微生物测序指南-宏转录组

微生物测序指南-宏转录组
微生物测序指南-宏转录组

1

4

转录组测序结题报告

转录组测序结题报告 1.mRNA纯化: 抽提得到的总RNA首先利用10U的DNaseI(Ambion,美国)在37℃消化1小时;然后利用Micropoly(A)PuristTM mRNA purification kit(Ambion,美国),进行mRNA纯化:把RNA稀释到250μl的体积,按照Kit的操作步骤(Cat.No:

1919)进行;最后得到的mRNA用100μl预热的THE缓冲液洗脱,利用NanoDrop 进行定量。 2.cDNA合成: cDNA合成是在Ng等2005年发表的方法基础上改进而成(文献1,图1)。第一链cDNA合成利用GsuI-oligo dT作为反转录引物,10μg的mRNA作为模板,用1000 单位的Superscript II reverse transcriptase (Invitrogen,美国)在42℃作用1小时完成;随后利用NaIO4(Sigma,美国)氧化mRNA的5’帽子结构,并连接生物素;通过Dynal M280磁珠(Invitrogen,美国)筛选连接了生物素的mRNA/cDNA,并通过碱裂解释放第一链cDNA;然后通过DNA ligase(TaKaRa,日本)在第一链cDNA的5’末端加上接头,然后通过Ex Taq polymerase (TaKaRa,日本)合成第二链cDNA。最后通过GsuI酶切去除polyA和5’端接头。 图1. 全长cDNA合成示意图 3.cDNA测序: 合成的cDNA利用超声仪(Fisher)打断到300-500bp的范围,利用Ampure beads(Agencourt,美国)进行纯化。随后纯化的cDNA利用TruSeq TM DNA XXmple Prep Kit – Set A (illumina,美国)制备文库,并利用TruSeq PE Cluster Kit (illumina,美国)进行扩增。最后在illumina机器上进行测序反应。 测序得到的数据统计见表1. 表1. Solexa测序统计 样品对照 1 2

宏基因组学概述

宏基因组学概述

————————————————————————————————作者: ————————————————————————————————日期: ?

宏基因组学概述 王莹,马伊鸣 (北京交通大学土木建筑工程学院环境1402班) 摘要:随着分子生物学技术的快速发展及其在微生物生态学和环境微生物学研究中的广泛应用,促进了以环境中未培养微生物为研究对象的新兴学科——微生物环境基因组学(又叫宏基因组学、元基因组学,英文名Metagenomics)的产生和快速发展。宏基因组学通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能.在短短几年内,宏基因组学研究已渗透到各个领域,包括海洋、土壤、热液口、热泉、人体口腔及胃肠道等,并在医药、替代能源、环境修复、生物技术,农业、生物防御及伦理学等各方面显示了重要的价值。本文对宏基因组学的主要研究方法、热点内容及发展趋势进行了综述 关键词:宏基因组宏基因组学环境基因组学基因文库的构建 Macro summary of Metagenomics WangYing,Ma Yi-Ming (BeijingJiaotongUniversity, Institute of civil engineering,)Key words:Metagenome; Metagenomics;The environmental genomics 宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是:对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。 1.起源 宏基因组学这一概念最早是在1998年由威斯康辛大学植物病理学部门的Jo Handelsman等提出的,是源于将来自环境中基因集可以在某种程度上当成一个单个基因组研究分析的想法,而宏的英文是"meta-",具有更高层组织结构和动态变化的含义。后来伯克利分校的研究人员Kevin Chen和LiorPachter将宏基因组定义为"应用现代基因组学的技术直接研究自然状态下的微生物的有机群落,而不需要在实验室中分离单一的菌株"的科学。 2 研究对象 宏基因组学(Metagenomics)是将环境中全部微生物的遗传信息看作一个整体自上而下地研究微生物与自然环境或生物体之间的关系。宏基因组学不仅克服了微生物难以培养的困难, 而且还可以结合生物信息学的方法, 揭示微生物之间、微生物与环境之间相互作用的规律, 大大拓展了微生物学的研究思路与方法, 为从群落结构水平上全面认识微生物的生态特征和功能开辟了新的途径。目前, 微生物宏基因组学已经成为微生物研究的热点和前沿, 广泛应用于气候变化、水处理工程系统、极端环境、人体肠道、石油污染、生物冶金等领域, 取得了一系列引人瞩目的重要成果。 3 研究方法

