计算方法的课后答案
计算方法_课后习题答案
(4.5)(0.01172)
0.00879
(2)采用 Newton 插值多项式 y x N2(x) 根据题意作差商表:
i
xi
0
4
1
6.25
f (xi ) 2 2.5
一阶差商 2 9
2
9
3
2 11
二阶差商 4 495
N2 (7) 2 29 (7 4) ( 4 495) (7 4) (7 6.25) 2.6484848
1
e2
则根据二次Lagrange插值公式得:
L2 (x)
(x ( x0
x1)(x x2 ) x1)(x0 x2 )
y0
(x ( x1
x0 )(x x2 ) x0 )(x1 x2 )
y1
(x ( x2
x0 )(x x1) x0 )(x2 x1)
y2
2(x 1)(x 0.5) 2x(x 0.5)e1 4x(x 1)e0.5
8. 求作 f x xn1 关于节点 xi i 0,1, , n 的 Lagrange 插值多项式,并利用
插值余项定理证明
n
n
xin1li 0 1n xi
i0
i0
式中 li x 为关于节点 xi i 0,1, , n 的 Lagrange 插值基函数。
2 02 12 4 23 4 04 14 2 3
1 x2 3x 2 x 4 3x x2 6x 8 23 x x2 5x 4 1 x x2 3x 2
8
4
8
计算方法-刘师少版第一章课后习题完整答案
分, 试给出此递推公式误差的传播规律, 计算 I 10 时误差被放大了多少倍?这个算法是数值稳定的 吗? 解: I =
∫x
0 1 0
1
n
e x −1 dx , n = 0,1,2,L,10 ,由分部积分法有
1 0
n −1 x −1 I n = ∫ x n e x −1 dx = x n e x −1 1 e dx 0 − n∫ x
er ( x n ) =
e( x n ) nx n −1 ( x − x * ) x − x* = = n = n ⋅ er ( x) = αn% x xn xn
x n 的相对误差为 an%
1.10 设 x>0,x 的相对误差为 δ ,求 ln x 的误差。 解: e(ln x) ≈
1 ( x − x * ) = er ( x) = δ x
N +1
N
1 dx = arctan( N + 1) − arctan N 1+ x2 1 = arctan 1 + N ( N + 1) 1 2 gt ,假定 g 是准确的,而对 t 的测量有±0.1s 的误差,证明当 t 增加时,s 的绝对误差 2
1.12 设 s =
增加,而相对误差减少。 解:由题意知, e( s ) = s − s = gt (t − t ) = gt ⋅ e(t ) = 0.1gt
5
计算方法
于是
* * * * e( I 10 ) = −10e( I 9 ) = 10 ⋅ 9e( I 8 ) = L = 10!e( I 0 )
计算 I 10 时的误差被扩大了 10 倍,显然算法是数值不稳定的 1.14 设 f ( x) = 8 x − 0.4 x + 4 x − 9 x + 1 ,用秦九韶算法求 f (3)
数值计算方法课后习题答案
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
数值计算方法课后习题答案
习题一1.设x >0相对误差为2%4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得 (1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x x δδδ≈===4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少?解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈ 解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ= =0.5%5.下面计算y 的公式哪个算得准确些?为什么?(1)已知1x <<,(A )11121x y x x -=-++,(B )22(12)(1)x y x x =++; (2)已知1x >>,(A)y =,(B)y =(3)已知1x <<,(A )22sin x y x=,(B )1cos 2xy x -=;(4)(A)9y =(B)y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
故在设计算法时应尽量避免上述情况发生。
(1)(A )中两个相近数相减,而(B )中避免了这种情况。
故(B )算得准确些。
(2)(B )中两个相近数相减,而(A )中避免了这种情况。
故(A )算得准确些。
(3)(A )中2sin x 使得误差增大,而(B )中避免了这种情况发生。
故(B )算得准确些。
(4)(A )中两个相近数相减,而(B )中避免了这种情况。
计算方法 课后习题答案
0
1
2
4
1
9
23
3
解:
(1)Lagrange插值多项式
=
=
=
=
(2)Newton插值多项式
一阶差商
二阶差商
三阶差商
0
0
1
1
1
9
8
2
2
23
14
3
3
4
3
-10
由求解结果可知:
说明插值问题的解存在且唯一。
6.已知由数据 构造出的 插值多项式 的最高次项系数是6,试确定 。
解:因为第一列中10最大,因此把10作为列主元素
得到方程组
3。举例说明一个非奇异矩阵不一定存在LU分解。
例如:设
与题设相矛盾,所以一个非奇异矩阵不一定存在LU分解。
4。下列矩阵能否分解为LU(其中L为单位下三角矩阵,U为上三角矩阵)?若能分解,那么分解是否唯一?
