高二下学期期中数学试卷真题
高二数学期中考试试卷
高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。
12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。
13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。
14. 函数y=x^2+2x+1的顶点坐标为______。
15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。
三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。
高二期中考试试卷数学
高二期中考试试卷数学一、选择题(每题4分,共40分)1. 若函数\( f(x) = 2x^2 - 3x + 1 \),则\( f(-1) \)的值为:A. 6B. 4C. 2D. -22. 已知等差数列\( \{a_n\} \)的首项为2,公差为3,求第10项的值:A. 37B. 38C. 39D. 403. 圆的方程为\( (x-3)^2 + (y-4)^2 = 25 \),求圆心坐标:A. (3, 4)B. (-3, 4)C. (3, -4)D. (-3, -4)4. 若\( \sin \alpha + \cos \alpha = \sqrt{2} \),求\( \tan \alpha \)的值:A. 1B. -1C. 0D. 无法确定5. 已知\( \log_{10} 100 = 2 \),求\( \log_{10} 0.01 \)的值:A. -1B. -2C. 1D. 26. 函数\( y = \ln(x) \)的图像在点(1,0)处的切线斜率是:A. 0B. 1C. 2D. -17. 已知\( \cos \theta = \frac{1}{3} \),求\( \sin \theta \)的值(假设\( \theta \)在第一象限):A. \( \frac{2\sqrt{2}}{3} \)B. \( \frac{2\sqrt{2}}{9} \)C. \( -\frac{2\sqrt{2}}{3} \)D. \( -\frac{2\sqrt{2}}{9} \)8. 抛物线\( y^2 = 4x \)的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 根据题目所给的二元一次方程组\( \begin{cases} x + y = 3 \\ 2x - y = 1 \end{cases} \),求\( x \)的值:A. 1B. 2C. 3D. 无法确定10. 已知\( \frac{1}{x} + \frac{1}{y} = 5 \),且\( xy = 6 \),求\( x + y \)的值:A. 3B. 6C. 8D. 10二、填空题(每题3分,共15分)11. 若\( a \),\( b \),\( c \)成等差数列,且\( a + b + c = 6 \),则\( b \)的值为______。
2024高二数学期中考试题及答案
2024高二数学期中考试题及答案一、选择题(每小题3分,共计60分)1. 已知函数f(x)=2x^3-3x^2-12x+5,求f(-1)的值是多少?A) -9 B) -7 C) 7 D) 92. 若集合A={1,2,3,4},集合B={2,3,4,5},则A∪B的元素个数是多少?A) 4 B) 5 C) 7 D) 83. 设函数f(x)=4x-1,g(x)=2x+3,求满足f(g(x))=1的x的值。
A) 0 B) -1 C) 1 D) 24. 在等差数列an中,若a1=3,d=4,an=19,则n的值是多少?A) 4 B) 5 C) 6 D) 75. 已知直角三角形的两条直角边分别为3和4,求斜边的长度是多少?A) 5 B) 7 C) 25 D) 49二、填空题(每小题4分,共计40分)1. 若集合A={1,2,3,4,5},集合B={4,5,6,7},则A∩B的元素个数是_________。
2. 设函数f(x)=3x+2,则f(-1)的值是_________。
3. 在等差数列an中,若a1=2,d=3,an=23,则n的值是_________。
4. 男生与女生的比例是3:5,班级总人数为80,女生人数是_________。
5. 若正方形的边长为x+2,其面积是_________。
6. 已知平行四边形的底边长为5,高为3,其面积是_________。
7. 若正方形的对角线长为10,边长是_________。
8. 设函数f(x)=x^2+2x-1,g(x)=x-1,则f(g(2))的值是_________。
9. 若直角三角形的两条直角边分别为6和8,斜边的长度是_________。
10. 设集合A={a,b,c},集合B={c,d,e},则A×B的元素个数是_________。
三、解答题(共计40分)1. 若函数f(x)满足f(2x-1)=2x^2-2x,则求f(x)的表达式。
2. 已知数列{an}的通项公式为an=n^2-3n-4,求数列{an}的首项和前6项的和。
天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)
