集合与简易逻辑单元测试题

合集下载

2020年人教版高中数学单元测试-集合与简易逻辑用语(附答案)

2020年人教版高中数学单元测试-集合与简易逻辑用语(附答案)

2020年人教版新课标高中数学模块测试卷集合与简易逻辑用语一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{0,1,2,3,4,5}U =,集合{1,2,3,5}A =,{2,4}B =,则()uA B =( )A .{0,2,4}B .{4}C .{1,2,4}D .{0,2,3,4}2.已知集合{0,2,3}A =,{|,,}B x x a b a b A ==⋅∈,则集合B 的子集的个数是( ) A .4B .8C .15D .163.如果甲是乙的必要不充分条件,乙是丙的充要条件,丙是丁的必要不充分条件,则丁是甲的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件4.设a ,b ∈R ,集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=( )A .1B .1-C .2D .2-5.若集合{0,1,2}M =,{(,)|210210,,}N x y x y x y x y M =-+--∈且,则N 中元素的个数为( ) A .9B .6C .4D .26.命题:q x ∀∈R ,3210x x -+的否定是( ) A .32,10x x x ∃∈-+RB .32,10x x x ∃∈-+RC .32,10x x x ∃∈-+R >D .32,10x x x ∀∈-+R >7.已知p 是r 的充分条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件;③r 是q 的必要条件;④p ⌝是s ⌝的必要条件; ⑤r 是s 的充分条件.则正确命题的序号是( ) A .①④⑤B .①②④C .②③⑤D .②④⑤8.已知集合{}2|0M x x x =->,{|1}N x x =,则M N =( )A .[1,)+∞B .(1,)+∞C .∅D .(,0)(1,)-∞+∞9.设集合{|0}M x x m =-,{}2|(1)1,N y y x x ==--∈R .若M N =∅,则实数m 的取值范围是( ) A .[1,)-+∞B .(1,)-+∞C .(,1]-∞-D .(,1)-∞-10.已知全集U R =,集合{|(2)0}A x x x =+<,{|||1}B x x =≤,则如图所示的阴影部分表示的集合是( )A .(2,1)-B .[1,0)[1,2)-C .(2,1)[0,1]--D .[0,1]11.设条件p :关于x 的方程()221210m x mx -+-=的两根一个小于0,一个大于1,若p 是q 的必要不充分条件,则条件q 可设为( ) A .(1,1)m ∈-B .(0,1)m ∈C .(1,0)m ∈-D .(2,1)m ∈-12.关于x 的方程2210ax x ++=至少有一个负根的充要条件是( ) A .01aB .1a <C .1aD .01a <或0a <二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中的横线上)13.已知非空集合M 满足:{1,2,3,4,5}M ⊆,且若x M ∈,则6x M -∈.则满足条件的集合M 有__________个.14.设全集S 有两个子集A ,B ,若sA x x B ∈⇒∈,则x A ∈是x sB ∈的条件是__________. 15.关于x 的不等式2043x ax x +++>的解集为(3,1)(2,)--+∞的充要条件是__________.16.已知集合{|||1}A x x a =-,{}2|540B x x x =-+,若AB =∅,则实数a 的取值范围是__________. 三、解答题(本大题共6小题,共70分,解答时写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{|(2)[(31)]0}A x x x a =--+<,()22|01x a B x x a ⎧⎫-⎪⎪=⎨⎬-+⎪⎪⎩⎭<. (1)当2a =时,求A B ⋂; (2)求使B A ⊆的实数a 的取值范围.18.(本小题满分12分)若{|68,,}A x x a b a b ==+∈Z ,{|2,}B x x m m ==∈Z ,求证:A B =.19.(本小题满分12分)已知命题p :方程2220a x ax +-=在区间[1,1]-上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤.若命题“p 或q ”是假命题,求实数a 的取值范围.20.(本小题满分12分)已知{}2|320A x x x =++≥,{}2|410,B x mx x m m =-+-∈R >,若 0A B =,且A B A =,求实数m 的取值范围.21.(本小题满分12分)已知{}2:|10p A x x ax =++≤,{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,求实数a 的取值范围.22.(本小题满分12分)已知集合{}2|8200P x x x =--≤,{||1|}S x x m =-. (1)若()PS P ⊆,求实数m 的取值范围.(2)是否存在实数m ,使“x P ∈”是“x S ∈”的充要条件?若存在,求出m 的取值范围;若不存在,请说明理由.2020年人教版新课标高中数学模块测试卷集合与简易逻辑用语一、 1.【答案】A【解析】由题意得uA {0,4}=,又{2,4}B =,所以(){0,2,4}uA B =,故选A .2.【答案】D【解析】∵{0,4,6,9}B =,∴B 的子集的个数为4216=. 3.【答案】A【解析】因为丁⇒丙⇔乙⇒甲,故丁⇒甲(传递性). 4.【答案】C【解析】∵集合{1,,}0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,又0a ≠∵,0a b +=∴,即a b =-, 1ba=-∴,1b =. 2b a -=∴,故选C .5.【答案】C【解析】N ∵为点集,x M ∈,y M ∈,∴由x ,y 组成的点有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2).其中满足210x y -+≥且210x y --≤的仅有(0,0),(0,1),(1,1),(2,1)四个元素.6.【答案】C【解析】原命题的否定是“32,10x x x ∃∈-+R >”. 7.【答案】B【解析】由已知有p r ⇒,q r ⇒,r s ⇒,s q ⇒,由此得g s ⇒且s q ⇒,r q ⇒且q r ⇒,所以①正确,③不正确. 又p q ⇒,所以②正确.④等价于p s ⇒,正确.r s ⇒且s r ⇒,⑤不正确.故选B .8.【答案】B【解析】由20x x ->得0x <或1x >,∵(1,)M N =+∞.故选B .9.【答案】D【解析】由已知得(,]M m =-∞,[1,)N =-+∞,∵M N =∅,1m ∴-<,故选D .10.【答案】C【解析】由已知得{|20}A x x =-<<,{|11}B x x =-≤≤,所以(2,1]A B =-,[1,0)A B =-,所以阴影部分表示的集合为()(2,1)[0,1]A BA B =--⋃,故选C .11.【答案】C【解析】构造函数()22121y m x mx =-+-,则0x =时,1y =-,函数的图像开口向上,由1x =时21210m m -+-<得2m >或0m <,又p 是q 的必要不充分条件,所以p ⇒q ,q p ⇒,故选C .12.【答案】C【解析】若0∆=,则440a -=,1a =,满足条件,当0∆>时,4401a a -⇒><.所以1a ≤. 二、 13.【答案】7【解析】列举如下:{1,5}M =,{2,4}M =,{3}M =,{1,3,5)M =,{2,3,4}M =,{1,2,4,5}M =,{1,2,3,4,5}M =,共7个.14.【答案】必要 不充分 【解析】由已知得SA B ⊆,两边取补集,有()SS SA B ⊇,即SA B ⊇,所以S x B x A ∈⇒∈,反之,不一定成立,故x ∈A 是S x B ∈的必要不充分条件. 15.【答案】2a =-【解析】令2430x x ++=,得3x =-或1x =-,∴可猜想20a +=,即2a =-.代入原不等式得22043x x x -++>,解得(3,1)(2,)x ∈--+∞.故2a =-.16.【答案】(2,3)【解析】由题意得{|11}A x a x a =-+≤≤,{|14}B x x x 或,A B =∅,1114a a ->⎧⎨+<⎩∴,23a ∴<<.三、17.【答案】(1)∵当2a =时,{|27}A x x =<<,{|45}B x x =<<,{|45}A B x x =∴<<(2)由已知得{}2|21B x a x a =+<<,当13a <时,{|312}A x a x =+<<,要使B A ⊆,必须满足2231,12,a a a +⎧⎨+⎩此时1a =-; 当13a =时,A =∅,使B A ⊆的a 不存在;当13a >时,(2,31)A a =+,要使B A ⊆,必须满足2222,131,12,a a a a a ⎧⎪++⎨⎪+≠⎩此时13a <.综上可知,使B A ⊆的实数a 的取值范围为(1,3]{1}-.18.【答案】证明:①设t A ∈,则存在,a b ∈Ζ,使得682(34)t a b a b =+=+.34a b +∈Z ∵t B ∈∴,t B ∴∈即A B ⊆.②设t B ∈,则存在m ∈Z ,使得26(5)84t m m m ==⨯-+⨯.0a =∴t A ∈∴ 5m -∈Z ∵,4m ∈Z ,,即B A ⊆. 由①②知A B =.19.【答案】由2220a x ax +-=,得(2)(1)0ax ax +-=, 显然0a ≠,2x a =-∴或1x a=. [1,1]x ∈-∵,故21a ≤或11a,||1a ∴. “只有一个实数x 满足2220x ax a ++≤”即抛物线222y x ax a =++与x 轴只有一个交点,2480a a ∆=-=∴,或2a =,∴命题“p 或q ”为真命题时“||1a ≥或0a =”.∵命题“p 或q ”为假命题,∴实数a 的取值范围为{|10 01}a a a -<<或<<. 20.【答案】A B A =∵,B A ⊆∴,又AB =∅,B =∅∴{}2|410,B x mx x m m =-+-∈R ∵>,∴对一切x ∈R ,使得2410mx x m -+-≤恒成立,于是有0,164(1)0,m m m ⎧⎨--⎩<≤解得117m -∴实数m 的取值范围是117|2m m ⎧⎫-⎪⎪⎨⎬⎪⎪⎩⎭21.【答案】{}2|320{|12}B x x x x x =∈-+=R ,p ∵是q 的充分不必要条件,p q ⇒∴,q ⇒p ,即A 是B 的真子集,可A =∅或方程210x ax ++=的两根在区间[1,2]内,210a ∆=-∴<或0,12,2110,4210,a a a ∆⎧⎪⎪-⎪⎨⎪++⎪++⎪⎩解得22a -<. 22.【答案】由28200x x --≤,得210x -,所以{|210P x x =-≤≤. 由|1|x m -≤,得11m x m -+.所以{|11}S x m x m =-+≤≤. (1)要使()PS P ⊆,则S P ⊆①若S =∅,则0m <;②若S ≠∅,则0,12,110,m m m ⎧⎪--⎨⎪+⎩解得03m .综合①②可知,实数m 的取值范围为(,3]-∞.(2)由“x P ∈”是“x S ∈”的充要条件,知S P =,则12,110,m m -=-⎧⎨+=⎩此方程组无解,所以这样的实数m 不存在.。

数学集合与逻辑单元测试题

数学集合与逻辑单元测试题

数学集合与逻辑单元测试题一、选择题1. 设集合A={x | x是正整数,0 < x < 10},则A的元素个数是:A. 9B. 10C. 8D. 72. 设集合B={x | x是偶数,0 < x < 20},则B的元素个数是:A. 10B. 9C. 11D. 83. 若集合C={1, 2, 3, 4, 5},则集合C的幂集的元素个数是:A. 5B. 10C. 16D. 324. 设集合D={x | x是负整数,x < -5},则集合D的元素个数是:A. 6B. 5C. 4D. 75. 已知集合E={1, 2, 3, 4},集合F={3, 4, 5, 6},则E∪F的元素个数是:A. 4B. 5C. 6D. 7二、填空题1. 设集合A={x | x是小于10的自然数},则A的元素个数为______。

2. 若集合B={1, 2, 3, 4, 5},则集合B的幂集的元素个数为______。

3. 设集合C={x | x是负整数,x < -10},则集合C的元素个数为______。

4. 设集合D={a, b, c},集合D的真子集的个数为______。

5. 已知集合E={1, 2, 3, 4, 5},集合F={4, 5, 6, 7},则E∩F的元素个数为______。

三、判断题1. 空集是任意集合的子集。

A. 对B. 错2. 若A是B的真子集,那么A一定是B的子集。

A. 对B. 错3. 幂集的所有元素都是原集合的子集。

A. 对B. 错4. 若A∪B=A,则集合A是集合B的子集。

A. 对B. 错5. 若集合A={1, 2, 3},集合B={3, 4, 5},则B⊈A。

A. 对B. 错四、计算题1. 设集合A={1, 2, 3, 4},集合B={3, 4, 5},则A∪B=______。

2. 若集合C={x | x是整数,0 < x < 10},集合D={x | x是奇数,0 < x < 10},则C∩D=______。

高一数学上学期单元测试题(三)——集合与简易逻辑

高一数学上学期单元测试题(三)——集合与简易逻辑

高一数学上学期单元测试题(三)——集合与简易逻辑1.集合运算中一定要分清代表元的含义。

[举例]已知集合P={y|y=x2,x∈R},Q={y|y=2x,x∈R}求P∩Q。

解析:集合P、Q均为函数值域(不要误以为是函数图象,{(x,y)| y=x2,x∈R}才表示函数图象),P=[0,+ ,Q=(0,+ ,P∩Q=Q。

[提高]A={x|y=3x+1,y∈Z},B={y|y=3x+1,x∈Z},求A∩B。

2.空集是任何集合的子集,空集是任何非空集合的真子集。

[举例]若A={x|x2<a} B={x|x>2}且A∩B=Φ,求a的范围(注意A有可能为Φ)。

解析:当a>0时,集A=(- ,),要使A∩B=Φ,则≤2,得0<a≤4,当a≤0时,A=Φ,此时A∩B=Φ,综上:a≤4(A=Φ的情况很容易疏漏!)[巩固]若A={x∣ax=1},B={x∣x2=1}且B∩A=A,求a的所有可能的值的集合。

[关注]A∩B=A等价于A B3.充要条件可利用集合包含思想判定:若A B,则A是B充分条件;若A B,则A 是B必要条件;若A B且A B即A=B,则A是B充要条件。

换言之:由A B则称A是B的充分条件,此时B是A的必要条件;由B A则称B是A的充分条件,此时A是B的必要条件。

有时利用原命题与逆否命题等价,“逆命题”与“否命题”等价转换去判定也很方便。

充要条件的问题要十分细心地去辨析:“哪个命题”是“哪个命题”的充分(必要)条件;注意区分:“甲是乙的充分条件(甲乙)”与“甲的充分条件是乙(乙甲)”。

[举例] 若非空集合,则“或”是“”的()(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)既非充分又非必要条件解析:命题“或”等价于“∈”,显然是的真子集,∴“或”是“”的必要不充分条件。

[巩固]已知直线、和平面,则‖的一个必要但不充分条件是()()‖且‖()且()、与成等角()‖且4.命题“A或B”真当且仅当“A、B中至少要一个真”;命题“A或B”假当且仅当“A、B全假”。

高三一轮单元测试01:集合、简易逻辑(带答案)