解:
设 B可以进行LU分解,则B=
计算得
5。对下列给定的矩阵A作LU分解,并利用分解结果计算A-1。
解:
L= U=
由
6。用Doolittle分解法解方程组
解:A= =
其中L= U=
由Ly= 解得y=
由Ux=y,解得x=
7。用Crout分解法接方程组。
解:
由Ly=b= 得y=
由Ux=y= 得x=
8。用平方根法求解方程组
解:易知 是对称矩阵,可求得
注意到这里 是三重零点, 是单零点,故插值余项为
20.求作次数 的多项式 ,使满足条件
并列出插值余项。
数值计算方法第三版课后习题答案
习题一解答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.14159265 3.1428571430.0012644930.00137e x π=-=-=-≈- 相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,223.1428571430.3142857143107==⨯,m=1。
数值计算方法课后习题答案(李庆扬等)
数值计算方法课后习题答案(李庆扬等)绪论(12)1、设x 0,x的相对误差为,求lnx的误差。
[解]设x* 0为x的近似值,则有相对误差为r*(x) ,绝对误差为*(x) x*,从而lnx的误差为*(lnx) (lnx*) (x*) 相对误差为(lnx)*r1*x ,x**(lnx)lnx*lnx*。
2、设x的相对误差为2%,求xn的相对误差。
[解]设x*为x的近似值,则有相对误差为r*(x) 2%,绝对误差为*(x) 2%x*,从而x的误差为(lnx) (x) 相对误差为(lnx)*rn*nx x*(x) n(x)**n 12%x 2n% x**n,*(lnx)(x)*n2n%。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:*****x1 1.1021,x2 0.031,x3 56.430,x5 385.6,x4 7 1.0。
***[解]x1 1.1021有5位有效数字;x2 0.0031有2位有效数字;x3 385.6有4**位有效数字;x4 56.430有5位有效数字;x5 7 1.0有2位有效数字。
****4、利用公式(3.3)求下列各近似值的误差限,其中x1均为第3题所给,x2,x3,x4的数。
***(1)x1;x2 x4f *******e*(x1 x2 x4) (x) (x) (x) (xk124) xk 1 k [解];11110 4 10 3 10 3 1.05 10 3222n****(2)x1x2x3;f***e*(x1x2x3)k 1 xkn ********** (x) (xx) (x) (xx) (x) (xx) (x)k***-*****3*1[解] (0.031 385.6)1 10 4 (1.1021 385.6)1 10 3 (1.1021 0.031) 10 3;2220.***** 10 3 212.***** 10 3 0.***-***** 10 3213.***-***** 10 3 0.***-*****255**(3)x2。
计算方法课后习题集规范标准答案
习 题 一3.已知函数y =4, 6.25,9x x x ===处的函数值,试通过一个二次插值函解:0120124, 6.25,9;2, 2.5,3y x x x y y y =======由题意 (1) 采用Lagrange插值多项式220()()j j j y L x l x y ==≈=∑27020112012010*********()|()()()()()()()()()()()()(7 6.25)(79)(74)(79)(74)(7 6.25)2 2.532.255 2.25 2.75 2.7552.6484848x y L x x x x x x x x x x x x x y y y x x x x x x x x x x x x ==≈------=++------------=⨯+⨯+⨯⨯-⨯⨯= 其误差为(3)25(3)25(3)2[4,9]2()(7)(74)(7 6.25)(79)3!3()83max |()|40.0117281|(7)|(4.5)(0.01172)0.008796f R f x x f x R ξ--=---==<∴<=又则(2)采用Newton插值多项式2()y N x =≈ 根据题意作差商表:224(7)2(74)()(74)(7 6.25) 2.64848489495N =+⨯-+-⨯-⨯-≈4. 设()()0,1,...,k f x x k n ==,试列出()f x 关于互异节点()0,1,...,i x i n =的Lagrange 插值多项式。
注意到:若1n +个节点()0,1,...,i x i n =互异,则对任意次数n ≤的多项式()f x ,它关于节点()0,1,...,i x i n =满足条件(),0,1,...,i i P x y i n ==的插值多项式()P x 就是它本身。