有参考基因组的转录组生物信息分析

一、生物信息分析流程 获得原始测序序列(Sequenced Reads)后,在有相关物种参考序列或参考基因组的情况下,通过如下流程进行生物信息分析: 二、项目结果说明 1 原始序列数据 高通量测序(如illumina HiSeq TM2000/MiSeq等测序平台)测序得到的原始图像数据文件经碱基识别(Base Calling)分析转化为原始测序序列(Sequenced Reads),我们称之为Raw Data或Raw Reads,结果以FASTQ(简称为fq)文件格式存储,其中包含测序序列(reads)的序列信息以及其对应的测序质量信息。 FASTQ格式文件中每个read由四行描述,如下: @EAS139:136:FC706VJ:2:2104:15343:197393 1:Y:18:ATCACG GCTCTTTGCCCTTCTCGTCGAAAATTGTCTCCTCATTCGAAACTTCTCTGT + @@CFFFDEHHHHFIJJJ@FHGIIIEHIIJBHHHIJJEGIIJJIGHIGHCCF 其中第一行以“@”开头,随后为illumina 测序标识符(Sequence Identifiers)和描述文字(选择性部分);第二行是碱基序列;第三行以“+”开头,随后为illumina 测序标识符(选择性部分);第四行是对应序列的测序质量(Cock et al.)。 illumina 测序标识符详细信息如下:

第四行中每个字符对应的ASCII值减去33,即为对应第二行碱基的测序质量值。如果测序错误率用e表示,illumina HiSeq TM2000/MiSeq的碱基质量值用Q phred 表示,则有下列关系: 公式一:Q phred = -10log 10 (e) illumina Casava 1.8版本测序错误率与测序质量值简明对应关系如下: 2 测序数据质量评估 2.1 测序错误率分布检查 每个碱基测序错误率是通过测序Phred数值(Phred score, Q phred )通过公式1转化得到,而Phred 数值是在碱基识别(Base Calling)过程中通过一种预测碱基判别发生错误概率模型计算得到的,对应关系如下表所显示: illumina Casava 1.8版本碱基识别与Phred分值之间的简明对应关系 测序错误率与碱基质量有关,受测序仪本身、测序试剂、样品等多个因素共同影响。对于RNA-seq技术,测序错误率分布具有两个特点: (1)测序错误率会随着测序序列(Sequenced Reads)的长度的增加而升高,这是由于测序过程中化学试剂的消耗而导致的,并且为illumina高通量测序平台都具有的特征(Erlich and Mitra, 2008; Jiang et al.)。 (2)前6个碱基的位置也会发生较高的测序错误率,而这个长度也正好等于在RNA-seq 建库过程中反转录所需要的随机引物的长度。所以推测前6个碱基测序错误率较高的原因为随机引物和RNA模版的不完全结合(Jiang et al.)。测序错误率分布检查用于检测在测序长度范围内,有无异常的碱基位置存在高错误率,比如中间位置的碱基测序错误率显着高于其他位置。一般情况下,每个碱基位置的测序错误率都应该低于0.5%。 图2.1 测序错误率分布图

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理:

宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = , 260/230 = ,电泳检测DNA 应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先通过PCR将16S/18S 序列扩增出来,再将其连接到克隆载体上,导入感受态细胞,涂平板做蓝白斑筛选,选出阳性克隆提质粒,对质粒进行测序反应,测序反应后纯化后用ABI 3130或ABI 3730进行毛细管电泳测序。 由于其测序准确率比较高,而通量非常低,现通常用做二代测序结果的验证。454 Platform: 454平台主要包括两种测序系统:454 GS FLX+ System和454 GS Junior System。454 GS FLX+ System测序读长可以达到600-1000bp,通量450-700M,GS Junior System测序读长在400bp左右,通量在35M。

