π (C )2121)(2k k k k m T +=π(D )2122k k m T +=π 2. 一弹簧振子作简谐振动,当位移的大小为振幅的一半时,其动能为振动总能量的[ D ](A )1/4 (B )1/2 (C )2/1 (D )3/4 (E )2/33. 一质点作简谐振动,当它由平衡位置向x 轴正方向运动时,对应的振动相位是: [ C ](A )π (B )0 (C )-π/2 (D )π/24. 已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒,角频率为ω,则此简谐振动的振动方程为:[ C ](A ))cm )(32cos(πω+=t x (B ))cm )(32cos(2πω-=t x (C ))cm )(32cos(2πω+=t x (D ))cm )(32cos(2πω+-=t x 5. 一质点作简谐振动,周期为T ,当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的最短时间为:[ C ](A )T /4 (B )T /12 (C )T /6 (D )T /86.一质点在x 轴上做简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时刻质点第一次通过x =-2cm 处,且向x 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为:[ B ](A )1s (B )(2/3)s (C )(4/3)s (D )2s7.一劲度系数为k 的轻弹簧,下端挂一质量为m 的物体,系统的振动周期为T 1.若将此弹簧截去一半的长度,下端挂一质量为m /2的物体,则系统振动周期T 2等于:[ D ](A ) 2 T 1 (B ) T 1 (C ) 2/1T (D ) T 1/2 (E ) T 1 /48.用余弦函数描述一简谐振动,已知振幅为A ,周期为T ,初位相ϕ=-π/3,则下图中与之对应的振动曲线是:[ A ]9.一倔强系数为k 的轻弹簧截成三等份,取出其中的两根,将它们并联在一起,下面挂一质量为m 的物体,如图所示,则振动系统的频率为:[ B ](A ) m k π21(B ) m k 621π (C )m k 321π (D ) m k 321π 10.一质点作简谐振动,振动方程为x =cos(ωt +ϕ),当时间t =T /2时,质点的速为:[ A ](A ) A ωsin ϕ (B )-A ωsin ϕ (C ) -A ωcos ϕ (D ) A ωcos ϕ11.把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ,然后由静止放手任其振动,从放手时开始计时,若用余弦函数表示其运动方程,则该单摆振动的初位相为:[ C ](A ) θ (B ) π (C ) 0 (D ) π/212.两个质点各自作简谐振动,它们的振幅相同、周期相同,第一个质点的振动方程为x 1=A cos(ωt +α),当第一个质点从相对平衡位置的正位移处回到平衡位置时,第二个质点正在最大位移处,则第二个质点的振动方程为:[ B ](A ) x 2=A cos (ω t +α +π/2) (B ) x 2=A cos (ω t +α -π/2)(C ) x 2=A cos (ω t +α-3π/2) (D ) x 2=A cos (ω t +α + π)13.一个质点作简谐振动,振辐为A ,在起始时刻质点的位移为A /2,且向x 轴的正方向运动,代表此简谐振动的旋转矢量图为下图中哪一图?[ B ]14. 一质点在x 轴作简谐振动,已知0=t 时,m x 01.00-=,s m /03.00=v ,s /3=ω,则质点的简谐振动方程为:[ B ](A ) ))(3cos(02.032SI t x π+= (B ) ))(3cos(02.034SI t x π+=(C ) ))(3cos(01.032SI t x π+= (D ) ))(3cos(01.034SI t x π+=15. 如图所示为质点作简谐振动时的x -t 曲线,则质点的振动方程为:[ C ](A ) ))(cos(2.03232SI t x ππ+=(B ) ))(cos(2.03232SI t x ππ-=(C ) ))(cos(2.03234SI t x ππ+=(D ) ))(cos(2.03234SI t x ππ-=16. 两个同方向、同频率、等振幅的简谐振动,合成后振幅仍为A ,则这两个分简谐振动的(C) (B) (A) (D)O x ω -A /2 A O x A /2 ω A x O A /2 A ω O x A ω -A /2相位差为:[ C ](A ) 60° (B ) 90° (C ) 120° (D ) 180°17. 两个同周期简谐振动曲线如图所示,1x 的相位比2x 的相位:[ B ](A )落后2/π(B )超前2/π(C )落后π(D )超前π18. 一质点做简谐振动,其运动速度与时间的曲线如图所示,若质点的振动规律用余弦函数描述,这质点的初相位应为:[ C ](A )6/π(B ) 6/5π(C ) 6/5π-(D ) 6/π-19. 弹簧振子在光滑水平面上做简谐振动时,弹性力在半个周期内所做的功为:[ D ](A ) 2kA (B ) 221kA (C ) 241kA (D ) 020. 一简谐振动振幅A ,则振动动能为能量最大值一半时振动物体位置x 等于:[ B ](A ) 2A (B ) 22A (C ) 23A (D ) A 二、填空题 1、一质点作简谐振动,速度最大值cm/s 5m =v ,振幅A =2cm 。
昆明理工大学物理习题册带答案
昆明理工大学物理习题册带答案第一章质点运动学一.选择题:1.质点就是一个:[](a)质量不大的物体.(b)体积不大的物体.(c)就可以并作对应状态的物体.(d)根据其运动情况,被看作具有质量而没有大小和形状的理想物体.2.质点的运动方程为x?6?3t?5t(si),则该质点作[](a)匀加速直线运动,加速度沿x轴正方向.(b)匀加速直线运动,加速度沿x轴负方向.(c)变加速直线运动,加速度沿x轴正方向.(d)变加速直线运动,加速度沿x轴负方向.3.质点在某瞬时坐落于矢径r(x,y)的端点处其速度大小为[]322drdrd|r|?dx??dy?(a)(b)(c)(d)??dtdtdt?dt??dt?4.如图所示,湖中存有一小船,有人用绳绕开岸上一定高度处的定滑轮扎湖中的船向岸边运动.勒维冈县人以匀速率为v0收绳,绳不弯曲,湖水恒定,则小船的运动就是:[](a)匀加速运动(b)匀减速运动v0(c)变加速运动(d)变减速运动(e)匀速直线运动5.一个质点在做匀速率圆周运动时[](a)轴向加速度发生改变,法向加速度也发生改变.(b)轴向加速度维持不变,法向加速度发生改变.(c)切向加速度不变,法向加速度也不变.(d)切向加速度改变,法向加速度不变.6.如右图所示,几个不同倾角的光滑斜面,有共同的底边,顶点也在同一竖直面上.若使一物体(视为质点)从斜面上端由静止滑到下端的时间最短,则斜面的倾角应选[](a)30.(b)45.(c)60.(d)75.7.一质点并作直线运动,某时刻的瞬时速度v?2m/s,瞬时加速度a??2m/s,则一秒钟后质点的速度[](a)等于零.(b)等于?2m/s.(c)等于2m/s.(d)不能确定.l275060045030000008.质点沿半径为r的圆周并作匀速率为运动,每t秒转一圈.在2t时间间隔中,其平均速度大小与平均速率大小分别为[](a)2?r2?r2?r2?r,.(b)0,.(c)0,0.(d),0.ttttv(m/s)9.一质点沿x轴作直线运动,其v?t曲线如下图所示,如t?0时,质点位1o21?12.54.51234t(s)于座标原点,则t?4.5s时质点在x轴上的边线为[](a)0m.(b)5m.(c)2m.(d)?2m.(e)?5m.10.一小球沿斜面向上运动,其运动方程为s?5?4t?t(si),则小球运动到最高点的时刻是[]。
昆明理工大学习题解题答案
城市学院物理习题解答(48学时)第一章 质点运动学一、选择题:1(D ),2(D ), 3(C ), 4(B ), 5(D ), 6(B ), 7(B ), 8(B ),9(D ), 10(C ), 11(B ), 12(C ) 二、填空题:1、 )]()5cos()5sin([50SI j t i t+-, 0, 圆;2、]sin 2cos )[(22t t Aetωβωωωββ+--, 2,1,0)21(=+n n ωπ;3、tS ∆,t v ∆-02 ;4、24020)(,R bt v b bt v +++;5、)/(4,1622s rad Rt ; 6、(1),(3),(4);7、)1(22S S +;8、)(4SI j i+-; 9、)/(20s m ;10、)/(1.02s m ;11、)(1,)(,2RC b cRct b c ±--;12、)/(20),/(3.17s m s m三、计算题1.解:(1))/(5.0/s m t x v -=∆∆=;(2)269/t t dt dx v -==, s m v /6)2(-=; (3)m x x x x s 25.2|)5.1()2(||)1()5.1(|=-+-=.2.解:t dt dv a 4/==,tdt dv 4=⎰⎰=tvtdt dv 04, 22t v =22/t dt dx v ==⎰⎰=xtdt t dx 10022)(103/23SI t x +=.3.解:(1)t v x 0=, 221gt y =轨迹方程是:2022/v g x y =.(2)0v v x =, gt v y =.速度大小为: 222022t g v v v v y x +=+=.方向为:与X轴的夹角)/(01v gt tg -=θ22202//t g v t g dt dv a t +==,与v 同向.222002122/)(t g v g v a g a tn +=-=,方向与t a 垂直.4.解:由t kv dt dv 2/-=ktdt v dv -=2 积分:⎰⎰-=tdt k v dv2C kt v +-=-2211当0=t 时,0v v = 01v C -=∴ 得:21211v kt v += 5.解:设质点在x 处的速率为v ,262x dtdx dx dv dt dv a +=⋅==⎰⎰+=x v dx x vdv 020)62(s m x x v /)(22/13+=6.解:选地面为静止参考系s ,火车为运动参考系s ',雨滴为运动质点p : 已知:绝对速度:ps v大小未知,方向与竖直方向夹030牵连速度:s m v s s /35=',方向水平; 相对速度:s p v '大小未知,方向偏向车后045. 由速度合成定理:s s s p ps v v v ''+=由矢量关系式画出矢量图,由几何关系可得:3530sin 30cos 00=+ps ps v vss 's m v ps /6.25=.第二章 牛顿定律一、选择题:1(B ),2(D ), 3(E ), 4(C ), 5(B ), 6(C )。
