向量减法与几何意义
向量减法运算及其几何意义,向量的数乘运算及其几何意义教案

向量减法运算及其⼏何意义,向量的数乘运算及其⼏何意义教案§2.2.2向量减法运算及其⼏何意义⼀.知识点梳理1.⽤“相反向量”定义向量的减法:1?“相反向量”的定义:与a 长度相同、⽅向相反的向量记作 -a2?规定:零向量的相反向量仍是零向量,且-(-a ) = a 。
任⼀向量与它的相反向量的和是零向量即a + (-a ) = 0。
如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.⽤加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3减法的三⾓形法则:在平⾯内取⼀点O ,作OA = a , OB = b , 那么连接两个向量的终点并指向被减向量⽅向的向量就是两个向量的差向量. 即a - b 可以表⽰为从向量b 的终点指向向量a 的终点的向量注意:1?AB 表⽰a - b 强调:差向量“箭头”指向被减数.4.向量减法运算的记忆⼝决:共起点,连终点,⽅向指向被减数(⽅向由后指前)5.向量减法与向量加法的⽐较:(1)加法:⾸尾相连,从头指尾(前向量的头指向后向量的尾)(2)减法:共起点,连终点,⽅向指向被减数 6.向量减法的字母公式:CB AC AB =-⼆.例题讲解例1.已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平⾯上取⼀点O ,作OA = a , OB = b , OC = c , OD = d ,作BA, DC, 则BA= a-b, DC= c-d例2.已知,在平⾏四边形ABCD中,aAD=,⽤a,b表⽰向量AC、AB=,bDB解:由平⾏四边形法则得: D CAC= a + b,DB= ADAB- = a-b bA aB 例3.若|AB|=8,|AC|=5,则|BC|的取值范围是( )A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:BC=AC-AB.(1)当AB、AC同向时,|BC|=8-5=3;(2)当AB、AC反向时,|BC|=8+5=13;(3)当AB、AC不共线时,3<|BC|<13.综上,可知3≤|BC|≤13.答案:C点评:此题可直接应⽤重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.三.课堂练习1. 如下图所⽰,已知⼀点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量OD等于( )A.a+b+cB.a-b+cC.a+b-cD.a-b-c解析:如图5,点O到平⾏四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有OD=OA+AD=OA+BC=OA+OC-OB=a-b+c.答案:B2 判断题:(1)若⾮零向量a与b的⽅向相同或相反,则a+b的⽅向必与a、b之⼀的⽅向相同.(2)△ABC中,必有AB+BC+CA=0.(3)若AB+BC+CA=0,则A、B、C三点是⼀个三⾓形的三顶点.(4)|a+b|≥|a-b|.解:(1)a与b⽅向相同,则a+b的⽅向与a和b⽅向都相同;若a与b⽅向相反,则有可能a与b互为相反向量,此时a+b=0的⽅向不确定,说与a、b之⼀⽅向相同不妥.(2)由向量加法法则AB+BC=AC,AC与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有AB+BC+AC=0,⽽此时构不成三⾓形.(4)当a与b不共线时,|a+b|与|a-b|分别表⽰以a和b为邻边的平⾏四边形的两条对⾓线的长,其⼤⼩不定.当a 、b 为⾮零向量共线时,同向则有|a +b |>|a -b |,异向则有|a +b |<|a -b |; 当a 、b 中有零向量时,|a +b |=|a -b |. 综上所述,只有(2)正确.四.内容⼩结本节我们学习的内容如下: 1.相反向量的概念 2.向量减法的定义 3.向量减法的运算法则§2.2.2向量的数乘运算及其⼏何意义教学⽬标:1.向量的数乘运算的概念 2.向量的数乘运算法则 3.向量的数乘运算的⼏何意义 4.平⾯向量基本定理教学重点:1.向量的数乘运算法则 2.向量的数乘运算的⼏何意义教学难点:平⾯向量基本定理的理解与运⽤⼀.知识点梳理1.向量的数乘运算定义:规定⼀个实数λ与向量a 的积是⼀个向量,这种运算叫做向量的数乘运算记作λa. 它的长度和⽅向规定如下:(1)|λa|=|λ||a|. (2)0λ>时,λa 的⽅向与a 的⽅向相同;当0λ<时,λa 的⽅向与a的⽅向相反;特别地,当0λ=或0a = 时,0λa =.2.运算律:设a 、b为任意向量,λ、µ为任意实数,则有:(1)()λµa λa µa +=+ ;(2)()()λµa λµa = ;(3)()λa b λa λb +=+.通常将(2)称为结合律,(1)(3)称为分配律。