Ion torrent微生物(细菌)全基因组重测序文库构建实验方案

微生物(细菌)全基因组重测序文库构建实验方案 一、重测序原理 全基因组重测序是对已知基因组序列的物种进行不同个体的基因组测序,并在此基础上对个体或群体进行差异性分析。 二、技术路线 ↓基因组DNA提取 细菌DNA(纯化) ↓超声波打断 DNA片段化 ↓ 文库构建 ↓Ion OneTouch 乳液PCR、ES ↓Ion PGM、Ion Proton 上机测序 ↓ 生物信息学分析 三、实验方案 1.细菌总DNA的提取 液氮速冻、干冰保存的细菌菌液:若本实验室可以提供该细菌生长的条件,则对菌液进行活化,培养至对数期时,对该细菌进行DNA提取;若本实验室不能提供该细菌的生长条件,则应要求客户提供尽可能多的样本,以保证需要的DNA量。 细菌DNA采用试剂盒提取法(如TianGen细菌基因组提取试剂盒)。 取对数生长期的菌液,按照细菌DNA提取试剂盒操作步骤进行操作。提取完成后,对基因组DNA进行纯度和浓度的检测。通过测定OD260/280,范围在1.8-2.0之间则DNA较纯,使用Qubit对提取的DNA进行定量,确定提取的DNA 浓度达到文库构建的量。

2.DNA片段化 采用Covaris System超声波打断仪(Covaris M220),将待测DNA打断 步骤: 1)对待打断的DNA进行定量,将含量控制在100ng或者1μg 2)打开Covaris M220安全盖,将Covaris AFA-grade Water充入水浴容器内,至液面到最高刻度线(约15mL),软件界面显示为绿色 3)将待打断DNA装入Ep LoBind管中,其中DNA为100ng或1μg,加入Low TE 至总体积为50mL 4)将稀释的DNA转移至旋钮盖的Covaris管中(200bp规格),转移过程中不能将气泡带入,完成后旋紧盖子 5)选择Ion_Torrent_200bp_50μL_ScrewCap_microTube,将对应的小管放入卡口,关上安全盖,点击软件界面“RUN” 6)打断结束后,将混合液转移至一支新的1.5mL离心管中 3.末端修复及接头连接 3.1 末端修复 使用Ion Plus Fragment Kit进行,以100ng DNA量为例,各组分使用前瞬时离心2s 步骤: 1)加入核酸酶free水至装有DNA片段的1.5mL离心管中,至总体积为79μL 2)向体系中加入20μL 5×末端修复buffer,1μL末端修复酶,总体积为100μL 3)室温放置20min 3.2 片段纯化 片段纯化使用Agencourt AMpure XP Kit进行 步骤: 1)加入180μL Agencourt AMpure XP Reagent beads于经过末端修复的1.5mL离心管中,充分混匀,室温放置5min

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects

宏基因组测序技术检测方法模板

宏基因组测序技术 检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,经过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就能够直接对环境中所有微生物进行测序。能够真实客观的反映环境中微生物的多样性、种群结构、进化关系等。当前又能够分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常见的微生物物种分子鉴定的标签,,经过对样品中16sDNA测序能够鉴定其中微生物物种的丰度和分布情况。当前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,能够很好的避免此类问题。 二、宏基因组全测序

在这种测序方式中,我们能够假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就能够研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。能够发现新的基因,能够进行基因的预测,甚至有可能得到某个细菌基因组的全序列。另外,该项测序不单能够针对DNA水平,也能够针对全RNA进行基因表示水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。 核酸提取: 宏基因组核酸提取主要有两种方法:膜过滤法和直接裂解提取。对于液体样品如痰液,灌洗液两种方法都适用,对于固体样品如粪便宜采用直接裂解的方法。核酸提取后用NanoDrop ND-1000测定,260/280 = 1.8-2.0, 260/230 = 1.8-2.0,电泳检测DNA应是完整的一条带。 测序Sequencing 1)16S/18S测序: Sanger测序: 用于低通量的16S/18S DNA测序,提取宏基因组后,首先经过PCR将16S/18S序列扩增出来,再将其连接到克隆载体上,导