天津市部分区2023~2024学年度第二学期期中练习高二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试用时100分钟.祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题公共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线1y x x=-在2x =处的切线斜率为( )A . 3-B .34C .54D . 52.用0~6这7个自然数,可以组成没有重复数字的三位数的个数为( )A .60B .90C .180D .2103.函数ln xy x=的单调递增区间为( )A . (),e -∞B . ()0,e C . ()1,+∞D . ()e,+∞4. ()()52x y x y +-的展开式中33x y 项的系数为( )A . 30-B . 10-C . 10D .305.已知函数()y f x =,其导函数()y f x '=的图象如图所示,则对于()y f x =的描述正确的是()A .在区间(),0-∞上单调递减B .当0x =时取得最大值C .在区间()3,+∞上单调递减D .当1x =时取得最小值6.甲乙两位同学从5种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种7.已知函数()32113f x x x ax =+-+在R 上单调递增,则实数a 的取值范围为( )A . (],1-∞-B . (),1-∞-C . ()1,-+∞D . [)1,-+∞8.函数()()sin 1cos f x x x x =-+在区间[]0,2π上的最大值为( )A . 1-B .1C .1π+D .2π+9.若对任意的()12,,x x m ∈+∞,不等式122112ln ln 2x x x x x x ->-恒成立,则实数m 的取值范围是( )A . 31,e e ⎛⎫ ⎪⎝⎭B . 31,e e ⎡⎤⎢⎥⎣⎦C . ()3e ,+∞D . )3e ,⎡+∞⎣第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.10.设函数()21ex f x -=,()f x '为其导函数,则()1f '=______.11.765765A 6A 6A --=______.12.在1,2,3,…,500中,被5除余3的数共有______个.13.在6⎛ ⎝的展开式中,2x 的系数是______.(用数字作答)14.如图,现要用4种不同的颜色对4个区域进行着色,要求有公共边的两个区域不能用同一种颜色,共有______种不同的着色方法.(用数字作答)15.已知函数()()()()22f x x a x a =--∈R ,当2x =时,()f x 有极大值,则a 的取值范围为______.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()312f x x x =-.(1)求()f x 的单调区间;(2)求()f x 的极值.17.(本小题满分12分)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?18.(本小题满分12分)已知函数()()()256ln f x a x x a =-+∈R ,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)求a 的值;(2)求()f x 在区间[]1,3上的最小值.19.(本小题满分12分)已知函数()ln af x x x=+,a ∈R .(1)若()f x 在点()()1,1f 处取得极值.①求a 的值;②证明:()1f x ≥;(2)求()f x 的单调区间.20.(本小题满分12分)已知函数()e xf x x x a =--,()22g x x x =-,a ∈R .(1)求函数()y f x =-的导数;(2)若对任意的[]11,e x ∈,[]21,2x ∈,使得()()12f x g x ≥成立,求a 的取值范围;(3)设函数()()ln h x f x x =-,若()h x 在区间()0,e 上存在零点,求a 的最小值.天津市部分区2023~2024学年度第二学期期中练习高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案CCBBCBACD二、填空题:本大题共6小题,每小题4分,共24分.10.2e 11.012.10013.192-14.4815.2a >三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)解:(1)函数()f x 的定义域为R ,导函数()2312f x x '=-,令()0f x '=,解得2x =±,则()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2()2,+∞()f x '+0-0+()f x 单调递增取极大值单调递减取极小值单调递增故函数()f x 的单调增区间为(),2-∞-和()2,+∞,单调减区间为()2,2-;(2)由小问1知,当2x =-时,函数()f x 取得极大值16;当2x =时,函数()f x 取得极小值16-.17.(本小题满分12分)解:(1)每个小组从12名同学中选4名同学,选法种数为412C 495=;(2)每个小组从12名同学中选4名同学,选法种数为412C ,再从选出的同学中选定1名作为替补选法种数为14C ,因此还要从选出的同学中指定1名作替补,那么每个小组的选法种数为41124C C 1980=.(3)每个小组从12名同学中选4名同学并分别被指定为第一、二、三、四辩手,选法种数为412A 11880=.18.