向量减法及其几何意义

设有两个向量 $vec{A} = (x_1, y_1, z_1)$ 和 $vec{B} = (x_2, y_2, z_2)$,则向量 $vec{A}$ 减去向量 $vec{B}$ 的结果是一个新的向量 $vec{C} = vec{A} - vec{B} = (x_1 - x_2, y_1 - y_2, z_1 - z_2)$。
几何意义
向量 $vec{C}$ 是由向量 $vec{A}$ 的终点指向向量 $vec{B}$ 的起点的向量。在平面直角坐标系中,这相当于从 点 $(x_1, y_1)$ 到点 $(x_2, y_2)$ 画一个有向线段,其方向由 $(x_1, y_1)$ 指向 $(x_2, y_2)$。
空间直角坐标系中向量减法
04 向量减法在物理问题中应 用
位移、速度、加速度等物理量计算
01
02
03
位移计算
向量减法可以应用于计算 物体在一段时间内的位移, 即末位置向量减去初位置 向量。
速度计算
通过位移向量与时间向量 的商,可以计算物体的平 均速度或瞬时速度。
加速度计算
加速度是速度向量的变化 率,可以通过相邻两个时 刻的速度向量相减并除以 时间间隔来计算。
向量减法及其几何意义
目录
• 向量减法基本概念 • 向量减法在坐标系中表示 • 向量减法几何意义探讨 • 向量减法在物理问题中应用 • 向量减法在数学问题中应用 • 总结与拓展
01 向量减法基本概念
定义与性质
定义
性质
结合律
交换律的逆
存在零元
向量减法定义为加上一个 向量的相反向量。即对于 任意两个向量 A 和 B, 向量 A 减去向量 B 的结 果是一个新的向量,记作 C = A - B,其中 C 是 A 与 -B(B的相反向量)的 向量和。
向量的运算与几何意义解析

向量的运算与几何意义解析向量是数学中重要的概念,它可以用来表示方向和大小。
在实际应用中,我们经常需要对向量进行运算,并通过运算来解析向量的几何意义。
本文将探讨向量的四则运算(加法、减法、数量乘法和点乘)以及各种运算在几何上的意义。
1. 向量的加法(Vector Addition)向量的加法是指将两个向量相加得到一个新的向量。
具体而言,给定两个向量A和A,它们的加法可以表示为:A = A + A。
在几何上,这个运算可以理解为将向量A放在向量A的尾部,从而得到一个新的向量A,如下图所示:图1:向量的加法示意图通过向量的加法,我们可以将多个向量连接起来,从而形成更长的向量。
2. 向量的减法(Vector Subtraction)向量的减法是指将一个向量从另一个向量中减去,得到一个新的向量。
具体而言,给定两个向量A和A,它们的减法可以表示为:A = A - A。
在几何上,这个运算可以理解为从向量A的尾部指向向量A 的尾部,从而得到一个新的向量A,如下图所示:图2:向量的减法示意图通过向量的减法,我们可以计算出两点之间的距离,或者确定一个向量相对于另一个向量的位置关系。
3. 向量的数量乘法(Scalar Multiplication)向量的数量乘法是指将一个向量乘以一个标量,得到一个新的向量。
具体而言,给定一个向量A和一个标量A,它们的数量乘法可以表示为:A = AA。
在几何上,这个运算可以理解为将向量A的大小进行缩放或扩大A倍,从而得到一个新的向量A,如下图所示:图3:向量的数量乘法示意图通过向量的数量乘法,我们可以改变向量的大小,同时保持其方向不变。
4. 向量的点乘(Dot Product)向量的点乘是指将两个向量进行运算得到一个标量。
具体而言,给定两个向量A和A,它们的点乘可以表示为:A = A·A。
计算方法是将两个向量对应位置的元素相乘,然后将相乘的结果相加。
在几何上,点乘的结果是两个向量之间的夹角的余弦值乘以向量的模长乘积,如下图所示:图4:向量的点乘示意图通过向量的点乘,我们可以计算出两个向量之间的夹角,以及一个向量在另一个向量方向上的投影长度。
《向量的减法运算及其几何意义》参考教案

《向量的减法运算及其几何意义》参考教案一、教学目标1. 让学生理解向量的减法运算概念,掌握向量减法的运算规则。
2. 让学生掌握向量减法的几何意义,能够运用向量减法解决实际问题。
3. 培养学生的逻辑思维能力和空间想象能力。
二、教学内容1. 向量的减法定义:已知两个向量a和b,则向量a减去向量b,记作a-b,其结果是一个向量。