可见,当k n ≤时幂函数()(0,1,...,)kf x x k n ==关于1n +个节点()0,1,...,i x i n =的插值多项式就是它本身,故依Lagrange 公式有()00(),0,1,...,nn n k kk i j j j j j i j ii jx x x l x x x k n x x ===≠-=≡=-∑∑∏特别地,当0k =时,有()0001nn n ij j j i j ii jx x l x x x ===≠-=≡-∑∑∏而当1k =时有()000nnn ij j j j j i j ii jx x x l x x x x x ===≠⎛⎫- ⎪=≡ ⎪- ⎪⎝⎭∑∑∏ 5.依据下列函数表分别建立次数不超过3的Lagrange 插值多项式和Newton 插值多项式,并验证插值多项式的唯一性。
计算方法引论课后答案
计算方法引论课后答案第一章误差1.什么是模型误差,什么是方法误差?例如,将地球近似看为一个标准球体,利用公式 $A=4\pi r$ 计算其表面积,这个近似看为球体的过程产生的误差即为模型误差。
在计算过程中,要用到 $\pi$,我们利用无穷乘积公式计算 $\pi$ 的值:pi=2\cdot\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\f rac{4}{5}\cdot\frac{6}{5}\cdot\frac{6}{7}\cdot\frac{8}{7}\cdot\ frac{8}{9}\cdot\cdots我们取前9项的乘积作为 $\pi$ 的近似值,得$\pi\approx3.xxxxxxxx5$。
这个去掉 $\pi$ 的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也称为截断误差。
2.按照四舍五入的原则,将下列各数舍成五位有效数字:816.956,76.000,.322,501.235,.182,130.015,236.23.解:816.96,76.000,.501.24,.130.02,236.23.3.下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字?81.897,0.008,136.320,050.180.解:五位,三位,六位,四位。
4.若 $1/4$ 用 0.25 表示,问有多少位有效数字?解:两位。
5.若 $a=1.1062$,$b=0.947$,是经过舍入后得到的近似值,问:$a+b$,$a\times b$ 各有几位有效数字?已知 $da<\frac{1}{2}\cdot10^{-4}$,$db<\frac{1}{2}\cdot10^{-3}$,又 $a+b=0.\times10$。
begin{aligned}d(a+b)&=da+db\leq da+db=\frac{1}{2}\cdot10^{-4}+\frac{1}{2}\cdot10^{-3}=0.55\times10^{-3}<\frac{1}{2}\cdot10^{-2}end{aligned}所以 $a+b$ 有三位有效数字;因为 $a\timesb=0.xxxxxxxx\times10$。
计算方法答案王能超
计算方法答案王能超【篇一:计算方法习题集及实验指导书】s=txt>计算机科学与技术系檀明2008-02-10课程性质及目的要求(一)课程性质自计算机问世以来,科学计算一直是计算机应用的一个重要领域,数值计算方法是解决各种复杂的科学计算问题的理论与技术的基础。
《计算方法》课程讨论用于科学计算中的一些最基本、最常用的算法,不但具有数学的抽象性与严密的科学性的特点,而且具有应用的高度技术性的特点。
它对于培养从事计算机应用的科技人才有着重要的作用,是计算机应用专业(本科段)的一门重要的技术基础课程。
(二)目的要求通过本课程的学习和上机实验,了解用计算机解决科学计算问题的方法特点,掌握计算方法中的一些基本概念、基本公式和相应的算法流程,提高根据算法描述设计高级语言程序并进行验证的技能。
在学习过程中,应注重理解和应用,在搞清基本原理和基本概念的基础上,通过习题、编程和上机等环节,巩固和加深已学的内容,掌握重要的算法及其应用。
注重理论与算法的学习和应用相结合,强调编程及上机计算的技能培养,是本课程不同于一般数学课程的重要特点。
(三)学习方法指导1.循序渐进逐章学习本课程从第二章开始,每章都讨论一个大类的算法。
虽然各算法是相对独立的,但是也存在相互联系与前后继承的关系。
前面的概念和算法学好了,后面的内容也就容易学,越学越感到容易。
前面的内容没有学好,后面就会感到难学,甚至会出现越来越感到困难、失去学习信心的情况。
2.稳扎稳打融会贯通学习要扎实、要讲求实效。
每一个重要的概念和公式,都会搞清楚,做到融会贯通。
只有这样,才能取得学习的学习效果。
3.多学练勤做习题教材及本习题集中的每一章都附有适量的习题,可以帮助考生巩固和加深理解所学的知识,提高解题能力。
