基于扩展卡尔曼滤波算法的matlab程序

合集下载

基于MATLAB的卡尔曼滤波法参数辨识与仿真

基于MATLAB的卡尔曼滤波法参数辨识与仿真

基于MATLAB的卡尔曼滤波法参数辨识与仿真童余德周永余陈永冰周岗(海军工程大学电气与信息工程学院导航工程系,武汉 430033)摘要:本文介绍了基于MATLAB的使用卡尔曼滤波法进行参数辨识的设计与仿真方法。

简述了参数辨识的概念和卡尔曼滤波法应用于参数辨识的基本原理,结合实例与最小二乘法进行比较,给出了相应的仿真结果和分析。

关键词:Matlab 参数辨识 卡尔曼滤波法 最小二乘法中图分类号:TP311 TN713 文献标识码:A 文章编号:1003-4862 (2009) 08-0047-04Kalman Filter Parameter Identification andEmulate Based on MatlabTong Yude, Zhou Yongyu, Chen Yongbing, Zhou Gang(College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China)Abstract:This paper introduces the methods of design and simulation of parameter identification using kalman filter theory based on Matlab.This paper also introduces the concept of parameter identification and the basic principle of how to apply kalman filter theory to parameter identification. Finally, according to two examples, the methods of kalman filter theory and least squares used in parameter identification are compared and the simulation and results are also analyzed.Key words: Matlab; parameter identification; kalman filter theory; least squares1 引言系统辨识是根据系统的输入、输出数据辨识“灰色系统”或“黑色系统”。

卡尔曼滤波器及matlab代码

卡尔曼滤波器及matlab代码

信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702姓名:马志强1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。

由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。

例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。

发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。

而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。

接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。

随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。

2.维纳最速下降算法滤波器2.1 最速下降算法的基本思想考虑一个代价函数J(J),它是某个未知向量J的连续可微分函数。

函数J(J)将J的元素映射为实数。

这里,我们要寻找一个最优解J。

使它满足如下条件J(J0)≤J(J)(2.1)这也是无约束最优化的数学表示。

特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想J(0)出发,产生一系列权向量J(1),J(2),,使得代价函数J(J)在算法的每一次迭代都是下降的,即J(J(J+1))<J(J(J))其中J(J)是权向量的过去值,而J(J+1)是其更新值。

我们希望算法最终收敛到最优值J0。

迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。

卡尔曼滤波轨迹预测matlab

卡尔曼滤波轨迹预测matlab

卡尔曼滤波是一种由芬兰控制理论专家卡尔曼(R.E.Kalman)于20世纪60年代提出的一种适用于线性动态系统的状态估计方法,它的原理是根据系统的数学模型通过观测数据对系统状态进行动态估计,具有对系统参数模型的误差进行校正、对系统运动的预测与跟踪的优点。

在今天的科学技术发展中,卡尔曼滤波已经广泛应用于航空航天、导航、通信、天文测量、生物医学工程等众多领域。

其中,在轨迹预测方面,卡尔曼滤波可以通过对目标的动态模型进行建模,结合观测数据,实现对目标位置的精确预测。

而在使用matlab进行卡尔曼滤波轨迹预测时,通常需要按照以下步骤进行操作:1. 建立系统模型在matlab中,首先需要根据目标运动的特点建立系统的动态模型。

这个过程通常会涉及到目标的运动方程、动态参数、观测误差等内容。

在建立好系统模型后,可以将系统模型表示为状态方程和观测方程。

2. 初始化滤波器参数在进行卡尔曼滤波之前,需要对滤波器的初始状态进行初始化,这包括系统状态向量的初始估计、系统噪声和观测噪声的协方差矩阵等参数的初始化。

3. 观测数据处理在实际应用中,通常会通过传感器或者其他设备获取目标的观测数据,这些数据需要进行预处理,包括去噪、滤波等操作,以提高滤波器的效果。

4. 卡尔曼滤波预测在完成上述准备工作后,就可以利用matlab中的卡尔曼滤波函数进行轨迹预测了。

这个过程通常包括对观测数据和系统模型进行融合,实现对目标轨迹的准确预测。

5. 评估与调整需要对滤波结果进行评估与调整。

这个过程包括对滤波器参数的调整优化以及与实际观测数据进行对比等步骤,以保证滤波器的准确性与稳定性。

总结来看,matlab在卡尔曼滤波轨迹预测中具有良好的适用性和灵活性,可以帮助用户快速、准确地实现对目标轨迹的预测与跟踪。

但在实际应用中,用户需要根据具体的系统模型和观测数据特点来合理选择滤波参数,以最大程度地发挥卡尔曼滤波的优势。

在进行卡尔曼滤波轨迹预测时,用户除了需要掌握matlab的基本操作以外,更需要对卡尔曼滤波理论有着深刻的理解与应用能力,这样才能更好地利用卡尔曼滤波来实现目标轨迹的准确预测与跟踪,为实际应用提供更好的支持与保障。