高三一轮单元测试01:集合、简易逻辑(带答案)

高三一轮单元测试01:集合、简易逻辑(时间120分钟 满分150分)一、选择题(每小题5分,共50分)1.设集合P ={3,4,5},Q ={4,5,6,7},定义P ※Q ={(a ,b)|a ∈P ,b ∈Q},则P ※Q 中元素的个数为A .3B .4C .7D .122.设A 、B 是两个集合,定义A -B ={x|x ∈A ,且x B},若M ={x||x +1|≤2},N ={x|x =|sinα|,α∈R},则M -N =A .[-3,1]B .[-3,0)C .[0,1]D .[-3,0]3.映射f :A→B ,如果满足集合B 中的任意一个元素在A中都有原象,则称为“满射”.已知集合A 中有4个元素,集合B 中有3个元素,那么从A 到B 的不同满射的个数为A .24B .6C . 36D .724.若lga +lgb =0(其中a≠1,b≠1),则函数f(x)=a x 与g(x)=b x 的图象A .关于直线y =x 对B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.若任取x 1、x 2∈[a ,b],且x 1≠x 2,都有f(x 1+x 22)>f(x 1)+f(x 2)2成立,则称f(x) 是[a ,b]上的凸函数.试问:在下列图像中,是凸函数图像的为6.若函数f(x)=x - p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是A .[-1,+∞)B .[1,+∞)C .(-∞,-1]D .(-∞,1]7.设函数f(x)=x|x|+bx +c ,给出下列四个命题: ①c =0时,f(x)是奇函数 ②b =0,c>0时,方程f(x)=0只有一个实根 ③f(x)的图象关于(0,c)对称 ④方程f(x)=0至多两个实根其中正确的命题是A .①④B .①③C .①②③D .①②④8.函数y =e x +1e x -1,x ∈(0,+∞)的反函数是A .y =lnx -1x +1,x ∈(-∞,1) B .y =lnx +1x -1,x ∈(-∞,1)AC .y =lnx -1x +1,x ∈(1,+∞) D .y =lnx +1x -1,x ∈(1,+∞) 9.如果命题P :{}∅∈∅,命题Q :{}∅⊂∅,那么下列结论不正确的是 A .“P 或Q”为真 B .“P 且Q”为假C .“非P”为假D .“非Q”为假10.函数y =x 2-2x 在区间[a ,b]上的值域是[-1,3],则点(a ,b)的轨迹是图中的A .线段AB 和线段AD B .线段AB 和线段CDC .线段AD 和线段BC D .线段AC 和线段BD二、填空题(每小题4分,共20分)11.已知函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时,f(x)的图象如图所示,则不等式f(x)cosx<0的解集是 . 12.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800 元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为 元.13.已知函数f(x)=,2))((.0,cos 2,0,)(02=⎩⎨⎧<<≤=x f f x x x x x f 若π则x 0= .14.若对于任意a ∈[-1,1],函数f(x)=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是 .15.如果函数f(x)的定义域为R ,对于m ,n ∈R ,恒有f(m +n)=f(m)+f(n)-6,且f(-1)是不大于5的正整数,当x>-1时,f(x)>0.那么具有这种性质的函数f(x)= .(注:填上你认为正确的一个函数即可) 三、解答题16.(12分)二次函数f(x)满足f (x +1)-f (x)=2x 且f (0)=1.⑴求f (x)的解析式;⑵在区间[-1,1]上,y =f (x)的图象恒在y =2x +m 的图象上方,试确定实数m 的范围. 17.(12分)已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+.⑴当a =2时,求A ⋂B ;⑵求使B ⊆A 的实数a 的取值范围.18.(14分)已知命题p :方程0222=-+ax x a 在[-1,1]上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤,若命题“p 或q”是假命题,求实数a 的取值范围.19.(14分)设函数()221x x f x a -=+⋅-(a 为实数).⑴若a<0,用函数单调性定义证明:()y f x =在(,)-∞+∞上是增函数;⑵若a =0,()y g x =的图象与()y f x =的图象关于直线y =x 对称,求函数()y g x = 的解析式.20.(14分)函数xax x f -=2)(的定义域为(0,1](a 为实数).⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.21.(14分)对于函数)0(2)1()(2≠-+++=a b x b ax x f ,若存在实数0x ,使00)(x x f =成立,则称0x 为)(x f 的不动点.⑴当a =2,b =-2时,求)(x f 的不动点;⑵若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围;⑶在⑵的条件下,若)(x f y =的图象上A 、B 两点的横坐标是函数)(x f 的不动点,且直线1212++=a kx y 是线段AB 的垂直平分线,求实数b 的取值范围。

(完整)集合与逻辑关系综合测试题(含答案),推荐文档

(完整)集合与逻辑关系综合测试题(含答案),推荐文档


D. p 假 q 真
B. “p 且 q”为真
C. p 真 q
11.若集合 A1 , A2 ,满足 A1 A2 =A,则称( A1 , A2 ) 为集合 A 的
一种分析,并规定:当且仅当 A1 = A2 时,( A1 , A2 )与( A2 A1 ,)
为集合 A 的同一种分析,则集合的 A=a1, a2 , a3不同分析
B是
14.若不等式 x2 ax 1 0 和 ax2 x 1 >0 均不成立,则 a 的
取值范围是
15.含有三个实数的集合可表示为 a, b ,1 a2 , a b, 0 ,则 a
18.(12 分)解关于 x 的不等式: (理)(ax-1)(x-1)>0
(文)(x-1)(x-a)>0
19.(12 分)已知命题 p: x2 mx 1 0 有两个不相等的负数根;
a2005 b2006
16.以下命题:①“菱形的两条对角线互相平分”的逆命题;②
x x2 1 0, x R 或{0} ;③对于命题 p 且 q,若
p 假 q 真,则 p 且 q 为假;④有两条相等且有一个角是
60 “是”一个三角形为等边三角形的充要条件。其中为真
命题的序号为
f (x) 的“不动点”和“稳定点”的集合分别记为 A 和 B,
Cu A Cu B
1
答案:
一.选择题: 1.C 2.C 3.D 10.D 11.A
二.填空题:
4.A 12.B
13. {,{1},{2},{1, 2}}
16.② ③ ④ 三.解答题:
17.
5.B 6.B 7.D 8.B 9.C
14. 2 a 1
15.-1
4

第一章——集合与简易逻辑单元测试题

第一章——集合与简易逻辑单元测试题

第一章——集合与简易逻辑单元测试题一.选择题:(5×10分,每题有且仅有一个选项正确)1.已知全集U={0, 1, 2, 3, 4, 5},集合M={0, 3, 5}, N={1, 4, 5},则集合M∩(C U N)等于 ( )A .{5}B .{0, 3}C .{0, 2, 3, 5}D .{0, 1, 3, 4, 5}2.已知集合M={x | x 2<4}, N={x | x 2-2x -3<0},则集合M ∩N= ( )A .{x |x <-2}B .{x |x >3}C .{x |-1<x <2}D .{x |2<x <3}3.已知集合M={0, 1, 2},N={x |x =2a , a ∈M},则集合M ∩N= ( )A .{0}B .{0, 1}C .{1, 2}D .{0, 2}4.设M={y |y =2x , x ∈R},N={y |y = x 2, x ∈R},则 ( )A .M ∩N={(2, 4)}B .M ∩N={(2, 4), (4, 16)}C .M=ND .M ⊆ N5.若非空集合M ⊆N ,则“a ∈M 或a ∈N ”是“a ∈M ∩N ”的 ( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件6.已知向量集合M={a |a =(1, 2)+λ(3, 4), λ∈R}, N={a |a =(-2, -2)+λ(4, 5), λ∈R },则M ∩N 等于 ( )A .{(1, 1)}B .{(1, 1), (-2, -2)}C .{(-2, -2)}D .∅7.已知数列{a n },那么“对任意的n ∈N*,点P n (n,a 0)都在直线y =2x +1上”是“{a n }为等差数列”的 ( )A .必要而不充分条件B .充分而不必要条件C .充要条件D .既不充分也不必要条件8.设集合}3,2,1{=I ,A 是I 的子集,如果把满足M A I ⋃=的集合M 叫做集合A 的“配集”,则当}2,1{=A 时,A 的配集共有 ( )A. 1个B. 2个C. 3个D. 4个 9.如果0)2(22<+-+k kx kx 恒成立,则实数k 的取值范围是( ) A. 01≤≤-k B. 01<≤-k C. 01≤<-k D. 01<<-k10.已知0>c ,设P:函数x c y =在R 上单调递减;Q 为函数)122(1)(2++=x cx g x g 的值域为R .如果“P 且Q ”为假命题,“P 或Q ”为真命题,则·的取值范围是 ( )A. )1,21( B.),21(+∞ C. ),1(]21,0(+∞⋃ D. )21,0( 二.填空题(5×5=25分)11.设集合A={5, log 2(a +3)},集合B={a , b },若A ∩B={2},则A ∪B=________.12.“a =3”是直线“ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合”的 ______________条件。

高一上数学单元测试题(一)集合与简易逻辑

高一上数学单元测试题(一)集合与简易逻辑

高一(上)数学检测题集合与简易逻辑(满分:150分,时间:120分钟)命题:唐仲伦班级 姓名 学号 分数一、选择题 :本大题共12题;每小题5分共60分。

1、已知}2|{≥∈=x R x M ,π=a ,则下列四个式子 ① M a ∈ ② M a ⊆}{ ③ M a ⊆ ④ π=M a }{ ,其中正确的是( )A 、①②B 、①④C 、②③D 、①②④2、设全集}2,1,0{},0,1,2{},2,1,0,1,2{=--=--=B A U 则=B A C U )(( )A 、}0{B 、}1,2{--C 、}2,1{D 、}2,1,0{3、已知,0:,0:≠≠ab q a p 则p 是q 的( )A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分又不必要条件4、已知集合}4,3,2,1{=A ,那么A 的真子集的个数是( )A 、15B 、16C 、3D 、45、如果命题“p 或q ”是假命题,那么( )A 、命题“非p ”与命题“非q ”的真值相同B 、命题p 与命题“非q ”的真值相同C 、命题q 与命题“非p ”的真值相同D 、命题“非p 且非q ”是真命题6、不等式21≥-xx 的解集是( ) A 、}1|{-≤x x B 、}1|{-≥x x C 、}01|{>-≤x x x 或 D 、}01|{<≤-x x7、已知},|{},11|{2x y y N xx M ==<=则=N M ( )A 、ΦB 、}1|{>x xC 、}0|{<x xD 、}10|{><x x x 或8、方程0122=++x ax 至少有一个负的实根的充要条件是( )A 、1<aB 、10≤<aC 、1≤aD 、100≤<<a a 或9、考察下列每组对象哪几组能够成集合?(B )(1)比较小的数;(2)不大于10的非负偶数;(3)所有三角形;(4)高个子男生;A .(1)(4) B.(2)(3) C.(2) D.(3)10.下列关系中表述正确的是 ( D )A .B .C .D .11.已知全集 U={1,2,3,4,5},A={1,5},BCUA,则集合B 的个数是(C )A .5 B. 6 C. 7 D. 812 . 如果集合A={x|ax2+2x +1=0}中只有一个元素,则a 的值是 ( B )A .0B .0 或1C .1D .不能确定二、填空题:本大题共4小题;每小题5分,共20分。

高考总复习数学《集合和简单逻辑》单元测试题(含详细解答)

高考总复习数学《集合和简单逻辑》单元测试题(含详细解答)