大学物理第十一章 气体动理论习题
第十一章气体动理论一、基本要求1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。
2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。
3.理解自由度和内能的概念,掌握能量按自由度均分定理。
掌握理想气体的内能公式并能熟练应用。
4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。
5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。
二、基本概念1 平衡态系统在不受外界的影响下,宏观性质不随时间变化的状态。
2 物态参量描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度3 温度宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。
4 自由度确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。
5 内能理想气体的内能就是气体内所有分子的动能之和,即6 最概然速率速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。
7 平均速率各个分子速率的统计平均值,用表示,8 方均根速率各个分子速率的平方平均值的算术平方根,用表示,9 平均碰撞频率和平均自由程平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或三、基本规律1 理想气体的物态方程pV RT ν=或'm pV RT M= pV NkT =或p nkT =2 理想气体的压强公式3 理想气体的温度公式4 能量按自由度均分定理在温度为T 的平衡态下,气体分子任何一个自由度的平均动能都相等,均为12kT 5 麦克斯韦气体分子速率分布律(1)速率分布函数 ()dN f Nd υυ= 表示在速率υ附近单位速率区间内的分子数占总分子数的百分比或任一单个分子在速率υ附近单位速率区间内出现的概率,又称为概率密度。
(完整版)昆明理工大学物理习题集(下)第十六章元答案
第十六章 量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A ) 频率高的光子易显示波动性 (B ) 个别光子产生的效果以显示粒子性(C ) 光的衍射说明光具有粒子性 (D ) 光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A ) 入射光的频率 (B ) 入射光的强度(C ) 金属的逸出功 (D ) 入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比 (B )与入射光的强度成正比(C )与入射光的频率成线性关系 (D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同 (B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同 (D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加 (B )逸出的光电子初动能增大(C )光电效应的红限频率增大 (D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B ) 1ν<2ν (C ) 1ν=2ν (D )不能确定8. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
昆明理工大学大学物理习题册下
第十章气体动理论一、选择题1.关于温度的意义,有以下几种说法:〔1〕气体的温度是分子平均平动动能的量度;〔2〕气体的温度是大量气体分子热运动的集体表现,具有统计意义;〔3〕温度的上下反映物质局部子运动剧烈程度的不同;〔4〕从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的选项是:[ (B) ]〔A〕〔1〕、〔2〕、〔4〕〔B〕〔1〕、〔2〕、〔3〕〔C〕〔2〕、〔3〕、〔4〕〔D〕〔1〕、〔3〕、〔4〕2.一瓶氦气和一瓶氧气,它们的压强和温度都一样,但体积不同,那么它们的[ (A ) ] 〔A〕单位体积的分子数一样〔B〕单位体积的质量一样〔C〕分子的方均根速率一样〔D〕气体能一样3.一瓶氦气和一瓶氮气质量密度一样,分子平均平动动能一样,而且它们都处于平衡状态,那么它们[ (B) ]〔A〕温度一样、压强一样〔B〕温度一样,但氦气的压强大于氮气的压强〔C〕温度、压强都不一样〔D〕温度一样,但氮气的压强大于氦气的压强4.两容器分别盛有氢气和氦气,假设它们的温度和质量分别相等,那么:[ (A) ]〔A〕两种气体分子的平均平动动能相等〔B〕两种气体分子的平均动能相等〔C〕两种气体分子的平均速率相等〔D〕两种气体的能相等.5.在标准状态下,体积比为1:2的氧气和氦气(均视为刚性分子理想气体)相混合,混合气体中氧气和氦气的能之比为[ (C) ]6.在常温下有1mol的氢气和1mol的氦气各一瓶,假设将它们升高一样的温度,那么[ (A ) ] 〔A〕氢气比氦气的能增量大〔B〕氦气比氢气的能增量大〔C〕氢气和氦气的能增量一样〔D〕不能确定哪一种气体能的增量大7.温度、压强一样的氦气和氧气,它们分子的平均动能ε和平均平动动能w一定有如下关系[ (C ) ]〔A〕ε和w都相等〔B〕ε相等,而w不相等〔C 〕w 相等,而ε不相等 〔D 〕ε和w 都不相等8.1mol 刚性双原子分子理想气体,当温度为T 时,其能为 [ (C) ]9.在容积不变的封闭容器,理想气体分子的平均速率假设提高为原来的2倍,那么 [ (D) ] 〔A 〕温度和压强都提高为原来的2倍〔B 〕温度为原来的2倍,压强为原来的4倍〔C 〕温度为原来的4倍,压强为原来的2倍〔D 〕温度和压强都为原来的4倍。
大学物理下(毛峰版)课后习题答案ch11+热力学基础+习题及答案(word文档良心出品)
第11章 热力学基础 习题及答案1、 内能和热量的概念有何不同?下面两种说法是否正确?(1) 物体的温度越高,则热量越多; (2) 物体的温度越高,则内能越大。
答:内能是组成物体的所有分子的动能与势能的总和。
热量是热传递过程中所传递的能量的量度。
内能是状态量,只与状态有关而与过程无关,热量是过程量,与一定过程相对应。
(1) 错。
热量是过程量,单一状态的热量无意义。
(2) 对。
物体的内能与温度有关。
2、V p -图上封闭曲线所包围的面积表示什么?如果该面积越大,是否效率越高? 答:封闭曲线所包围的面积表示循环过程中所做的净功.由于1Q A 净=η,净A 面积越大,效率不一定高,因为η还与吸热1Q 有关. 3、评论下述说法正确与否?(1)功可以完全变成热,但热不能完全变成功;(2)热量只能从高温物体传到低温物体,不能从低温物体传到高温物体.(3)可逆过程就是能沿反方向进行的过程,不可逆过程就是不能沿反方向进行的过程.答:(1)不正确.有外界的帮助热能够完全变成功;功可以完全变成热,但热不能自动地完全变成功; (2)不正确.热量能自动从高温物体传到低温物体,不能自动地由低温物体传到高温物体.但在外界的帮助下,热量能从低温物体传到高温物体.(3)不正确.一个系统由某一状态出发,经历某一过程达另一状态,如果存在另一过程,它能消除原过程对外界的一切影响而使系统和外界同时都能回到原来的状态,这样的过程就是可逆过程.用任何方法都不能使系统和外界同时恢复原状态的过程是不可逆过程.有些过程虽能沿反方向进行,系统能回到原来的状态,但外界没有同时恢复原状态,还是不可逆过程. 4、用热力学第一定律和第二定律分别证明,在V p -图上一绝热线与一等温线不能有两个交点.题4图解:(1)由热力学第一定律有 A E Q +∆= 若有两个交点a 和b ,则经等温b a →过程有 0111=-=∆A Q E经绝热b a →过程 012=+∆A E 012<-=∆A E从上得出21E E ∆≠∆,这与a ,b 两点的内能变化应该相同矛盾.(2)若两条曲线有两个交点,则组成闭合曲线而构成了一循环过程,这循环过程只有吸热,无放热,且对外做正功,热机效率为%100,违背了热力学第二定律. 5、一循环过程如图所示,试指出: (1)ca bc ab ,,各是什么过程; (2)画出对应的V p -图; (3)该循环是否是正循环?(4)该循环作的功是否等于直角三角形面积?(5)用图中的热量ac bc ab Q Q Q ,,表述其热机效率或致冷系数.题5图 题6图解:(1) a b 是等体过程bc 过程:从图知有KT V =,K 为斜率由vRT pV = 得 KvRp =故bc 过程为等压过程ca 是等温过程(2)V p -图如图(3)该循环是逆循环(4)该循环作的功不等于直角三角形面积,因为直角三角形不是V p -图中的图形.(5) abca bc abQ Q Q Q e -+=6、两个卡诺循环如图所示,它们的循环面积相等,试问: (1)它们吸热和放热的差值是否相同; (2)对外作的净功是否相等; (3)效率是否相同?答:由于卡诺循环曲线所包围的面积相等,系统对外所作的净功相等,也就是吸热和放热的差值相等.但吸热和放热的多少不一定相等,效率也就不相同.7、4.8kg 的氧气在27.0℃时占有1000m³的体积,分别求在等温、等压情况下,将其体积压缩到原来的1/2所需做的功、所吸收的热量以及内能的变化。