matlab 自适应卡尔曼滤波

matlab 自适应卡尔曼滤波

matlab 自适应卡尔曼滤波自适应卡尔曼滤波是一种基于卡尔曼滤波算法的扩展,用于跟踪非线性系统的状态。

在传统的卡尔曼滤波中,假设系统是线性的,并且系统的噪声和测量噪声是已知的。

然而,在实际应用中,往往会遇到非线性系统或未知的噪声情况,这就需要使用自适应卡尔曼滤波方法来处理。

自适应卡尔曼滤波的基本思想是通过一种递归算法,根据系统的状态和测量值的变化来调整卡尔曼滤波的参数。

具体步骤如下:1. 初始化卡尔曼滤波模型的参数,包括状态向量、状态转移矩阵、测量矩阵、过程噪声协方差矩阵、测量噪声协方差矩阵等。

2. 根据当前的测量值和状态向量,计算预测的状态向量和状态转移矩阵。

3. 通过当前的测量值和预测的状态向量,计算卡尔曼增益。

4. 更新状态向量和状态协方差矩阵。

5. 根据更新后的状态向量,重新计算过程噪声协方差矩阵和测量噪声协方差矩阵。

6. 重复步骤2到5,直到滤波结束。

自适应卡尔曼滤波的关键在于如何根据当前的测量值和状态向量来调整滤波模型的参数,以适应实际系统的变化。

常见的自适应卡尔曼滤波算法包括扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和粒子滤波等。

在MATLAB中,可以使用现有的工具箱或编写自己的函数来实现自适应卡尔曼滤波。

MATLAB提供了kalmanfilt函数用于实现标准的卡尔曼滤波,同时也可以根据需要自定义滤波模型和参数。

它还提供了ekf, ukf和pf函数分别用于实现扩展卡尔曼滤波、无迹卡尔曼滤波和粒子滤波算法。

下面是一个简单的MATLAB示例,演示了如何使用kalmanfilt函数实现自适应卡尔曼滤波:matlab% 定义系统的状态转移矩阵和测量矩阵A = [1 0.1; 0 1];C = [1 0];% 定义过程噪声协方差矩阵和测量噪声协方差矩阵Q = [0.01 0; 0 0.01];R = 0.1;% 创建kalman滤波器对象kf = kalmanfilt(A, C, Q, R);% 初始化状态向量和状态协方差矩阵x0 = [0; 0];P0 = eye(2);% 生成模拟数据N = 100;x_true = zeros(2, N);y = zeros(1, N);for k = 1:Nx_true(:, k) = A * x_true(:, k-1) + sqrtm(Q) * randn(2, 1);y(k) = C * x_true(:, k) + sqrt(R) * randn(1);end% 使用kalman滤波器滤波数据x_est = zeros(2, N);for k = 1:Nx_est(:, k) = kf(y(k));end% 绘制真实值和估计值的对比图figure;hold on;plot(1:N, x_true(1, :), 'b-', 'LineWidth', 2);plot(1:N, x_true(2, :), 'r-', 'LineWidth', 2);plot(1:N, x_est(1, :), 'k', 'LineWidth', 2);plot(1:N, x_est(2, :), 'm', 'LineWidth', 2);legend('True x1', 'True x2', 'Estimate x1', 'Estimate x2');hold off;以上示例中,定义了一个二维状态向量和一个一维测量向量,并根据这两个向量构建了卡尔曼滤波模型的参数。

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现

基于扩展卡尔曼滤波的目标跟踪定位算法及matlab程序实现扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的算法。