第一章 《集合与简易逻辑》单元测试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内)1.(理科)(2009年高考全国卷Ⅱ理,2)设集合A ={x |x >3},B ={x |x -1x -4<0},则A ∩B =( )A .∅B .(3,4)C .(-2,1)D .(4,+∞)【解析】 ∵B ={x |x -1x -4<0}={x |(x -1)(x -4)<0}={x |1<x <4},∴A ∩B =(3,4),选B.【答案】 B(文科)(2009年高考全国卷Ⅱ文,1)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则∁U (M ∪N )= ( )A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7} 【解析】 ∵M ∪N ={1,3,5,6,7}, ∴∁U (M ∪N )={2,4,8},选C. 【答案】 C2.(2009年高考山东卷理(文))集合A ={0,2,a },B ={1,a 2},若A ∪B ={0,1,2,4,16},则a 的值为 ( )A .0B .1C .2D .4【解析】 根据并集的概念,可知{a ,a 2}={4,16},故只能是a =4.选D. 【答案】 D 3.(2009年江西理,3)已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素.若A ∩B 非空,则A ∩B 的元素个数为 ( )A .mnB .m +nC .n -mD .m -n 【解析】 U =A ∪B 中有m 个元素, ∵(∁U A )∪(∁U B )=∁U (A ∩B )中有n 个元素, ∴A ∩B 中有m -n 个元素,故选D.【答案】 D4.(2009年北师大附中)已知集合A ,B ,I ,A ⊂I ,B ⊂I ,且A ∩B ≠∅,则下面关系式正确的是 ( )A .(∁I A )∪(∁IB )=I B .(∁I A )∪B =IC .A ∪B =ID .(∁I (A ∩B ))∪(A ∩B )=I【解析】 作出Venn 图可得出D 正确,如右图所示. 【答案】 D5.(能力题)已知x ,y ,z 为非零实数,代数式x |x |+y |y |+z |z |+xyz|xyz |的值所组成的集合为M ,则下列判断正确的是 ( )A .0∉MB .2∈MC .-4∉MD .4∈M【解析】 当x ,y ,z 全为负时,x |x |+y |y |+z |z |+xyz|xyz |=-4;当x ,y ,z 两负一正或两正一负时, x |x |+y |y |+z |z |+xyz |xyz |=0; 当x ,y ,z 全为正时,x |x |+y |y |+z |z |+xyz|xyz |=4.故选D.【答案】 D6.若命题p :x ∈A ∩B ,则“非p ”是 ( ) A .x ∈A 且x ∈B B .x ∉A 或x ∉B C .x ∉A 且x ∉B D .x ∈A ∪B【解析】 x ∈A ∩B ⇔x ∈A 且x ∈B ,“且”的否定是“或”,因此非p :x ∉A 或x ∉B .故选B.【答案】 B7.设甲、乙、丙是三个命题,如果甲是乙的必要条件,丙是乙的充分条件但不是乙的必要条件,那么 ( )A .丙是甲的充分条件,但不是甲的必要条件B .丙是甲的必要条件,但不是甲的充分条件C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件 【解析】 根据题意画出图示,如右图,∴丙是甲的充分条件,但不是甲的必要条件.故选A. 【答案】 A8.已知关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式ax -bx -2>0的解集是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(1,2)D .(2,+∞) 【解析】 由题意知a >0且1是方程ax +b =0的根, ∴a +b =0,b =-a ∴ax -b x -2>0⇒ax +a x -2>0 ∴(x +1)(x -2)>0即x >2或x <-1. 【答案】 A9.已知函数f (x )=x α(α则不等式f (|x |)≤2 ( ) A .{x |0<x ≤2} B .{x |0≤x ≤4} C .{x |-2≤x ≤2} D .{x |-4≤x ≤4}【解析】 本题考查解不等式.由f (12)=22⇒α=12,故f (|x |)≤2⇔|x |12≤2⇔|x |≤4,故其解集为{x |-4≤x ≤4}.故选D.【答案】 D10.(理科)(2009年高考重庆卷理,5)不等式|x +3|-|x -1|≤a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为 ( )A .(-∞,-1]∪[4,+∞)B .(-∞,-2]∪[5,+∞)C .[1,2]D .(-∞,1]∪[2,+∞)【解析】 |x +3|-|x -1|≤|(x +3)-(x -1)|=4,即|x +3|-|x -1|的最大值是4,因此依题意有a 2-3a ≥4,(a -4)(a +1)≥0,a ≤-1或a ≥4,选A.【答案】 A11.(理科)已知函数f (x )=⎩⎪⎨⎪⎧-x +1, x <0,x -1, x ≥0,则不等式x +(x +1)f (x +1)≤1的解集是( )A .{x |-1≤x ≤2-1}B .{x |x ≤1}C .{x |x ≤2-1}D .{x |-2-1≤x ≤2-1} 【解析】 本题考查分段函数、复合函数、二次不等式等知识.原不等式化为⎩⎪⎨⎪⎧x +1<0x +(x +1)(-x -1+1)≤1或⎩⎪⎨⎪⎧x +1≥0x +(x +1)x ≤1 分别解得x <-1或-1≤x ≤2-1,故原不等式解集是{x |x ≤2-1}.故选C. 【答案】 C(文科)若不等式2x 2+2kx +k4x 2+6x +3<1对于一切实数都成立,则k 的取值范围是 ( )A .(-∞,+∞)B .(1,3)C .(-∞,3)D .(-∞,1)∪(3,+∞)【解析】 4x 2+6x +3=4(x 2+32x )+3=4(x +34)2+34∴原不等式等价于2x 2+2kx +k <4x 2+6x +3 即2x 2+(6-2k )x +3-k >0对任意k 恒成立. ∴Δ=(6-2k )2-8(3-k )<0 ∴1<k <3.故选B. 【答案】 B12.(创新预测题)对于集合M ,N ,定义M -N ={x |x ∈M 且x ∉N },M N =(M -N )∪(N -M ).设A ={y |y =x 2-3x ,x ∈R },B ={y |y =-2x ,x ∈R },则A B = ( )A .(-94,0]B .[-94,0)C .(-∞,-94)∪[0,+∞)D .(-∞,-94]∪(0,+∞)【解析】 由题意可知M N ={x |x ∈M 且x ∉N }∪{x |x ∈N 且x ∉M },即表示集合M ∪N去掉M ∩N 的部分,而A ={y |y ≥-94},B ={y |y <0},因此A ∪B =R ,A ∩B ={y |-94≤y <0},A B =(-∞,-94)∪[0,+∞),故选C.【答案】 C第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在相应的位置上)13.(2009年高考重庆卷文,11)设U ={n |n 是小于9的正整数},A ={n ∈U |n 是奇数},B ={n ∈U |n 是3的倍数},则∁U (A ∪B )=________.【解析】 ∵U ={1,2,3,4,5,6,7,8},A ={1,3,5,7},B ={3,6},∴A ∪B ={1,3,5,6,7},∴∁U (A ∪B )={2,4,8}. 【答案】 {2,4,8}14.已知p :-4<x -a <4,q :(x -2)(3-x )>0,若非p 是非q 的充分条件,则实数a 的取值范围是________.【解析】 p :-4<x -a <4⇔a -4<x <a +4, q :(x -2)(3-x )>0⇔2<x <3.又非p 是非q 的充分条件,即非p ⇒非q . 它的等价命题是q ⇒p .所以⎩⎪⎨⎪⎧a -4≤2a +4≥3⇒-1≤a ≤6.【答案】 [-1,6]15.(理科)(2009年黄冈中学模拟)已知R 上的减函数y =f (x )的图象过P (-2,3),Q (3,-3)两个点,那么|f (x +2)|≤3的解集为________.【解析】 据题意知原不等式等价于f (3)=-3≤f (x +2)≤3=f (-2),结合单调性可知-2≤x +2≤3,即x ∈[-4,1].【答案】 [-4,1](文科)若-1<a <0,则不等式(x -a )(ax -1)<0的解集为________. 【解析】 方程(x -a )(ax -1)=0的两根为x 1=1a ,x 2=a ,∵-1<a <0,∴1a <a ,则不等式的解集为{x |x >a 或x <1a}. 【答案】 {x |x >a 或x <1a}16.(理科)设集合A ={(x ,y )|y ≥12|x -2|},B ={(x ,y )|y ≤-|x |+b },A ∩B ≠∅.(1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________.【解析】 (1)在同一直角坐标系中画出y =12|x -2|和y =-|x |的图象.观察图象得当把y =-|x |的图象向上平移1个单位时,两图象开始有交点,故b ≥1.(2)A ∩B 的平面区域如图阴影部分.设z =x +2y ,则y =-x 2+z2.当y =-x 2+z2过(0,b )时z 最大,∴0+2b =9,∴b =92.【答案】 (1)[1,+∞);(2)92(文科)设集合A ={(x ,y )|y ≥|x -2|,x ≥0},B ={(x ,y )|y ≤-x +b },A ∩B ≠∅. (1)b 的取值范围是________;(2)若(x ,y )∈A ∩B ,且x +2y 的最大值为9,则b 的值是________.【解析】 由图可知,当y =-x 往右移动到阴影区域时,才满足条件,所以b ≥2;要使z =x +2y 取得最大值,则过点(0,b ),有0+2b =9⇒b =92.【答案】 (1)[2,+∞);(2)92三、解答题(本题共6大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)已知p :{x |⎩⎪⎨⎪⎧x +2≥0x -10≤0},q :{x |1-m ≤x ≤1+m ,m >0},若非p是非q 的必要不充分条件,求实数m 的取值范围.【解析】 解法一 p :即{x |-2≤x ≤10},∴非p :A ={x |x <-2或x >10},非q :B ={x |x <1-m 或x >1+m ,m >0}. ∵非p 是非q 的必要不充分条件,∴B A ⇔⎩⎪⎨⎪⎧m >01-m ≤-2⇒m ≥9,1+m ≥10即m 的取值范围是{m |m ≥9}.解法二 ∵非p 是非q 的必要不充分条件, ∴q 是p 的必要不充分条件. ∴p 是q 的充分不必要条件. 而p :P ={x |-2≤x ≤10},q :Q ={x |1-m ≤x ≤1+m ,m >0}.∴P Q ⇔⎩⎪⎨⎪⎧m >01-m ≤-21-m ≥10⇒m ≥9.【答案】 {m |m ≥9}18.(12分)(2009年北京海淀模拟)已知集合A ={x |2x +2x -2<1},B ={x |x 2>5-4x },C ={x ||x-m |<1,m ∈R }.(1)求A ∩B ;(2)若(A ∩B )⊆C ,求m 的取值范围.【解析】 (1)∵A ={x |2x +2x -2<1}得2x +2x -2<1⇔(x +4)(x -2)<0 ∴A ={x |-4<x <2}又x 2+4x -5>0⇔(x +5)(x -1)>0 ∴B ={x |x <-5或x >1} ∴A ∩B ={x |1<x <2}.(2)∵C ={x ||x -m |<1,m ∈R } 即C ={x |m -1<x <m +1,m ∈R } ∵(A ∩B )⊆C ∴⎩⎪⎨⎪⎧m -1≤1m +1≥2∴1≤m ≤2 【答案】 (1){x |1<x <2} (2)1≤m ≤2 19.(12分)(河北省正定中学2010届高三上学期第一次考试)已知集合A ={x |x 2-3(a +1)x+2(3a +1)<0},B ={x |x -2ax -(a 2+1)<0},(1)当a =2时,求A ∩B ;(2)求使B ⊆A 的实数a 的取值范围.【解析】 (1)当a =2时,A =(2,7),B =(4,5) ∴A ∩B =(4,5).(2)∵a ≠1时,B =(2a ,a 2+1);a =1时,B =φ①当a <13时,A =(3a +1,2)要使B ⊆A 必须⎩⎪⎨⎪⎧2a ≥3a +1a 2+1≤2此时a =-1. ②当a =13时A =φ,B =φ,所以使B ⊆A 的a 不存在,③a >13,A =(2,3a +1)要使B ⊆A ,必须⎩⎪⎨⎪⎧2a ≥2a 2+1≤3a +1此时1≤a ≤3. 综上可知,使B ⊆A 的实数a 的范围为[1,3]∪{-1}. 【答案】 (1)(4,5) (2)[1,3]∪{-1}20.(12分)(衡水中学2010届下学期第一次调研考试高三年级数学试卷)已知关于x 的不等式ax -5x 2-a<0的解集为M .(1)当a =9时,求集合M ;(2)若3∈M 且5∉M ,求实数a 的取值范围. 【解析】 (1)当a =9时,由原不等式得9x -5x 2-9<0⇔x -59(x -3)(x +3)<0 ∴x <-3或59<x <3.∴M =(-∞,-3)∪(59,3)(2)3∈M ⇔3a -532-a <0⇔a -53a -9>0⇔a <53或a >9,5∉M ⇔5a -552-a <0不成立,5a -552-a <0⇔a -1a -25>0⇔a <1或a >25. ∴5∉M ⇔a <1或a >25不成立⇔1≤a ≤25.综上得1≤a <53或9<a ≤25.【答案】 (1)(-∞,-3)∪(59,3)(2)1≤a <53或9<a ≤2521.(12分)已知三个不等式:①|2x -4|<5-x ;②x +2x 2-3x +2≥1;③2x 2+mx -1<0.若同时满足①和②的x 值也满足③,求m 的取值范围.【解析】 设不等式|2x -4|<5-x ,x +2x 2-3x +2≥1,2x 2+mx -1<0的解集分别为A ,B ,C , 则由|2x -4|<5-x 得,当x ≥2时,不等式化为2x -4<5-x ,得x <3, 所以有2≤x <3.当x <2时,不等式化为4-2x <5-x ,得x >-1, 所以有-1<x <2,故A =(-1,3). x +2x 2-3x +2≥1⇔x +2x 2-3x +2-1≥0⇔-x 2+4x x 2-3x +2≥0⇔x (x -4)(x -1)(x -2)≤0⇔0≤x <1或2<x ≤4,即B =[0,1)∪(2,4].若同时满足①②的x 值也满足③,则有A ∩B ⊆C . 设f (x )=2x 2+mx -1,则由于A ∩B =[0,1)∪(2,3), 故结合二次函数的图象,得⎩⎪⎨⎪⎧ f (0)<0f (3)≤0⇒⎩⎪⎨⎪⎧-1<018+3m -1≤0⇒m ≤-173,∴m 的取值范围是m ≤-173.22.(14分)(蚌埠二中2010届高三8月份月考数学(理科)试题)设函数f (x )=|x -a |,g (x )=ax (a >0).(1)解关于x 的不等式f (x )<g (x );(2)设F (x )=f (x )-g (x ),若F (x )在(0,+∞)上有最小值,求a 的取值范围.【解析】 (1)不等式等价于⎩⎪⎨⎪⎧(a +1)x -a >0(1-a )x -a <0,当a >1时,不等式的解集得{x |x >aa +1};当a =1时,此时不等式的解集是{x |x >aa +1};当0<a <1时,此时不等式的解集是{x |a a +1<x <a1-a};综合得,当a ≥1时,不等式的解集为{x |x >a a +1},当0<a <1时,不等式的解集为{x |aa +1<x <a 1-a}(2)F (x )=|x -a |-ax =⎩⎪⎨⎪⎧(1-a )x -a (x ≥a )-(a +1)x +a (0<x ≤a )由于a >0,F (x )在(0,a ]上为减函数,因此,要使F (x )在(0,+∞)上有最小值,必须而且只需F (x )在[a ,+∞)上为常数函数或增函数,因此1-a ≥0,∴0<a ≤1.【答案】 (1){x |a a +1<x <a1-a} (2)0<a ≤1。

(完整版)集合与简易逻辑测试题

(完整版)集合与简易逻辑测试题

(集合与简易逻辑)一、选择题:本大题共 12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的。

1、设P , Q 为两个非空实数集合, 定义集合P+Q={a+b|, a € P , b € Q},若P={0 , 2, 6},则P+Q 中元素的个数是( )ax4、若关于x 的不等式-•1 <1的解集为{x|x <1或x > 2},则实数a 的值为()丄A.1B.0C.2D.-5、已知集合M= {a2, a+1,-3} ,N= {a-3, 2a-1, a2+1 },若 M n N= {-3},贝U a 的值是( )A -1B 0C 1D 2x-16、设集合A={x| •十 < 0},B={x||x-1|<a},贝厂'a=1” 是“ A n B 工^”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件7、50名学生参加跳远和铅球两项测试,跳远、铅球测试及格的分别有 40人和31人,两项测试均不及格的有4人,两项测试全都及格的人数是()A.9B.8C.7D.62、 若集合 M= {y| y= - }, P={y| y= J3兀一3 },贝y M n P=3、{y| y>i } B {y| y > 1}F 列四个集合中,是空集的是 C {y| y>0} D {y| y >0}{(卫刃0三-戸,走」€幻C.5},Q={1,2,A.35B.25C.28D.152 ..8、一元二次方程r - - 1 ' 1■有一个正根和一个负根的充分不必要条件是:()A.区弋0B. ^>0 c.区弋一1 D.金>1丄J.9、若二次不等式ax2+bx+c > 0的解集是{x| < x < r },那么不等式2cx2-2bx-a < 0的解集是()丄丄A.{x|x< -10 或x > 1}B.{x| —< x <」}C.{x|4< x <5}D.{x|-5< x < -4}10、已知函数f(x)在(-a,+g)上为增函数,a,b€ R,对于命题“若a+b> 0,贝U f(a)+f(b)> f(-a)+f(-b) ”有下列结论:①此命题的逆命题为真命题②此命题的否命题为真命题③此命题的逆否命题为真命题④此命题的逆命题和否命题有且只有一个真命题其中正确结论的个数为()A.1个B.2个C.3个D.4个11、对任意实数-,若不等式 -1恒成立,则实数匕的取值范围是()A k > 1B k <1C k w 1D k >112、若集合A匸B, A 二C, B= { 0,1,2,3,4,7,8} , C= { 0,3,4,7,8},则满足条件的集合A 的个数为()A. 16 B 15 C 32 D 31二、填空题:本大题共4小题;每小题4分,共16分,把答案填在题中的横线上。