(完整版)昆明理工大学物理习题集(下)第十六章元答案
第十六章 量子物理基础一、选择题:1. 关于光的波粒二象性,下述说法正确的是 [ D ](A ) 频率高的光子易显示波动性 (B ) 个别光子产生的效果以显示粒子性(C ) 光的衍射说明光具有粒子性 (D ) 光电效应说明光具有粒子性2. 金属的光电效应的红限依赖于:[ C ](A ) 入射光的频率 (B ) 入射光的强度(C ) 金属的逸出功 (D ) 入射光的频率和金属的逸出功3. 用频率为1ν单色光照射某种金属时,测得饱和电流为1I ,以频率为2ν的单色光照射该金属时,测得饱和电流为2I ,若21I I >,则:[ D ](A )21νν> (B )21νν<(C )21νν= (D )1ν与2ν的关系还不能确定4. 光电效应中光电子的最大初动能与入射光的关系是: [ C ](A )与入射光的频率成正比 (B )与入射光的强度成正比(C )与入射光的频率成线性关系 (D )与入射光的强度成线性关系5. 两束频率、光强都相同的光照射两种不同的金属表面,产生光电效应,则: [ C ](A )两种情况下的红限频率相同 (B )逸出电子的初动能相同(C )在单位时间内逸出的电子数相同 (D )遏止电压相同6. 钾金属表面被蓝光照射时,有光电子逸出,若增强蓝光强度,则:[ A ](A )单位时间内逸出的光电子数增加 (B )逸出的光电子初动能增大(C )光电效应的红限频率增大 (D )发射光电子所需的时间增长7. 用频率为1ν的单色光照射一金属表面产生光电效应,用频率为2ν的单色光照射该金属表面也产生光电效应,而且测得它们的光电子有E k 1>E k 2的关系,则:[ A ](A )1ν>2ν (B ) 1ν<2ν (C ) 1ν=2ν (D )不能确定8. 当照射光的波长从4000Å变到3000Å时,对同一金属,在光电效应实验中测得的遏止电压将:[ D ](A )减小V 56.0 (B )增大V 165.0 (C )减小V 34.0 (D )增大V 035.19. 钠光的波长是λ,设h 为普朗克恒量,c 为真空中的光速,则此光子的:[ C ](A )能量为c h /λ (B )质量为λc h / (C )动量为λ/h(D )频率为c /λ (E )以上结论都不对10. 以下一些材料的功函数(逸出功)为:铍—eV 9.3、钯—5.0eV 、铯—1.9eV 、钨—4.5eV 。
大学物理教材下册习题及答案(学生用)[1]
⼤学物理教材下册习题及答案(学⽣⽤)[1]教材下册习题及答案(校正版2011年8⽉)第12章课后习题知识点1⾄6题应⽤理想⽓体状态⽅程计算V,摩尔质量M 和数密度n; 7题计算⾃由度;7.8.9.10.11题温度公式.内能公式及状态⽅程的综合应⽤计算; 12题(供参考)考虑重⼒时的粒⼦分布;13.14.15.16.17.18.19应⽤麦⽒速率函数的计算问题; 20.21.22.23计算平均⾃由程和碰撞频率;24,25题(供参考)由粘滞系数、导热系数求分⼦有效直径26题(供参考)应⽤范⽒⽅程计算压强并和理想⽓体计算结果进⾏⽐较.第12章课后习题答案1.122121T p T p l l = 2. 0.028kg/mol3.()()Vp p RTM M 2121-- 4. 3510452-?cm.5. 321098--??mkg . 6. 2.9×103Pa 7.(1)2(2)3(3) 6 8. (1)32510452-?m. (2)kg.2610315-? (3)3301-?mkg. (4)121084(5)2110216-?.J (6)210797?.J9.(1)310743?.J(2)310492?.J(3)20.8J10. 310675?.J,410611?.J 11.10:3,5:3 12. m .310302? (题⽬修改为273K ) 13. 0.83% 14. 1310711-??sm.1310841-??sm ., 1310501-??sm .氧⽓分⼦的三种速率为氢⽓分⼦相应速率的四分之⼀ 15. ()1 2500-?=sm O p v ;()122000-?=sm H p v ;()1221222450-?=sm H v16. (1)032v N a=(2)N127(有误)应该为7108N(3)23631v m 17.(1)略(2)0 v NK=(2)05402v v .;(有误)应该为00;23v18.(a)()2x kTm x f -=π(b)()k kTk kekT m f επεε-=23124221pkpm kT v ==ε(有误)应该为(a)()22xf x x e-=(b)()321k f ek T ε?=12k p19.1221m m =v v VU p34=20. m.710092-?,1910138-?=s.z21. (1)m.81074-?=λ,11010061-?=s.z(2) 1182⼩时 22. Pa p 1.0? 23. (1)1 91077-?=s.z (2)1321038-?s.81059-?=λ,m.d81003-?= 25.m.d 101022-?=26. Pa.,Pa .771044910994??第13章课后习题知识点1.2.3.4.6.7.8.10题是四个等值过程的功.热量和内能的计算; 5.9.10.题有关热容量的计算; 11题绝热过程与12章综合 12.13.14计算热机效率; 15.计算卡诺热机效率;16.*17是有关线性过程的功.内能和热量的计算; 18.19题计算卡诺致冷循环效率; 20题应⽤热⼆律证明; 21.22.23题计算熵.第13章课后习题答案2.(1)252J ,(2)放热294J 3. (1)JE 21056.4?=?总J.A 210325?=总JQ 21088.9?=总(2)10564?-=? J.A 210043?-=J.Q 210607?-= (3)J.A 210193?=4.(1) J E 3 106.0?=?总J.A 31090?=总 J Q 3 105.1?=总(2) JE 3106.0?=?总 J .A 310231?=总JQ 31083.1?=总5. J Q V 690=J Q P 966=(原书答案此处有误,题⽬改为51.0110p a)15.J.A310341?= (原书答案此处有误)16. (1)21→:?E=6232.5J A=1246.5J Q=7479J32→:?E=-6232.5J A=6232.5J Q=0 13→:?E=0 A=Q=-5184J (2)30.7%*17.超基过难。
理论力学习题集昆明理工大学工程力学系
第一章 静力学公理和物体的受力分析一、是非判断题1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ) 1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( ) 1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( ) 1.4 力的可传性只适用于刚体,不适用于变形体。
( ) 1.5 两点受力的构件都是二力杆。
( ) 1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( ) 1.7 力的平行四边形法则只适用于刚体。
( ) 1.8 凡矢量都可以应用平行四边形法则合成。
( ) 1.9 只要物体平衡,都能应用加减平衡力系公理。
( ) 1.10 凡是平衡力系,它的作用效果都等于零。
( ) 1.11 合力总是比分力大。
( ) 1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( ) 1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ) 1.14 当软绳受两个等值反向的压力时,可以平衡。
( ) 1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ) 1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
1.17 凡是两端用铰链连接的直杆都是二力杆。
( )1.18 如图所示三铰拱,受力F ,F 1作用, 其中F 作用于铰C 的销子上,则AC 、 BC 构件都不是二力构件。
( )二、填空题 1.1 力对物体的作用效应一般分为 效应和 效应。
1.2 对非自由体的运动所预加的限制条件称为 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 ;约束力由 力引起,且随 力的改变而改变。
1.3 图示三铰拱架中,若将作用于构件AC 上的力偶M处的约束力 。
A. 都不变;B. 只有C 处的不改变;C. 都改变;D. 只有C 处的改变。
三、受力图1-1 画出各物体的受力图。
昆明理工大学物理习题集(下)第十一章元答案