在目标跟踪定位中,它可以用于估计目标的运动轨迹。

下面是一个简单的基于扩展卡尔曼滤波的目标跟踪定位算法的描述,以及一个简化的MATLAB程序实现。

算法描述1. 初始化:设置初始状态估计值(例如位置和速度)以及初始的估计误差协方差矩阵。

2. 预测:根据上一时刻的状态估计值和模型预测下一时刻的状态。

3. 更新:结合观测数据和预测值,使用扩展卡尔曼滤波算法更新状态估计值和估计误差协方差矩阵。

4. 迭代:重复步骤2和3,直到达到终止条件。

MATLAB程序实现这是一个简化的示例,仅用于说明扩展卡尔曼滤波在目标跟踪定位中的应用。

实际应用中,您需要根据具体问题和数据调整模型和参数。

```matlab% 参数设置dt = ; % 时间间隔Q = ; % 过程噪声协方差R = 1; % 观测噪声协方差x_est = [0; 0]; % 初始位置估计P_est = eye(2); % 初始估计误差协方差矩阵% 模拟数据:观测位置和真实轨迹N = 100; % 模拟数据点数x_true = [0; 0]; % 真实轨迹初始位置for k = 1:N% 真实轨迹模型(这里使用简化的匀速模型)x_true(1) = x_true(1) + x_true(2)dt;x_true(2) = x_true(2);% 观测模型(这里假设有噪声)z = x_true + sqrt(R)randn; % 观测位置% 扩展卡尔曼滤波更新步骤[x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R);end% 扩展卡尔曼滤波更新函数(这里简化为2D一维情况)function [x_est, P_est] = ekf_update(x_est, P_est, z, dt, Q, R)% 预测步骤:无观测时使用上一时刻的状态和模型预测下一时刻状态F = [1 dt; 0 1]; % 状态转移矩阵(这里使用简化的匀速模型)x_pred = Fx_est + [0; 0]; % 预测位置P_pred = FP_estF' + Q; % 预测误差协方差矩阵% 更新步骤:结合观测数据和预测值进行状态更新和误差协方差矩阵更新K = P_predinv(HP_pred + R); % 卡尔曼增益矩阵x_est = x_pred + K(z - Hx_pred); % 更新位置估计值P_est = (eye(2) - KH)P_pred; % 更新误差协方差矩阵end```这个示例代码使用扩展卡尔曼滤波对一个简化的匀速运动模型进行估计。

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)

扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)扩展卡尔曼滤波(EKF)理论讲解与实例(matlab、python和C++代码)⽂章⽬录我们上篇提到的 (参见我的另⼀篇⽂章: )是⽤于线性系统,预测(运动)模型和观测模型是在假设⾼斯和线性情况下进⾏的。

简单的卡尔曼滤波必须应⽤在符合⾼斯分布的系统中,但是现实中并不是所有的系统都符合这样 。

另外⾼斯分布在⾮线性系统中的传递结果将不再是⾼斯分布。

那如何解决这个问题呢?扩展卡尔曼滤波就是⼲这个事的。

理论讲解扩展卡尔曼滤波(Extended Kalman Filter,EKF)通过局部线性来解决⾮线性的问题。

将⾮线性的预测⽅程和观测⽅程进⾏求导,以切线代替的⽅式来线性化。

其实就是在均值处进⾏⼀阶泰勒展开。

数学中,泰勒公式是⼀个⽤函数在某点的信息描述其附近取值的公式( ⼀句话描述:就是⽤多项式函数去逼近光滑函数 )。

如果函数⾜够平滑的话,在已知函数在某⼀点的各阶导数值的情况之下,泰勒公式可以⽤这些导数值做系数构建⼀个多项式来近似函数在这⼀点的邻域中的值。

泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

表⽰ 在第 阶导数的表达式,带⼊⼀个值计算后得到的结果(注意,它是个值)是⼀个系数(⼀个值),每⼀项都不同,第⼀项 ,第⼆项 …… 依此类推是⼀个以为⾃变量的表达式 。

是泰勒公式的余项,是 的⾼阶⽆穷⼩KF 和EKF 模型对⽐⾸先,让卡尔曼先和扩展卡尔曼滤波做⼀个对⽐。

在对⽐过程中可以看出,扩展卡尔曼是⼀个简单的⾮线性近似滤波算法,指运动或观测⽅程不是线性的情况,在预测模型部分,扩展卡尔曼的预测模型和量测模型已经是⾮线性了。

为了简化计算,EKF 通过⼀阶泰勒分解线性化运动、观测⽅程。

KF 与EKF 具有相同的算法结构,都是以⾼斯形式描述后验概率密度的,通过计算贝叶斯递推公式得到的。

最⼤的不同之处在于,计算⽅差时,EKF 的状态转移矩阵(上⼀时刻的状态信息)和观测矩阵(⼀步预测)都是状态信息的雅克⽐矩阵( 偏导数组成的矩阵)。

信号处理 扩展卡尔曼滤波数据融合代码matlab

信号处理 扩展卡尔曼滤波数据融合代码matlab

信号处理扩展卡尔曼滤波数据融合代码matlab 如何使用扩展卡尔曼滤波(Extended Kalman Filter, EKF)进行数据融合的问题,并提供MATLAB代码示例。

引言:现代技术的快速发展使得传感器的数量和种类越来越多。

数据融合是将多个传感器的测量结果进行合并,以得到更准确、更可靠的估计值的过程。

扩展卡尔曼滤波是一种常用的数据融合算法,特别适用于非线性系统的估计。

正文:扩展卡尔曼滤波是对卡尔曼滤波的一种扩展,它利用非线性系统的一阶泰勒展开,以线性化的形式近似非线性系统。

步骤一:构建状态方程和观测方程首先,我们需要构建状态方程和观测方程。

状态方程描述系统的动力学变化,而观测方程描述传感器对状态量的测量。

假设我们有一个非线性系统,其状态方程可以表示为:x(k) = f(x(k-1), u(k-1)) + w(k-1)其中,x(k)是系统在时刻k的状态量,f是非线性函数,u(k-1)是时刻k-1的控制量,w(k-1)是过程噪声。

观测方程可以表示为:z(k) = h(x(k)) + v(k)其中,z(k)是传感器在时刻k的测量值,h是非线性函数,v(k)是观测噪声。

步骤二:线性化模型由于扩展卡尔曼滤波是基于线性化模型的,我们需要对状态方程和观测方程进行线性化处理。

线性化可以使用一阶泰勒展开来近似非线性函数。

具体地,我们可以通过对状态方程和观测方程求一阶偏导数得到线性化模型。

步骤三:初始化滤波器扩展卡尔曼滤波的初始化包括初始化状态量估计和协方差矩阵。

初始状态量估计可以通过系统初始条件提供,而协方差矩阵可以设置为一个足够大的值,表示对初始估计的不确定性。

步骤四:预测步骤在预测步骤中,我们使用状态方程和控制量来预测时刻k的状态量估计。

同时,我们也需要更新状态量的协方差矩阵。

具体地,预测的状态量估计可以表示为:x^(k) = f(x^(k-1), u(k-1))预测的协方差矩阵可以表示为:P^(k) = A * P(k-1) * A' + Q(k-1)其中,x^(k)是时刻k的预测状态量估计,P^(k)是时刻k的预测协方差矩阵,A是状态方程的雅可比矩阵,Q(k-1)是过程噪声的协方差矩阵。

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab

自适应扩展卡尔曼滤波matlab自适应扩展卡尔曼滤波(Adaptive Extended Kalman Filter,AEKF)是一种用于非线性系统状态估计的滤波算法。

本文将介绍AEKF算法的原理、步骤和实现方法,并结合MATLAB 编写代码进行演示。

一、扩展卡尔曼滤波原理扩展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波算法。

它通过使用线性化系统模型的方式将非线性系统转换为线性系统,在每个时间步骤中用线性卡尔曼滤波器进行状态估计。

然而,EKF仅限于具有凸多边形测量特性的问题,并且对线性化过程误差敏感。

为了解决这些问题,AEKF通过自适应更新协方差矩阵的方式提高了滤波器的性能。

AEKF通过测量残差的方差更新协方差矩阵,从而提高了滤波器对非线性系统的适应能力。

AEKF算法的步骤如下:1. 初始化状态向量和协方差矩阵。

2. 根据系统的非线性动力学方程和测量方程计算预测状态向量和协方差矩阵。

3. 计算测量残差,即测量值与预测值之间的差值。

4. 计算测量残差的方差。

5. 判断测量残差的方差是否超过预设阈值,如果超过,则更新协方差矩阵。

6. 利用更新后的协方差矩阵计算最优滤波增益。

7. 更新状态向量和协方差矩阵。

8. 返回第2步,进行下一次预测。

二、AEKF算法的MATLAB实现下面,我们将使用MATLAB编写AEKF算法的代码,并通过一个实例进行演示。

首先,定义非线性系统的动力学方程和测量方程。

在本例中,我们使用一个双摆系统作为非线性系统模型。

```matlabfunction x_next = nonlinear_dynamics(x_current, u)% Nonlinear system dynamicstheta1 = x_current(1);theta2 = x_current(2);d_theta1 = x_current(3);d_theta2 = x_current(4);g = 9.8; % Gravitational accelerationd_theta1_next = d_theta1 + dt * (-3*g*sin(theta1) - sin(theta1-theta2) ...+ 2*sin(theta1-theta2)*(d_theta2^2 + d_theta1^2*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));d_theta2_next = d_theta2 + dt * (2*sin(theta1-theta2)*(2*d_theta2^2 ...+ d_theta1^2*cos(theta1-theta2) + g*cos(theta1) +g*cos(theta1-theta2))) .../ (3 - cos(2*(theta1-theta2)));theta1_next = theta1 + dt * d_theta1_next;theta2_next = theta2 + dt * d_theta2_next;x_next = [theta1_next; theta2_next; d_theta1_next;d_theta2_next];endfunction y = measurement_model(x)% Measurement model, measure the angles of the double pendulumtheta1 = x(1);theta2 = x(2);y = [theta1; theta2];end```然后,定义AEKF算法的实现。