转录组测序

真核mRNA测序是基于HiSeq平台,对真核生物特定组织或细胞在某个时期转录出来的所有mRNA进行测序,既可研究已知基因,亦能发掘新基因,全 面快速地获得mRNA序列和丰度信息。真核mRNA测序方法可以分为:有参考转录组、无参考转录组以及数字基因表达谱(DGE)三大类。 技术参数 案例解析 [案例一] mRNA和small RNA转录组揭示新合成异源六倍体小麦杂种 优势的动态部分同源调控 诺禾致源携手中国农业科学院作物科学研究所,利用转录组测序技术,对杂交亲本、新合成异源六倍体小麦的幼苗、穗和种子进行了mRNA和smallRNA测序及信息分析,发现新合成异源六倍体小麦绝大部分基因表现为12类基因表达模式,包括加性表达,少部分的基因表现为非加性,基因的非加性表现出非常强的发育时期特异性,与生长势密切相关;miRNA的丰度随着倍性的增加逐渐下降,新合成异源六倍体小麦中非加性表达的 miRNA也同样表现出亲本显性表 达,miRNA的表达敏感性与生长势和适应性密切相关。该研究揭示了不同倍性 非对等杂种优势的分子基础。 [案例二] 磷酸三(2,3-二氯丙基)酯(TDCPP)对四膜虫生长繁殖的 抑制作用与核糖体相关 诺禾携手华中农业大学,利用转录组测序和信息分析技术,研究了TDCPP处理组和对照组差异基因表达,并对差异表达基因进行KEGG通路分析,发现核糖体基因通路显著富集, 同时伴随胞浆和粗面内质网上核糖体数量减少体积增大。这些探索表明四膜虫可以作为TDCPP反应的生物指标,为后续研究TDCPP作用其他生物的毒理机制提供了新视角。 [案例三] 转录组揭示寄主植物与宿主之间进行RNA交换的机制 参考文献 菟丝子被称作勒死草,会用被称作吸根的专用器官穿透宿主组织与其建立联系,可以吸取宿主的水份与营养物质,也能吸取RNA(mRNA)分子。本研究分别选取菟丝子和拟南芥及番茄的共生体茎上的三段组织进行转录组学的研究,发现寄生植物与寄主之间mRNA的转移量很大且是一种双向转移的模式;两种宿主相比,更多的拟南芥RNA被转移到菟丝子植物之中,而且菟丝子与拟南芥之间较自由的交换,可表明调节菟丝子吸根选择性的机制可能是宿主特异性的,从而揭示了寄主与宿主之间进行RNA转移的遗传机制。 [1] Li A, Liu D, Wu J, et al . mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat [J]. The Plant Cell, 2014: tpc. 114.124388.[2] Jing Li, John P , Giesy, Liqin Yu, et al . Effects of Tris (1,3-dichloro-2-propyl) Phosphate (TDCPP) in Tetrahymena Thermophila: Targeting the Ribosome. Scientific Reports. 2015, 5:10562. [3] Kim G, LeBlanc M L, et al . Genomic-scale exchange of mRNA between a parasitic plant and its hosts [J]. Science, 2014, 345(6198): 808-811. 图1 非加性表达miRNA与亲本显性表达miRNA的 等级聚类分析和两者的关联 图2 显著富集的KEGG通路 图3 菟丝子与拟南芥、番茄转移RNA和非转移RNA的表达和富集分析 样品要求文库类型测序策略数据量类型 分析内容 项目周期 真核有参转录组测序 真核无参转录组测序 6 Gb、8 Gb、10 Gb、12 Gb clean data 6 M clean reads 3 Gb clean data 项目数据至少12 Gb clean data 数字基因表达谱(DGE) HiSeq PE150 HiSeq PE150 HiSeq SE50HiSeq PE125普通转录组文库; 链特异性转录组文库 40天50天30天 35天(有参)45天(无参) RNA样品总量≥1.5 μg; RNA样品浓度≥50 ng/μL 参考基因组比对 新转录本预测可变剪切分析SNP/InDel分析 基因表达水平分析RNA-seq整体质量评估 转录因子注释GO/KEGG富集分析蛋白互作网络分析基因共表达网络构建可视化结果展示 参考转录组拼接 转录本/Unigene长度统计 基因功能注释NR,NT,Swiss Prot GO,KEGG,KOG Protein Family CDS预测分析SNP/SSR分析