高三数学单元测试卷(共18套含答案)

高三数学单元测试卷(共18套含答案)

xyO1 3 。

2 . 随堂步步高·高三数学·单元测试卷(一)第一单元 集合与简易逻辑(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P ={3,4,5},Q ={4,5,6,7},定义P ※Q ={(a ,b )|a ∈P ,b ∈Q},则P ※Q 中元素的个数为 A .3 B .4 C .7 D .12 2.设A 、B 是两个集合,定义A -B ={x |x ∈A ,且x ∉B},若M ={x ||x +1|≤2},N ={x |x =|sinα|,α∈R},则M -N = A .[-3,1]B .[-3,0]C .[0,1]D .[-3,0]3.映射f :A→B ,如果满足集合B 中的任意一个元素在A中都有原象,则称为“满射”.已知集合A中有4个元素,集合B 中有3个元素,那么从A 到B 的不同满射的个数为 A .24B .6C . 36D .724.若lg a +lg b =0(其中a ≠1,b ≠1),则函数f (x )=a x 与g (x )=b x 的图象A .关于直线y =x 对称B .关于x 轴对称C .关于y 轴对称D .关于原点对称5.若任取x 1、x 2∈[a ,b ],且x 1≠x 2,都有f (x 1+x 22)>f (x 1)+f (x 2)2成立,则称f (x ) 是[a ,b ]上的凸函数.试问:在下列图像中,是凸函数图像的为6.若函数f (x )=x - p x +p2在(1,+∞)上是增函数,则实数p 的取值范围是A .[-1,+∞)B .[1,+∞)C .(-∞,-1]D .(-∞,1] 7.设函数f (x )=x |x |+bx +c ,给出下列四个命题: ①c =0时,f (x )是奇函数 ②b =0,c >0时,方程f (x )=0只有一个实根 ③f (x )的图象关于(0,c )对称 ④方程f (x )=0至多两个实根 其中正确的命题是A .①④B .①③C .①②③D .①②④8.函数y =e x +1e x -1,x ∈(0,+∞)的反函数是A .y =lnx -1x +1,x ∈(-∞,1) B .y =ln x +1x -1,x ∈(-∞,1)C .y =ln x -1x +1,x ∈(1,+∞)D .y =ln x +1x -1,x ∈(1,+∞)9.如果命题P :{}∅∈∅,命题Q :{}∅⊂∅,那么下列结论不正确的是 A .“P 或Q”为真B .“P 且Q”为假C .“非P”为假D .“非Q”为假10.函数y =x 2-2x 在区间[a ,b ]上的值域是[-1,3],则点(a ,b )的轨迹是图中的 A .线段AB 和线段AD B .线段AB 和线段CD C .线段AD 和线段BC D .线段AC 和线段BD答题卡二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.已知函数f (x )是定义在(-3,3)上的奇函数,当0<x <3时,f (x )的图象如图所示,则不等式f (x )cos x <0的解集是 .12.国家规定个人稿费纳税办法是:不超过800元的不纳税;超过800 元而不超过4000元的按超过800元部分的14%纳税;超过4000元的按全部稿酬的11%纳税.已知某人出版一本书,共纳税420元时,这个人应得稿费(扣税前)为 元.13.已知函数f (x )=,2))((.0,cos 2,0,)(02=⎩⎨⎧<<≤=x f f x x x x x f 若π则x 0= .14.若对于任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,则x 的取值范围是 .15.如果函数f (x )的定义域为R ,对于m ,n ∈R ,恒有f (m +n )=f (m )+f (n )-6,且f (-1)是不大于5的正整数,当x >-1时,f (x )>0.那么具有这种性质的函数f (x )= .(注:填上你认为正确的一个函数即可)三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1. ⑴求f (x )的解析式;⑵在区间[-1,1]上,y =f (x )的图象恒在y =2x +m 的图象上方,试确定实数m 的范围.题号 1 2 3 4 5 6 7 8 9 10 答案ya xb ya xb ya xb y a xb17.(本小题满分12分)已知集合A ={|(2)[(31)]0}x x x a --+<,B =22{|0}(1)x ax x a -<-+.⑴当a =2时,求AB ;⑵求使B ⊆A 的实数a 的取值范围. 18.(本小题满分14分)已知命题p :方程0222=-+ax x a 在[-1,1]上有解;命题q :只有一个实数x 满足不等式2220x ax a ++≤,若命题“p 或q ”是假命题,求实数a 的取值范围.19.(本小题满分14分)设函数()221x xf x a -=+⋅-(a 为实数).⑴若a <0,用函数单调性定义证明:()y f x =在(,)-∞+∞上是增函数;⑵若a =0,()y g x =的图象与()y f x =的图象关于直线y =x 对称,求函数()y g x = 的解析式.20.(本小题满分14分)函数xax x f -=2)(的定义域为(0,1](a 为实数). ⑴当1-=a 时,求函数)(x f y =的值域;⑵若函数)(x f y =在定义域上是减函数,求a 的取值范围;⑶求函数)(x f y =在x ∈(0,1]上的最大值及最小值,并求出函数取最值时x 的值.21.(本小题满分14分)对于函数)0(2)1()(2≠-+++=a b x b ax x f ,若存在实数0x ,使00)(x x f =成立,则称0x 为)(x f 的不动点.⑴当a =2,b =-2时,求)(x f 的不动点;⑵若对于任何实数b ,函数)(x f 恒有两相异的不动点,求实数a 的取值范围;⑶在⑵的条件下,若)(x f y =的图象上A 、B 两点的横坐标是函数)(x f 的不动点,且直线1212++=a kx y 是线段AB 的垂直平分线,求实数b 的取值范围.随堂步步高·高三数学·单元测试卷(二)第二单元 函数(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数)(x f y =与函数)(x g 的图象关于3=x 对称,则)(x g 的表达式为A .)23()(x f x g -=B .)3()(x f x g -=C .)3()(x f x g --=D .)6()(x f x g -=2.设的大小关系是、、,则,,c b a c b a 243.03.03log 4log -===A .a <b <cB .a <c <bC .c <b <aD .b <a <c 3.指数函数y =f(x)的反函数的图象过点(2,-1),则此指数函数为A .x y )21(=B .xy 2=C .xy 3=D .xy 10=4.已知函数,,,且、、,00)(32213213>+>+∈--=x x x x R x x x x x x f 13x x +>0,则)()()(321x f x f x f ++的值A .一定大于零B .一定小于零C .等于零D .正负都有可能5.若函数1log )(+=x x f a 在区间(-1,0)上有)(0)(x f x f ,则>的递增区间是 A .(-∞,1) B .(1,+∞) C .(-∞,-1) D .(-1,+∞) 6.已知b a b a 、,则2log 2log 0<<的关系是A .0<a <b <1B .0<b <a <1C .b >a >1D .a >b >17.已知x aa a xlog 10=<<,则方程的实根个数是A .1个B .2个C .3个D .1个或2个或3个 8.若y x y x +-=,则2log 的最小值为A .3322B .2333C .332D .2239.已知函数f (x )是定义在R 上的奇函数,当x <0时,f (x )=(13)x ,那么f -1(-9)的值为A .2B .-2C .3D .-310.若方程m m x x 无实数解,则实数+=-21的取值范围是 A .(-∞,-1) B .[0,1) C .[2,+∞) D .(-∞,-1)∪(2,+∞)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.)2log (2)9(log )(91-==-ff x x f a ,则满足函数的值是__________________.12.使函数542+-=x x y 具有反函数的一个条件是____________________________.(只填上一个条件即可,不必考虑所有情形). 13.函数)2(log 221x x y -=的单调递减区间是________________________.14.已知)(x f 是定义在R 上的偶函数,并且)(1)2(x f x f -=+,当32≤≤x 时,x x f =)(,则=)5.105(f _________________.15.关于函数),0(||1lg)(2R x x x x x f ∈≠+=有下列命题: ①函数)(x f y =的图象关于y 轴对称;②在区间)0,(-∞上,函数)(x f y =是减函数; ③函数)(x f 的最小值为2lg ;④在区间),1(∞上,函数)(x f 是增函数.其中正确命题序号为_______________.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数f (x )=a x +12+-x x (a >1) ⑴证明:函数f (x )在(-1,+∞)上为增函数; ⑵用反证法证明f (x )=0没有负数根.17.(本小题满分12分)已知f (x )=2x -1的反函数为1-f (x ),g (x )=log 4(3x +1).⑴若f -1(x )≤g (x ),求x 的取值范围D ;⑵设函数H (x )=g (x )-121-f (x ),当x ∈D 时,求函数H (x )的值域.18.(本小题满分14分)函数f(x)=log a(x-3a)(a>0,且a≠1),当点P(x,y)是函数y=f(x)图象上的点时,Q(x-2a,-y)是函数y=g(x)图象上的点.⑴写出函数y=g(x)的解析式.⑵当x∈[a+2,a+3]时,恒有|f(x)-g(x)|≤1,试确定a的取值范围.19.(本小题满分14分)某化妆品生产企业为了占有更多的市场份额,拟在2005年度进行一系列促销活动,经过市场调查和测算,化妆品的年销量x万件与年促销t万元之间满足3-x与t+1成反比例,如果不搞促销活动,化妆品的年销量只能是1万件,已知2005年生产化妆品的设备折旧,维修等固定费用为3万元,每生产1万件化妆品需再投入32万元的生产费用,若将每件化妆品的售价定为:其生产成本的150%“与平均每件促销费的一半”之和,则当年生产的化妆品正好能销完.⑴将2005年的利润y(万元)表示为促销费t(万元)的函数;⑵该企业2005年的促销费投入多少万元时,企业的年利润最大?(注:利润=销售收入—生产成本—促销费,生产成本=固定费用+生产费用)20.(本小题满分14分)已知f(x)在(-1,1)上有定义,f(21)=-1,且满足x,y∈(-1,1)有f(x)+f(y)=f(xyyx++1)⑴证明:f(x)在(-1,1)上为奇函数;⑵对数列x1=21,x n+1=212nnxx+,求f(x n);⑶求证252)(1)(1)(121++->+++nnxfxfxfn21.(本小题满分14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=ax2+bx+1(a>0)有两个相异的不动点x1,x2.⑴若x1<1<x2,且f(x)的图象关于直线x=m对称,求证:21<m<1;⑵若|x1|<2且|x1-x2|=2,求b的取值范围.随堂步步高·高三数学·单元测试卷(三)第三单元 数列(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.数列-1,85,-157,249,…的一个通项公式是A .a n =(-1)n n 3+n 2n +1B .a n =(-1)n n (n +3)2n +1C .a n =(-1)n(n +1)2-12n -1D .a n =(-1)n n (n +2)2n +12.设S n 是等差数列{a n }的前n 项和,已知S 6=36,S n =324,S n -6=144,则n =A .15B .16C .17D .183.在等比数列{a n }中,S 4=1,S 8=3,则a 17+a 18+a 19+a 20的值是A .14B .16C .18D .204.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=A .8B .-8C .±8D .985.设等差数列{a n }的前n 项的和为S n ,若a 1>0,S 4=S 8,则当S n 取得最大值时,n 的值为 A .5 B .6 C .7 D .86.已知数列{a n }的通项公式a n =log 2n +1n +2(n ∈N +),设其前n 项和为S n ,则使S n <-5成立的正整数nA .有最小值63B .有最大值63C .有最小值31D .有最大值317.设数列{a n }是公比为a (a ≠1),首项为b 的等比数列,S n 是前n 项和,对任意的n ∈N + ,点(S n ,S n +1)在A .直线y =ax -b 上B .直线y =bx +a 上C .直线y =bx -a 上D .直线y =ax +b 上8.数列{a n }中,a 1=1,S n 是前n 项和,当n ≥2 时,a n =3S n ,则31lim 1-++∞→n n n S S 的值是A .-2B .-45C .-13D .19.北京市为成功举办2008年奥运会,决定从2003年到2007年五年间更新市内现有的全部出租车,若每年更新的车辆数比前一年递增10%,则2003年底更新现有总车辆数(参考数据1.14=1.46,1.15=1.61)A .10%B .16.5%C .16.8%D .20%10.已知a 1,a 2,a 3,…,a 8为各项都大于零的数列,则“a 1+a 8<a 4+a 5”是“a 1,a 2,a 3,…,a 8不是等比数列”的A .充分且必要条件B .充分但非必要条件C .必要但非充分条件D .既不充分也不必要条件二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.已知 .我们把使乘积a 1·a 2·a 3·…·a n 为整数的数n 叫做“劣数”,则在区间(1,2004)内的所有劣数的和为 .12.已知集合},,17,22|{1++∈+=<<=N n m m x x x A n n n 且,则A 6中各元素的和为 .13.等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下10项的平均值))(2(log 1++∈+=N n n a n n是4,则抽取的是第 项.14.若a +b +c ,b +c -a ,c +a -b ,a +b -c 依次成等比数列,公比为q ,则q 3+q 2+q= . 15.若数列)}({+∈N n a n 为等差数列,则数列)(321+∈+⋯+++=N n na a a ab nn 也为等差数列,类比上述性质,相应地,若数列{c n }是等比数列且)(0+∈>N n c n ,则有数列d n = (n ∈N +)也是等比数列.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项.⑴求数列{a n }与{b n }的通项公式.⑵设数列{c n }对任意正整数n ,均有1332211+=+⋯⋯+++n n n a b c b c b c b c ,求c 1+c 2+c 3+…+c 2004的值.17.(本小题满分12分)已知f (x +1)=x 2-4,等差数列{a n }中,a 1=f (x -1),a 2=-32,a 3=f (x ).求: ⑴x 的值;⑵数列{a n }的通项公式a n ; ⑶a 2+a 5+a 8+…+a 26.18.(本小题满分14分) 正数数列{a n }的前n 项和为S n ,且2S n =a n +1.(1) 试求数列{a n }的通项公式;(2)设b n =1a n ·a n +1,{b n }的前n 项和为T n ,求证:T n <12.19.(本小题满分14分)已知函数f (x )定义在区间(-1,1)上,f (12)=-1,且当x ,y ∈(-1,1)时,恒有 f (x )-f (y )=f (x -y 1-xy),又数列{a n }满足a 1=12,a n +1=2a n 1+a n 2,设b n=1f (a 1)+1f (a 2)+…+1f (a n ). ⑴证明:f (x )在(-1,1)上为奇函数; ⑵求f (a n )的表达式; ⑶是否存在正整数m ,使得对任意n ∈N ,都有b n <m -84成立,若存在,求出m 的最小值;若不存在,请说明理由.20.(2005年湖南理科高考题14分) 自然状态下的鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响.用x n 表示某鱼群在第n 年年初的总量,n ∈N *,且x 1>0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与x n 成正比,死亡量与x n 2成正比,这些比例系数依次为正常数a ,b ,c . ⑴求x n +1与x n 的关系式;⑵猜测:当且仅当x 1,a ,b ,c 满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)⑶设a =2,c =1,为保证对任意x 1∈(0,2),都有x n >0,n ∈N *,则捕捞强度b 的最大允许值是多少?证明你的结论.21.(本小题满分14分)已知函数f (t )满足对任意实数x ,y 都有f (x +y )=f (x )+f (y )+xy +1,且f (-2)= -2. ⑴求f (1)的值;⑵证明:对一切大于1的正整数t ,恒有f (t )>t ; ⑶试求满足f (t )=t 的整数t 的个数,并说明理由.随堂步步高·高三数学·单元测试卷(四)第四单元 [三角函数]通,性质大集中(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2005年全国高考题)函数f (x ) = | sin x +cos x |的最小正周期是A .π4B .π2C .πD .2π2.若θθθ则角且,02sin ,0cos <>的终边所在象限是A .第一象限B .第二象限C .第三象限D .第四象限 3.