扩展卡尔曼滤波算法的matlab程序

扩展卡尔曼滤波算法的matlab程序

clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of process G=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。

matlab扩展卡尔曼滤波实例

matlab扩展卡尔曼滤波实例

matlab扩展卡尔曼滤波实例在MATLAB中实现卡尔曼滤波的过程。

第一步:准备数据要使用卡尔曼滤波算法,首先需要准备尽可能准确的测量数据。

我们假设我们正在跟踪一个匀速运动的物体,我们使用一个简单的模型来生成数据。

以下是一个MATLAB代码示例:matlab生成匀速运动数据t = 0:0.1:10; 时间范围v = 2; 速度x_true = 5 + v*t; 真实位置x_meas = x_true + 0.5*randn(size(t)); 测量位置(加入噪声)上述代码生成了10秒钟内物体的真实位置(x_true)和加入高斯噪声的测量位置(x_meas)。

第二步:初始化卡尔曼滤波器在开始使用卡尔曼滤波器之前,需要初始化滤波器的状态估计和协方差矩阵。

以下是一个示例代码:matlab初始化卡尔曼滤波器参数x_est = 0; 状态估计P_est = 1; 协方差矩阵Q = 1; 过程噪声方差R = 0.5; 测量噪声方差在上述代码中,我们初始化了状态估计(x_est)、协方差矩阵(P_est)、过程噪声方差(Q)和测量噪声方差(R)。

第三步:卡尔曼滤波迭代卡尔曼滤波的核心是迭代过程,其中包含两个关键步骤:预测和更新。

预测步骤是使用系统模型来预测下一时刻的状态和协方差矩阵。

更新步骤将测量值与预测结果进行比较,以改进状态估计和协方差矩阵。

以下是一个MATLAB代码示例:matlab卡尔曼滤波迭代for k = 1:length(t)预测步骤x_pred = x_est;P_pred = P_est + Q;更新步骤K = P_pred / (P_pred + R);x_est = x_pred + K*(x_meas(k) - x_pred);P_est = (1 - K)*P_pred;保存状态估计结果x_est_hist(k) = x_est;end在上述代码中,我们首先进行预测步骤,计算预测状态(x_pred)和预测协方差矩阵(P_pred)。

维纳、卡尔曼滤波简介及MATLAB实现

维纳、卡尔曼滤波简介及MATLAB实现

现代数字信号处理课程作业维纳、卡尔曼、RLS、LMS算法matlab实现维纳滤波从噪声中提取信号波形的各种估计方法中,维纳(Wiener)滤波是一种最基本的方法,适用于需要从噪声中分离出的有用信号是整个信号(波形),而不只是它的几个参量。

设维纳滤波器的输入为含噪声的随机信号。

期望输出与实际输出之间的差值为误差,对该误差求均方,即为均方误差。

因此均方误差越小,噪声滤除效果就越好。

为使均方误差最小,关键在于求冲激响应。

如果能够满足维纳-霍夫方程,就可使维纳滤波器达到最佳。

维纳滤波器的优点是适应面较广,无论平稳随机过程是连续的还是离散的,是标量的还是向量的,都可应用。

维纳滤波器的缺点是,要求得到半无限时间区间内的全部观察数据的条件很难满足,同时它也不能用于噪声为非平稳的随机过程的情况,对于向量情况应用也不方便。

因此,维纳滤波在实际问题中应用不多。

下面是根据维纳滤波器给出的图像处理matlab实例,在下面实例中维纳滤波和均值滤波相比较,并且做了维纳复原、边缘提取、图像增强的实验:%****************维纳滤波和均值滤波的比较*********************I=imread('lena.bmp');J=imnoise(I,'gaussian',0,0.01);Mywiener2 = wiener2(J,[3 3]);Mean_temp = ones(3,3)/9;Mymean = imfilter(J,Mean_temp);figure(1);subplot(121),imshow(Mywiener2),title('维纳滤波器输出');subplot(122),imshow(uint8(Mymean),[]),title('均值滤波器的输出');%***********************维纳复原程序********************figure(2);subplot(231),imshow(I),title('原始图像');LEN = 20;THETA =10;PSF = fspecial('motion',LEN,THETA);Blurred = imfilter(I,PSF,'circular');subplot(232),imshow(Blurred),title('生成的运动的模糊的图像');noise = 0.1*randn(size(I));subplot(233),imshow(im2uint8(noise)),title('随机噪声');BlurredNoisy=imadd(Blurred,im2uint8(noise));subplot(234),imshow(BlurredNoisy),title('添加了噪声的模糊图像');Move=deconvwnr(Blurred,PSF);subplot(235),imshow(Move),title('还原运动模糊的图像');nsr = sum(noise(:).^2)/sum(im2double(I(:)).^2);wnr2 = deconvwnr(BlurredNoisy,PSF,nsr);subplot(236),imshow(wnr2),title('还原添加了噪声的图像');%****************维纳滤波应用于边缘提取*********************N = wiener2(I,[3,3]);%选用不同的维纳窗在此修改M = I - N;My_Wedge = im2bw (M,5/256);%化二值图像BW1 = edge(I,'prewitt');BW2 = edge(I,'canny');BW3 = edge(I,'zerocross');BW4 = edge(I,'roberts');figure(3)subplot(2,4,[3 4 7 8]),imshow(My_Wedge),title('应用维纳滤波进行边沿提取'); subplot(241),imshow(BW1),title('prewitt');subplot(242),imshow(BW2),title('canny');subplot(245),imshow(BW3),title('zerocross');subplot(246),imshow(BW4),title('roberts');%*************************维纳滤波应用于图像增强***************************for i = [1 2 3 4 5] K = wiener2(I,[5,5]);end K = K + I; figure(4);subplot(121),imshow(I),title('原始图像'); subplot(122),imshow(K),title('增强后的图像');维纳滤波器输出均值滤波器的输出原始图像生成的运动的模糊的图像随机噪声添加了噪声的模糊图像还原运动模糊的图像还原添加了噪声的图像卡尔曼滤波卡尔曼滤波的一个典型实例是从一组有限的,对物体位置的,包含噪声的观察序列预测出物体的坐标位置及速度。