第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
昆明理工大学理学院物理实验习题参考答案
习 题(参考答案)1.仪器误差为0.005mm 的螺旋测微计测量一根直径为D 的钢丝,直径的10次测量值如下表:试计算直径D 的平均值、不确定度(用D 表示)和相对不确定度(用Dr 表示),并用标准形式表示测量结果。
解: 平均值 mm D D i i 054.2101101==∑= 标准偏差:mm D Di iD 0029.0110)(1012≈--=∑=σ算术平均误差: mm DDi iD 0024.010101≈-=∑=δ不确定度A 类分量mm U D A 0029.0==σ, 不确定度B 类分量mm U B 005.0=∆=仪∴ 不确定度mm U U UB A D006.0005.00029.02222≈+=+=相对不确定度%29.0%100054.2006.0%100≈⨯=⨯=D U U D Dr钢丝的直径为:%29.0)006.0054.2(=±=Dr D mmD或 不确定度A 类分量mm U D A 0024.0==δ , 不确定度B 类分量mm U B 005.0=∆=仪∴ 不确定度mm U U UB A D006.0005.00024.02222≈+=+=相对不确定度%29.0%100054.2006.0%100≈⨯=⨯=D U U D Dr 钢丝的直径为: %29.0)006.0054.2(=±=Dr D mm D2.指出下列测量值为几位有效数字,哪些数字是可疑数字,并计算相对不确定度。
(1) g =(9.794±0.003)m ·s2-答:四位有效数字,最后一位“4”是可疑数字,%031.0%100794.9003.0≈⨯=gr U ; (2) e =(1.61210±0.00007)⨯1019- C答:六位有效数字,最后一位“0”是可疑数字,%0043.0%10061210.100007.0≈⨯=er U ;(3) m =(9.10091±0.00004) ⨯1031-kg答:六位有效数字,最后一位“1”是可疑数字,%00044.0%10010091.900004.0≈⨯=mr U ;(4) C =(2.9979245±0.0000003)810⨯m/s 答:八位有效数字,最后一位“5”是可疑数字,%00001.0%1009979245.20000003.0≈⨯=Cr U 。
大学物理_第五版_下册_第九章到第十一章课后答案
第九章 振动9-1 一个质点作简谐运动,振幅为A ,在起始时刻质点的位移为2A -,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( )题9-1 图分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ). 9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( )()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡-=t x t x t x t x题9-2 图分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为 1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ=,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( )(A ) 落后2π (B )超前2π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ).题9-3 图9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( )(A ) 2v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()ϕωω+=t A m E k 222sin 21,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( )(A ) π23 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 22+=t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).题9-5 图9-6 有一个弹簧振子,振幅m 10022-⨯=.A ,周期s 01.=T ,初相4/π3=.试写出它的运动方程,并作出t x -图、t -v 图和t a -图.题9-6 图分析 弹簧振子的振动是简谐运动.振幅A 、初相ϕ、角频率ω是简谐运动方程()ϕω+=t A x cos 的三个特征量.求运动方程就要设法确定这三个物理量.题中除A 、ϕ已知外,ω可通过关系式T ω/π2=确定.振子运动的速度和加速度的计算仍与质点运动学中的计算方法相同.解 因T ω/π2=,则运动方程()⎪⎭⎫ ⎝⎛+=+=t π2cos cos T A t ωA x 根据题中给出的数据得 ()()m 75.0π2cos 100.22πt x +⨯=-振子的速度和加速度分别为()()-12s m π75.0π2sin 10π4d /d ⋅+⨯-==-t y x v()()-1222s m π75.0π2cos 10π8d /d ⋅+⨯-==-t y x a t x -、t -v 及t a -图如图所示.9-7 若简谐运动方程为()()m π25.0π20cos 10.0+=t x ,求:(1) 振幅、频率、角频率、周期和初相;(2)s 2=t 时的位移、速度和加速度.分析 可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式()ϕω+=t A x c o s作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、加速度的表达式,代入t 值后,即可求得结果.解 (1) 将()()m π25.0π20cos 10.0+=t x 与()ϕω+=t A x cos 比较后可得:振幅A =0.10m ,角频率1s π20-=ω,初相ϕ=0.25π,则周期s 1.0/π2==ωT ,频率Hz /1T =v .(2)s 2=t 时的位移、速度、加速度分别为()m 1007.7π25.0π40cos 10.02-⨯=+=t x()-1s m 44.4π25.0π40sin π2d /d ⋅-=+-==t x v()-22222s m 1079.2π25.0π40cos π40d /d ⋅⨯-=+-==t x a9-8 一远洋货轮,质量为m ,浮在水面时其水平截面积为S .设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力,证明货轮在水中作振幅较小的竖直自由运动是简谐运动,并求振动周期.分析 要证明货轮作简谐运动,需要分析货轮在平衡位置附近上下运动时,它所受的合外力F 与位移x 间的关系,如果满足kx F -=,则货轮作简谐运动.通过kx F -=即可求得振动周期k m ωT /π2/π2==.证 货轮处于平衡状态时[图(a )],浮力大小为F =mg .当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点O ,竖直向下为x 轴正向,如图(b )所示.则当货轮向下偏移x 位移时,受合外力为∑'+=F P F其中F '为此时货轮所受浮力,其方向向上,大小为gSx mg gSx F F ρρ+=+='题9-8 图则货轮所受合外力为kx gSx F P F -=-='-=∑ρ式中gS k ρ=是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由∑=t x m F 22d d /可得货轮运动的微分方程为 0d d 22=+m gSx t x //ρ令m gS /ρω=2,可得其振动周期为gS ρm πωT /2/π2==9-9 设地球是一个半径为R 的均匀球体,密度33m kg 1055-⋅⨯=.ρ.现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1) 证明此质点的运动是简谐运动;(2) 计算其周期.题9-9 图分析 证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证 (1) 取图所示坐标.当质量为m 的质点位于x 处时,它受地球的引力为2x m m G F x -= 式中G 为引力常量,x m 是以x 为半径的球体质量,即3/π43x ρm x =.令3/π4Gm ρk =,则质点受力kx Gmx ρF -==3/π4因此,质点作简谐运动.(2) 质点振动的周期为s 1007.5/π3/π23⨯===ρG k m T9-10 如图(a )所示,两个轻弹簧的劲度系数分别为1k 、2k .当物体在光滑斜面上振动时.(1) 证明其运动仍是简谐运动;(2) 求系统的振动频率.题9-10 图分析 从上两题的求解知道,要证明一个系统作简谐运动,首先要分析受力情况,然后看是否满足简谐运动的受力特征(或简谐运动微分方程).为此,建立如图(b )所示的坐标.设系统平衡时物体所在位置为坐标原点O ,Ox 轴正向沿斜面向下,由受力分析可知,沿Ox 轴,物体受弹性力及重力分力的作用,其中弹性力是变力.利用串联时各弹簧受力相等,分析物体在任一位置时受力与位移的关系,即可证得物体作简谐运动,并可求出频率υ.证 设物体平衡时两弹簧伸长分别为1x 、2x ,则由物体受力平衡,有2211sin x k x k mg ==θ (1)按图(b )所取坐标,物体沿x 轴移动位移x 时,两弹簧又分别被拉伸1x '和2x ',即21x x x '+'=.