微生物基因组研究进展及意义

微生物基因组研究进展及其意义 近年来,病原微生物的基因组研究取得了飞速的进展。所谓基因组研究是指对微生物的全基因进行核苷酸测序,在了解全基因的结构基础上,研究各个基因单独或数个基因间相互作用的功能。由于过去人们大多从表型分析入手,寻找已知功能的编码基因,实际只了解微生物中极少数的基因,如链球菌的链激酶基因、结核杆菌编码的热休克蛋白基因等。还有大量未知基因未被发现。通过基因组研究,则从根本上揭示了微生物的全部基因,不仅可发现新的基因,还可发现新的基因间相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律,从而得以发展新的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能有在工农业生产上的应用价值。因此,全球除已完成了70余株覆盖重要病毒科的病毒代表株全基因组研究外,据美国基因组研究所(The Institute for Genomic Research, TIGR)报道,目前已完成了19种微生物基因组测序,其中11种与人类及疾病相关(嗜血流感杆菌,生殖道支原体,肺炎支原体,幽门螺杆菌,枯草杆菌,伯氏疏螺旋体,结核杆菌,梅毒螺旋体,沙眼衣原体,普氏立克次体)。另外,还有40余种微生物已被登记正在进行测序,预计在1999~2000年完成〔1〕。 病毒基因组研究进展 病毒因其基因组小,是进行基因组研究最早的生物体。早在1977 年已完成了噬菌体DNA的全基因测序。存在于脊髓灰质炎疫苗中的SV40,是最早完成全基因测序的与疾病相关的病毒;此后,许多病毒均已完成了全基因测序,并根据序列的开放阅读框架(ORF)对编码蛋白进行了推导。已对相当一些病毒蛋白进行了重组表达,还对一些病毒基因编码的调控序列进行了研究。除一般大小的病毒已完成了基因组测序,对大基因组病毒,疱疹病毒科,如水痘病毒基因组为0.125Mb(Mega-basepair,兆碱基对)〔2〕。巨细胞病毒,基因组为0.229Mb〔3〕。我国已对痘苗病毒天坛株(约0.2Mb)进行了全基因测序,发现与国外的痘苗毒株序列有明显的差异〔4〕。我国还对甲、乙、丙、丁、戊、庚型肝炎病毒进行了国内毒株的全基因测序。近来还对国内2株发现的虫媒病毒毒株完成了全基因测序。我国从不同来源的标本中发现了不少乙肝病毒变异株,有的具有特殊的生物学特性〔5〕。对病毒基因中调控因子的分析,发现了与乙肝病毒增强子作用的新细胞核因子〔6〕。 因此,目前对病毒的基因组研究已进入了后基因组阶段,即从全基因水平研究病毒的生物学功能,同时发现新的基因功能。对于医学病毒学当前主要方向是研究病毒基因组中与致病及诱生免疫应答相关的基因,从而揭示和解决迄今尚未解决的问题,以达到控制或消灭一些重要病毒感染的目的。 建议目前可进行后基因组研究的领域为: 1.病毒持续性感染:基因组中与持续性感染相关的基因,基因变异或调控因子研究。已报道的乙肝病毒的前核心基因出现终止密码突变,