卡尔曼滤波两例题含matlab程序

卡尔曼滤波两例题含matlab程序

设高度的测量误差是均值为0、方差为1的高斯白噪声随机序列,该物体的初始高度0h 和速度0V 也是高斯分布的随机变量,且0000019001000,var 10/02Eh h m P EV m s V ⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦。

试求该物体高度和速度随时间变化的最优估计。

(2/80.9s m g =) 解:1. 令()()()h k X k v k ⎡⎤=⎢⎥⎣⎦t=1 R (k )=1 Q(k)=0 根据离散时间卡尔曼滤波公式,则有: (1)(1,)()()X k k k X k U k φ+=++ (1)(1)(1)(1)Y k H k X k V k +=++++(1,)k k φ+= 11t -⎡⎤⎢⎥⎣⎦ ()U k = 20.5gt gt ⎡⎤-⎢⎥⎣⎦(1)H k +=[]10 滤波初值:^1900(0|0)(0)10X EX ⎡⎤==⎢⎥⎣⎦0100(0|0)var[(0)]2P X P ⎡⎤===⎢⎥⎣⎦一步预测:^^(1|)(1,)(|)()X k k k k X k k U k φ+=++ (1|)(1,)(|)(1,)TP k k k k P k k k k φφ+=++滤波增益:1(1)(1|)(1)[(1)(1|)(1)(1)]TTK k P k k H k H k P k k H k R k -+=+++++++ 滤波计算:^^^(1|1)(1|)(1)[(1)(1)(1|)]X k k X k k K k Y k H k X k k ++=++++-++ (1|1)[(1)(1)](1|)P k k I K k H k P k k ++=-+++ 2. 实验结果高度随时间变化估计速度随时间变化的最优估计高度协方差速度协方差从以上的结果,可以得到高度和速度的估计值,再通过所得到的高度协方差和速度协方差,可见用卡尔曼滤波法,虽然刚开始的初始高度协方差很大为100,但通过2步之后减小到不超过1,逐渐接近于0, 同样的速度协方差刚开始的时候也比较大,为2,但是通过5步之后迅速减小,到10步之后接近于0。

扩展Kalman滤波(EKF)和无迹卡尔曼滤波(ukf)

扩展Kalman滤波(EKF)和无迹卡尔曼滤波(ukf)


x = x + vx*Ts;

vx = vx + (-kx*vx^2+dax*randn(1,1))*Ts;

y = y + vy*Ts;
二、扩展Kalman滤波(EKF)算法
vy = vy + (ky*vy^2-g+day*randn(1))*Ts;

X(k,:) = [x, vx, y, vy];
二、扩展Kalman滤波(EKF)算法
Matlab程序:
function test_ekf

kx = .01; ky = .05; % 阻尼系数

g = 9.8; % 重力

t = 10; % 仿真时间

Ts = 0.1; % 采样周期

len = fix(t/Ts); % 仿真步数

% 真实轨迹模拟

H(1,1) = 1/r; H(1,3) = 1/r;

xy2 = 1+(x/y)^2;

H(2,1) = 1/xy2*1/y; H(2,3) = 1/xy2*x*(-1/y^2);
function fX = fff(X, kx, ky, g, Ts) % 系统状态非线性函数

x = X(1); vx = X(2); y = X(3); vy = X(4);
(1)计算2n+ 1个Sigma点及其权值:
X0

x,

X
i

x

(n 1)Px
X i x (n 1)Px
i 1,2,...,n i n 1,...,2n ......(5)

(整理)卡尔曼滤波简介及其算法MATLAB实现代码.

(整理)卡尔曼滤波简介及其算法MATLAB实现代码.
P(k|k-1)=A P(k-1|k-1) A’+Q………(2)
式(2)中,P(k|k-1)是X(k|k-1)对应的covariance,P(k-1|k-1)是X(k-1|k-1)对应的covariance,A’表示A的转置矩阵,Q是系统过程的covariance。式子1,2就是卡尔曼滤波器5个公式当中的前两个,也就是对系统的预测。
首先,我们先要引入一个离散控制过程的系统。该系统可用一个线性随机微分方程(Linear Stochastic Difference equation)来描述:
X(k)=A X(k-1)+B U(k)+W(k)
再加上系统的测量值:
Z(k)=H X(k)+V(k)
上两式子中,X(k)是k时刻的系统状态,U(k)是k时刻对系统的控制量。A和B是系统参数,对于多模型系统,他们为矩阵。Z(k)是k时刻的测量值,H是测量系统的参数,对于多测量系统,H为矩阵。W(k)和V(k)分别表示过程和测量的噪声。他们被假设成高斯白噪声(White Gaussian Noise),他们的covariance分别是Q,R(这里我们假设他们不随系统状态变化而变化)。
现在我们有了现在状态的预测结果,然后我们再收集现在状态的测量值。结合预测值和测量值,我们可以得到现在状态(k)的最优化估算值X(k|k):
X(k|k)= X(k|k-1)+Kg(k) (Z(k)-H X(k|
Kg(k)= P(k|k-1) H’ / (H P(k|k-1) H’ + R)………(4)
现在我们已经得到k时刻的最优温度值了,下一步就是要进入k+1时刻,进行新的最优估算。到现在为止,好像还没看到什么自回归的东西出现。对了,在进入k+1时刻之前,我们还要算出k时刻那个最优值(24.56度)的偏差。算法如下:((1-Kg)*5^2)^0.5=2.35。这里的5就是上面的k时刻你预测的那个23度温度值的偏差,得出的2.35就是进入k+1时刻以后k时刻估算出的最优温度值的偏差(对应于上面的3)。