因此,在学习过程中,应当适合习题进行思考,应当尽可能多做习题,遇到某些不会做的题,应三思之后再请老师给予提示。
4.抓住特点前后联系本课程只讲了五大类算法。
每类算法都是针对一类特定的计算问题,都有其自身的特点。
计算方法的课后答案
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而 1 0 -1 0 1 -4 -3 -3 9 -24 72 -2191-38-2473-223所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
数值计算方法课后习题答案(李庆扬等) (修复的)
,。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x xx x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++;[解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
计算方法课后习题答案第四章作业
(五)课后习题4.1 对于积分⎰-aadx x f )(,以a x x a x ==-=210,0,为节点,构造形如⎰-++≈aax f A x f A x f A dx x f )()()()(221100的插值型求积公式,并讨论所得公式的代数精度。
解答:⎰⎰--=------=----=aa a a a dx a a a a x x dx x x x x x x x x A 31))(0())(0())(())((2010210⎰⎰--=-+-+=----=aa a a a dx a a a x a x dx x x x x x x x x A 34)0)(0())(())(())((2101201⎰⎰--=-+-+=----=aa a a a dx a a a x a x dx x x x x x x x x A 31)0)(()0)(())(())((1202102易知为Simpson 公式,因此代数精度为34.2 确定 下列求积公式中的待定参数,使其代数精度尽量高,并指出所得公式的代数精度。
(1)⎰++≈2210)2()1()0()(f A f A f A dx x f(2)⎰-⋅++≈hh f f h h f f hdx x f 0''2)]()0([)]()0([2)(α解答:(1)令2,,1)(x x x f =,假定求积公式均准确成立,从而有: ⎰++==202102A A A dx 21022102⋅+⋅+⋅==⎰A A A xdx22212022210038⋅+⋅+⋅⋅==⎰A A A dx x 解以上三元线性方程组从得:34,31120===A A A ,显然仍为Simpson 公式,因此代数精度为3(2)求积公式中只含一个待定参数α,当x x f ,1)(=时,有 ⎰++=hh dx 00]11[2,⎰-++=h h h hxdx 02)11(]0[2α故令2)(x x f =时求积公式准确成立,即⎰-⨯++=hh h h h dx x 0222]202[]0[2α,解得121=α将3)(x x f =代入上述确定的求积公式,有:⎰-++=hh h h h dx x 02233]30[12]0[2,这说明求积公式至少有3次代数精度,再令 4)(x x f =,代入求积公式时有:⎰-++≠hh h h h dx x 03244]40[12]0[2故所建求积公式为⎰-++≈hh f f h h f f h dx x f 0''2)]()0([2)]()0([2)(4.3 对于xxx f sin )(=,利用下表数据,计算8,4=n 时的复合梯形公式84,T T ,以及4=n 复合Simpson 公式4S 的值。
计算方法引论课后答案
第一章 误差1. 试举例,说明什么是模型误差,什么是方法误差.解: 例如,把地球近似看为一个标准球体,利用公式24A r π=计算其表面积,这个近似看为球体的过程产生的误差即为模型误差.在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 其中我们取前9项的乘积作为π的近似值,得这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差.2. 按照四舍五入的原则,将下列各数舍成五位有效数字:816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 2363. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +⨯各有几位有效数字?解: 已知4311d 10,d 1022a b --<⨯<⨯, 又0.2053210a b +=⨯,()433211110100.551010222d a b da db da db ----+=+≤+=⨯+⨯=⨯<⨯,所以a b +有三位有效数字;因为0.1047571410a b ⨯=⨯,所以a b ⨯有三位有效数字.6. 