则物体受力为()()111222sin sin x x k mg x x k mg F '+-='+-=θθ (2) 将式(1)代入式(2)得1122x k x k F '-='-= (3) 由式(3)得11k F x /-='、22k F x /-=',而21x x x '+'=,则得到 ()[]kx x k k k k F -=+-=2121/式中()2121k k k k k +=/为常数,则物体作简谐运动,振动频率 ()m k k k k πm k ωv 2121/21/π21π2/+=== 讨论 (1) 由本题的求证可知,斜面倾角θ 对弹簧是否作简谐运动以及振动的频率均不产生影响.事实上,无论弹簧水平放置、斜置还是竖直悬挂,物体均作简谐运动.而且可以证明它们的频率相同,均由弹簧振子的固有性质决定,这就是称为固有频率的原因.(2) 如果振动系统如图(c )(弹簧并联)或如图(d )所示,也可通过物体在某一位置的受力分析得出其作简谐运动,且振动频率均为()m k k v /π2121+=,读者可以一试.通过这些例子可以知道,证明物体是否作简谐运动的思路是相同的.*9 -11 在如图(a )所示装置中,一劲度系数为k 的轻弹簧,一端固定在墙上,另一端连接一质量为1m 的物体A ,置于光滑水平桌面上.现通过一质量m 、半径为R 的定滑轮B (可视为匀质圆盘)用细绳连接另一质量为2m 的物体C .设细绳不可伸长,且与滑轮间无相对滑动,求系统的振动角频率.题9-11 图分析 这是一个由弹簧、物体A 、C 和滑轮B 组成的简谐运动系统.求解系统的振动频率可采用两种方法.(1) 从受力分析着手.如图(b )所示,设系统处于平衡状态时,与物体A 相连的弹簧一端所在位置为坐标原点O ,此时弹簧已伸长0x ,且g m kx 20=.当弹簧沿x O 轴正向从原点O 伸长x 时,分析物体A 、C 及滑轮B 的受力情况,并分别列出它们的动力学方程,可解得系统作简谐运动的微分方程.(2)从系统机械能守恒着手.列出系统机械能守恒方程,然后求得系统作简谐运动的微分方程.解1 在图(b )的状态下,各物体受力如图(c )所示.其中()i F 0x x k +-=.考虑到绳子不可伸长,对物体A 、B 、C 分别列方程,有()22101d d tx m x x k F T =+-= (1) 22222d d tx m F g m T =- (2) ()2212d d 21tx mR J R F F T T ==-α (3) g m kx 20= (4)方程(3)中用到了22T T F F '=、11T T F F '=、22/mR J =及R a /=α.联立式(1) ~式(4)可得02d d 2122=+++x m m m k t x / (5) 则系统振动的角频率为 ()221//m m m k ++=ω解2 取整个振动装置和地球为研究系统,因没有外力和非保守内力作功,系统机械能守恒.设物体平衡时为初始状态,物体向右偏移距离x (此时速度为v 、加速度为a )为末状态,则由机械能守恒定律,有()20222212021212121x x k ωJ m m gx m E +++++-=v v 在列出上述方程时应注意势能(重力势能和弹性势能)零点的选取.为运算方便,选初始状态下物体C 所在位置为重力势能零点;弹簧原长时为弹性势能的零点.将上述方程对时间求导得()tx x x k t ωωJ t m t m g m d d d d d d d d 00212+++++-=v v v vv 将22/mR J =,v =R ω,22d /d d /d t x t =v 和02kx g m = 代入上式,可得 02d d 2122=+++x m m m k t x / (6) 式(6)与式(5)相同,表明两种解法结果一致.9-12 一放置在水平桌面上的弹簧振子,振幅A =2.0 ×10-2 m ,周期T =0.50s.当t =0 时,(1) 物体在正方向端点;(2) 物体在平衡位置、向负方向运动;(3) 物体在x =-1.0×10-2m 处, 向负方向运动; (4) 物体在x =-1.0×10-2 m 处,向正方向运动.求以上各种情况的运动方程.分析 在振幅A 和周期T 已知的条件下,确定初相φ是求解简谐运动方程的关键.初相的确定通常有两种方法.(1) 解析法:由振动方程出发,根据初始条件,即t =0 时,x =x 0 和v =v 0 来确定φ值.(2) 旋转矢量法:如图(a )所示,将质点P 在Ox 轴上振动的初始位置x 0 和速度v 0 的方向与旋转矢量图相对应来确定φ.旋转矢量法比较直观、方便,在分析中常采用.题9-12 图解 由题给条件知A =2.0 ×10-2 m ,1s π4/2-==T ω,而初相φ可采用分析中的两种不同方法来求.解析法:根据简谐运动方程()ϕω+=t A x cos ,当0t =时有()ϕω+=t A x c o s 0,sin 0ωA -=v .当(1)A x =0时,1cos 1=ϕ,则01=ϕ;(2)00=x 时,0cos 2=ϕ,2π2±=,因00<v ,取2π2=; (3)m 100120-⨯=.x 时,50cos 3.=ϕ,3π3±= ,由00<v ,取3π3=; (4)m 100120-⨯-=.x 时,50cos 4.-=ϕ,3ππ4±= ,由00>v ,取3π44=. 旋转矢量法:分别画出四个不同初始状态的旋转矢量图,如图(b )所示,它们所对应的初相分别为01=ϕ,2π2=,3π3=,3π44=. 振幅A 、角频率ω、初相φ均确定后,则各相应状态下的运动方程为(1)()m t πcos4100.22-⨯=x(2)()()m /2πt π4cos 100.22+⨯=-x(3)()()m /3πt π4cos 100.22+⨯=-x(4)()()m /3π4t π4cos 100.22+⨯=-x 9-13 有一弹簧, 当其下端挂一质量为m 的物体时, 伸长量为9.8 ×10-2 m .若使物体上、下振动,且规定向下为正方向.(1) 当t =0 时,物体在平衡位置上方8.0 ×10-2 m 处,由静止开始向下运动,求运动方程.(2) 当t =0 时,物体在平衡位置并以0.6m·s -1的速度向上运动,求运动方程.分析 求运动方程,也就是要确定振动的三个特征物理量A 、ω和φ.其中振动的角频率是由弹簧振子系统的固有性质(振子质量m 及弹簧劲度系数k )决定的,即ω=k 可根据物体受力平衡时弹簧的伸长来计算;振幅A 和初相φ需要根据初始条件确定.题9-13 图解 物体受力平衡时,弹性力F 与重力P 的大小相等,即F =mg .而此时弹簧的伸长量Δl =9.8 ×10-2m .则弹簧的劲度系数k =F /Δl =mg /Δl .系统作简谐运动的角频率为1s 10-=∆==l g m k //ω(1) 设系统平衡时,物体所在处为坐标原点,向下为x 轴正向.由初始条件t =0 时,x 10 =8.0 ×10-2 m 、v 10 =0 可得振幅()m 10082210210-⨯=+=./ωv x A ;应用旋转矢量法可确定初相π1=[图(a )].则运动方程为()()m π10t cos 100.821+⨯=-x(2)t =0 时,x 20 =0、v 20 =0.6 m·s -1 ,同理可得()m 100622202202-⨯=+=./ωv x A ;2/π2=[图(b )].则运动方程为()()m π5.010t cos 100.622+⨯=-x9-14 某振动质点的x -t 曲线如图(a )所示,试求:(1) 运动方程;(2) 点P 对应的相位;(3) 到达点P 相应位置所需的时间.分析 由已知运动方程画振动曲线和由振动曲线求运动方程是振动中常见的两类问题.本题就是要通过x -t 图线确定振动的三个特征量A 、ω和0ϕ,从而写出运动方程.曲线最大幅值即为振幅A ;而ω、0ϕ通常可通过旋转矢量法或解析法解出,一般采用旋转矢量法比较方便. 解 (1) 质点振动振幅A =0.10 m.而由振动曲线可画出t 0 =0 和t 1 =4 s时旋转矢量,如图(b ) 所示.由图可见初相3/π=0(或3/π50=),而由()3201//ππω+=-t t 得1s 24/π5-=ω,则运动方程为 ()m 3/π24π5cos 10.0⎪⎭⎫ ⎝⎛-=t x题9-14 图(2) 图(a )中点P 的位置是质点从A /2 处运动到正向的端点处.对应的旋转矢量图如图(c ) 所示.当初相取3/π0-=时,点P 的相位为()000=-+=p p t ωϕϕ(如果初相取成3/π50=,则点P 相应的相位应表示为()π2=0t ω+=p 0p . (3) 由旋转矢量图可得()3/π0=-p t ω,则s 61.=p t .9-15 作简谐运动的物体,由平衡位置向x 轴正方向运动,试问经过下列路程所需的最短时间各为周期的几分之几? (1) 由平衡位置到最大位移处;(2) 由平衡位置到x =A /2 处;(3) 由x =A /2处到最大位移处.解 采用旋转矢量法求解较为方便.按题意作如图所示的旋转矢量图,平衡位置在点O .(1) 平衡位置x 1 到最大位移x 3 处,图中的旋转矢量从位置1 转到位置3,故△φ1=2/π,则所需时间 411//T t =∆=∆ωϕ(2) 从平衡位置x 1 到x 2 =A /2 处,图中旋转矢量从位置1转到位置2,故有△φ2=6/π,则所需时间1222//T t =∆=∆ωϕ(3) 从x 2 =A /2 运动到最大位移x 3 处,图中旋转矢量从位置2 转到位置3,有△φ3=3/π,则所需时间633//T t =∆=∆ωϕ题9-15 图9-16 在一块平板下装有弹簧,平板上放一质量为1.0 kg 的重物.现使平板沿竖直方向作上下简谐运动,周期为0.50s,振幅为2.0×10-2 m .