matlab simulink 拓展卡尔曼滤波

matlab simulink 拓展卡尔曼滤波

matlab simulink 拓展卡尔曼滤波概述
拓展卡尔曼滤波(Extended Kalman Filter,EKF)是一种用于非线性系统状态估计的滤波器。

在MATLAB Simulink中,可以使用EKF进行状态估计和参数估计。

下面是一个简单的步骤来说明如何在MATLAB Simulink中实现拓展卡尔曼滤波:
1. 打开MATLAB Simulink并创建一个新模型。

2. 在模型中添加一个EKF模块。

在Simulink库中找到EKF模块,并将其拖动到模型中。

3. 配置EKF模块的参数。

打开EKF模块的参数对话框,配置以下参数:
* 状态转移矩阵A:根据系统模型进行设置。

* 测量矩阵H:根据传感器测量模型进行设置。

* 过程噪声协方差矩阵Q:根据系统噪声模型进行设置。

* 测量噪声协方差矩阵R:根据传感器测量噪声模型进行设置。

4. 添加输入和输出模块。

在模型中添加输入模块(如模拟输入模块)来接收系统的输入信号,并添加输出模块(如模拟输出模块)来输出
估计结果。

5. 连接输入和输出模块到EKF模块。

将输入模块的输出信号连接到EKF模块的输入端口,将EKF模块的输出信号连接到输出模块的输入端口。

6. 运行模型并进行仿真。

点击Simulink窗口中的“运行”按钮,运行模型并进行仿真。

在仿真期间,输入信号将被处理并通过EKF进行状态估计和参数估计,最终输出估计结果。

需要注意的是,拓展卡尔曼滤波器的参数设置对于估计结果的准确性和稳定性至关重要。

因此,需要仔细选择合适的参数并根据实际系统进行验证和调整。

matlab卡尔曼滤波函数

matlab卡尔曼滤波函数

matlab卡尔曼滤波函数概述卡尔曼滤波是一种广泛应用于控制工程、信号处理、计算机视觉和机器人等领域的优化方法,其主要作用是对已知量和未知量的联合分布进行估计。

在matlab中,卡尔曼滤波函数已经被封装好,不需要用户手动构建卡尔曼滤波器。

本文主要介绍matlab中卡尔曼滤波函数的使用方法。

基础知识在介绍卡尔曼滤波函数之前,需要先了解一些与卡尔曼滤波相关的基础知识。

卡尔曼滤波的基本思想是利用系统的数学模型和观测量之间存在的关系来数学建模,采用贝叶斯估计方法,通过迭代逐步优化状态估计值和估计误差协方差矩阵。

卡尔曼滤波主要分为两个步骤:1. 预测在卡尔曼滤波中,预测过程可以通过系统模型对当前状态进行推测。

通常将这个过程称之为时间更新。

这个过程可以同步化到系统的时钟上,使其在系统中能够很好的集成。

2. 更新在得到新观测值之后,就需要将预测的状态值调整到观测值。

这个过程被称为测量更新。

这个过程可以将状态估计误差协方差矩阵逐渐调整为最小值。

卡尔曼滤波的数学公式,即状态估计公式,如下所示:$x_k=\hat{x}_{k|k-1}+K_k(z_k-H_{k}\hat{x}_{k|k-1})$$x_k$为当前状态的估计值;$\hat{x}_{k|k-1}$为预测状态的估计值;$K_k$为卡尔曼增益;$z_k$为当前状态的观测值;$H_{k}$为状态量和观测量的转换矩阵。

使用matlab卡尔曼滤波函数的步骤如下。

1. 定义系统模型在使用卡尔曼滤波函数进行数据处理之前,需要先定义系统模型。

这包括:状态转移模型观测模型过程噪声测量噪声在matlab中,通常使用StateSpace模型定义卡尔曼滤波系统模型。

2. 建立卡尔曼滤波器在定义好系统模型之后,需要调用kalman函数建立卡尔曼滤波器。

语法如下:[x,P]=kalman(sys,z)sys为matlab中定义的StateSpace模型;z为输入数据序列。

返回值x为状态估计值,P为估计值的协方差矩阵。

卡尔曼滤波matlab代码

卡尔曼滤波matlab代码

卡尔曼滤波matlab代码
卡尔曼滤波(Kalman Filter)是一种有效融合测量数据的算法,由德国工程师卡尔曼博士发明,能够处理从随机过程中获得的非完全信息,将历史数据和测量信息进行综合的面向状态的算法。

它利用模型估计和更新未知状态,以达到估计未知状态的目的。

步骤1:设定卡尔曼滤波器:卡尔曼滤波器是利用上一时刻状态估计结果和当前测量值来对当前状态继续估计,因此每次只需输入一个新的测量值,即可完成所有的风险估计。

步骤2:确定状态转移模型:卡尔曼滤波用于处理非完全信息,从未知状态开始,将先验状态估计与新数据进行融合,在此过程中,必须根据状态转移模型确定状态转移参数。

步骤3:建立测量模型:通过测量模型将状态变量转换为可度量的测量量,即各状态变量与其输出测量变量之间的函数关系。

步骤4:在滤波器中实现卡尔曼滤波:。

卡尔曼滤波入门、简介及其算法MATLAB实现代码

卡尔曼滤波入门、简介及其算法MATLAB实现代码

卡尔曼滤波入门:卡尔曼滤波是用来进行数据滤波用的,就是把含噪声的数据进行处理之后得出相对真值。

卡尔曼滤波也可进行系统辨识。

卡尔曼滤波是一种基于统计学理论的算法,可以用来对含噪声数据进行在线处理,对噪声有特殊要求,也可以通过状态变量的增广形式实现系统辨识。

用上一个状态和当前状态的测量值来估计当前状态,这是因为上一个状态估计此时状态时会有误差,而测量的当前状态时也有一个测量误差,所以要根据这两个误差重新估计一个最接近真实状态的值。