(本小题满分12分)解:(1)因为()()256ln f x a x x =-+,所以()()625f x a x x'=-+,令1x =,则()116f a =,()168f a '=-.所以曲线()yf x =在点()()1,1f 处的切线方程为()()16681y a a x -=--.由点()0,6在切线上,可得61686a a -=-,解得12a =.(2)由(1)得()()()2156ln 02f x x x x =-+>所以()()()2365x x f x x x x--'=-+=令()0f x '=,解得12x =,23x =.当x 变化时,()f x ',()f x 的变化情况如表所示.x()1,22()2,3()f x '+0-()f x 单调递增单调递减又由于()18f =,()326ln 38f =+>.所以,当1x =时,()f x 取得最小值8.19.(本小题满分12分)解:(1)①()221a x af x x x x-'=-+=,因为()f x 在点()()1,1f 处取得极值,所以()11101af a -'==-=;所以1a =.②中①得,()1ln f x x x =+,()21x f x x-'=令()0f x '=,解得1x =,当x 变化时,()f x ',()f x 的变化情况如表所示.x()0,11()1,+∞()f x '-0+()f x 单调递减1单调递增所以,当1x =时,()f x 取得最小值.所以()()11f x f ≥=,即()1f x ≥.(2)函数()f x 的定义域为()0,+∞,()221a x a f x x x x-'=-+=,当0a ≤时,()0f x '>恒成立,所以()f x 的单调递增区将为()0,+∞,无单调递减区间;当0a >时,令()0f x '=解得x a =,()0f x '>的解集为{}x x a >,()0f x '<的解集为{}0x x a <<,所以()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a 综上所述:当0a ≤时,()f x 的单调递增区间为()0,+∞,无单调递减区间;当0a >时,()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a .20.(本小题满分12分)解:(1) ()e x y f x x x a -=-=-+-,所以e e 1x x y x --'=-++(2)因为()()1e 1x f x x '=+-,[]11,e x ∈,所以()0f x '≥,故()f x 在[]1,e 上单调递增,所以()e 1e 1,ee f x a a +⎡⎤∈----⎣⎦,又()()22211g x x x x =-=--,所以()g x 在[]1,2上也是单调递增,所以()[]1,0g x ∈-,因为对任意的[]11,e x ∈,[]21,2x ∈,使()()12f x g x ≥成立,等价于()()12min max f x g x ⎡⎤⎡⎤≥⎣⎦⎣⎦,即e 10a --≥,所以e 1a ≤-.故实数a 的范围是(],e 1-∞-.(3)由()e ln 0x h x x x x a =---=,即e ln x x x x a --=,令()e ln x p x x x x =--,()0,e x ∈,而()()()()1e 111e e 11e xx x xx x x p x x x x x x+-+'=+--=+-=,令()e 1x q x x =-,()0,e x ∈,则()ee 0xx q x x '=+>,即函数()q x 在()0,e 上单调递增,因为()010q =-<,()1e 10q =->,即()()010q q ⋅<,所以存在唯一的()00,1x ∈,使得()00q x =,即00e 10xx -=,即01ex x =,00ln x x =-,所以当00x x <<时,()0q x <,()0p x '<,函数()p x 单调递减;当0e x x <<时,()0q x >,()0p x '>,函数()p x 单调递增,所以()()0000000min e ln 11x p x p x x x x x x ==--=-+=,又0x +→时,()p x →+∞,所以要使()h x 在()0,e 存在零点,则1a ≥,所以a 的最小值为1.。
高二数学下学期期中考试试卷含答案(word版)
第二学期期中考试 高二级数学试卷考试时间:120分钟 满分:150分第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题:,sin 1p x x ∀∈≤R ,它的否定是( ) A .存在,sin 1x x ∈>R B .任意,sin 1x x ∈≥R C .存在,sin 1x x ∈≥R D .任意,sin 1x x ∈>R2.已知复数z 满足(z-1)i=i+1,复平面内表示复数z 的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.函数()f x 在0x=x 处导数存在,若p :f ‘(x 0)=0;q :x=x 0是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是 q 的充分条件D . p 既不是q 的充分条件,也不是q 的必要条件4.有下列命题:①若0xy =,则0x y +=;②若a b >,则a c b c +>+;③矩形的对角线互相垂直.其中真命题有( )A .0个B .1个C .2个D .3个5.