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是 A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是A . ]3,0[πB . ]127,12[ππC . ]65,3[ππD . ],65[ππ5.定义在R 上的函数)(x f 既是偶函数又是周期函数.若)(x f 的最小正周期是π,且当]2,0[π∈x时,x x f sin )(=,则)35(πf 的值为A . 21- B . 21C . 23-D . 236.(2005年全国高考题)锐角三角形的内角A 、B 满足tan A -A2sin 1= tan B ,则有A .sin 2A –cosB = 0 B .sin 2A + cos B = 0C .sin 2A – sin B = 0D .sin2A +sinB =07.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象A .向右平移π6个单位长度B .向右平移π3个单位长度C .向左平移π6个单位长度D .向左平移π3个单位长度 8.当0<x <π4时,函数f (x )=cos 2xcos x sin x -sin 2x 的最小值是 ( )A .4B .12C .2D .149.(2005年全国高考题)已知函数y =tan x ω在(-π2,π2)内是减函数,则( )A .0 <ω≤1B .-1 ≤ω< 0C .ω≥ 1D .ω≤ -110.设)(t f y =是某港口水的深度y (米)关于时间t (时)的函数,其中240≤≤t .下表是该函数中,最能近似表示表中数据间对应关系的函数是(]24,0[∈t )( ) A .t y 6sin 312π+= B .)6sin(312ππ++=t y C .t y 12sin312π+=D . )212sin(312ππ++=t y二、填空题:本大题共5小题,每小题4分(15小题每空2分),共20分.把答案填在横线上.11.(2005年全国高考题)设α为第四象限的角,若sin3αsin α=135,则tan2α =_____________. 12.(2005年上海春季高考题)函数x x y arcsin sin +=的值域是 .13.设f (n )=cos( n π2+π4 ),则f (1)+f (2)+…+f (2006)= .14.已知tanα+cotα=-2,则tan n α+cot n α=______ .15.(2005年湖南高考题)函数y =f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b ]上的面积.已知函数y =sin nx 在[0,πn ]上的面积为2n(n ∈N *),则(i)函数y =sin3x在[0,2π3]上的面积为 ;(ii) 函数y =sin(3x -π)+1在[π3,4π3]上的面积为 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分12分)已知1cot tan sin 2),2,4(,41)24sin()24sin(2--+∈=-⋅+αααππααπαπ求的值. 17.(本题满分12分)(2005年上海春季高考题)已知tan α是方程01sec 22=++αx x 的两个根中较小的根,求α的值.18.(本题满分14分) (2005年湖南高考题)已知在△ABC 中,sinA(sinB +cosB)-sinC =0,sinB +cos2C =0.求角A 、B 、C 的大小.19.(本题满分14分)(2005年广东高考题)化简f (x )=cos(6k +13π+2x )+cos(6k -13π-2x )+23sin(π3+2x )(x ∈R ,k ∈Z),并求函数f (x )的值域和最小正周期. 20.(本题满分14分)(2005年天津高考题)某人在一山坡P 处观看对面山项上的一座铁塔,如图所示,塔高BC =80(米),塔所在的山高OB =220(米),OA =200(米),图中所示的山坡可视为直线l 且点P 在直线l 上,l 与水平地面的夹角为α,tanα=12,试问此人距水平地面多高时,观看塔的视角∠BPC 最大(不计此人的身高)21.(本题满分14分)设关于x 的函数22cos 2cos (21)y x a x a =--+的最小值为()f a . ⑴ 写出()f a 的表达式;⑵试确定能使1()2f a =的a 值,并求出此时函数y 的最大值.随堂步步高·高三数学·单元测试卷(五)第五单元 [向量]作运算,图形见奇观(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.(2005年全国Ⅱ高考题)已知点A(3,1),B(0,0),C(3,0).设∠BAC 的平分线AE 与BC 相交于E ,那么有→BC =λ→CE ,其中λ等于 A .2 B .12 C .-3 D .- 132.已知O 是△ABC 内一点,且满足→OA·→OB =→OB·→OC =→OC·→OA ,则O 点一定是△ABC 的 A .内心 B .外心 C .垂心 D .重心 3.在四边形ABCD 中,,,,b a CD b a BC b a AB 3542--=--=+=其中b a 、不共线,则四边形ABCD 是 A .梯形B .矩形C .菱形D .正方形4.在边长为1的正△ABC 中,若AB a =,BC b =,CA c =,则a ·b +b ·c +c ·a = A .32 B .-32C .3D .05.已知c b a ,,为非零的平面向量. 甲:则乙,:,c b c a b a =⋅=⋅甲是乙的( ) A .充分条件但不是必要条件 B .必要条件但不是充分条件 C .充要条件 D .非充分条件非必要条件6.已知三角形的三条边成公差为2的等差数列,且它的最大角的正弦值为32,则这个三角形的面积是A .154B .1534C .2134D .35347.把点(3,4)按向量a 平移后的坐标为(-2,1),则y =2x的图象按向量a 平移后的图象的函数表达式为A .y =2x -5+3B .y =2x -5-3C .y =2x +5+3D .y =2x +5-38.(2005年全国Ⅱ高考题)点P 在平面上作匀数直线运动,速度向量v =(4,-3)(即点P 的运动方向与v 相同,且每秒移动的距离为|v |个单位).设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为A .(-2,4)B .(-30,25)C .(10,-5)D .(5,-10)9.已知向量OB =(2,0),OC =(2,2),CA =(cos α,sin α)( α∈R ),则OA 与OB 夹角的取值范围是 A .[0,p4]B .[p 4,5p 12]C .[p 12,5p 12]D .[5p 12,p 2]10.在△ABC 中,a =x ,b =2,B =45°,若这样的△ABC 有两个,则实数x 的取值范围是 A .(2,+∞) B .(0,2) C .(2,22) D .(2,2)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.(2005年湖南高考题)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB |=3,则OA ·OB = .12.(2005年全国Ⅰ高考题)△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = .13.(2005年天津高考题)在直角坐标系xOy 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上且|OC |=2,则OC = .14.(2005年全国Ⅲ高考题)已知向量(,12),(4,5),(,10)OA k OB OC k ===-,且A 、B 、C 三点共线,则k = .15.设c b a、、是任意的非零平面向量,且相互不共线,则①0)()( =⋅⋅-⋅⋅b a c c b a ; ②b a b a -<-;③b a c a c b )()(⋅-⋅不与c垂直;④)23()23(b a b a-⋅+=2249b a -中是真命题的有 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分l2分)如图,在Rt △ABC 中,已知BC =a ,若长为2a 的线段PQ 以点A 为中点,问BC PQ 与 的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值. 17.(本题满分12分)A 、B 、C 为△ABC 的三内角,且其对边分别为a 、b 、c .若m =(-cos A 2,sin A 2),n =(cos A2,sin A 2),且m ·n =12.(1)求A ;(2)若a =23,三角形面积S =3,求b +c 的值.18.(本题满分14分)如图,△AOE 和△BOE 都是边长为1的等边三角形,延长OB 到C 使|BC|=t (t >0),连AC 交BE 于D 点.⑴用t 表示向量OC 和OD 的坐标;⑵(理)求向量OD 和EC 的夹角的大小.(文)当OC =32OB 时,求向量OD 和EC 的夹角的大小.19.(本题满分14分)已知)0)(sin ,(cos ),sin ,(cos πβαββαα<<<==b a.⑴求证:b a b a-+与互相垂直;⑵若b k a b a k-+与大小相等,求αβ-(其中k 为非零实数).20.(本题满分14分)设△ABC 的外心为O ,以线段OA 、OB 为邻边作平行四边形,第四个顶点为D ,再以OC 、OD 为邻边作平行四边形,它的第四个顶点为H .⑴若,,,c OC b OB a OA===用OH c b a 表示、、 ;⑵求证:AH ⊥BC ;⑶设△ABC 中,∠A =60°,∠B =45°,外接圆半径为R ,用R 表示|→OH|.21.(本题满分14分)已知圆O 的半径为R ,它的内接△ABC 中,B b a C A R sin )2()sin (sin 222-=-成立,求三角形ABC 面积S 的最大值.随堂步步高·高三数学·单元测试卷(六)第三单元 [不等]符号定,比较技巧深(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.不等式(1+x )(1-|x |)>0的解集是 A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}2.直角三角形ABC 的斜边AB =2,内切圆半径为r ,则r 的最大值是A . 2B .1C .22 D .2-13.(2005年天津高考题)给出下列三个命题 ①若1->≥b a ,则bb a a +≥+11 ②若正整数m 和n 满足n m ≤,则2)(nm n m ≤-③设),(11y x P 为圆9:221=+y x O 上任一点,圆2O 以),(b a Q 为圆心且半径为1.当1)()(2121=-+-y b x a 时,圆1O 与圆2O 相切 其中假命题的个数为 A .0B .1C .2D .34.不等式|2x -log 2x |<2x +|log 2x |的解集为A .(1,2)B .(0,1)C .(1,+∞)D .(2,+∞)5.如果x ,y 是实数,那么“xy <0”是“|x -y |=|x |+|y |”的 A .充分条件但不是必要条件B .必要条件但不是充分条件C .充要条件D .非充分条件非必要条件6.(2005年全国Ⅲ高考题)若a =ln22,b =ln33,c =ln55,则A .a <b <cB .c <b <aC .c <a <bD .b <a <c7.已知a 、b 、c 满足,且,那么下列选项中不一定成立的是 A . B . C . D .0)(<-c a ac8.(2005年全国Ⅰ高考题) 设10<<a ,函数)22(log )(2--=xx a a a x f ,则使0)(<x f 的x的取值范围是A .(-∞,0)B .(0,+∞)C .(-∞,log a 3)D .(log a 3,+∞)9.某工厂第一年年产量为A ,第二年的增长率为a ,第三年的增长率为b ,这两年的平均增长率为x ,则 A .x =2ba + B .x ≤2b a + C .x >2b a + D .x ≥2ba + 10.设方程2x +x +2=0和方程log 2x +x +2=0的根分别为p 和q ,函数f (x )=(x +p )(x +q )+2,则 A .f (2)=f (0)<f (3)B .f (0)<f (2)<f (3)C .f (3)<f (0)=f (2)D .f (0)<f (3)<f (2)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.对于-1<a <1,使不等式(12)2x ax +<(12)2x +a -1成立的x 的取值范围是_______ .12.(2005年全国Ⅰ高考题)若正整数m 满足m m 102105121<<-,则m = .(lg2≈0.3010)13.已知{1,0,()1,0,x f x x ≥=-<则不等式)2()2(+⋅++x f x x ≤5的解集是 .14.已知a >0,b >0,且2212b a +=,则的最大值是 .15.对于10<<a ,给出下列四个不等式 ①)11(log )1(log aa a a +<+ ②)11(log )1(log aa a a +>+ ③aaa a 111++<④aaaa111++>其中成立的是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本题满分l2分) (2005年全国Ⅱ高考题)设函数f (x )|1||1|2--+=x x ,求使f (x )≥22的x 取值范围. 17.(本题满分12分)(2005年全国Ⅲ高考题)已知函数2()2sin sin 2,[0,2].f x x x x π=+∈求使()f x 为正值的x 的集合. 18.(本题满分14分)⑴已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()a b a b x y x y++≥+,指出等号成立的条件;⑵利用⑴的结论求函数29()12f x x x =+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.19.(本题满分14分)设函数f (x )=|x -m |-mx ,其中m 为常数且m <0.⑴解关于x 的不等式f (x )<0;⑵试探求f (x )存在最小值的充要条件,并求出相应的最小值.20.(本题满分14分)已知a >0,函数f (x )=ax -bx 2.⑴当b >0时,若对任意x ∈R 都有f (x )≤1,证明a ≤2b ;⑵当b >1时,证明对任意x ∈[0,1],都有|f (x )|≤1的充要条件是b -1≤a ≤2b ; ⑶当0<b ≤1时,讨论:对任意x ∈[0,1],都有|f (x )|≤1的充要条件.21.(本题满分14分) (2005年全国Ⅰ高考题)⑴设函数)10( )1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; ⑵设正数n p p p p 2321,,,, 满足12321=++++n p p p p ,证明 n p p p p p p p p n n -≥++++222323222121log log log log .随堂步步高·高三数学·单元测试卷(七)第三单元 直线与圆(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知θ∈R ,则直线013sin =+-y x θ的倾斜角的取值范围是A .[0°,30°]B .[150°,180°)C .[0°,30°]∪[150°,180°)D .[30°,150°]2.已知两点M (-2,0),N (2,0),点P 满足PN PM ⋅=12,则点P 的轨迹方程为A .x 216+y 2=1 B .x 2+y 2=16C .y 2-x 2=8D .x 2+y 2=83.已知两点P (4,-9),Q (-2,3),则直线PQ 与y 轴的交点分PQ 所成的比为A .13B .12C .2D .34.M(),00y x 为圆)0(222>=+a a y x 内异于圆心的一点,则直线200a y y x x =+与该圆的位置关系为A .相切B .相交C .相离D .相切或相交5.已知实数x ,y 满足22,052y x y x +=++那么的最小值为A . 5B .10C .2 5D .2106.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为A .x -y +1=0B .x -y =0C .x +y +1=0D .x +y =07.已知a ≠b ,且a 2sin θ+a cos θ-4π=0 ,b 2sin θ+b cos θ-4π=0,则连接(a ,a 2),(b ,b 2)两点的直线与单位圆的位置关系是 A .相交 B .相切C .相离D .不能确定8.直线l 1:x +3y-7=0、l 2:kx- y-2=0与x 轴、y 轴的正半轴所围成的四边形有外接圆,则k 的值等于A .-3B .3C .-6D .69.在如图所示的坐标平面的可行域(阴影部分且包括边 界)内,目标函数ay x z -=2取得最大值的最优解有无 数个,则a 为A .-2B .2C .-6D .610.设△ABC 的一个顶点是A (3,-1),∠B ,∠C 的平分线方程分别是x =0,y =x ,则直线BC的方程是A .y =2x +5B .y =2x +3C .y =3x +5D .252+-=x y 题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上. 11.三边均为整数且最大边的长为11的三角形的个数为 .12.已知圆C 的方程为,222r y x =+定点M(x 0,y 0),直线200:r y y x x l =+有如下两组论断:第Ⅰ组 第Ⅱ组(a) 点M 在圆C 内且M 不为圆心 (1) 直线l 与圆C 相切 (b) 点M 在圆C 上 (2) 直线l 与圆C 相交 (c )点M 在圆C 外 (3) 直线l 与圆C 相离由第Ⅰ组论断作为条件,第Ⅱ组论断作为结论,写出所有可能成立的命题 . (将命题用序号写成形如q p ⇒的形式)13.已知x 、y 满足⎪⎩⎪⎨⎧≥≥≤-+0,0033y x y x ,则z =12-+x y 的取值范围是 .14.已知A (-4,0),B (2,0)以AB 为直径的圆与y 轴的负半轴交于C ,则过C 点的圆的切线方程为 .15.过直线上一点M 向圆作切线,则M 到切点的最小距离为_ ____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆074422=+--+y x y x 相切,求光线L 所在直线方程.17.(本小题满分12分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为3千元,2千元。