求:(1) 平板到最低点时,重物对平板的作用力;(2) 若频率不变,则平板以多大的振幅振动时,重物会跳离平板? (3) 若振幅不变,则平板以多大的频率振动时, 重物会跳离平板?题9-16 图分析 按题意作示意图如图所示.物体在平衡位置附近随板作简谐运动,其间受重力P 和板支持力F N 作用,F N 是一个变力.按牛顿定律,有22d d ty m F mg F N =-= (1) 由于物体是随板一起作简谐运动,因而有()ϕωω+-==t A ty a cos d d 222,则式(1)可改写为()ϕωω++=t mA mg F N cos 2 (2)(1) 根据板运动的位置,确定此刻振动的相位ϕω+t ,由式(2)可求板与物体之间的作用力.(2) 由式(2)可知支持力N F 的值与振幅A 、角频率ω和相位(ϕω+t )有关.在振动过程中,当π=+t ω时N F 最小.而重物恰好跳离平板的条件为N F =0,因此由式(2)可分别求出重物跳离平板所需的频率或振幅.解 (1) 由分析可知,重物在最低点时,相位ϕω+t =0,物体受板的支持力为()N 9612222./=+=+=t mAmg mA mg F N πω 重物对木块的作用力N F ' 与N F 大小相等,方向相反. (2) 当频率不变时,设振幅变为A ′.根据分析中所述,将N F =0及π=+t ω代入分析中式(2),可得m 102.6π4//2222-⨯==='gT ωm mg A(3) 当振幅不变时,设频率变为v '.同样将N F =0及π=+t ω代入分析中式(2),可得Hz 52.3/π21π22==='mA mg ωv 9-17 两质点作同频率、同振幅的简谐运动.第一个质点的运动方程为()ϕω+=t A x cos 1,当第一个质点自振动正方向回到平衡位置时,第二个质点恰在振动正方向的端点,试用旋转矢量图表示它们,并求第二个质点的运动方程及它们的相位差.题9-17 图解 图示为两质点在时刻t 的旋转矢量图,可见第一个质点M 的相位比第二个质点N 的相位超前2/π,即它们的相位差Δφ=π/2.故第二个质点的运动方程应为()2cos 2/πϕω-+=t A x9-18 图(a )为一简谐运动质点的速度与时间的关系曲线,且振幅为2cm ,求(1) 振动周期;(2) 加速度的最大值;(3) 运动方程.分析 根据v -t 图可知速度的最大值v max ,由v max =Aω可求出角频率ω,进而可求出周期T 和加速度的最大值a max =Aω2 .在要求的简谐运动方程x =A cos (ωt +φ)中,因为A 和ω已得出,故只要求初相位φ即可.由v -t 曲线图可以知道,当t =0 时,质点运动速度v 0 =v max /2 =Aω/2,之后速度越来越大,因此可以判断出质点沿x 轴正向向着平衡点运动.利用v 0 =-Aωsinφ就可求出φ.解 (1) 由ωA v =max 得1s 51-=.ω,则 s 2.4/π2==ωT(2)222max s m 1054--⋅⨯==.ωA a(3) 从分析中已知2/sin 0ωA ωA =-=v ,即21sin /-=ϕ6/π5,6/π--=因为质点沿x 轴正向向平衡位置运动,则取6/π5-=,其旋转矢量图如图(b )所示.则运动方程为 ()()cm 6/π55.1cos 2-=t x题9-18 图9-19 有一单摆,长为1.0m ,最大摆角为5°,如图所示.(1) 求摆的角频率和周期;(2) 设开始时摆角最大,试写出此单摆的运动方程;(3) 摆角为3°时的角速度和摆球的线速度各为多少?题9-19 图分析 单摆在摆角较小时(θ<5°)的摆动,其角量θ与时间的关系可表示为简谐运动方程()ϕωθθ+=t cos max ,其中角频率ω仍由该系统的性质(重力加速度g 和绳长l )决定,即l g /=ω.初相φ与摆角θ,质点的角速度与旋转矢量的角速度(角频率)均是不同的物理概念,必须注意区分.解 (1) 单摆角频率及周期分别为s 01.2/π2;s 13.3/1====-ωT l g ω(2) 由0=t 时o max 5==θθ可得振动初相0=ϕ,则以角量表示的简谐运动方程为t θ13.3cos 36π=(3) 摆角为3°时,有()60cos max ./==+θθϕωt ,则这时质点的角速度为()()1max 2max max s2180800cos 1sin /d d --=-=+--=+-=..ωθϕωωθϕωωθθt t t线速度的大小为 1s 2180/d d --==.t l v θ讨论 质点的线速度和角速度也可通过机械能守恒定律求解,但结果会有极微小的差别.这是因为在导出简谐运动方程时曾取θθ≈sin ,所以,单摆的简谐运动方程仅在θ 较小时成立.9-20 为了测月球表面的重力加速度,宇航员将地球上的“秒摆”(周期为2.00s),拿到月球上去,如测得周期为4.90s,则月球表面的重力加速度约为多少? (取地球表面的重力加速度2E s m 809-⋅=.g )解 由单摆的周期公式g l T /π2=可知21T g /∝,故有2M 2E E M T T g g //=,则月球的重力加速度为()2E 2M E M s m 631-⋅==./g T T g9-21 一飞轮质量为12kg ,内缘半径r =0.6m,如图所示.为了测定其对质心轴的转动惯量,现让其绕内缘刃口摆动,在摆角较小时,测得周期为2.0s ,试求其绕质心轴的转动惯量.9-21 题图分析 飞轮的运动相当于一个以刃口为转轴的复摆运动,复摆振动周期为c /π2mgl J T =,因此,只要知道复摆振动的周期和转轴到质心的距离c l ,其以刃口为转轴的转动惯量即可求得.再根据平行轴定理,可求出其绕质心轴的转动惯量.解 由复摆振动周期c /π2mgl J T =,可得22π4/mgrT J =.则由平行轴定理得222220m kg 8324⋅=-=-=./mr mgrT mr J J π9-22 如图(a )所示,质量为1.0 ×10-2kg 的子弹,以500m·s -1的速度射入木块,并嵌在木块中,同时使弹簧压缩从而作简谐运动,设木块的质量为4.99 kg ,弹簧的劲度系数为8.0 ×103 N·m-1 ,若以弹簧原长时物体所在处为坐标原点,向左为x 轴正向,求简谐运动方程.题9-22 图分析 可分为两个过程讨论.首先是子弹射入木块的过程,在此过程中,子弹和木块组成的系统满足动量守恒,因而可以确定它们共同运动的初速度v 0 ,即振动的初速度.随后的过程是以子弹和木块为弹簧振子作简谐运动.它的角频率由振子质量m 1 +m 2 和弹簧的劲度系数k 确定,振幅和初相可根据初始条件(初速度v 0 和初位移x 0 )求得.初相位仍可用旋转矢量法求.解 振动系统的角频率为 ()121s 40-=+=m m k /ω由动量守恒定律得振动的初始速度即子弹和木块的共同运动初速度v 0 为()12110s m 01-⋅=+=.m m v m v又因初始位移x 0 =0,则振动系统的振幅为 ()m 105.2//202020-⨯==+=ωωx A v v 图(b )给出了弹簧振子的旋转矢量图,从图中可知初相位2/π0=,则简谐运动方程为()()m π0.540cos 105.22+⨯=-t x9-23 如图(a )所示,一劲度系数为k 的轻弹簧,其下挂有一质量为m 1 的空盘.现有一质量为m 2 的物体从盘上方高为h 处自由落入盘中,并和盘粘在一起振动.问:(1) 此时的振动周期与空盘作振动的周期有何不同? (2) 此时的振幅为多大?题9-23 图分析 原有空盘振动系统由于下落物体的加入,振子质量由m 1 变为m 1 + m 2,因此新系统的角频率(或周期)要改变.由于()2020/ωx A v +=,因此,确定初始速度v 0 和初始位移x 0 是求解振幅A 的关键.物体落到盘中,与盘作完全非弹性碰撞,由动量守恒定律可确定盘与物体的共同初速度v 0 ,这也是该振动系统的初始速度.在确定初始时刻的位移x 0 时,应注意新振动系统的平衡位置应是盘和物体悬挂在弹簧上的平衡位置.因此,本题中初始位移x 0 ,也就是空盘时的平衡位置相对新系统的平衡位置的位移.解 (1) 空盘时和物体落入盘中后的振动周期分别为k m ωT /π2/π21== ()k m m ωT /π2/π221+='='可见T ′>T ,即振动周期变大了.(2) 如图(b )所示,取新系统的平衡位置为坐标原点O .则根据分析中所述,初始位移为空盘时的平衡位置相对粘上物体后新系统平衡位置的位移,即g km g k m m k g m l l x 2211210-=+-=-= 式中l 1 =m 1/k 为空盘静止时弹簧的伸长量,l 2 =(m 1 +m 2)/k 为物体粘在盘上后,静止时弹簧的伸长量.由动量守恒定律可得振动系统的初始速度,即盘与物体相碰后的速度gh m m m m m m 22122120+=+=v v 式中gh 2=v 是物体由h 高下落至盘时的速度.故系统振动的振幅为()212202021/m m kh k g m ωx A ++='+=v 本题也可用机械能守恒定律求振幅A .9-24 如图所示,劲度系数为k 的轻弹簧,系一质量为m 1 的物体,在水平面上作振幅为A 的简谐运动.有一质量为m 2 的粘土,从高度h 自由下落,正好在(a )物体通过平衡位置时,(b )物体在最大位移处时,落在物体上.分别求:(1)振动周期有何变化? (2)振幅有何变化?题9-24图分析 谐振子系统的周期只与弹簧的劲度系数和振子的质量有关.由于粘土落下前后,振子的质量发生了改变,因此,振动周期也将变化.至于粘土如何落下是不影响振动周期的.但是,粘土落下时将改变振动系统的初始状态,因此,对振幅是有影响的.在粘土落到物体上的两种不同情况中,系统在水平方向的动量都是守恒的.利用动量守恒定律可求出两种情况下系统的初始速度,从而利用机械能守恒定律(或公式()2020/ωx A v +=)求得两种情况下的振幅.解 (1) 由分析可知,在(a )、(b )两种情况中,粘土落下前后的周期均为 k m ωT /π2/π21== ()k m m ωT /π2/π221+='='物体粘上粘土后的周期T ′比原周期T 大.