设120.9863,0.0062y y ==,是经过舍入后作为12,x x 的近似值.求1211,y y 的计算值与真值的相对误差限及12y y ⋅与真值的相对误差限.解: 已知-4-41112221211d ,d ,d =10,d 1022x y x x y x x x =+=+⨯=⨯, ()44111111110d d 12dr dr 0.50100.9863x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()42222222110d d 12dr dr 0.81100.0062x xx x x y --⨯⎛⎫==≈=≈⨯ ⎪⎝⎭;()()()4221212dr dr dr 0.50100.81100.8210x x x x ---⋅=+≈⨯+⨯≈⨯.7. 正方形的边长约为100cm,应该怎样测量,才能使其面积的误差不超过1cm 2. 解: 设正方形面积为S,边长为a,则S=a 2.所以要使:2d d 2d 1s a a a ==≤,则要求211d 0.5102200a a -≤==⨯.所以边长的误差不能超过20.510-⨯cm.8. 用观测恒星的方法求得某地维度为4502'''(读到秒),试问:计算sin ϕ将有多大误差?解: ()()1d sin cos d cos 45022ϕϕϕ*''⎛⎫'''== ⎪⎝⎭.9 . 真空中自由落体运动距离s 与时间的关系由公式212s gt =确定,g 是重力加速度.现在假设g 是准确的,而对t 的测量有0.1s ±的误差,证明t 增加时,距离的绝对误差增加而相对误差却减小. 证明: 因为:221d d d d d d d ;2.122s gt t gt t t s gt gt t s s t gt ⎛⎫=====⎪⎝⎭ d s 与t成正比,d s s与t 成反比,所以当d t 固定的时候, t增加时,距离的绝对误差增加而相对误差却减小.10. 设0x >,x 的相对误差为δ,求ln x 的绝对误差. 解: 已知d x x δ=,所以ln x 的绝对误差()d d ln x x xδ==. 11. 设x 的相对误差为%α,求nx 的相对误差.解: 1d d d %n n n nx nx x n xn x x xα-===. 12. 计算球的体积,为了使相对误差限为1%,问度量半径R 时允许的相对误差限如何? 解: 已知343V R π=,设()d dr R R a R ==,则要使得 ()()3d dr dln d ln 3d ln 3d ln 3dr 31%V V V R R R R a V ========,则11%3a =⋅. 第二章 插值法与数值微分1.设y =在100,121,144x =三处的值是很容易求得的,试以这三个点建立y =的二次插值多项式,并用,且给出误差估计.用其中的任意两点,构造线性插值函数,用得到的三个线性插值函数,,并分析其结果不同的原因.解: 已知012012100,121,144;10,11,12x x x y y y ======,建立二次Lagrange 插值函数可得:()211510.7228L ≈=.误差()()()()()()2012012,,,,3!f R x x x x x x x x x x ξξξ'''=---∈,所以利用前两个节点建立线性插值函数可得:()111510.7143L ≈=.利用后两个节点建立线性插值可得:()111510.7391L ≈=.利用前后两个节点建立线性插值可得:()111510.6818L ≈=.与,二次插值比线性插值效果好,利用前两个节点的线性插值比其他两个线性插值效果好.此说明,二次插值比线性插值效果好,内插比外插效果好.2. 利用(2.9)式证明 证明: 由(2.9)式当01x x x <<时,()()01max x x x f f x ξ≤≤''''≤,()()()01201101max 4x x x x x x x x x ≤≤--≤- 所以3. 若()0,1,...,j x n 为互异节点,且有 证明 证明: 由于且()0nk j j j x l x =∑和kx都为k 次多项式,而且在k+1个不同的节点处的函数值都相同0,1,...,k n =, 所以马上有()0,0,1,...,nk kj j j x l x xk n =≡=∑.4. 设给出sin x 在[],ππ-上的数值表,用二次插值进行计算,若希望截断误差小于510-,问函数表的步长最大能取多少?解: 记插值函数为p(x),则所以()()()()11cos max sin 3!i i i x x p x x x x x x ππξ-+-≤≤--=---()cos 1ξ-≤;令()()()()11i i i g x x x x x x x -+=---,设1i x x th -=+,得又()()()[]12,0,2t t t t t ϕ=--∈的最大值为10.3849ϕ⎛= ⎝⎭,所以有 所以0.0538h ≤.5. 