信号处理的实际问题,常常是要解决在噪声中提取信号的问题,因此,我们需要寻找一种所谓有最佳线性过滤特性的滤波器。

这种滤波器当信号与噪声同时输入时,在输出端能将信号尽可能精确地重现出来,而噪声却受到最大抑制。

维纳(Wiener)滤波与卡尔曼(Kalman)滤波就是用来解决这样一类从噪声中提取信号问题的一种过滤(或滤波)方法。

(1)过滤或滤波 - 从当前的和过去的观察值x(n),x(n-1),x(n-2),…估计当前的信号值称为过滤或滤波;(2)预测或外推 - 从过去的观察值,估计当前的或将来的信号值称为预测或外推; (3)平滑或内插 - 从过去的观察值,估计过去的信号值称为平滑或内插;因此,维纳过滤与卡尔曼过滤又常常被称为最佳线性过滤与预测或线性最优估计。

这里所谓“最佳”与“最优”是以最小均方误差为准则的。

维纳过滤与卡尔曼过滤都是解决最佳线性过滤和预测问题,并且都是以均方误差最小为准则的。

因此在平稳条件下,它们所得到的稳态结果是一致的。

然而,它们解决的方法有很大区别。

维纳过滤是根据全部过去的和当前的观察数据来估计信号的当前值,它的解是以均方误差最小条件下所得到的系统的传递函数H(z)或单位样本响应h(n)的形式给出的,因此更常称这种系统为最佳线性过滤器或滤波器。

而卡尔曼过滤是用前一个估计值和最近一个观察数据(它不需要全部过去的观察数据)来估计信号的当前值,它是用状态方程和递推的方法进行估计的,它的解是以估计值(常常是状态变量值)形式给出的。

卡尔曼滤波器matlab代码

卡尔曼滤波器matlab代码

卡尔曼滤波器matlab代码卡尔曼滤波器是一种常用的状态估计算法,它能够根据系统的状态方程和测量方程,以及预测的误差和测量的误差,计算出最优的状态估计值和误差协方差矩阵,从而提高系统的精度和鲁棒性。

以下是卡尔曼滤波器的matlab代码:% 系统模型:% x(k) = A * x(k-1) + B * u(k) + w(k)% y(k) = H * x(k) + v(k)% 初始化模型参数:% 状态转移矩阵:A = [1, 1; 0, 1];% 控制输入矩阵:B = [0.5; 1];% 系统噪声方差:Q = [0.01, 0; 0, 0.1];% 测量噪声方差:R = 1;% 观测矩阵:H = [1, 0];% 初始化状态向量和协方差矩阵:x0 = [0; 0];P0 = [1, 0; 0, 1];% 设置时间和增量:dt = 0.1;t = 0:dt:10;u = sin(t);% 初始化输出向量和卡尔曼增益矩阵:x = zeros(2,length(t));y = zeros(1,length(t));K = zeros(2,length(t));% 执行卡尔曼滤波算法:x(:,1) = x0;for k = 2:length(t)% 预测状态和协方差:x_pre = A * x(:,k-1) + B * u(k-1);P_pre = A * P0 * A' + Q;% 计算卡尔曼增益:K(:,k) = P_pre * H' / (H * P_pre * H' + R);% 更新状态和协方差:x(:,k) = x_pre + K(:,k) * (y(k-1) - H * x_pre); P0 = (eye(2) - K(:,k) * H) * P_pre;% 计算输出:y(k) = H * x(:,k);end% 绘制结果:subplot(2,1,1)plot(t,x(1,:),'r',t,x(2,:),'b')legend('位置','速度')title('状态估计')subplot(2,1,2)plot(t,y,'g',t,u,'m')legend('测量值','控制输入')title('卡尔曼滤波')。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