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( )A .2-B .12-C . 12 D .26.双曲线2214y x -=的渐近线方程和离心率分别是( )A . 2,y x e =±=B . 1,2y x e =±=C .1,2y x e =± D .2,y x e =±=7.若函数()ln f x x x =-的单调递增区间是( ) A .()0,1 B .()0,e C .()0,+∞ D .()1,+∞8.按照图1——图3的规律,第10个图中圆点的个数为( )个. A .40 B .36 C .44 D .52图1图2图39. 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元)49263954根据上表可得回归方程y bx a =+ 中的b 为9.4,据此模型预报广告费用为6万元时销售额为( ). A .63.6万元B .65.5万元C .67.7万元D .72.0万元10. 甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A .乙可以知道两人的成绩B .丁可能知道两人的成绩C . 乙、丁可以知道自己的成绩D .乙、丁可以知道对方的成绩11. 已知函数3()63f x x bx b =-+在(0,1)内有极小值,则b 的取值范围是( )A . ,0-∞B .1(0,)2C . 1,2⎛⎫+∞ ⎪⎝⎭D . ()0,112.设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1][4,)+∞B .3][4,)+∞C .(0,1][9,)+∞D .3][9,)+∞第II 卷二.填空题:本大题共4小题.每小题5分,满分20分. 13.设()11i x yi +=+,其中,x y 是实数,则x yi += .14. 如图程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a ,b 分别为98、63,则输出的a = .15.已知双曲线的顶点为椭圆2212y x +=长轴的端点,且双曲线的离心率与椭圆的离心率的乘积等于1,则双曲线的方程是16. 已知曲线ln y x x =+在点 ()1,1处的切线与曲线()221y ax a x =+++ 相切,则a = . 三.解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(本小题满分12分)已知:p 关于x 的方程210x mx ++=有两个不等的负根;:q 关于x 的方程244(2)10x m x +-+=无实根。
高二期中考试(数学)试卷含答案
高二期中考试(数学)(考试总分:100 分)一、 单选题 (本题共计10小题,总分40分)1.(4分)1.已知集合{}34,5A =,,{}4,5,6B =,则AB =A .{}3B .{}4,5C .{}34,5,D .{}34,5,6,2.(4分)2.圆22240x y x y +-+=的圆心坐标是A .(1,2)B .(1-,2)C .(1,2-)D .(1-,2-)3.(4分)3.已知向量(,1)a x =-,(4,2)b =,且a b ,则x 的值是A .2B .12 C .12- D . 2- 4.(4分)4.若运行右图的程序,则输出的结果是A .15B .4C .11D .75.(4分)5.函数()(1)x f x a =-在R 上是减函数,则a 的取值范围是A .a >1B .0<a <1C .1<a <2D .·a >26.(4分)6.某学校高一、高二、高三年级的学生人数分别为300,200.400,为了了解学生的课业负担情况,该校采用分层抽样的方法,从这三个年级中抽取18名学生进行座谈,则高一、高二、高三年级抽取人数分别是A .6.4.8B .6,6,6C .5,6,7 D·4,6,87.(4分)7.如图4所示,正方形的面积为1.在正方形内随机撒1000粒豆子,恰好有600粒豆子落在阴影部分内,则用随机模拟方法计算得阴影部分的面积为( ) A 、54 B 、53 C 、21 D 、528.(4分)8.不等式(1)(2)x x --≥0的解集是A .{}12x x ≤≤B .{}12x x <<C .{}12x x x ≤≥或D .{}12x x x <>或9.(4分)9.如果一个几何体的正视图是矩形,则这个几何体不可能是A .正方体B .正三棱柱C .圆柱D .圆锥10.(4分)10.已知实数x ,y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则目标函数2z x y =+的最大值为A .0B .4C .3D .5二、 填空题 (本题共计5小题,总分20分) 11.(4分)11.已知cos (0,)2παα=∈,则sin(2)______πα+=· 12.(4分)12.直线l 过点(0,2)且与直线1x =垂直,则l 的方程为____________。
高二期中考试(数学)试卷含答案