宏基因组测序讲解

宏基因组测序讲解

宏基因组测序 目的 研究藻类物种的分类,研究与特定环境与相关的代谢通路,以及通过不同样品的比较研究微生物内部,微生物与环境,与宿主的关系。技术简介 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 进行高通量测序分析,或克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作。 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样

华大转录组测序内部培训资料

(内部资料,请勿外传) 动植物转录组 (Transcriptome ) 产品说明书 科技服务体系 动植物研究方向

版本信息: 2011年07月08日

目录 1产品概述 (1) 1.1 什么是转录组测序 (1) 1.2 转录组测序的产品功能 (1) 1.3 转录组测序产品优势 (1) 1.4 转录组测序产品发展史 (1) 1.5 项目执行时间 (3) 1.6 产品交付结果 (3) 2转录组测序研究方法 (4) 2.1 产品策略 (4) 2.2 样品准备 (5) 2.2.1 RNA样品要求 (5) 2.2.2 RNA样品送样标准 (6) 2.2.3 RNA提取的组织用量建议 (6) 2.3 样品运输要求 (7) 2.3.1 样品包装 (7) 2.3.2 样品标识 (8) 2.3.3 样品运输条件 (8) 2.4 文库的构建及测序 (9) 2.4.1 实验流程 (9) 2.4.2 测序及数据处理 (10) 2.5 转录组生物信息学分析 (10) 2.5.1 没有参考序列的转录组De novo (10) 2.5.2 有参考序列的转录组Re-sequencing (18) 2.5.3 参考文献 (24) 3成功案例 (25)

3.1 华大成功案例 (25) 3.2 相关文献解读 (26)

1产品概述 1.1什么是转录组测序? 转录组测序的研究对象为特定细胞在某一功能状态下所能转录出来的所有RNA的总和,包括mRNA和非编码RNA。转录组测序是指用新一代高通量测序技术对物种或者组织的转录本进行测序并得到相关的转录本信息。 1.2转录组测序的产品功能 1.获得物种或者组织的转录本信息; 2.得到转录本上基因的相关信息,如:基因结构,功能等; 3.发现新的基因; 4.基因结构优化; 5.发现可变剪切; 6.发现基因融合; 7.基因表达差异分析。 1.3转录组测序产品优势 覆盖度高:检测信号是数字信号,几乎覆盖所有转录本; 检测精度高:几十到数十万个拷贝精确计数; 分辨率高:可以检测到单碱基差异,基因家族中相似基因及可变剪切造成的不同转录本的表达; 完成速度快:整个项目周期只需要50个工作日时间; 成本低:基本上每个实验室可以承担相关研究经费。 1.4转录组测序产品发展史 转录组的研究手段大体包括:EST序列构建及研究,芯片研究,运用第二代测序技术研究等。EST是从一个随机选择的cDNA 克隆进行5’端和3’端单一次sanger测序获得的短的cDNA 部分序列,代表一个完整基因的一小部分,在

宏基因组测序技术检测方法

宏基因组测序技术检测方法

宏基因组测序技术检测标准 简介: 宏基因组测序介绍 宏基因组学是以环境样品中的微生物群体基因组为研究对象,通过现代基因组技术手段包括功能基因的筛选和测序分析,对环境中微生物多样性、种群结构、进化关系、功能活性、相互协作关系以及环境之间的关系进行研究的新的微生物研究方法。随着高通量测序技术的发展,为宏基因组学研究提供了新的理想研究方法。高通量测序的方法无需分离环境中各种微生物,也无需构建克隆文库就可以直接对环境中所有微生物进行测序。可以真实客观的反映环境中微生物的多样性、种群结构、进化关系等。目前又可以分为针对16s DNA/18sDNA/ITS测序和针对宏基因组全序列的测序研究。下面就是对这两者的具体介绍。 一、16s DNA/18s DNA/ITS测序 16sDNA是最常用的微生物物种分子鉴定的标签,,通过对样品中16sDNA 测序可以鉴定其中微生物物种的丰度和分布情况。目前,普遍使用Roche 454平台来对环境样品进行16s DNA测序。因为16s DNA序列比较相似,读长短的话,难以进行有效的比对,而454平台的平均读长在400bp左右,可以很好的避免此类问题。 二、宏基因组全测序 在这种测序方式中,我们可以假定一个环境中的所有微生物就是一个整体,然后对其中所有的微生物进行测序。这样我们就可以研究样品中的功能基因以及其在环境中所起的作用而不用关心其来自哪个微生物。可以发现新的基因,可以进行基因的预测,甚至有可能得到某个细菌基因组的全序列。此外,该项测序不单可以针对DNA水平,也可以针对全RNA进行基因表达水平的研究。 样品处理: 宏基因组样品收集主要有口腔,下呼吸道痰液,下呼吸道灌洗液,皮肤和粪便。样品采集遵照样品采集规范(人)所规定的操作来进行。尽量留足备份样品。