2. 向量减法的运算规则:(1) 交换律:a-b = b-a(2) 结合律:(a-b)-c = a-(b-c)(3) 分配律:a-(b+c) = (a-b)-c3. 向量减法的几何意义:(1) 表示起点相同,终点不同的两个向量之间的“差”。
(2) 表示从一个向量的终点返回到起点的“反向向量”。
三、教学重点与难点1. 教学重点:向量的减法定义、运算规则及几何意义。
2. 教学难点:向量减法的运算规则及几何意义的理解和应用。
四、教学方法1. 采用讲授法,讲解向量的减法定义、运算规则及几何意义。
2. 采用案例分析法,分析实际问题中的向量减法运算。
3. 采用练习法,让学生通过练习巩固向量减法的知识和技能。
五、教学步骤1. 导入新课:回顾向量的基本概念,引导学生思考向量的减法运算。
2. 讲解向量的减法定义、运算规则及几何意义。
3. 分析实际问题,运用向量减法解决问题。
4. 布置练习题,让学生巩固向量减法的知识和技能。
5. 总结本节课的主要内容和知识点,强调向量减法的重要性和应用价值。
六、教学评估1. 课堂提问:通过提问了解学生对向量减法概念、运算规则及几何意义的理解和掌握情况。
2. 练习题:布置课后练习题,评估学生对向量减法的应用能力。
3. 小组讨论:组织学生进行小组讨论,评估学生在团队合作中的沟通能力和解决问题的能力。
七、教学拓展1. 向量加法与减法的关系:引导学生思考向量加法与减法之间的联系和区别。
2. 向量减法在实际问题中的应用:举例说明向量减法在物理学、工程学等领域的应用。
3. 向量减法的进一步研究:引导学生探讨向量减法的性质和规律,提高学生的研究能力。
2.2.2向量的减法及其几何意义

一、相反向量: 相反向量:
r r 长度相同, 设向量 a ,我们把与 a 长度相同,方向相反 r r 的相反向量。 记作: 的向量叫做 a 的相反向量。 记作:−a
规定: 规定:
r r (1) − ( − a ) = a ) r r r r r r (− a ) + a = 0 (2) a + ( − a ) = 0 ) r r (3)设 a , b 互为相反向量,那么 ) 互为相反向量, r r r r r r r a = −b, b = − a, a + b = 0
( 4). AB和BA互为相反向量,那么
r r 0的相反向量仍是 0。
AB+ BA= 0或AB= -BA
二、向量的减法: 向量的减法:
r r r r 总结 1.向量的减法定义a − b = a r (−b) + r
你能利用我们学过的向量的加法法则作出 a + (−b) 吗?
设
uuu r uuu r r r AB = b, AC = a uuu r r r r r AE = a + (−b) = a − b r uuu r r 又 b+ BC = a uuu r r r 所以 BC = a − b
巩固练习: 巩固练习:
uuu r uuu r uuu r r r 1、在 ABC 中, = a , = b,则 AB = BC CA r B
r r −a − b
a
A
r r r b c 表示下列向量: 如图, 2、如图,用 a ,, 表示下列向量:
r b
C
r r r r (2) f −d = a + b r r r r r (3) d −g = −a − b − c
2. 2. 2向量减法运算及其几何意义

2.2.2向量的减法运算及其几何意义学习目标:1.了解相反向量的概念;2.掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3.通过阐述向量的减法运算可以转化成向量的加法运算,理解事物间可以相互转化的辩证思想.教案重点:向量减法的概念和向量减法的作图法.教案难点:减法运算时方向的确定.教案思路:一、复习:向量加法的法则:三角形法则与平行四边形法则,向量加法的运算定律:例:在四边形中,.二、新课1.用“相反向量”定义向量的减法<1)“相反向量”的定义:与a长度相同、方向相反的向量.记作-a。
易知-(-a> = a.<2)规定:零向量的相反向量仍是零向量. 。
任一向量与它的相反向量的和是零向量.a + (-a> = 0如果a、b互为相反向量,则 a = -b, b = -a,a + b = 0<3)向量减法的定义:向量a加上的b相反向量,叫做a 与b的差.即:a-b = a + (-b> 求两个向量差的运算叫做向量的减法.2.用加法的逆运算定义向量的减法:向量的减法是向量加法的逆运算:若b + x = a,则x叫做a与b的差,记作a-b3.求作差向量:已知向量a、b,求作向量a-bA作法:在平面内取一点O,作= a,= b 则= a-b即a-b可以表示为从向量b的终点指向向量a的终点的向量.注意:1︒表示a-b. 强调:差向量“箭头”指向被减向量。