高二期中考试(数学)(考试总分:150 分)一、 单选题 (本题共计8小题,总分40分) 1.(5分)1.化简 ()i 23i +=( )A .32i -B .32i +C .32i --D .32i -+2.(5分)2.曲线324y x x =-+在点(1,3)处的切线的斜率为 ( )A .1B .1-C .2-D .23.(5分)3.有5名同学去听同时举行的3个课外知识讲座,每名同学可自由选择听其中的1个讲座,不同的选择的种数为 ( ) A .35 B .53 C .35CD .35A4.(5分)4.若函数32()39f x x ax x =++-在3x =-时取得极值,则a =( )A .2B .3C .4D .55.(5分)5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ) A .60种B .70种C .75种D .150种6.(5分)6.已知曲线3()=2f x x x +-在点P 处的切线平行与直线41y x =-,则点P的坐标为( ). A .(1,0)B .(1,4)--C .(1,4)-D .(1,0)或(1,4)--7.(5分)7.已知函数()21ln 2f x x x =-,则()f x 的单调减区间是( ) A .[)1,+∞B .(],1-∞-C .(]0,1D .[]1,1-8.(5分)8.设函数)('x f 是偶函数)(x f 的导函数,满足0)2(=f ,且0>x 时,满足0)()('<-x f x xf ,则使得0)(<xx f 时,x 的取值范围是( ) A.)2,2-( B .),()(∞+-20,2 C .)1,1-( D .),()(200,2 - 二、 多选题 (本题共计4小题,总分20分)9.(5分)9.已知复数1z i =+(其中i 为虚数单位),则以下说法正确的有( )A .复数z 的虚部为iB .2z =C .复数z 的共轭复数1z i =-D .复数z 在复平面内对应的点在第一象限10.(5分)10.将4个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子,则不同的放法种数是( ) A .11114323C C C CB .2343C AC .3143A CD .21342322C C A A ⋅ 11.(5分)11.已知函数()y f x =,其导函数()y f x '=的图象如下图所示,则()y f x =( )A .在1-=x 处取极小值B .在3=x 处取极小值C .在)2,1-(上为增函数 D .在)2,1(上为减函数 12.(5分)12.下列关于函数ln ()xf x x=的说法,正确的有( )A .x e =为函数()f x 的极大值点B .x e =为函数()f x 的极小值点C .函数()f x 在(0,)e 上单调递增D .函数()f x 在(,)e +∞上单调递增三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i 是虚数单位,计算12i2i-+ 的结果为_____________. 14.(5分)14.曲线321y x x =+-在点(1,(1))f 处的切线方程为______________. 15.(5分)15.为了更好地进行新冠肺炎的疫情防控,某社区安排6名工作人员到A ,B ,C 三个小区讲解疫情防控的注意事项,若每个小区安排两名工作人员,则不同的安排方式的种数为_________(.数字作答).16.(5分)16.已知函数x a e x f x ln )(-=在[]41,上单调递增,则a 的取值范围为_________.四、 解答题 (本题共计6小题,总分70分)17.(10分)17、(10分)若复数()()2262z m m m m i =+-+--,当实数m 为何值时?(1)z 是实数;(2)z 是纯虚数.18.(12分)18、(12分)在广外佛山外校某次颁奖典礼上,需要合影留念,现有3名女生和4名男生排成一排,问:(1)如果女生全排在一起,有多少种不同排法? (2)如果女生都不相邻,有多少种排法? (3)如果女生不站两端,有多少种排法?19.(12分)19、(12分)已知函数13)(3+-=x x x f .(1)求()f x 的单调区间;(2)求函数的极值;(要列表).20.(12分)20、(12分)为了参加广外佛山外校第一届“辩论赛”,现在要从报名的5名男生和4名女生中再选出4人去参加比赛,问: (1)如果4人中男生和女生各选2人,有多少种选法? (2)如果4人中既要有男生,也有女生,有多少种选法?(2)如果男生中的甲与女生中的乙至少要有1人在内,有多少种选法?21.(12分)21、(12分)已知函数()ln ),(f x x x ax b a b R =++∈在点()()1,1f 处的切线为320x y --=. (1)求函数()f x 的解析式:(2)若对于∀x 1,14⎡⎤∈⎢⎥⎣⎦,都有xx f m m )(12>--恒成立,求m 的取值范围. 22.(12分)22、(12分)某企业生产一种机器的固定成本(即固定投入)为0.5万元,但每生产1百台时又需可变成本(即需另增加投入)0.25万元,市场对此商品的需求量为5百台,销售收入(单位:万元)的函数为)50(2152≤≤-=x x x R ,其中x 是产品生产并售出的数量(单位:百台). (1)把利润表示为年产量的函数.(2)年产量为多少时,企业所得利润最大?(不需求出利润最大值)答案一、 单选题 (本题共计8小题,总分40分) 1.(5分) D 2.(5分) A 3.(5分)B 4.(5分)D 5.(5分)C 6.(5分)D 7.(5分)A 8.(5分)B二、 多选题 (本题共计4小题,总分20分) 9.(5分)BCD 10.(5分) CD 11.(5分) AC 12.(5分) AC三、 填空题 (本题共计4小题,总分20分) 13.(5分)13.i -14.(5分) 14. 035=--y x 15.(5分) 15.9016.(5分) 16.],e ∞-(四、 解答题 (本题共计6小题,总分70分)17.