RNA-Seq项目常见问题与解答

RNA-Seq项目常见问题与解答 这两年随着测序成本的下降和转录组研究的日渐火热,RNA-seq俨然已经成为了分子生物学课题组推进项目的首选方向。在我们接触的转录组项目中,有些老师对项目分析结果存在或多或少不清楚或有疑惑的地方。那么春天来了,花儿开了,今天福利也到了,我们特意将转录组项目中常见的一些问题进行了汇总,各位老师可以按需自取哈。 1.如何判定生物学重复一致性的高低?生物学重复统计方法及公式 答:(1)皮尔逊相关系数r可以作为生物学重复相关性的评估指标,理想的生物学重复试验r2≧0.92。考虑到个体差异、取材环境、时间以及人员操作熟练程度等因素对测序数据的影响,一般r2≧0.8为可接受范围。 (2)Pearson(皮尔逊)相关系数:皮尔逊相关也称为积差相关(或积矩相关)是英国统计学家皮尔逊于20世纪提出的一种计算直线相关的方法。 2.DEG基因用Transcripts还是Unigenes? 答:DEG基因用的是Unigene。 3.transcript-id代表什么意思?为什么有的基因有多个transcript-id? 答:基因转录本id;因为可变剪切的缘故,一个基因可能有多个转录本。 4.在miRNA鉴定中,可能成为miRNA的reads是怎样计算的?哪些条件会影响到mrd值?micro RNA在不同组织有异构体的存在,是如何处理的? 答:与 Rfam, miRbase, RepBase和 Exon\Intro 序列库进行比对,获得 sRNA 注释信息,以此作为预测新的 miRNA 的基础。 miRNA的鉴定是利用miRDeep2软件进行已知及新(保守及非保守)的miRNA鉴定。miDeep2会在reads比对到基因组上的位置两端分别延伸75、15bp进行结构预测,此软件认为极可能与可能是miRNA的根据是通过mrd值来区分的,mrd>-10为可能,mrd>0为极可能; 影响mrd值的有reads在基因组上的分布和碱基结合的自由能等; 5.对于有生物学重复的项目,怎样计算差异基因? 答:两两比对使用的是R的EBseq包, 是基于负二项分布检验的方式对reads数进行差异显著性检验,重复间的比对使用的是R的DEseq包,是基于分层贝叶斯模型的原理对组合内样品进行分析。 6.外显子,内含子及基因间区各自的比例如何评估建库情况? 答:理论上,来自成熟mRNA的reads应该比对到外显子区。但是,由于基因组注释水平、可变剪切导致的内含子序列保存,以及很多RNA(比如lncRNA)就来自基因间区和内含子,因此有比对到内含子和基因间区的reads。受物种等的影响外显子所占比例不同,一般情况下外显子区域所占比例超过70%即比较理想。