用拉格朗日插值和牛顿插值找经过点()()()()3,1,0,2,3,2,6,10---的三次插值公式. 解: Lagrange 插值函数:牛顿插值: 首先计算差商也可以利用等距节点构造,首先计算差分 可得前插公式 和后插公式6. 确定一次数不高于4的多项式()x ϕ,使()()()()()00,00,111,21ϕϕϕϕϕ''=====. 解: 利用重节点计算差商则可构造Hermite 插值函数满足题设条件:7. 寻找过1n +个点01,,...,n x x x 的21n +次多项式()21n H x +,满足条件: 解: 和Lagrange 插值函数的构造类似,可将插值函数写成其中,基函数满足条件 (1)()()(),,,21n i n i h x h x P n ∈+;(2)()()()(),,,,,0;,0n i n i n ij ij n i j j ijj h x h x h x h x δδ''====则可由已知条件,可得()()()()2,,,12n i n i i i n i h x l x x x l x '⎡⎤=--⎣⎦;()()()2,,n i i n i h x x x l x '=-.所以可得8. 过0,1两点构造一个三次Hermite 插值多项式,满足条件: 解: 计算重节点的差商马上可得9. 过给定数组(1) 作一分段线性插值函数.(2) 取第二类边界条件,作三次样条插值多项式.(3) 用两种插值函数分别计算75.5,78.3x x ==的函数值. 解: (1)做分段线性插值函数可得:其中, ()[][]076 75,76;0 75,76.x x l x x ⎧-∈⎪=⎨∉⎪⎩()[][][]175 75,7677 76,77;0 75,77.x x l x x x x ⎧-∈⎪=-∈⎨⎪∉⎩ (2)把已知节点值带入M 关系式可得: 由边界条件可得050M M ==,所以上面方程组变为可求解方程组解得12340.0058,0.0067,0.0036,0.0071M M M M ====.所以可得在每个区间上的三次样条函数的表达式: (3)当75.5x =时,()()()50175.5 2.76875.5 2.83375.5 2.8005I l l =+=;()()()()()30.00580.005875.575.576 2.7687675.5 2.83375.575 2.79966s ⎛⎫=-+-+--= ⎪⎝⎭当78.3x =时,()()()53475.5 2.97978.3 3.06278.3 3.0039I ll =+=;10. 若给出sin ,cos ,tan x x x 的函数表:用表上的数据和任一插值公式求: (1) 用tan x 表格直接计算tan1.5695.(2) 用sin1.5695和cos1.5695来计算tan1.5695.并讨论这两个结果中误差变化的原因. 解: 利用Lagrange 插值直接用tan 表计算得tan1.5695819.0342874999274≈;利用Lagrange 插值计算sin 得sin1.56950.99999917500000≈;利用Lagrange 插值计算cos 得cos1.56950.00129630000000≈;最后利用sin/cos 计算tan 得tan1.5695771.4257309264500≈.出现小除数,误差被放大.11. 求三次样条函数()s x ,已知和边界条件解: 把表中数据带入M 关系式可得由边界条件还可得到两个方程: 联立两个方程组可解得:带入M 表达式便可得所求三次样条函数.12. 称n 阶方阵()ij A a =具有严格对角优势,若 (1) 试证明:具有严格对角优势的方阵必可逆. (2) 证明:方程组(2.62)解存在唯一.证明: (1)设矩阵A 按行严格对角占优,如果A 奇异,则存在非零向量x 使得Ax=0,写成分量形式为令指标0i 使得00i x x∞=≠,则因此0000010n i i i i j j j i x a a =≠⎛⎫⎪-≤ ⎪ ⎪⎝⎭∑ 即000010ni i i j j j i a a =≠-≤∑上式与矩阵按行严格对角占优矛盾,因此矩阵非奇异. (2)方程组(2.62)由于该方程组系数矩阵为严格对角占优的方阵,所以由克拉默法则可知方程组存在唯一解.。
数值计算方法课后习题答案(李庆扬等)
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
最优化计算方法课后习题集答案解析
解:取 , 时,DFP法的第一步与最速下降法相同
, ,
,
以下作第二次迭代
,
其中,
,
所以
令 , 利用 ,求得
所以 ,
以下作第三次迭代
,
,
所以
令 , 利用 ,求得
所以 , 因为 ,于是停止
即为最优解。
习题四
包括题目: P95页 3;4;8;9(1);12选做;13选做
3题解如下
3.考虑问题 ,其中
X1,x2,x3≥0 (3)
求出点(1,1,0)处的一个下降可行方向.