(10分)17.(1)当z 是实数时,220m m --=,解得2m =或1m =-,所以,所求的m 值为2或1-........5分.(2)当z 是纯虚数时,222060m m m m ⎧--≠⎨+-=⎩,解得3m =-,所以,所求的m 值为3-............................10分18.(12分)18.解:(1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同五个男生合在一起有5个元素,排成一排有55A 种排法,而其中每一种排法中,三个女生间又有33A 种排法,因此共有55A ·33A =720(种)不同排法.............................................................................4分(2)(插空法)先排4个男生,有44A 种排法,这4个男生之间和两端有6个位置,从中选取3个位置排女生,有35A 种排法,因此共有44A ·35A =1440(种)不同排法....................................8分(3)因为两端不排女生,只能从4个男生中选2人排列,有24A 种排法,剩余的位置没有特殊要求,有55A 种排法,因此共有24A ·55A =1440(种)不同排法...........................................12分19.(12分)19.解:(1)3()31=-+f x x x ,/2()333(1)(1)∴=-=-+f x x x x ...............................................2分由'()0f x =可得1x =或1x =-..................................................................................................................4分①当/()0f x >时,1x >或1x <-;②当/()0f x <时,11x -<<,所以()f x 的单调增区间为()(),1,1,-∞-+∞,单调减区间为:()1,1-....................................................6分(2)由(1)可得,当x 变化时,/()f x ,()f x 的变化情况如下表:...........................................10分当1x =-时,()f x 有极大值,并且极大值为(1)3f -= 当1x =时,()f x 有极小值,并且极小值为(1)1f =-..............................................................................12分20.(12分)20.解:(1)根据题意,从5名男生中选出2人,有2510C =种选法,从4名女生中选出2人,有246C =种选法,则4人中男生和女生各选2人的选法有10660⨯=种;............................................................4分(2)先在9人中任选4人,共有49126C =种选法,4人都是男生的有545=C 种选法,4人都是女生的有144=C 种选法,则4人中既要有男生,也有女生,有12015126=--种选法..................................8分(3)先在9人中任选4人,有49126C =种选法,其中甲乙都没有入选,即从其他7人中任选4人的选法有4735C =种,则甲与女生中的乙至少要有1人在内的选法有1263591-=种;...........................12分21.(12分)21.(1)由题意知:()f x 的定义域为(0,)+∞...........................................................................................1分∵()ln 1'=++f x x a ∴(1)13(1)1f a f a b =+=⎧⎨=+='⎩,解得21a b =⎧⎨=-⎩......................................................................5分 故()ln 21f x x x x =+-............................................................................................................................6分 (2)令()1()ln 2f x h x x x x==-+,则22'111)(xxx x x h +=+=...........................................................8分 0)(1,41'>∴⎥⎦⎤⎢⎣⎡∈x h x , ,即函数)(x h 在⎥⎦⎤⎢⎣⎡∈1,41x 上单调递增.所以要使得⎥⎦⎤⎢⎣⎡∈∀>--1,41)(12x x x f m m ,恒成立...............................................................................10分 只要1)1()(1max 2==>--f xx f m m )(即可,解得:2,1>-<m m 或...........................................12分22.