b5E2RGbCAP2︒用“相反向量”定义法作差向量,a-b = a +(-b>4.探究:OABaBb-bBa+abO abBaba-b1) 如果从向量a 的终点指向向量b 的终点作向量,那么所得向量是2)若a∥b,如何作出a -b ? 三、例题:例1、已知向量a 、b 、c 、d ,求作向量a -b 、c -d. 例2、平行四边形中,a,b , 用a、b 表示向量、.p1EanqFDPw 变式一:当a , b 满足什么条件时,a+b 与a -b 垂直? 变式二:当a , b 满足什么条件时,|a+b| = |a -b|? 变式三:a+b 与a -b 可能是相等向量吗?A OOB C5. 练习:1。
向量减法运算及其几何意义

向量减法与向量加法的结合规则
向量加法满足交换律
对于任意向量$vec{A}$、$vec{B}$,有 $vec{A}+vec{B}=vec{B}+vec{A}$。
向量加法满足结合律
对于任意向量$vec{A}$、$vec{B}$、$vec{C}$,有 $(vec{A}+vec{B})+vec{C}=vec{A}+(vec{B}+vec{C})$。
Байду номын сангаас THANK YOU
感谢聆听
向量减法在实际问题中的应用
物理问题
向量减法可以用于解决物理问 题,如速度和加速度的计算、 力的合成与分解等。
导航问题
在导航中,通过计算起点和终 点之间的向量差,可以确定从 一个位置移动到另一个位置的 方向和距离。
机器学习
在机器学习中,向量减法可以 用于计算两个样本之间的差异 ,用于分类、聚类和降维等任 务。
向量减法运算及其几何意义
目
CONTENCT
录
• 向量减法的定义 • 向量减法的性质 • 向量减法的几何意义 • 向量减法的运算规则 • 向量减法的运算实例
01
向量减法的定义
向量减法的数学定义
向量减法是通过在第二个向量的起点绘制一个箭头,该箭头与第 一个向量的箭头在同一直线上,并且具有与第一个向量相反的方 向和长度,从而得到的结果。
04
向量减法的运算规则
向量减法与标量乘法的结合规则
标量乘法满足结合律
对于任意向量$vec{A}$、$vec{B}$和标量 $k$,有$(kvec{A})-vec{B}=k(vec{A}vec{B})$。
VS
标量乘法满足分配律
教学设计3:2.2.2 向量减法运算及其几何意义

2.2.2 向量减法运算及其几何意义整体设计教学分析向量减法运算是加法的逆运算.学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算.因此,类比数的减法(减去一个数等于加上这个数的相反数),首先引进相反向量的概念,然后引入向量的减法(减去一个向量,等于加上这个向量的相反向量),通过向量减法的三角形法则和平行四边形法则,结合一定数量的例题,深刻理解向量的减法运算.通过阐述向量的减法运算,可以转化为向量加法运算,渗透化归的数学思想,使学生理解事物之间的相互转化、相互联系的辨证思想,同时由于向量的运算能反映出一些物理规律,从而加强了数学学科与物理学科之间的联系,提高学生的应用意识.三维目标1.通过探究活动,使学生掌握向量减法概念,理解两个向量的减法就是转化为加法来进行,掌握相反向量.2.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造性地解决问题.能熟练地掌握用三角形法则和平行四边形法则作出两向量的差向量.重点难点教学重点:向量的减法运算及其几何意义.教学难点:对向量减法定义的理解.课时安排:1课时教学过程导入新课思路1.(问题导入)上节课,我们定义了向量的加法概念,并给出了求作和向量的两种方法.由向量的加法运算自然联想到向量的减法运算:减去一个数等于加上这个数的相反数.向量的减法是否也有类似的法则呢?引导学生进一步探究,由此展开新课.思路2.(直接导入)数的减法运算是加法运算的逆运算.本节课,我们继续学习向量加法的逆运算——减法.引导学生去探究、发现.推进新课新知探究提出问题①向量是否有减法?②向量进行减法运算,必须先引进一个什么样的新概念?③如何理解向量的减法?④向量的加法运算有平行四边形法则和三角形法则,那么,向量的减法是否也有类似的法则?活动:数的减法运算是数的加法运算的逆运算,数的减法定义即减去一个数等于加上这个数的相反数,因此定义数的减法运算,必须先引进一个相反数的概念.类似地,向量的减法运算也可定义为向量加法运算的逆运算.可类比数的减法运算,我们定义向量的减法运算,也应引进一个新的概念,这个概念又该如何定义? 引导学生思考,相反向量有哪些性质?由于方向反转两次仍回到原来的方向,因此a 和-a 互为相反向量. 于是-(-a )=a .我们规定,零向量的相反向量仍是零向量.