(2) (a ) 设粘土落至物体前后,系统振动的振幅和物体经过平衡位置时的速度分别为A 、v 和A ′、v ′.由动量守恒定律和机械能守恒定律可列出如下各式2/2/212v m A k =' (1)()2/2/2212v '+='m m A k (2)()v v '+=211m m m (3)联立解上述三式,可得 ()A m m m A 211+='/即A ′<A ,表明增加粘土后,物体的振幅变小了.(b ) 物体正好在最大位移处时,粘土落在物体上.则由动量守恒定律知它们水平方向的共同速度v ′=m 1v /(m 1 +m 2 ) =0,因而振幅不变,即A ′=A9-25 质量为0.10kg 的物体,以振幅1.0×10-2 m 作简谐运动,其最大加速度为4.0 m·s -1 求:(1) 振动的周期;(2) 物体通过平衡位置时的总能量与动能;(3) 物体在何处其动能和势能相等? (4) 当物体的位移大小为振幅的一半时,动能、势能各占总能量的多少?分析 在简谐运动过程中,物体的最大加速度2max ωA a =,由此可确定振动的周期T .另外,在简谐运动过程中机械能是守恒的,其中动能和势能互相交替转化,其总能量E =kA 2/2.当动能与势能相等时,E k =E P =kA 2/4.因而可求解本题.解 (1) 由分析可得振动周期s 314.0/π2/π2max ===a A ωT(2) 当物体处于平衡位置时,系统的势能为零,由机械能守恒可得系统的动能等于总能量,即J 100221213max 22k -⨯====.m Aa m A E E ω(3) 设振子在位移x 0 处动能与势能相等,则有42220//kA kx =得 m 100772230-⨯±=±=./A x(4) 物体位移的大小为振幅的一半(即2x A =/)时的势能为 4221212P /E A k kx E =⎪⎭⎫ ⎝⎛==则动能为 43P K /E E E E =-= 9-26 一氢原子在分子中的振动可视为简谐运动.已知氢原子质量m =1.68 ×10-27 Kg ,振动频率υ=1.0 ×1014 Hz ,振幅A =1.0 ×10-11m.试计算:(1) 此氢原子的最大速度;(2) 与此振动相联系的能量.解 (1) 简谐运动系统中振子运动的速度v =-A ωsin (ωt +φ),故氢原子振动的最大速度为12max s m 1028.62-⋅⨯===A πA ωv v(2) 氢原子的振动能量J 1031.32/202max -⨯==v m E9-27 质量m =10g 的小球与轻弹簧组成一振动系统, 按()()cm 3/ππ85.0+=t x 的规律作自由振动,求(1) 振动的角频率、周期、振幅和初相;(2) 振动的能量E ;(3) 一个周期内的平均动能和平均势能.解 (1) 将()()cm 3/ππ85.0+=t x 与()ϕω+=t A x cos 比较后可得:角频率1s π8-=ω,振幅A =0.5cm ,初相φ=π/3,则周期T =2π/ω=0.25 s(2) 简谐运动的能量 J 1090721522-⨯==.ωmA E (3) 简谐运动的动能和势能分别为()ϕωω+=t mA E K 222sin 21 ()ϕωω+=t mA E P 222cos 21 则在一个周期中,动能与势能对时间的平均值分别为()J 109534d sin 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T K ()J 109534d cos 2115220222-⨯==+=⎰.ωϕωωmA t t mA T E T P 9-28 已知两同方向、同频率的简谐运动的运动方程分别为()()m π75.010cos 05.01+=t x ;()()m π25.010cos 06.02+=t x .求:(1) 合振动的振幅及初相;(2) 若有另一同方向、同频率的简谐运动()()m 10cos 07033ϕ+=t x .,则3ϕ为多少时,x 1 +x 3 的振幅最大? 又3ϕ 为多少时,x 2 +x 3 的振幅最小?题9-28 图分析 可采用解析法或旋转矢量法求解.由旋转矢量合成可知,两个同方向、同频率简谐运动 的合成仍为一简谐运动,其角频率不变;合振动的振幅()12212221cos 2ϕϕ-++=A A A A A ,其大小与两个分振动的初相差12ϕϕ-相关.而合振动的初相位()()[]22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=/ 解 (1) 作两个简谐运动合成的旋转矢量图(如图).因为2/πΔ12-=-=,故合振动振幅为 ()m 1087cos 2212212221-⨯=-++=.ϕϕA A A A A 合振动初相位 ()()[]rad1.48arctan11cos cos sin sin arctan22112211==++=ϕϕϕϕϕA A A A / (2) 要使x 1 +x 3 振幅最大,即两振动同相,则由π2Δk =得,...2,1,0,π75.0π2π213±±=+=+=k k k要使x 1 +x 3 的振幅最小,即两振动反相,则由()π12Δ+=k 得(),...2,1,0,π25.1π2π1223±±=+=++=k k k9-29 手电筒和屏幕质量均为m ,且均被劲度系数为k 的轻弹簧悬挂于同一水平面上,如图所示.平衡时,手电筒的光恰好照在屏幕中心.设手电筒和屏幕相对于地面上下振动的表达式分别为()11cos ϕω+=t A x 和()22cos ϕω+=t A x .试求在下述两种情况下,初相位φ1 、φ2 应满足的条件:(1) 光点在屏幕上相对于屏静止不动;(2) 光点在屏幕上相对于屏作振幅A ′=2A 的振动.并说明用何种方式起动,才能得到上述结果.题9-29 图分析 落在屏幕上的光点相对地面的运动和屏幕相对于地面的运动都已知道,且是两个简谐运动.因此由运动的合成不难写出光点相对屏的运动(实际上是两个同方向、同频率简谐运动的合成).根据相对运动公式,有屏对地光对屏光对地x x x +=依题意()()2211ϕωϕω+==+==t A x x t A x x cos cos 屏对地光对地所以 ()()212121cos cos ϕπωϕω++++='+=-=t A t A x x x x x 光对屏 可见光点对屏的运动就是两个同方向、同频率简谐运动()11c o sϕω+=t A x 和()22cos ϕπω++='t A x 的合成.用与上题相同的方法即可求解本题.其中合运动振幅()12222πcos 2-+++='A A A A .解 (1) 根据分析和参考上题求解,当要求任一时刻光点相对于屏不动,即0=光对屏x ,就是当()π12π12+=-+k 时,即π212k +=时(,...,,210±±=k ),A ′=0.当光点相对于屏作振幅为2A 的运动时,要求π2π12k =-+,即()π1212-+=k . (2) 由以上求解可知,要使光点相对于屏不动,就要求手电筒和屏的振动始终要同步,即同相位,为此,把它们往下拉A 位移后,同时释放即可;同理,要使光点对屏作振幅为2A 的谐振动,两者必须相位相反,为此,让手电筒位于平衡点0 上方的-A 处,而屏则位于+A 处同。
昆明理工大学城市学院大学物理下学期练习题
昆明理工大学城市学院大学物理下学期练习题第九章 电磁感应一.单项选择题:1、半径为a 的圆线圈置于磁感强度为B的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法向与B 的夹角060 时,线圈中已通过的电量与线圈面积及转动的时间的关系是:(A )(A )与线圈面积成正比,与时间无关。
(B )与线圈面积成正比,与时间成正比。
(C )与线圈面积成反比,与时间成正比。
(D )与线圈面积成反比,与时间无关。
2、如右图,导体棒AB 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴O O 转动(角速度与B 同方向),BC 的长度为棒长的3/1,则:(A)(A )A 点比B 点电势高。
(B )A 点与B 点电势相等。
(C )A 点比B 点电势低。
(D )有稳恒电流从A 点流向B 点。
3、一根长为L 的铜棒,在均匀磁场B 中以匀角速度 旋转着,B的方向垂直铜棒转动的平面,如图。
设0 t 时,铜棒与Ob 成 角,则在任一时刻t这根铜棒两端之间的感应电动势是:(E)(A ))cos(2t B L (B )t B L cos 212(C ))cos(22 t B L (D )B L 2 (E )B L 221 4、自感为H 25.0的线圈中,当电流在s )16/1(内由A 2均匀减小到零时,线圈中自感电动势的大小为:(C )(A )V 3108.7 。
(B )V 0.2。
(C )V 0.8。
(D )V 2101.3 。
5、对于单匝线圈取自感系数的定义式为IL m / 。
当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L :(C)(A )变大,与电流成反比关系。
(B )变小。
(C )不变。
(D )变大,但与电流不成反比关系。
6、两个相距不太远的平面圆线圈,怎样放置可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章 热力学基础一.选择题1.以下是关于可逆过程和不可逆过程的判断,其中正确的是: [ D ](1)可逆热力学过程一定是准静态过程。
(2)准静态过程一定是可逆过程。
(3)不可逆过程就是不能向相反方向进行的过程。
(4)凡有摩擦的过程,一定是不可逆过程。