解:首先检查在点(1,1,0)处哪些约束为有效约束。检查易知(1),X3≥0为有效约束。设所求可行方向d=(d1,d2,d3)T。根据可行方向d的定义,应存在a>0,使对∀t∈(0,a)能有
X+td=(1+td1,1+td2,0+td3)T
(1)
s.t.
(2)
s.t.
(1)解:非线性规划的K-T条件如下:
(1)
(2)
(3)
再加上约束条件 (4)
为求出满足(1)~(4)式的解,分情况考虑:
①若(4)式等号不成立,即 ,那么由(2)式得 ,将 代入(1)式解得 , ,所得值不满足 的条件,故舍去。
②若(4)式等号成立,由(1)式可以解得 , ,代入(4)式有:
JBi
1
2
3
4
5
6
7
8
9
di0
1
1
0
-5/6
-1/6
1
10/6
4
0
0
38/6
2
0
1
-9/6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
答:设*x 是某个量的精确值,x 是其近似值,则称差x x e -=*为近似值x 的绝对误差(简称误差)。
若存在一个正数ε使ε≤-=x x e *,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。
把绝对误差e 与精确值*x 之比***x x x x e e r -==称为近似值x 的相对误差,称*x εη=为近似值x 的相对误差限η≤r e ,由于真值*x 是未知的,所以常常用xe x x x e r =-=*来表示相对误差,于是相对误差可以从绝对误差求出。
7.近似值的规格化表示形式如何?答:一般地,对于一个精确值*x ,其近似值x 的规格化形式为m p x x x x 10.021⨯±=Λ,其中{}),2,1(9,2,1,0,01p i x x i ΛΛ=∈≠,p 为正整数,m 为整数。
8.有效数字的概念是什么?掌握有效数字与误差的关系。
答:若近似值x 的(绝对)误差限是它的某一位的半个单位,也就是说该近似值准确到这一位,且从该位起直到前面第一个非零数字为止的所有数字都称为有效数字。
若近似值x 的(绝对)误差限为n m x x e -⨯≤-=1021*,则称x 为具有n 位有效数字的有效数,或称它精确到nm -10位,其中的每一位数字n x x x Λ,,21都是x 的有效数字。
设精确值*x 的近似值x 的规格化形式为mp x x x x 10.021⨯±=Λ,若x 具有n 位有效数字,则其相对误差限为n r x e -⨯≤111021;反之,若x 的相对误差限为n r x e -⨯+≤1110)1(21,则x 至少有n 位有效数字。
9.下列各数都是对真值进行四舍五入后获得的近似值,试分别写出它们的绝对误差限,相对误差限和有效数字的位数。
(1)024.01=x (2)4135.02=x (3)50.573=x (4)600004=x (5)55108⨯=x ;解:(1)0005.01*1≤-=x x e ;0021.0*≤=-=xex x x e r ;有三位有效数字。
(2)00005.02*2≤-=x x e ;000121.0*≤=-=xex x x e r ;有四位有效数字。
(3)005.03*3≤-=x x e ;000087.0*≤=-=xex x x e r ;有四位有效数字。
(4)5.04*4≤-=x x e ;0000084.0*≤=-=xex x x e r ;有五位有效数字。
(5)5.05*5≤-=x x e ;000000625.0*≤=-=xex x x e r ;有六位有效数字。
10.为了使19的相对误差≤0.1%,问至少应取几位有效数字?解:由19的首位数是 4.设近似数*x 有n 位有效数字,由定理4.1可知,相对误差001.010421)(1*≤⨯⨯≤-n r x e ,解得097.3≥n ,即取4位有效数字,近似数的相对误差不超过0.1%。
11.已知33,3100,1150)(*2==-+==x x x x x P y ,计算)3100(*p y =及)33(P y =,并求x 和y 的相对误差。
解:Λ55555.51150)3100()3100()3100(2*-≈-+==p y 281150)33()33()33(2-=-+==P y Λ333.0)(*≈-=x x x e Λ0101.0)()(≈=xx e x e r Λ44444.22)(*≈-=y y y e Λ801587.0)()(≈=yy e y e r 12.写出误差估计的一般公式(以二元函数),(y x f z =为例)。