任一向量与其相反向量的和是零向量,即a +(-a )=(-a )+a =0. 所以,如果a 、b 是互为相反的向量,那么a =-b ,b =-a ,a +b =0. (1)平行四边形法则如图1,设向量AB →=b ,AC →=a ,则AD →=-b ,由向量减法的定义,知AE →=a +(-b )=a -b .图1又b +BC →=a , 所以BC →=a -b .由此,我们得到a -b 的作图方法. (2)三角形法则如图2,已知a 、b ,在平面内任取一点O ,作OA →=a ,OB →=b ,则BA →=a -b ,即a -b 可以表示为从b 的终点指向a 的终点的向量,这是向量减法的几何意义.图2讨论结果:①向量也有减法运算.②定义向量减法运算之前,应先引进相反向量.与数x 的相反数是-x 类似,我们规定,与a 长度相等,方向相反的量,叫做a 的相反向量,记作-a .③向量减法的定义.我们定义a -b =a +(-b ),即减去一个向量相当于加上这个向量的相反向量. 规定:零向量的相反向量是零向量.④向量的减法运算也有平行四边形法则和三角形法则,这也正是向量的运算的几何意义所在,是数形结合思想的重要体现.提出问题①上图中,如果从a 的终点到b 的终点作向量,那么所得向量是什么? ②改变上图中向量a 、b 的方向使a ∥b ,怎样作出a -b 呢? 讨论结果:①AB →=b -a . ②略.应用示例例1 如图3(1),已知向量a 、b 、c 、d ,求作向量a -b ,c -d .图3活动:教师让学生亲自动手操作,引导学生注意规范操作,为以后解题打下良好基础;点拨学生根据向量减法的三角形法则,需要选点平移作出两个同起点的向量. 作法:如图3(2),在平面内任取一点O ,作OA →=a ,OB →=b ,OC →=c ,OD →=d . 则BA →=a -b ,DC →=c -d . 变式训练在ABCD 中,下列结论错误的是( ) A.AB →=DC → B.AD →+AB →=AC → C.AB →-AD →=BD → D.AD →-BC →=0【解析】A 显然正确,由平行四边形法则可知B 正确,C 中,AB →-AD →=BD →错误,D 中,AD →-BC →=AD →+DA →=0正确. 【答案】C例2 如图4,在ABCD 中,AB →=a ,AD →=b ,你能用a 、b 表示向量AC →、DB →吗?图4活动:本例是用两个向量表示几何图形中的其他向量,这是用向量证明几何问题的基础.要多注意这方面的训练,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系. 解:由向量加法的平行四边形法则,我们知道AC →=a +b , 同样,由向量的减法,知DB →=AB →-AD →=a -b . 变式训练1.已知一点O 到ABCD 的3个顶点A 、B 、C 的向量分别是a 、b 、c ,则向量OD →等于( ) A .a +b +c B .a -b +c C.a +b -c D .a -b -c解析:如图5,点O 到平行四边形的三个顶点A 、B 、C 的向量分别是a 、b 、c ,结合图形有OD →=OA →+AD →=OA →+BC →=OA →+OC →-OB →=a -b +c .图5答案:B2.若AC →=a +b ,DB →=a -b .①当a 、b 满足什么条件时,a +b 与a -b 垂直? ②当a 、b 满足什么条件时,|a +b|=|a -b|?③当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角? ④a +b 与a -b 可能是相等向量吗?解:如图6,用向量构建平行四边形,其中向量AC →、DB →恰为平行四边形的对角线且AB =a ,AD =b .图6由平行四边形法则,得AC →=a +b ,DB →=AB →-AD →=a -b . 由此问题就可转换为:①当边AB 、AD 满足什么条件时,对角线互相垂直?(|a|=|b|)②当边AB 、AD 满足什么条件时,对角线相等?(a 、b 互相垂直) ③当边AB 、AD 满足什么条件时,对角线平分内角?(|a|、|b|相等) ④a +b 与a -b 可能是相等向量吗?(不可能,因为对角线方向不同)点评:灵活的构想,独特巧妙,数形结合思想得到充分体现.由此我们可以想到在解决向量问题时,可以利用向量的几何意义构造几何图形,转化为平面几何问题,这就是数形结合解题的威力与魅力,教师引导学生注意领悟. 例3 判断题:(1)若非零向量a 与b 的方向相同或相反,则a +b 的方向必与a 、b 之一的方向相同. (2)△ABC 中,必有AB →+BC →+CA →=0.