扩展卡尔曼滤波原理:在原有卡尔曼滤波的基础上,为了解决多目标值的跟踪与估计,形成了扩展卡尔曼滤波。

起matlab主要程序如下:clear allv=150; %%目标速度v_sensor=0;%%传感器速度t=1; %%扫描周期xradarpositon=0; %%传感器坐标yradarpositon=0; %%ppred=zeros(4,4);Pzz=zeros(2,2);Pxx=zeros(4,2);xpred=zeros(4,1);ypred=zeros(2,1);sumx=0;sumy=0;sumxukf=0;sumyukf=0;sumxekf=0;sumyekf=0; %%%统计的初值%滤波算法描述:L=4;alpha=1;kalpha=0;belta=2;ramda=3-L;azimutherror=0.015; %%方位均方误差rangeerror=100; %%距离均方误差processnoise=1; %%过程噪声均方差tao=[t^3/3 t^2/2 0 0;t^2/2 t 0 0;0 0 t^3/3 t^2/2;0 0 t^2/2 t]; %% the input matrix of processG=[t^2/2 0t 00 t^2/20 t ];a=35*pi/180;a_v=5/100;a_sensor=45*pi/180;x(1)=8000; %%初始位置y(1)=12000;for i=1:200x(i+1)=x(i)+v*cos(a)*t;y(i+1)=y(i)+v*sin(a)*t;endfor i=1:200xradarpositon=0;yradarpositon=0;Zmeasure(1,i)=atan((y(i)-yradarpositon)/(x(i)-xradarpositon))+random('Normal',0,azimutherror,1,1); Zmeasure(2,i)=sqrt((y(i)-yradarpositon)^2+(x(i)-xradarpositon)^2)+random('Normal',0,rangeerror,1,1);xx(i)=Zmeasure(2,i)*cos(Zmeasure(1,i));%%观测值yy(i)=Zmeasure(2,i)*sin(Zmeasure(1,i));measureerror=[azimutherror^2 0;0 rangeerror^2];processerror=tao*processnoise;vNoise = size(processerror,1);wNoise = size(measureerror,1);A=[1 t 0 0;0 1 0 0;0 0 1 t;0 0 0 1];Anoise=size(A,1);for j=1:2*L+1Wm(j)=1/(2*(L+ramda));Wc(j)=1/(2*(L+ramda));endWm(1)=ramda/(L+ramda);Wc(1)=ramda/(L+ramda);%+1-alpha^2+belta; %%%权值if i==1xerror=rangeerror^2*cos(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*sin(Zmeasure(1,i))^2; yerror=rangeerror^2*sin(Zmeasure(1,i))^2+Zmeasure(2,i)^2*azimutherror^2*cos(Zmeasure(1,i))^2; xyerror=(rangeerror^2-Zmeasure(2,i)^2*azimutherror^2)*sin(Zmeasure(1,i))*cos(Zmeasure(1,i));P=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]'; endcho=(chol(P*(L+ramda)))';%for j=1:LxgamaP1(:,j)=xestimate+cho(:,j);xgamaP2(:,j)=xestimate-cho(:,j);endXsigma=[xestimate xgamaP1 xgamaP2];F=A;Xsigmapre=F*Xsigma;xpred=zeros(Anoise,1);for j=1:2*L+1xpred=xpred+Wm(j)*Xsigmapre(:,j);endNoise1=Anoise;ppred=zeros(Noise1,Noise1);for j=1:2*L+1ppred=ppred+Wc(j)*(Xsigmapre(:,j)-xpred)*(Xsigmapre(:,j)-xpred)';endppred=ppred+processerror;chor=(chol((L+ramda)*ppred))';for j=1:LXaugsigmaP1(:,j)=xpred+chor(:,j);XaugsigmaP2(:,j)=xpred-chor(:,j);endXaugsigma=[xpred XaugsigmaP1 XaugsigmaP2 ];for j=1:2*L+1Ysigmapre(1,j)=atan(Xaugsigma(3,j)/Xaugsigma(1,j)) ;Ysigmapre(2,j)=sqrt((Xaugsigma(1,j))^2+(Xaugsigma(3,j))^2);endypred=zeros(2,1);for j=1:2*L+1ypred=ypred+Wm(j)*Ysigmapre(:,j);endPzz=zeros(2,2);for j=1:2*L+1Pzz=Pzz+Wc(j)*(Ysigmapre(:,j)-ypred)*(Ysigmapre(:,j)-ypred)';endPzz=Pzz+measureerror;Pxy=zeros(Anoise,2);for j=1:2*L+1Pxy=Pxy+Wc(j)*(Xaugsigma(:,j)-xpred)*(Ysigmapre(:,j)-ypred)';endK=Pxy*inv(Pzz);xestimate=xpred+K*(Zmeasure(:,i)-ypred);P=ppred-K*Pzz*K';xukf(i)=xestimate(1,1);yukf(i)=xestimate(3,1); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%% EKF PRO%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if i==1ekf_p=[xerror xerror/t xyerror xyerror/t;xerror/t 2*xerror/(t^2) xyerror/t 2*xyerror/(t^2);xyerror xyerror/t yerror yerror/t;xyerror/t 2*xyerror/(t^2) yerror/t 2*yerror/(t^2)];ekf_xestimate=[Zmeasure(2,i)*cos(Zmeasure(1,i)) 0 Zmeasure(2,i)*sin(Zmeasure(1,i)) 0 ]';ekf_xpred=ekf_xestimate;end;F=A;ekf_xpred=F*ekf_xestimate;ekf_ppred=F*ekf_p*F'+processerror;H=[-ekf_xpred(3)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(1)/(ekf_xpred(3)^2+ekf_xpred(1)^2) 0;ekf_xpred(1)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0 ekf_xpred(3)/sqrt(ekf_xpred(3)^2+ekf_xpred(1)^2) 0];ekf_z(1,1)=atan(ekf_xpred(3)/ekf_xpred(1)) ;ekf_z(2,1)=sqrt((ekf_xpred(1))^2+(ekf_xpred(3))^2);PHHP=H*ekf_ppred*H'+measureerror;ekf_K=ekf_ppred*H'*inv(PHHP);ekf_p=(eye(L)-ekf_K*H)*ekf_ppred;ekf_xestimate=ekf_xpred+ekf_K*(Zmeasure(:,i)-ekf_z);traceekf(i)=trace(ekf_p);xekf(i)=ekf_xestimate(1,1);yekf(i)=ekf_xestimate(3,1);errorx(i)=xx(i)+xradarpositon-x(i);errory(i)=yy(i)+yradarpositon-y(i);ukferrorx(i)=xestimate(1)+xradarpositon-x(i);ukferrory(i)=xestimate(3)+yradarpositon-y(i);ekferrorx(i)=ekf_xestimate(1)+xradarpositon-x(i); ekferrory(i)=ekf_xestimate(3)+yradarpositon-y(i);aa(i)=xx(i)+xradarpositon-x(i);;bb(i)=yy(i)+yradarpositon-y(i);sumx=sumx+(errorx(i)^2);sumy=sumy+(errory(i)^2);sumxukf=sumxukf+(ukferrorx(i)^2);sumyukf=sumyukf+(ukferrory(i)^2);sumxekf=sumxekf+(ekferrorx(i)^2);sumyekf=sumyekf+(ekferrory(i)^2);mseerrorx(i)=sqrt(sumx/(i-1));%噪声的统计均方误差mseerrory(i)=sqrt(sumy/(i-1));mseerrorxukf(i)=sqrt(sumxukf/(i-1));%UKF的统计均方误差mseerroryukf(i)=sqrt(sumyukf/(i-1));mseerrorxekf(i)=sqrt(sumxekf/(i-1));%EKF的统计均方误差mseerroryekf(i)=sqrt(sumyekf/(i-1));endfigure(1);plot(mseerrorxukf,'r');hold on;plot(mseerrorxekf,'g');hold on;plot(mseerrorx,'.');hold on;ylabel('MSE of X axis','fontsize',15);xlabel('sample number','fontsize',15);legend('UKF','EKF','measurement error');figure(2)plot(mseerroryukf,'r');hold on;plot(mseerroryekf,'g');hold on;plot(mseerrory,'.');hold on;ylabel('MSE of Y axis','fontsize',15); xlabel('sample number','fontsize',15); legend('UKF','EKF','measurement error');figure(3)plot(x,y);hold on;plot(xekf,yekf,'g');hold on;plot(xukf,yukf,'r');hold on;plot(xx,yy,'m');ylabel(' X ','fontsize',15);xlabel('Y','fontsize',15);legend('TRUE','UKF','EKF','measurements');。

相关文档
最新文档