(完整word版)宏基因组测序讲解

宏基因组测序 目的 研究藻类物种的分类,研究与特定环境与相关的代谢通路,以及通过不同样品的比较研究微生物内部,微生物与环境,与宿主的关系。技术简介 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究目的的新的微生物研究方法。一般包括从环境样品中提取基因组 DNA, 进行高通量测序分析,或克隆DNA到合适的载体,导入宿主菌体,筛选目的转化子等工作。 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组) 。是由 Handelsman 等 1998 年提出的新名词,其定义为"the genomes of the total microbiota found in nature" , 即生境中全部微小生物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境样品中的细菌和真菌的基因组总和。而所谓宏基因组学 (或元基因组学, metagenomics) 就是一种以环境样品中的微生物群体基因组为研究对象,以功能基因筛选和/或测序分析为研究手段,以微生物多样性、种群结构、进化关系、功能活性、相互协作关系及与环境之间的关系为研究

宏基因组及其应用

宏基因组及其应用 学习笔记 吕涛15010906 一、宏基因组及宏基因组学 1.概念 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组)是由Handelsman 等1998 年提出的新名词,其定义为 “the genomes of the total microbiota found in nature” , 即环境中全部微小生物遗 传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指环境 样品中的细菌和真菌的基因组总和。 2.宏基因组学 宏基因组( Metagenome)(也称微生物环境基因组Microbial Environmental Genome, 或元基因组)是由Handelsman 等1998 年提出的新名词,其定义 为“the genomes of the total microbiota found in nature” , 即环境中全部微小生 物遗传物质的总和。它包含了可培养的和未可培养的微生物的基因,目前主要指 环境样品中的细菌和真菌的基因组总和。 3.发展历程 环境基因组学——微生物基因组学——宏基因组学——人类基因组学 人类基因组学: 把人体内所有微生物菌群基因组的总和称为“人体宏基因组”(human metagenome)。人类宏基因组学(human metagenomics)研究人体宏基因组结构和 功能、相互之间关系、作用规律和与疾病关系的学科。它不仅要把总体基因组序 列信息都测定出来,而且还要研究与人体发育和健康有关的基因功能。人类宏基 因组计划目标是:把人体内共生菌群的基因组序列信息都测定出来,而且要研究 与人体发育和健康有关的基因功能。 4.研究步骤

《高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识》(2020)要点

《高通量宏基因组测序技术检测病原微生物的临床应用规范化专家共识》 (2020)要点 快速准确的微生物鉴定技术始终是临床微生物关注的焦点。传统微生物检验,诸如形态学、培养、抗原抗体及靶向核酸检测等方法在解决疑难及未知病原微生物上存在局限性。新型宏基因组下一代测序(mNGS)技术直接针对样本中所有核酸进行无偏性测序,结合病原微生物数据库及特定算法,检测样本中含有的可能病原微生物序列。随着该技术的社会经济成本不断降低和技术的不断完善,已逐渐从科研走向临床应用,成为临床疑难和未知病原微生物检验的重要手段。利用mNGS技术进行病原微生物检测需经样本前处理、核酸提取、文库制备、上机测序并满足测试的质量控制要求后,采用特定算法软件与专用的病原微生物数据库进行比对,实现对病毒、细菌、真菌、寄生虫及非经典微生物等的检测。mNGS 技术不依赖培养,对常见病原微生物检验阴性、经验治疗失败、不明原因的危急重感染的病原学诊断以及新发突发传染病的病原体发现具有独特价值。 一、临床应用的基本要求 (一)适应证 基于医学决策的mNGS病原微生物检测申请,一般用于传统检验方法未

能给出明确病原学结从而影响患者准确诊疗的感染性疾病、新发突发传染病、验证常规检验结果或排除其他发热疾病。荐临床通过拟诊先行传统微生物检验及聚合酶链反应(PCR)检测拟诊疑似常见病原微生物,不盲目使用mNGS技术。在必要或紧急情况下,如危急重症、疑难感染、群体性感染事件等,可考虑作为一线检测方法。表1列出了mNGS临床应用适应性说明。临床上在选择mNGS 进行病原微生物确认时应注意如下事项。 1. mNGS 检测申请表: 2. 靶向基因测序: 3. DNA测序与RNA测序的选择: 4. mNGS 技术的局限性: (二)标本类型及采集规范 1. 血液及高凝标本: 2. 支气管肺泡灌洗液及痰液:

相关文档
最新文档