(3)若AB →+BC →+CA →=0,则A 、B 、C 三点是一个三角形的三顶点. (4)|a +b|≥|a -b |.活动:根据向量的加、减法及其几何意义.解:(1)a 与b 方向相同,则a +b 的方向与a 和b 方向都相同; 若a 与b 方向相反,则有可能a 与b 互为相反向量, 此时a +b =0的方向不确定,说与a 、b 之一方向相同不妥.(2)由向量加法法则AB →+BC →=AC →,AC →与CA →是互为相反向量,所以有上述结论. (3)因为当A 、B 、C 三点共线时也有AB →+BC →+AC →=0,而此时构不成三角形.(4)当a 与b 不共线时,|a +b|与|a -b|分别表示以a 和b 为邻边的平行四边形的两条对角线的长,其大小不定.当a 、b 为非零向量共线时,同向则有|a +b|>|a -b|,异向则有|a +b|<|a -b |; 当a 、b 中有零向量时,|a +b|=|a -b |. 综上所述,只有(2)正确.例4 若|AB →|=8,|AC →|=5,则|BC →|的取值范围是( ) A .[3,8] B .(3,8) C .[3,13] D .(3,13) 【解析】BC →=AC →-AB →.(1)当AB →、AC →同向时,|BC →|=8-5=3; (2)当AB →、AC →反向时,|BC →|=8+5=13; (3)当AB →、AC →不共线时,3<|BC →|<13. 综上,可知3≤|BC →|≤13. 【答案】C点评:此题可直接应用重要性质||a|-|b||≤|a +b|≤|a|+|b |求解. 变式训练已知a 、b 、c 是三个非零向量,且两两不共线,顺次将它们的终点和始点相连接而成一三角形的充要条件为a +b +c =0.证明:已知a ≠0,b ≠0,c ≠0,且两两不共线, (1)必要性:作AB →=a ,BC →=b ,则由假设CA →=c , 另一方面a +b =AB →+BC →=AC →. 由于CA →与AC →是一对相反向量, ∴有AC →+CA →=0, 故有a +b +c =0.(2)充分性:作AB →=a ,BC →=b ,则AC →=a +b ,又由条件a +b +c =0, ∴AC →+c =0.等式两边同加CA →,得CA →+AC →+c =CA →+0.∴c =CA →,故顺次将向量a 、b 、c 的终点和始点相连接成一三角形.知能训练课本本节练习课堂小结1.先由学生回顾本节学习的数学知识:相反向量,向量减法的定义,向量减法的几何意义,向量差的作图.2.教师与学生一起总结本节学习的数学方法,类比,数形结合,几何作图,分类讨论.作业课本习题2.2 A 组6、7、8.设计感想1.向量減法的几何意义主要是结合平行四边形法则和三角形法则进行讲解的,两种作图方法各有千秋.第一种作法结合向量减法的定义,第二种作法结合向量的平行四边形法则,直接作出从同一点出发的两个向量a 、b 的差,即a -b 可以表示为从向量b 的终点指向向量a 的终点的向量,第二种作图方法比较简捷.2.鉴于上述情况,教学中引导学生结合向量减法的几何意义,注意差向量的方向,也就是箭头的方向不要搞错了,a -b 的箭头方向要指向a ,如果指向b 则表示b -a ,在几何证明题目中,特别要掌握用向量表示平行四边形的四条边与两条对角线的关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同起点、连终点、指向被减
一.共线向量的减法 求作:a - b
A
C
B B
a b
C
A
练习 1.已知 a, b, 作出 a b.
(1) a
( 2)
a b
a b
b
例题讲解:
例题1、如图:已知向量a , b, c, d, 求作: a c 、 b d.
解:在平面内 A 任取一点O,
B C
b a
2、作差向量的方法
已知:向量a, b ,求作:a - b
作法(1)首先在平面内任取一点O
a B b -b B’ b
(3)OC a b
(2)作 OA a OB b ,OB b,
o·
a C
A
平行四边形法则
a
b
a
a b a ( b )
作
1、思考:
业
证明:对于任意的两个 向量a, b, 都有 a b a b a b
a b c 与 a b c 相等吗? 思考 2: b a a a c c
b
用这三个向量画图后发现上面两个式子是相等的。
(向量减法的平行四边形法则,三角形 法则);
解决向量加法,减法问题,数形结合必不可少.
向量的加法与减法运算 法则比较
向量的加法 定义 三角形 法则
AC AB BC
向量的减法
CB AB AC
以第一向量的起点指 以第二向量的终点指 向第一向量的终点 向第二向量的终点
平行四边 b 形法则 内在 联系
欢迎各位老师 光临指导!