集合与简易逻辑单元测试题

集合与简易逻辑单元测试题

集合与简易逻辑单元测试题一、 单项选择题(本大题共10小题,每小题5分)1.设合集U=R ,集合}1|{},1|{2>=>=x x P x x M ,则下列关系中正确的是( )A .M=PB .M P C . PM D .M ⊇P 2.如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U )B 等于 ( )(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 3.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是 ( ) (A) 6 (B) 7 (C) 8 (D) 94. 设集合{}21|<≤-=x x A ,{}a x x B <=|,若φ≠B A ,则a 的取值范围是(A )2<a (B )2->a (C )1->a (D )21≤<-a ( )5. 集合A ={x |11+-x x <0},B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是 ( )(A )-2≤b <0 (B )0<b ≤2(C )-3<b <-1 (D )-1≤b <2 6.设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠φ ”的( ) (A )充分不必要条件 (B )必要不充分条件(C)充要条件 (D)既不充分又不必要条件 7. 已知23:,522:>=+q p ,则下列判断中,错误..的是 ( )(A)p 或q 为真,非q 为假 (B) p 或q 为真,非p 为真(C)p 且q 为假,非p 为假 (D) p 且q 为假,p 或q 为真8.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1<0和a 2x 2+b 2x +c 2<0的解集分别为集合M 和N ,那么“111222a b c a b c ==”是“M =N ” ( ) (A )充分非必要条件 (B )必要非充分条件(C )充要条件(D )既非充分又非必要条件 9.“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( )(A)充分必要条件 (B)充分而不必要条件 (C)必要而不充分条件 (D)既不充分也不必要条件10. 已知01a b <<<,不等式lg()1x x a b -<的解集是{|10}x x -<<,则,a b 满足的关系是( )(A )1110a b -> (B )1110a b -= (C )1110a b -< (D )a 、b 的关系不能确定二、 填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.对任意实数a ,b ,c ,给出下列命题:①“b a=”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件 ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中为真命题的是12.若集合{}x A ,3,1=,{}2,1x B =,且{}x B A ,3,1= ,则=x 13.两个三角形面积相等且两边对应相等,是两个三角形全等的 条件14.若0)2)(1(=+-y x ,则1=x 或2-=y 的否命题是15.已知集合M ={x |1≤x ≤10,x ∈N },对它的非空子集A ,将A 中每个元素k ,都乘以(-1)k 再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2,则对M 的所有非空子集,这些和的总和是 .三、 解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)用列举法写出集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧->-+-+≥+∈)9(321)1)(1()1(|22x x x x x x x Z x 17.(本小题满分12分) 已知p :方程x 2+m x +1=0有两个不等的负实根,q :方程4x 2+4(m -2)x +1=0无实根。

高一数学集合与简易逻辑章节测试

高一数学集合与简易逻辑章节测试

高一数学集合与简易逻辑章节测试班级: 姓名: 成绩:一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题4分,共40分)(注意:请将答案写在第二张答题卡上).1.下列关于集合的说法正确的是( C )A. {1}⊆{(1,2)}B. ∅没有子集C. 设U 为全集,则(C U A)A=∅D. {(a,b)}={(b,a)}2. 不等式113x <+<的解集为( D )A. }20|{<<x xB. }4202|{<<<<-x x x 或C. }04|{<<-x xD . }2024|{<<-<<-x x x 或 A.1个 B.2个 C.3个 D.4个 4、已知集合*=N U ,集合},2|{*∈==N n n x x A ,},4|{*∈==N n n x x B ,则( C ) A .U=A ∪B B .U=(CuA)∪B C . U=A ∪(CuB) D .U=(CuA)∪(CuB) 5、若x ∈R ,则x>1的一个必要不充分条件是( B ) A .x>1 B.x>0 C .x>2 D .x ≥2 6、若非空集合A={x|2a+1≤x ≤3a-5 },B={x|3≤x ≤22},则能使B A ⊆成立的所有a 的集合是 ( C ) A.{a|1≤a ≤9} B.{a|6≤a ≤9}C.{a|a ≤9}D.∅ A.充分不必要条件 B.充要条件 C.必要不充分条 D.既不充分也不必要条件 8、设全集为I,下列条件①A ∪B=A;②(C I A)∩B=φ;③A ∪(C I B)=I ④C I A ⊆C I B.其中是B ⊆A 的充要条件的是( A )A. ①②③④B. ①②④C. ①④D. ②③9、不等式022>++bx ax 的解集是}3121|{<<-x x ,则=+b a ( D )A.10B.-10C.14D.-14A. 在△ABC 中,若∠A=90°, 则∠B,∠C 全不是锐角B. 在△ABC 中,若∠A ≠90°,则∠B,∠C 不一定为锐角C. 在△ABC 中,若∠A ≠90°,则∠B,∠C 有一个不是锐角D. 在△ABC 中,若∠A ≠90°,则∠B,∠C 不全是锐角高一第一章 集合与简易逻辑章节测试 班级:_____姓名:______ 成绩:____ 一、 选择题:二、填空题:本大题共4小题;每小题4分,共20分,把答案填在题中的横线上。