(A )(1)、(2)、(3) (B )(1)、(3)、(4)(C )(2)、(4) (D )(1)、(4)2.如图,一定量的理想气体,由平衡状态A 变到平衡状态)(B A p p B =,则无论经过的是什么过程,系统必然:[ B ](A )对外作正功 (B )内能增加(C )从外界吸热 (D )向外界放热3.一定量某理想气体所经历的循环过程是:从初态) ,(00T V 开始,先经绝热膨胀使其体积增大1倍,再经等容升温回复到初态温度0T ,最后经等温过程使其体积回复为0V ,则气体在此循环过程中: [ B ](A )对外作的净功为正值 (B )对外作的净功为负值(C )内能增加了 (D )从外界净吸的热量为正值4.1mol 理想气体从p –V 图上初态a 分别经历如图所示的(1)或(2)过程到达末态b 。
已知b a T T <,则这两过程中气体吸收的热量1Q 和2Q 的关系是: [ A ]0 (A)21>>Q Q 0 (B)12>>Q Q0 (C)12<<Q Q 0 (D)21<<Q Q5. 1mol 理想气体从同一状态出发,分别经绝热、等压、等温三种膨胀过程,则内能增加的过程是: [ B ](A )绝热过程 (B )等压过程 (C )等温过程 (D )不能确定6. 一定量的理想气体的初态温度为T ,体积为V ,先绝热膨胀使体积变为2V ,再等容吸热使温度恢复为T ,最后等温压缩为初态,则在整个过程中气体将: [ A ](A )放热 (B )对外界作功 (C )吸热 (D )内能增加 (E )内能减少7. 一定量的理想气体经等容升压过程,设在此过程中气体内能增量为ΔU ,气体作功为W ,外界对气体传递的热量为Q ,则: [ D ](A )∆U < 0,W < 0 (B )∆U > 0,W > 0(C )∆U < 0,W = 0 (D )∆U > 0,W = 08. 图中直线ab 表示一定量理想气体内能U 与体积V 的关系,其延长线通过原点O ,则ab 所代表的热力学过程是:[ B ](A )等温过程 (B )等压过程(C )绝热过程 (D )等容过程9.一定量的理想气体经历acb 过程时吸热200 J ,则经历acbda 过程时,吸热为:[ B ](A )-1200 J (B )-1000 J(C )-700 J (D )1000 J10.一定量的理想气体,从p -V 图上初态a 经历(1)或(2)过程到达末态b ,已知a 、b 两态处于同一条绝热线上(图中虚线是绝热线),两过程气体吸、热情况是: [ B ](A )(1)过程吸热,(2)过程放热(B )(1)过程放热,(2)过程吸热(C )两过程都吸热(D )两过程都放热11.一绝热容器被隔板分成两半,一半是真空,另一半是理想气体。
若把隔板抽出,气体将进行自由膨胀,达到平衡后 [ A ](A )温度不变,熵增加 (B )温度升高,熵增加。
(C )温度降低,熵增加 (D )温度不变,熵不变。
12.气缸中有一定量的氮气(初为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍? [ D ]522 (A) 512 (B ) 722 (C ) 712 (D )13. 如图一定量的理想气体从相同的初态A 分别经准静态过程AB ,AC(绝热过程)及AD 到达温度相同的末态,则气体吸(放)热的情况是:[ B ](A )AB 吸热,AD 吸热 (B )AB 放热,AD 吸热(C )AB 放热,AD 放热 (D )AB 吸热,AD 放热14.如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功A 1和A 2的关系是 [ D ]2121 , (A)A A ==ηη 2121 , (B)A A =>ηη2121 , (C)A A >=ηη 2121 , (D)A A <=ηη15. 工作在相同的高温热源和低温热源的两热机,其工作物质不同,则两部可逆热机的效率η1和η2的关系为: [ B ](A )η1>η2 (B )η1=η2 (C ) η1<η2 (D )不能确定16.根据热力学第二定律可知:[ D ](A )功可以全部转换为热,但热不能全部转换为功(B )热可以从高温物体传到低温物体,但不能从低温物体传到高温物体(C )不可逆过程就是不能向相反方向进行的过程(D )一切自发过程都是不可逆的17.“理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对外作功”。
对此说法,有如下几种评论,正确的是:[ C ](A )不违反热力学第一定律,但违反热力学第二定律(B )不违反热力学第二定律,但违反热力学第一定律(C )不违反热力学第一定律,也不违反热力学第二定律(D )违反热力学第一定律,也违反热力学第二定律18.一定量的理想气体向真空作绝热自由膨胀,体积由V 1增至V 2,在此过程中气体的[ A ](A )内能不变,熵增加 (B )内能不变,熵减少(C )内能不变,熵不变 (D )内能增加,熵增加19.在下列各种说法中,哪些是正确的? [ B ](1)热平衡过程就是无摩擦的、平衡力作用的过程。
(2)热平衡过程一定是可逆过程。
(3)热平衡过程是无限多个连续变化的平衡态的连接。
(4)热平衡过程在p - V 图上可用一连续曲线表示。
(A )(1)、(2) (B )(4)、(3)(C )(2)、(3)、(4) (D )(1),(2)、(3)、(4)二、填空题1、一定量的理想气体在等压过程中,气体密度随___温度压强_______________而变化,在等温过程中,气体密度随_____压强___________而变化。
2、 热力学系统的内能是系统____温度_____________的单值函数,要改变热力学系统的内能,可以通过对热力学系统__做功或热传递_____________来达到目的。
3、如图所示,一定量的理想气体经历c b a →→过程,在此过程中气体从外界吸收热量Q ,系统内能变化ΔE ,Q ___>0_______,ΔE ____>0______。
(填“> 0”或 “< 0”)4、压强为1×105帕,体积为3升的空气(视为理想气体)经等温压缩到体积为0.5升时,则空气____放_______热(填“吸”或“放”),传递的热量为______537j______(ln6=1.79)。
5、1 mol 的单原子理想气体,从状态Ⅰ(p 1,V 1,T 1)变化至状态Ⅱ(p 2,V 2,T 2),如图所示。
则此过程气体对外作功为:))((211221V V p p -+_, 吸收热量为:)(23))((21121221T T R V V p p -+-+ 6、处于平衡态A 的热力学系统,若经准静态等容过程变到平衡态B ,将从外界吸收热量416J ;若经准静态等压过程变到与平衡态B 有相同温度的平衡态C ,将从外界吸收热量582J 。
所以,从平衡态A 变到平衡态C 的准静态等压过程中系统对外界所作的功为_166J________。
7、一定量理想气体,从同一状态开始使其容积由V 1膨胀到2V 1,分别经历以下三种过程:⑴等压过程;⑵等温过程;⑶绝热过程。
其中:____等压_______________过程气体对外作功最多;____等压_________过程气体内能增加最多;____等压_________过程气体吸收的热量最多。
8、某理想气体等温压缩到给定体积时外界对气体作功1A ,又经绝热膨胀返回原来体积时气体对外作功2A ,则整个过程中气体从外界吸收的热量Q =1A -;内能增加了ΔE =2A -9、一定量的单原子理想气体在等压膨胀过程中对外作的功A 与吸收的热量Q 之比A /Q =___2/5___________,若为双原子理想气体,则比值A /Q =_____2/7_____________。
10、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209 J ,气体升温1 K ,此过程中气体内能增量为___124.7j_________,外界传给气体的热量为______-84.3j__________ 。
11、刚性双原子分子的理想气体在等压下膨胀所作的功为A ,则传递给气体的热量为______7A/2__________。
12、图示为一理想气体几种状态变化过程的p –V 图,其中MT 为等温线,MQ 为绝热线,在AM 、BM 、CM 三种准静态过程中:⑴温度降低的是____AM____________过程;⑵气体放热的是____BM____________过程。
13、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为______500__________ K 。
今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加____100___________K 。
14、一卡诺热机在每次循环中都要从温度为400K 的高温热源吸热418J,向低温热源放热334.4J,则可知低温热源的温度为____320K____________。
15、卡诺致冷机,其低温热源温度为T 2 = 300K ,高温热源温度为T 1 = 450K ,每一循环从低温热源吸热Q 2 = 400J 。
已知该致冷机的致冷系数为 2122T T T W Q e -==(式中W 为外界对系统作的功),则每一循环中外界必须作功W =______200J_____________________。
16、一热机由温度为727℃ 的高温热源吸热,向温度为527℃ 的低温热源放热。
若热机在最大效率下工作,且每一循环吸热2000 J ,则此热机每一循环作功_____400___________J 。
17、所谓第二类永动机是指___从单一热源吸热,在循环中不断对外作功的热机,它不可能制成是因为违背了 热力学第二定律18、热力学第二定律的克劳修斯叙述热力学第二定律, 热量不能自动地从低温物体传向高温物体开尔文叙述是:不可能制成一种循环动作的热机,只从单一热源吸热完全变为有用的功,而其它物体不发生任何变化。