情境一:谚语:
学如逆水行舟,
不进则退. 是何原因?你能从数 学的角度来解释吗?
情境2
问题: 一架飞机由北京飞往香港,然后再由香港 返回北京,我们把北京记作A点,香港记作B点,那么这 架飞机的位移是多少?怎样用向量来表示呢? AB+BA=0
北京(A点)
香港(B点)
相反向量
O
c d
D
b a
c d
作OA a, OB b, OC c, OD d
则a c CA, b d DB
练习1:
如图,已知a、b,求作a-b。
(1) a b (2)
b
a
(3) b
a
(4)
a
b
再由“形”到“数”,填写下列答案 : 练习 (1): OA OB ______ BA . (2): AB BC AC _______ . 0
考
a
a + b 的相反向量是 – ( a + b )
a加上b的相反向量叫做a与b的差, 即:a+(-b)=a-b。
求两个向量差的运算,叫向量的减法。
复习:1、向量加法运算法则: C C
D
A B AB BC AC 三角形法则
A B AB AC AD 平行四边形法则
ab ba 2、向量加法的交换律: 结合律: (a b) c a (b c)
像上面例子一样,我们把与 a 长度相同,方向相 反的向量,叫做 a 的相反向量,记作 – a。 其中 a 和 – a 互为相反向量。
规定:零向量的相反向量还是零向量。
思
– a – b b =____, 1、若 a , b 是互为相反向量,那么 a =____, a + b =____ 0 2、 – ( – a ) =
(3): (4):
OA OC AB ________ CB .
A1 A2 A2 A3 A4 A3 A5 A4 A1 A5 _____ 0 .
例1、在 ABCD中, AB a b表示 。 AC , DB
AD b用a、
变式一:当a, b满足什么条件时,a+b与ab垂直? (|a| = |b|) 变式二:当a, b满足什么条件时,|a+b| = |ab|?
(a, b互相垂直)
变式三:a+b与ab可能是相等向量吗? (不可能,∵对角线方向不同)
练习: 判断下列命题的真假:
√ 2、相反向量就是方向相反的向量。× 3、AB=OA-OB。 × 4、a + b > a - b ×
1、AB+BA=0 。
相反向量的概念,及其应用; 向量减法的定义,及其运算法则;
b
c
结论:与去括号法则相符 思考3:向量等式是否符合移项法则? (画图过程自己 练习一下吧) 结论:符合
; 上海策划公司 上海创意设计公司 上海公关策划公司 上海广告公司 上海广告 有限公司 上海广告制作公司 ;
比の上煞气の毒/这壹句话让众人愣咯愣/但很快它们就明白咯/只见马开手臂甩动之间/有着壹条巨大の螣蛇煞暴动而出/很旧很慢比较/)螣蛇煞舞动之间/煞气喷涌/直接冲击在漫滴の毒物之上/螣蛇煞何其恐怖/它确定拥有法则の东西/冲击之间/顿时腐蚀壹片片毒物/不管确定七彩蝙蝠/还确定别の毒虫 毒蝎/都被腐蚀の掉落虚空/化作壹堆堆尸体/这些尸体被后面の毒虫毒物撕咬/煞气顺着它们の尸体进入对方身体中/不少毒虫毒物偏偏死亡/这样无限循环下/毒虫毒物死亡の越来越多/马开の煞气腾空不断/喷涌暴动之间/把壹片片遮滴盖地の毒物卷入其中/壹次次卷入/让人心惊肉跳/毒虫毒物の不断死 亡/让毒虫宗の人面色大变/壹佫佫骇然の着对方/心中满确定惊恐之色/"怎么会这样/它们不敢置信/呆滞の着马开/着马开如同巨蟒壹样の煞气飞舞/内心骇然不已/"不自量力/壹些旁门左道也妄想对抗我们/"马开嗤笑/煞气舞动/直接破开对方の毒物大阵/对着苏半石和向楚南喊道/"杀出去/这些人壹佫不 留/""确定/"向楚滴早就憋着壹股气咯/此刻见马开破开对方の毒物大阵/顿时身影跃动/向着外界爆射而出/壹拳轰杀对方の弟子而去/向楚滴の肉身何其强悍/力量震动间/把壹佫佫都灭杀の粉碎/"轰///轰///"随着它力量の舞动/壹佫佫弟子不断の陨落/着毒虫宗の弟子不断の被杀/毒虫宗主面色大变/心 中骇然/身影闪动想要逃走/可苏半石早就盯着它/见它准备逃离/身影跃动/挡在咯对方の面前/"宗主这确定怎么咯?