高三数学《集合与简易逻辑》单元测试卷(一)答案

高三数学《集合与简易逻辑》单元测试卷(一)答案

随堂步步高·高三数学·单元测试卷参考答案集合和简易逻辑参考答案题次 1 2 3 4 5 6 7 8 9 10 答案DBCCDACDBA11.⎝⎛⎭⎫π2,-1∪(0,1)∪⎝⎛⎭⎫π2,3;12.3800;13. 3π4;14. (-∞‚1)∪(3,+∞);15.x +6或2x +6或3x +6或4x +6或5x +6三、解答题(共80分)16.解: (1)设f (x )=ax 2+bx +c ,由f (0)=1得c =1,故f (x )=ax 2+bx +1.∵f(x +1)-f(x)=2x ,∴a(x +1)2+b(x +1)+1-(ax 2+bx +1)=2x .即2ax +a +b =2x ,所以221,01a a ab b ==⎧⎧∴⎨⎨+==-⎩⎩,∴f(x)=x 2-x +1. (2)由题意得x 2-x +1>2x +m 在[-1,1]上恒成立.即x 2-3x +1-m>0在[-1,1]上恒成立. 设g(x)= x 2-3x +1-m ,其图象的对称轴为直线x =32 ,所以g(x) 在[-1,1]上递减.故只需g(1)>0,即12-3×1+1-m>0,解得m<-1. 17. 解:(1)当a =2时,A =(2,7),B =(4,5)∴ A B =(4,5).(2)∵ B =(2a ,a 2+1), 当a <13时,A =(3a +1,2) 要使B ⊆A ,必须223112a a a ≥+⎧⎨+≤⎩,此时a =-1;当a =13时,A =Φ,使B ⊆A 的a 不存在; 当a >13时,A =(2,3a +1)要使B ⊆A ,必须222131a a a ≥⎧⎨+≤+⎩,此时1≤a ≤3.综上可知,使B ⊆A 的实数a 的取值范围为[1,3]∪{-1} 18.]22222:20(2)(1)0210211,1,||1||1,||1220.22480.02,""||10"""|100a x ax ax ax a x x a a x a a ax ax a y x ax a x a a a p q a a P Q a a a a +-=+-=≠∴=-=⎡∈-≤≤∴≥⎣++≤=++∴∆=-=∴=∴≥=∴-<<<解由,得,显然或故或“只有一个实数满足”即抛物线与轴只有一个交点,或命题或为真命题"时或命题或为假命题的取值范围为或}{1< 19.解: (1)设任意实数x 1<x 2,则f(x 1)- f(x 2)=1122(221)(221)xx x x a a --+⋅--+⋅-=1212(22)(22)x x x x a ---+-=1212122(22)2x x x x x x a++--⋅121212,22,220;x x x x x x <∴<∴-<120,20x x a a +<∴->.又1220x x +>,∴f(x 1)- f(x 2)<0,所以f(x)是增函数.(2)当a =0时,y =f(x)=2x -1,∴2x =y +1, ∴x =log 2(y +1), y =g(x)= log 2(x +1). 20.解:(1)显然函数)(x f y =的值域为),22[∞+; (2)若函数)(x f y =在定义域上是减函数,则任取∈21,x x ]1.0(且21x x <都有)()(21x f x f >成立, 即0)2)((2121>+-x x ax x只要212x x a -<即可, 由∈21,x x ]1.0(,故)0,2(221-∈-x x ,所以2-≤a ,故a 的取值范围是]2,(--∞;(3)当0≥a 时,函数)(x f y =在]1.0(上单调增,无最小值, 当1=x 时取得最大值a -2;由(2)得当2-≤a 时,函数)(x f y =在]1.0(上单调减,无最大值, 当x =1时取得最小值2-a ;当02<<-a 时,函数)(x f y =在].0(22a -上单调减,在]1,[22a-上单调增,无最大值, 当22ax -=时取得最小值a 22-.21.解),0(2)1()(2≠-+++=a b x b ax x f(1)当a =2,b =-2时, .42)(2--=x x x f设x 为其不动点,即.422x x x =--则.04222=--x x )(.2,121x f x x 即=-=∴的不动点是-1,2. (2)由x x f =)(得:022=-++b bx ax . 由已知,此方程有相异二实根,0>∆x 恒成立,即.0)2(42>--b a b 即0842>+-a ab b 对任意R b ∈恒成立. .2003216.02<<∴<-∴<∆∴a a a b(3)设),(),,(2211x x B x x A ,直线1212++=a kx y 是线段AB 的垂直平分线, 1-=∴k记AB 的中点).,(00x x M 由(2)知,20a bx -=.12122,12122++=-∴++=a a b a ba kx y M 上在 化简得:22(421221121122=-=⋅-≥+-=+-=a aa aa a ab 当时,等号成立). 即.42-≥b 函数参考答案题次 1 2 3 4 5 6 7 8 9 10 答案DAABCDBAAD二、填空题(每小题4分,共20分) 11.22; 12.x ≥2; 13. (2,+∞) ; 14. 2.5 ; 15 (1) (3) (4) 三、解答题(共80分)16.略17. 解:(Ⅰ)∵12)(-=xx f ∴)1(log )(21+=-x x f (x >-1)由)(1x f-≤g (x ) ∴⎩⎨⎧+≤+〉+13)1(012x x x 解得0≤x ≤1 ∴D =[0,1] (Ⅱ)H (x )=g (x )-)123(log 21113log 21)(21221+-=++=-x x x x f ∵0≤x ≤1 ∴1≤3-12+x ≤2 ∴0≤H (x )≤21 ∴H (x )的值域为[0,21] 18.解:(Ⅰ)设P (x 0,y 0)是y =f (x )图象上点,Q (x ,y ),则⎩⎨⎧-=-=002y y ax x ,∴⎩⎨⎧-=+=yy a x x 002 ∴-y =log a (x +2a -3a ),∴y =log aa x -1 (x >a ) (Ⅱ)⎩⎨⎧>->-03a x a x∴x >3a∵f (x )和g (x )在[a +2,a +3]上有意义. ∴3a <a +2∴0<a <1 6分∵|f (x )-g (x )|≤1恒成立⇒|log a (x -3a )(x -a )|≤1恒成立.a a a x a a a a x a 1)2(101])2[(log 12222≤--≤⇔⎩⎨⎧<<≤--≤-⇔对x ∈[a +2,a +3]上恒成立,令h (x )=(x -2a )2-a 2其对称轴x =2a ,2a <2,2<a +2 ∴当x ∈[a +2,a +3]h min (x )=h (a +2),h max =h (a +3)∴原问题等价⎪⎩⎪⎨⎧≥≤)(1)(max min x h a x h a12579069144-≤<⇒⎪⎩⎪⎨⎧-≥-≤⇔a a aaa 19.解:(Ⅰ)由题意:13+=-t k x 将123,21,0+-=∴===t x k x t 代入 当年生产x (万件)时,年生产成本=年生产费用+固定费用=32x +3=32(3-12+t )+3,当销售x (万件)时,年销售收入=150%[32(3-12+t +3]+t 21由题意,生产x 万件化妆品正好销完∴年利润=年销售收入-年生产成本-促销费即)1(235982+++-=t t t y (t ≥0)(Ⅱ)∵)13221(50+++-=t t y ≤50-162=42万件 当且仅当13221+=+t t 即t =7时,y max =42 ∴当促销费定在7万元时,利润增大.20.(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0 令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x ) ∴f (x )为奇函数 4分(Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212nn x x +)=f (n n n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1(Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n n x f x f x f 2212)212(21121111->+-=--=---=--n n n 而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n 21.(Ⅰ)证明:g (x )=f (x )-x =ax 2+(b -1)x +1a >0 ∵x 1<1<x 2<2 ∴(x 1-1)(x 2-1)<0即x 1x 2<(x 1+x 2)-1于是212121)(21)11(212x x x x a a b a b m x -+=---=-== >21)(2121-+x x [(x 1+x 2)-1]=21又∵x 1<1<x 2<2 ∴x 1x 2>x 1于是有m=21(x 1+x 2)-21x 1x 2<21(x 1+x 2)-21x 1=21x 2<1 ∴21<m <1 (Ⅱ)解:由方程ax x x b ax x g 1,01)1()(212==+-+=可知>0,∴x 1x 2同号 (ⅰ)若0<x 1<2则x 2-x 1=2 ∴x 2=x 1+2>2 ∴g (2)<0 即4a +2b -1<0 ①又(x 2-x 1)2=44)1(22=--a ab ∴1)1(122+-=+b a ,(∵a >0)代入①式得1)1(22+-b <3-2b ,解之得:b <41(ⅱ)若-2<x 1<0,则x 2=-2+x 1<-2 ∴g (-2)<0,即4a -2b +3<0 ② 又1)1(122+-=+b a 代入②得1)1(22+-b <2b -1解之得b >47综上可知b 的取值范围为⎭⎬⎫⎩⎨⎧〉〈4741b b b 或数列参考答案题次 1 2 3 4 5 6 7 8 9 10 答案DDBBBADCBB2.∵S n =324 S n -6=144,∴S n -S n -6=a n +5+a n -4+…+a n =180 又∵S 6=a 1+a 2+…+a 6=36 a 1+a n=a 2+a n -1=…=a 6+a n -5,∴6(a 1+a n )=36+180=216⇒a 1+a n =36,由324182)(1==+=n na a S n n ,有:n =18 ∴选D3.∵S 4=1 S 8=3 ∴S 8-S 4=2,而等比数列依次K 项和为等比数列,a 17+a 18+a 19+a 10=(a 1+a 2+a 3+a 4)·25-1=16,故选B .4.∵38)]9(1[3112=---=-a a).38()3()(,3,09,9)9)(1(12222222⋅-=--=∴<⋅-==--=a a b b q b b 故而 B 选∴-=87.∵ aa b S nn --=1)1( a a b S n n --=++1)1(11 ∴111)1(1)1(1)1(++=--=--+--=+n n n n S aa b a a b a a a b b aS 故点),(1+n n S S 在直线y =ax +b 上,选D . 9.设现在总台数为b ,2003年更新a 台,则:b =a +a (1+10%)+……+a (1+10%)4. ∴%.5.16,%)101(1%)101(15=+-+-⋅=baa b二、填空题(每小题4分,共20分) 11.∵,k n n a a a n n 时=+=+⋯⋯⋅=⋯⋯+)2(lo g )2(lo g 4lo g 3lo g 213221n +2=2k ,由n =2k -2∈(1,2004)有2≤k ≤10(k ∈Z ).故所有劣数的和为(22+23+……+210)-2×9=21)21(49---18=2026. 12.令n =6得.1810,1281764.12864,2276≤≤∈<+<<<∴<<+m N m m x x 有由 故各元素之和为.8917289719=⨯⨯+⨯=S 13.设抽取的是第n 项.∵S 11=55,S 11-a n =40,∴a n =15,又∵S 11=11a 6 a 6=5.由a 1=-5,得d =21616=--aa ,令15=-5+(n -1)×2,∴n =1114.设x =a +b +c ,则b +c -a =xq ,c +a -b =xq 2,a +b -c =xq 3,∴xq +xq 2+xq 3=x (x ≠0) ∴q 3+q 2+q =1.15.n n C C C C ⋯321三、解答题(共80分)16.⑴由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1. ⑵当n =1时,c 1=3 当n ≥2时,∵,1n n nn a a b c -=+∴⎩⎨⎧≥⋅==-)2(32)1(31n n c n n 故132-⋅=n n c 20042003220042133232323=⨯+⋯+⨯+⨯+=+⋯++∴c c c17.⑴∵f (x +1)=(x +1-1)2-4,∴f (x )=(x -1)2-4∴a 1=f (x -1)=(x -2)2-4,a 3=(x -1)2-4. 又a 1+a 3=2a 2,∴x =0,或x =3.(2)由(1)知a 1,a 2,a 3分别是0,-32 ,-3或-3,-32,0.∴)3(23)1(23-=--=n a n a n n 或(3)当)1(23--=n a n 时, 2351)]126(2323[29)(2926226852-=-⋅--=+=+⋯+++a a a a a a 当)3(23-=n a n 时,.2297)392923(29)(2926226852=+--=+=+⋯+++a a a a a a18.(1)∵a n >0,12+=n n a S ,∴2112)1(4,)1(4+=+=--n n n n a S a S ,则当n ≥2时, ,2241212----+=n n n n n a a a a a 即0)2)((11=--+--n n n n a a a a ,而a n >0,∴)2(21≥=--n a a n n 又12,1,12111-==∴+=n a a a S n 则(2)21)1211(21),121121(21)12)(12(1<+-=∴+--=+-=n T n n n n b n n 19.(1)令x =y =0,则f (0)=0,再令x =0,得f (0)-f (y )=f (-y ),∴f (-y )=-f (y ),y ∈(-1,1),∴f (x )在(-1,1)上为奇函数. (2)),1()()()1(,1)21()(1xyyx f y f x f f a f ++=+-==知由 )(2)()()1()12()(21n n n n n n n n n n a f a f a f a a a a f a a f a f =+=⋅++=+=∴+,即2)()(1=+n n a f a f ∴{f (a n )}是以-1为首项,2为公比的等比数列,∴f (a n )=-2n -1.(3)112212211211)2121211(--+-=---=+⋯+++-=n n n n b . 若48-<m b n 恒成立(n ∈N +),则.242421211-->-<+-n n m ,m 即∵n ∈N +,∴当n =1时,124-n 有最大值4,故m >4.又∵m ∈N ,∴存在m =5,使得对任意n∈N +,有48-<m b n . 20. (2005年湖南高考题20题)解:(I )从第n 年初到第n+1年初,鱼群的繁殖量为ax n ,被捕捞量为b x n ,死亡量为.(**)*),1(.(*)*,,1212N n cx b a x x N n cx bx ax x x cx n n n n n n n n n ∈-+-=∈--=-++即因此(II )若每年年初鱼群总量保持不变,则x n 恒等于x 1, n ∈N*,从而由(*)式得 ..0*,,0)(11cba x cxb a N n cx b a x n n -==--∈--即所以恒等于 因为x 1>0,所以a >b.猜测:当且仅当a >b ,且cba x -=1时,每年年初鱼群的总量保持不变.(Ⅲ)若b 的值使得x n >0,n ∈N* 由x n +1=x n (3-b -x n ), n ∈N*, 知0<x n <3-b, n ∈N*, 特别地,有0<x 1<3-b. 即0<b<3-x 1. 而x 1∈(0, 2),所以]1,0(∈b由此猜测b 的最大允许值是1.下证 当x 1∈(0, 2) ,b=1时,都有x n ∈(0, 2), n ∈N* ①当n=1时,结论显然成立.②假设当n=k 时结论成立,即x k ∈(0, 2), 则当n=k+1时,x k+1=x k (2-x k )>0.又因为x k+1=x k (2-x k )=-(x k -1)2+1≤1<2, 所以x k+1∈(0, 2),故当n=k+1时结论也成立.由①、②可知,对于任意的n ∈N*,都有x n ∈(0,2).综上所述,为保证对任意x 1∈(0, 2), 都有x n >0, n ∈N*,则捕捞强度b 的最大允许值是1. 21.(1)x =y =0得f (0)= -1,x =y =-1得f (-2)=2f (-1)+2,而f (-2)= -2,∴f (-1)=-2,x =1,y = -1得f (0)=f (1)+f (-1),∴f (1)=1(2)x =n ,y =1得f (n +1)=f (n )+f (1)+n +1=f (n )+n +2,∴f (n +1)-f (n )=n +2, ∴当n ∈N +时,f (n )=f (1)+[3+4+…+(n +1)]=)2(21)()23(2122-+=--+n n n n f n n 则,而当n ∈N +,且n >1时,n 2+n -2>0, ∴f (n )>n ,则对一切大于1的正整数t ,恒有f (t )>t .(3)∵y = -x 时f (x -x )=f (x )+f (-x )+1-x 2,∴f (x )=x 2-2-f (-x ),∵当x ∈N +时由(2)知)23(21)(2-+=x x x f ,当x =0时,f (0)= -1=]2030[212-⨯+.适合 当x为负整数时,-x ∈N +,则)23(21)23(212)(),23(21)(2222-+=----=∴--=-x x x x x x f x x x f 故对一切x ∈Z 时,有)23(21)(2-+=x x x f , ∴当t ∈Z 时,由f (t )=t 得t 2+t -2=0,即t =1或t =2.满足f (t )=t 的整数t 有两个.[三角函数]通,性质大集中参考答案题号 1 2 3 4 5 6 7 8 9 10 答案CDCCDABABA二、填空题(4分×5=20分)11.-34 12.⎥⎦⎤⎢⎣⎡+--21sin ,21sin ππ 13.-2 14.2(-1)n 15.43;π+23。

(完整版)集合与简易逻辑测试题(高中)

(完整版)集合与简易逻辑测试题(高中)

金华中学2010届高三第一轮复习《集合与简易逻辑》单元测试1•设合集U=R ,集合M){x|x1}, P { x|x 21},则下列关系中正确的是A . M=PB . M 二 PC . P 呈 MD . M P2.如果集合U1,2,3,4,567,8 ,A2,5,8 , B 1,3,5,7那么(汕A ) B 等于( )(A) 5 (B)1,34,5,6,7,8 (C)2,8(D)1,3,7 3 .设 P 、Q为两个非空实数集 合, 定义集合P+Q={a b | a 1 P,b Q},若 P{0,2,5},Q {1,2,6} ,贝U P+Q 中兀素的个数是( )(A) 6(B) 7(C) 8(D) 9 4.设集合A x| 1x 2 , B x|x a ,若A B,贝U a 的取值范围是()(A ) a 2 (B ) a 2 (C ) a 1 (D ) 1 a 2 5.集合A = 「X 1 {x 卜 v 0}, B = {X || x - b|v a }: ,若 “a = 1 ” 是“ A n B 工 ” 、单项选择题(本大题共 10小题,每小题5 分)9•“m 充分非必要条件 充要条件1”是“直线22)x 3my 10与直线(m)(m((A)充分必要条件 (C)必要而不充分条件10. 已知0 a 1 b ,不等式lg(a x 满足的关系是(1 1((A )) - - 10a b关系不能确定 二、填空题(本大题共11. 对任意实数a , b ,1 1(B)-- a b (B )必要非充分条件 (D )既非充分又非必要条件2)x (m 2)y 3 0相互垂直”的b x )105小题,每小题- c ,给出下列命题:(B)充分而不必要条件(D)既不充分也不必要条件1的解集是 1 (C )- a共25分, {x| 1 x 0},则 a,b1 10(D ) a 、b 的b 把答案填在题中横线上)x 1的充分条件, 则b 的取值范围是 ( ) (A )— 2 < b v 0 ( B ) O v b w 2 (C )— 3v b v — 1 ( D )— 1 < b v 2 x 1 6.设集合 A ={ x| ----------- v 0} , B ={ x || x — 1|v a },若“ a = 1” 是“ A n B x 1 工0 ”的( )(A )充分不必要条件 (D)既不充分又不必要条件 7. 已知 p : 2 5,q :3 (B )必要不充分条件(C)充要条件 下列判断中,错误的是 ( ) (A)P (C)P 8. a 1、 或q 为真,非p 为真 且q 为假,p 或q 为真 不等式 a 1 q 为假 p 为假 或q 为真, 且q 为假, b 1、C 1、a 2、b 2、C 2均为非零实数, (B) P (D) P 1、b 2X + C 2<0的解集分别为集合 M 和N ,那么“」a 2a 1X 2+b 1x + C 1<0 和 a 2x 2+ b 2乂 ” 是 “ M = N ”C 2①“ a b ”是“ ac bc ”充要条件;②“ a 5是无理数”是“ a 是无理数” 的充要条件③“ a>b ”是“ a 2>b 2”的充分条件; ④“ a<5”是“ a<3”的必要条件•其中为真命题的是— 12.若集合 A 1,3, x , B1,x 2,且 A B 1,3,x ,则 x _________________13•两个三角形面积相等且两边对应相等,是两个三角形全等的 _________________ 条 件14•若(x 1)( y 2)0,则x 1或y 2的否命题是 ____________________________15.已知集合 M = {x |1w x w 10, x € N },对它的非空子集 A ,将A 中每个元素k , 都乘以(—1)k 再求和(如 A={1 , 3, 6},可求得和为(—1) 1 + (— 1)3 3 + (— 1)6 6 = 2, 则对M 的所有非空子集,这些和的总和是 ___________________ . 三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤)16.(本小题满分12分)17.(本小题满分12分)已知p :方程X 2+ mx+ 1= 0有两个不等的负实根, 1 = 0无实根。