解:二元函数),(y x f z =的绝对误差:)(|)(|)(),(),(y e yfx e x f z e y x y x ⋅∂∂+⋅∂∂≈二元函数的相对误差: z y e y f z x e x f z z e z e y x y x r )(|)(|)()(),(),(⋅∂∂+⋅∂∂≈=)(|)(|),(),(y e yfz y x e x f z x r y x r y x ⋅∂∂⋅+⋅∂∂⋅=13.用电表测得一个电阻两端的电压和流过的电流范围分别为V V 2220±=,A I 1.010±=,求这个电阻的阻值R ,并估算其绝对误差和相对误差。
解:2)(≤V e ,1.0)(≤I e ,又2,1,IV I R I V R I V R -=∂∂=∂∂=。
所以: 42.01.01002202101)(|)(|)(|)(|)(),(),(),(),(=⨯+⨯=⋅∂∂+⋅∂∂≤⋅∂∂+⋅∂∂≈I e I R V e V R I e IRV e V R R e I V I V I V I V21099.1)()(-⨯≈=RR e R e r 。
14.若01.045.0,01.003.1*2*1±=±=x x ,计算22121x e x y +=的近似值,并估计)(y e 及其上界。
解:45.0221)03.1(e y +≈ )(21))(()21()21()(2*22*21*11*11*1*x x x x e e x x x x e x e x y y y e -++-=+-+=-= ),(,01.0211006.2)(21))((*2221*11*12*2x x e e e x x x x x x ∈⨯⨯+⨯=-++-≤-ξξ15.已测得某场地长为m l 110=,宽d 的值为m d 80=,已知m l l l e 2.0)(*≤-=,m d d d e 1.0)(*≤-=,试求面积ld s =的绝对误差限和相对误差限。
解:由ld s =,l ds d l s =∂∂=∂∂,,m l l l e 2.0)(*≤-=,m d d d e 1.0)(*≤-=。
可得:301.0802.0110)(|)(|)(|)(|)(),(),(),(),(=⨯+⨯=⋅∂∂+⋅∂∂≤⋅∂∂+⋅∂∂≈d e ds l e l s d e d s l e l s s e d l d l d l d l 3104.3)()(-⨯≈=ss e s e r 。
16.掌握二元函数的加、减、乘、除和开方运算的绝对误差和相对误差估计公式。
解:(1)加、减运算: 由于()1/=∂+∂x y x ()()(),1/,1/,1/-=∂-∂=∂-∂=∂+∂y y x x y x y y x ,所以()()()()()()()()()()()()()()()()()()()()()|||/|||/|||,//,,//,y e y x y x e y x x y x e y e y x y x e y x x y x e y e x e y x e y e y x y x e y x x y x e y e x e y x e r r r r r r r r r ⋅-+⋅-≤-⨯--⨯-≈--≈-⨯++⨯+≈++≈+从而有(2)乘法运算: 由于()(),x yxy y x xy =∂∂=∂∂,所以()()()()()()y e x e xy e y xe x ye r r r +≈+≈,x y e ,从而()()()|||||||||y e x x e y xy e ⋅+⋅≤(3)除法运算: 由于2)(,1)(yx y y x y x yx-=∂∂=∂∂,所以)()(1)(2y e yxx e y y xe -≈,)()()(y e x e yxe r r r -≈(4)乘方及开方运算:由于()1-=∂∂n nnx xx ,所以()()()()x ne x e x e nx x e r n r n n ≈≈-,1 17.求方程01562=+-x x 的两个根,使它至少具有4位有效数字(982.27783≈)。
解:782.55982.272812114)56(5621=+≈⨯⨯⨯--+=x017863.0782.55112≈==x c x 19.求方程01162=+-x x 的较小正根,要求有3位有效数字。
解:937.15937.7812114)16(1621=+≈⨯⨯⨯--+=x062747.0937.15112≈==x c x 所以较小正根为062747.02≈x 。
20.设4110,,2,1,0,Λ==⎰n dx e xI x nn 。
(1)证明:4110,,2,1,0,Λ=-=-n nI e I n n ;(2)给出一个数值稳定的算法,并证明算法的稳定性。
(1)证明:11111---=-===⎰⎰⎰n x n xn xnn nI e x d e nx e e d x dx e xI(2))(11n n I e nI -=-设n n n I I e -=*,则n nnn n n n n n n e n I I e e nI I e e n I I e 1110*0022*221*11=-==-==-=------ΛΛ 当n 无限大时,n e 越小,所以该算法稳定。