不确定扬言要杀我们吗?这时候走确定不确定太早咯壹些/我们可活の好好の/"苏半石嘿嘿の着对方/毒虫宗主面色惨白/噗咚壹声跪倒在苏半石面前/大人高抬贵手/从今日起/我们就远离这 里/到万里之外の地方而去/求大人放过我们毒虫宗/你有什么资格求情放过毒虫宗/苏半石哼咯壹声/"确定确定/小人只求大人放过我就行/毒虫宗任由大人处置/"毒虫宗主恭恭敬敬の对着苏半石磕头/颤颤巍巍/苏半石见对方如此/都没兴趣和对方说话/转头向马开/马开什么话都不说/煞气直接覆盖而下/ 没入到毒虫宗主身上/对于这样の人/马开都懒得壹眼/直接灭杀咯干净/毒虫宗主着煞气扑下/眼中满确定惊恐/想要避开/可如何能避の咯/煞气瞬间就卷中它/身体化作白骨/很快死于非命/毒虫宗主壹死/这些弟子更确定溃败/杨唐庭和向楚南出手/把壹佫佫都给震杀/马开和苏半石没有兴趣杀这些人/它们 壹起前往毒虫宗/这佫宗门在这里行事乖张/狠辣至极/得到咯不少好东西/此刻正好搬回去给帝宫/果然/进入到毒虫宗の仓库/果然见到其中有不少资源/富有の让马开都咋舌不已/心想这些资源/足够帝宫消耗许久咯/苏半石不客气/开始把这些东西收取/只确定/它身上の空间器物容量也有限/转而向马开/ 马开笑咯笑道/我们守在这里/让向楚南带人前来搬走就确定/"说完/马开也在其中打量起来/心想这其中不知道有没有自己可以用到の/不管炼器还确定别の/马开都需要资源/只确定它要の东西拾分珍贵/毒虫宗虽然富有/但不见得有它需要の东西/收集阅读本部分::为咯方便下次阅读/你可以点击下方 の记录本次(正文第八百七拾七部分收刮)阅读记录/下次打开书架即可看到/请向你の朋友第八百七拾八部分帝宫立稳卡槽第八百七拾八部分"这确定什么东西/苏半石在地板砖中挖出咯壹佫石盒/石盒密封の很好/苏半石用力想要打开石盒/却发现石盒拾分坚硬/即使以它上品皇者の力量都无法扳开它/ 这让它发出惊异之声/把石盒递给马开说道/"你能打开吗/马开接过/发现石盒拾分沉重/很旧很慢比较/)就那么小小壹块/有着百斤之重/显然密度惊人/着这密封拾分契合の石盒/马开用力灌输其上/想要把石盒打开/但发现任由它如何用力/都无法扳开它/"咦/"马开也拾分好奇/它の力量何等滂湃/就算壹 座山岳都能搬起来/可确定居然无法扳开石盒/"这石盒毒虫宗保管の很好/放在地砖中/用地砖掩饰/来不确定凡品/"马开点头/能抗住它们两人の力量/就足以表明它の不简单/"也不知道这其中装の确定什么/"苏半石好奇の问道/"你有没有办法打开它/马开想咯想/猛然把石盒抛向虚空/在抛上虚空の同时/ 手中猛然出现青莲/青莲爆射出恐怖の速度猛然の撞击向它/"轰///"壹声碰撞/带着巨大の声响/石盒撕裂/石头?壹?本?读? 四处飚射/青莲落在马开手心/从虚空之上/飘落下壹块黑色の绸缎/很旧很慢比较/)苏半石把那些激射爆裂の石头捡起来/着落在马开手心の黑色绸缎问道/这确定什么东西/马开打 量着黑色绸缎/手触碰在上面/感觉到其中居然有着几分法则の气息/苏半石见绸缎诡异/也伸手前来准备/可手指刚刚接触到绸缎/它の手指就其咯皱纹/这让苏半石眼睛壹跳/赶紧松开/惊惧の着马开手中の绸缎/"这绸缎可以磨灭人の生机/"说话之间/苏半石血气鼓荡/才把手指の皱纹抹平/但却再也不敢触 碰绸缎咯/马开感觉到其上有法则/却没有想到确定壹种可以磨灭人生机の法则/这让它皱咯皱眉头/目光很快被绸缎上の壹处吸引/那壹处确定幽泉/幽泉汩汩而留/而在幽泉の四周/白骨累累/和泉源带来の清新生机截然相反/见马开呆在原地/苏半石担心の轻轻推咯推马开/"你没事吧/马开摇摇头/着汩汩 而留の泉源太熟悉咯/这和圣液并没有什么区别/那累累白骨/