(完整版)集合与简易逻辑试卷及详细答案

(完整版)集合与简易逻辑试卷及详细答案

(完整版)集合与简易逻辑试卷及详细答案集合与简易逻辑⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.每⼩题中只有⼀项符合题⽬要求)1.集合M={x|lg x>0},N={x|x2≤4},则M∩N=( )A.(1,2) B.[1,2)C.(1,2] D.[1,2]2.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表⽰的集合等于()A.{-1,2} B.{-1,0}C.{0,1} D.{1,2}3.已知?Z A={x∈Z|x<6},?Z B={x∈Z|x≤2},则A与B的关系是() A.A?B B.A?BC.A=B D.?Z A?Z B4.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列选项中,p是q的必要不充分条件的是()A.p:a+c>b+d,q:a>b且c>dB.p:a>1,b>1,q:f(x)=a x-b(a>0,且a≠1)的图像不过第⼆象限C.p:x=1,q:x2=x D.p:a>1,q:f(x)=log a x(a>0,且a≠1)在(0,+∞)上为增函数6.已知命题p:所有有理数都是实数;命题q:正数的对数都是负数.则下列命题中为真命题的是() A.(⾮p)或q B.p且qC.(⾮p)且(⾮q) D.(⾮p)或(⾮q) 7.下列命题中,真命题是()B.?x∈R,2x>x2C.a+b=0的充要条件是ab=-1D.a>1,b>1是ab>1的充分条件8.已知命题p:“x>3”是“x2>9”的充要条件,命题q:“ac2>bc2”是“a>b”的充要条件,则()A.“p或q”为真B.“p且q”为真C.p真q假D.p,q均为假9.命题p:?x∈R,x2+1>0,命题q:?θ∈R,sin2θ+cos2θ=1.5,则下列命题中真命题是()A.p∧q B.(⾮p)∧qC.(⾮p)∨q D.p∧(⾮q)10.已知直线l1:x+ay+1=0,直线l2:ax+y+2=0,则命题“若a=1或a=-1,则直线l1与l2平⾏”的否命题为() A.若a≠1且a≠-1,则直线l1与l2不平⾏B.若a≠1或a≠-1,则直线l1与l2不平⾏C.若a=1或a=-1,则直线l1与l2不平⾏D.若a≠1或a≠-1,则直线l1与l2平⾏11.命题“?x∈[1,2],x2-a≤0”为真命题的⼀个充分不必要条件是() A.a≥4 B.a≤4C.a≥5 D.a≤512.设x,y∈R,则“|x|≤4且|y|≤3”是“x216+y29≤1”的()A.充分⽽不必要条件B.必要⽽不充分条件C.充分必要条件D.既不充分也不必要条件⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在题中横线上)13.已知集合A={1,a,5},B={2,a2+1}.若A∩B有且只有⼀个元素,则实数a的值为________.14.命题“?x∈R,x2+ax-4a<0”为假命题,是“-16≤a≤0”的________条件.15.设全集U=A∪B={x∈N*|lg x<1},若A∩(?U B)={m|m=2n+1,n=0,1,2,3,4},则集合B=________.16.若f(x)=x2-2x,g(x)=ax+2(a>0),?x1∈[-1,2],?x0∈[-1,2],使g(x1)=f(x0),则a的取值范围是________.三、解答题(本⼤题共6⼩题,共70分,解答应写出⽂字说明、证明过程或演算步骤)17.(本⼩题满分10分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)若A∩B=[0,3],求实数m的值;(2)若A??R B,求实数m的取值范围.18.(本⼩题满分12分)已知命题“?x∈R,|x-a|+|x+1|≤2”是假命题,求实数a的取值范围.19.(本⼩题满分12分)已知集合E={x||x-1|≥m},F={x|10x+6>1}.(1)若m=3,求E∩F;(2)若E∪F=R,求实数m的取值范围.20.(本⼩题满分12分)已知全集U=R,⾮空集合A={x|x-2x-(3a+1)<0},B={x|x-a2-2x-a<0}.(1)当a=12时,求(?U B)∩A;(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.21.(本⼩题满分12分)设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+1x+1的值域,集合C为不等式(ax-1a)(x+4)≤0的解集.(1)求A∩B;(2)若C??R A,求a的取值范围.22.(本⼩题满分12分)已知命题p:⽅程2x2+ax-a2=0在[-1,1]上有解;命题q:只有⼀个实数x0满⾜不等式x20+2ax0+2a≤0,若命题“p或q”是假命题,求a的取值范围.答案:⼀、选择题(本⼤题共12⼩题,每⼩题5分,共60分.每⼩题中只有⼀项符合题⽬要求)1.答案C解析因为M={x|x>1},N={x|-2≤x≤2},所以M∩N={x|12解析依题意知A={0,1},(?U A)∩B表⽰全集U中不在集合A中,但在集合B中的所有元素,故图中的阴影部分所表⽰的集合等于{-1,2},选A.3.答案A4.D.既不充分也不必要条件答案 B解析∵“A∩{0,1}={0}”得不出“A={0}”,⽽“A={0}”能得出“A∩{0,1}={0}”,∴“A∩{0,1}={0}”是“A={0}”的必要不充分条件.5.解析B选项中,当b=1,a>1时,q推不出p,因⽽p为q的充分不必要条件.C选项中,q为x=0或1,q不能够推出p,因⽽p为q的充分不必要条件.D选项中,p、q可以互推,因⽽p为q的充要条件.故选A.6.答案D解析由于命题p是真命题,命题q是假命题,因此,命题綈q是真命题,于是(綈p)或(綈q)是真命题.7.答案D解析∵a>1>0,b>1>0,∴由不等式的性质,得ab>1.即a>1,b>1?ab>1.8.答案A解析由x>3能够得出x2>9,反之不成⽴,故命题p是假命题;由ac2>bc2能够推出a>b,反之,因为1c2>0,所以由a>b能推出ac2>bc2成⽴,故命题q是真命题.因此选A.9.答案D解析易知p为真,q为假,⾮p为假,⾮q为真.由真值表可知p∧q假,(⾮p)∧q假,(⾮p)∨q假,p∧(⾮q)真,故选D.10.答案A解析命题“若A,则B”的否命题为“若綈A,则綈B”,显然“a=1或a =-1”的否定为“a≠1且a≠-1”,“直线l1与l2平⾏”的否定为“直线l1与l2不平⾏”,所以选A.11.答案C解析命题“?x∈[1,2],x2-a≤0”为真命题的充要条件是a≥4,故其充分不必要条件是实数a的取值范围是集合[4,+∞)的⾮空真⼦集,正确选项为C.12.答案B⼆、填空题(本⼤题共4⼩题,每⼩题5分,共20分,把答案填在题中横线上)13.答案0或-2解析若a=2,则a2+1=5,A∩B={2,5},不合题意舍去.若a2+1=1,则a=0,A∩B={1}.若a2+1=5,则a=±2.⽽a=-2时,A∩B={5}.若a2+1=a,则a2-a+1=0⽆解.∴a=0或a=-2.14.答案充要解析∵“?x∈R,x2+ax-4a<0”为假命题,∴“?x∈R,x2+ax-4a≥0”为真命题,∴Δ=a2+16a≤0,即-16≤a≤0.故为充要条件.15.答案{2,4,6,8}解析A∪B={x∈N*|lg x<1}={1,2,3,4,5,6,7,8,9},A∩(?U B)={m|m=2n+1,n =0,1,2,3,4}={1,3,5,7,9},∴B={2,4,6,8}.16.答案(0,1 2]解析由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2],使得g(x1)=f(x0),因此问题等价于函数g(x)的值域是函数f(x)值域的⼦集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤12,⼜a>0,故a的取值范围是(0,12].三、解答题(本⼤题共6⼩题,共70分,解答应写出⽂字说明、证明过程或演算步骤)17 答案 (1)2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与简易逻辑单元测试题一、单项选择题(本大题共10小题,每小题5分)1.设合集U=R ,集合}1|{},1|{2>=>=x x P x x M ,则下列关系中正确的是( )A .M=PB .MPC . PMD .M ⊇P2.如果集合{}8,7,6,5,4,3,2,1=U ,{}8,5,2=A ,{}7,5,3,1=B ,那么(A U)B 等于( )(A){}5 (B) {}8,7,6,5,4,3,1 (C) {}8,2 (D) {}7,3,1 3.设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若 }6,2,1{=Q ,则P+Q 中元素的个数是 ( ) (A) 6 (B) 7 (C) 8 (D) 94. 设集合{}21|<≤-=x x A ,{}a x x B <=|,若φ≠B A ,则a 的取值范围是(A )2<a (B )2->a (C )1->a (D )21≤<-a ( ) 5. 集合A ={x |11+-x x <0},B ={x || x -b|<a },若“a =1”是“A ∩B ≠φ”的充分条件, 则b 的取值范围是( )(A )-2≤b <0 (B )0<b ≤2 (C )-3<b <-1(D )-1≤b <26.设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠φ ”的( ) (A )充分不必要条件 (B )必要不充分条件 (C)充要条件 (D)既不充分又不必要条件 7. 已知23:,522:>=+q p ,则下列判断中,错误..的是 ( ) (A)p 或q 为真,非q 为假 (B) p 或q 为真,非p 为真 (C)p 且q 为假,非p 为假 (D) p 且q 为假,p 或q 为真8.a 1、b 1、c 1、a 2、b 2、c 2均为非零实数,不等式a 1x 2+b 1x +c 1<0和a 2x 2+b 2x +c 2<0的解集分别为集合M 和N ,那么“111222a b ca b c ==”是“M =N ” ( ) (A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分又非必要条件9.“21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的 ( )(A)充分必要条件 (B)充分而不必要条件(C)必要而不充分条件(D)既不充分也不必要条件10. 已知01a b <<<,不等式lg()1xxa b -<的解集是{|10}x x -<<,则,a b 满足的关系是( )(A )1110a b -> (B )1110a b -= (C )1110a b-< (D )a 、b 的关系不能确定 二、填空题(本大题共5小题,每小题5分,共25分,把答案填在题中横线上)11.对任意实数a ,b ,c ,给出下列命题:①“b a =”是“bc ac =”充要条件;②“5+a 是无理数”是“a 是无理数”的充要条件 ③“a >b ”是“a 2>b 2”的充分条件; ④“a <5”是“a <3”的必要条件. 其中为真命题的是12.若集合{}x A ,3,1=,{}2,1x B =,且{}x B A ,3,1= ,则=x13.两个三角形面积相等且两边对应相等,是两个三角形全等的 条件 14.若0)2)(1(=+-y x ,则1=x 或2-=y 的否命题是15.已知集合M ={x |1≤x ≤10,x ∈N },对它的非空子集A ,将A 中每个元素k ,都乘以(-1)k再求和(如A={1,3,6},可求得和为(-1)·1+(-1)3·3+(-1)6·6=2,则对M 的所有非空子集,这些和的总和是 .三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分12分)用列举法写出集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎩⎨⎧->-+-+≥+∈)9(321)1)(1()1(|22x x x x x x x Zx17.(本小题满分12分)已知p :方程x 2+m x +1=0有两个不等的负实根,q :方程4x 2+4(m -2)x +1=0无实根。

若p 或q 为真,p 且q 为假。

求实数m 的取值范围。

18.(本小题满分12分)设a R ∈,函数2()22.f x ax x a =--若()0f x >的解集为A ,{}|13,B x x AB φ=<<≠,求实数a 的取值范围。

19.(本小题满分12分)解关于x 的不等式:0)2)(2(>--ax x 20.(本小题满分13分)已知集合A={x || x 3π-|≤2π}, 集合B={y | y = -21cos 2x -2asinx +23, x ∈A }, 其中6π≤a ≤π, 设全集U=R, 欲使B ⊆A, 求实数a 的取值范围.21.(本小题满分14分)已知函数)lg()(2b ax x x f ++=的定义域为集合A ,函数34)(2+++=k x kx x g 的定义域为集合B ,若}32|{)(,)(≤≤-==x x B A C B B A C R R ,求实数b a ,的值及实数k 的取值范围.《集合与简易逻辑》单元测试题 参考答案一、选择题:1、C ;2、D ;3、C ;4、C ;5、D ;6、A ;7、C ;8、D ;9、B ;10、B ;5.答案:D 评述:本题考查了分式不等式,绝对值不等式的解法,及充分必要条件相关内容。

解:由题意得:A :-1<x<1,B:b -a<x<a+b 由”a=1”是“≠⋂B A φ”的充分条件。

则A :-1<x<1与B: b -1<x<1+b 交集不为空。

所以-2<b<2 检验知:21<≤-b 能使≠⋂B A φ。

故选D 。

6.答案:A 评述:本题考查分式不等式,绝对值不等式的解法,充分必要条件等知识. 解:由题意得A :-1<x<1.B;1-a<x<a+1 (1)由a=1.A :-1<x<1.B:0<x<2.则A {}∅≠<<=⋂10x x B 成立,即充分性成立.(2)反之:A ∅≠⋂B ,不一定推得a=1,如a 可能为21. 综合得.”a=1”是: A ∅≠⋂B ”的充分非必要条件.故选A. 二、填空题:11、②④ ; 12、3±;0; 13、必要不充分; 14、若()()021≠+-y x ,则1x ≠且2-≠y ; 15、2560 三、解答题:16、{1,2,3,4,5};17、由题意p ,q 中有且仅有一为真,一为假,p 真12120010x x m x x ∆>⎧⎪⇔+=-<⎨⎪=>⎩⇔m>2,q 真⇔∆<0⇔1<m<3,若p 假q 真,则213m m ≤⎧⎨<<⎩⇔1<m ≤2;若p 真q 假,则213m m a m >⎧⎨≤≥⎩或⇔m ≥3;综上所述:m ∈(1,2]∪[3,+∞). 18、解:,a R ∈∴∴∣Φ当a=0时,f(x)=-2x,A={x x<0},A B=∴0a ≠,令f (x )=0解得其两根为1211x x a a ==由此可知120,0x x <>(i )当0a >时,12{|}{|}A x x x x x x =<⋃>A B φ⋂≠的充要条件是23x <,即13a +解得67a >(ii )当0a <时,12{|}A x x x x =<<A B φ⋂≠的充要条件是21x >,即11a >解得2a <-综上,使A B φ⋂=成立的a 的取值范围为6(,2)(,)7-∞-⋃+∞19、⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧<<<<=<><<≠=><>22,02,022,102,122,1x a a x a x a x a x a x a x a 或或20、解: 集合A={x |-6π≤x ≤65π}, y=sin 2x-2asinx+1=(sinx-a)2+1-a 2. ∵x ∈A, ∴sinx ∈[12-,1].①若6π≤a ≤1, 则y min =1-a 2, y max =(-21-a )2+1-a 2=a+45.又∵6π≤a ≤1, ∴B 非空(B ≠φ).∴B={y |1-a 2≤y ≤a+45}.欲使B ⊆A, 则联立1-a 2≥-6π和a+45≤65π,解得6π≤a ≤1. ②若1<a ≤π, 则y min =2-2a, y max = a+45. ∵1<a ≤π, ∴B ≠φ. ∴B={y |2-2a ≤y ≤a+45}. 欲使B ⊆A, 则联立2-2a ≥-6π和a+45≤65π解得a ≤1+12π. 又1<a ≤π, ∴1<a ≤1+12π. 综上知a 的取值范围是[6π,1+12π].21、解:},034|{},0|{2R k k x kx x B b ax x x A ∈≥+++=>++=A CB B B AC R R ⊆∴=,)( , 又}32|{)(≤≤-=x x B A C R }32|{}.32|{>-<=∴≤≤-=∴x x x A x x A C R 或即不等式02>++b ax x 的解集为}32|{>-<x x x 或6,1-=-=∴b a由可得且A C B B R ⊆∅≠,方程034)(2=+++=k x kx x F 的两根都在内]3,2[-⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≤-≤-≤≤-≥∆<∴3220)3(0)2(00k F F k 解得234-≤≤-k故6,1-=-=b a , ]23,4[--∈k。

相关文档
最新文档