(12分)22.(1)设利润为y 万元,得⎪⎩⎪⎨⎧>--⨯-⨯≤≤---=)5(25.05.05215550(25.05.021522x x x x x x y )即⎪⎩⎪⎨⎧>-≤≤-+-=)5(25.01250(5.04.75212x x x x x y )...........................6分(2)显然当05x ≤≤时,企业会获得最大利润,此时,21( 4.75)10.781252y x =--+, 4.75x ∴=,即年产量为475台时,企业所得利润最.....12分.。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)
石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。
2023-2024学年天津市高二(下)期中数学试卷(含解析)
2023-2024学年天津市高二(下)期中数学试卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知函数321()23f x x x =-,则()f x 的单调减区间是()A .(4,)+∞B .(0,2)C .(0,4)D .(,0)-∞2.(5分)某厂家生产的新能源汽车的紧急刹车装置在遇到特别情况时需在2s 内完成刹车,其位移h (单位:)m 关于时间t (单位:)s 的函数关系式为340()23h t t t =--+,则h '(1)的实际意义是()A .汽车刹车后1s 内的位移B .汽车刹车后1s 内的平均速度C .汽车刹车后1s 时的瞬时速度D .汽车刹车后1s 时的瞬时加速度3.(5分)已知函数()f x 的图象如图所示,()f x '为()f x 的导函数,根据图象判断下列叙述正确的是()A .12()()f x f x '<'B .12()()f x f x '>'C .12()()0f x f x <'<D .12()()0f x f x '>>4.(5分)已知2x =是2()23f x lnx ax x =+-的极值点则()f x 在1[3,3]上的最大值是()A .9232ln -B .52-C .17238ln --D .224ln -5.(5分)用1,2,3,4,5,6组成没有重复数字的五位数,要求偶数不能相邻,则这样的五位数有()个.A .120B .216C .222D .2526.(5分)若53(2x x-的展开式中的二项式系数和为A ,各项系数和为B ,则(A B -=)A .33B .31C .33-D .31-7.(5分)已知()f x 为定义在(-∞,0)(0⋃,)+∞上的偶函数,()f x '是()f x 的导函数,若当0x >时,()()0f x f x lnx x'+<,则不等式(1)()0x f x -<的解集是()A .(1,)+∞B .(0,1)C .(-∞,0)(1⋃,)+∞D .(,0)-∞8.(5分)已知函数122()x f x e -=,()2g x lnx =+,若()()f m g n =,则m n -的最大值是()A .212ln +-B .14e-C .12ln +D .223ln +二、填空题:本大题共6小题,每小题4分,共24分。
高二下学期期中考试数学试卷-附带参考答案和解析
高二下学期期中考试数学试卷-附带参考答案和解析本试卷共5页 22小题 满分150分.考试用时120分钟.考生注意事项:1.试卷分第Ⅰ卷和第Ⅰ卷 第Ⅰ卷用2B 铅笔涂在答题卡上 第Ⅰ卷用黑色钢笔 签字笔在答题卡上作答2.质量监测时间120分钟 全卷满分150分.一、选择题:本大题共8小题 每小题5分 共40分 每小题只有一项是符合题目要求的.1.已知集合(){}2log 20A x x =∈-≤N {A x y =∈N ,则A B ⋃=( )A .{}0,1,2B .{}1,2C .{}0,1D .{}1【答案】C【分析】根据对数的单调性 一元二次不等式的解法 结合并集的定义进行求解即可. 【详解】由(){}2log 20021121x x x A -≤⇒<-≤⇒≤<⇒=由{}210110,1x x B -≥⇒-≤≤⇒=所以A B ⋃={}0,1 故选:C2.复数z 满足()1i i z += i 为虚数单位,则下列说法正确的是( ) A .1z = B .z 在复平面内对应的点位于第二象限 C .z 的实部为12D .z 的虚部为1i 2【答案】C【分析】根据复数的除法运算求出复数z 即可求得其模以及实部和虚部 以及对应的点所在象限 一一判断各选项 即得答案.【详解】因为()1i i z += 故i i (1i)11i 1i (1i)(1i)22z ⋅-===+++-则z ==A 错误 z 在复平面内对应的点为11(,)22位于第一象限 B 错误z 的实部为12C 正确z 的虚部为12D 错误故选:C .3.在ABC 中 点D 是线段AB 上靠近B 的四等分点 点E 是线段CD 上靠近D 的三等分点,则AE =( )A .2133CA CB -+ B .1526CA CB -C .1233CA CB -+D 5162CA CB -+.【答案】D【分析】方法一:利用平面向量基本定理得到答案方法二:设ABC 是等腰直角三角形 且4CA CB == 建立空间直角坐标系 写出点的坐标 设m A CA nCB E =+ 从而得到方程组 求出答案.【详解】方法一:如图 由题意得23CE CD = 34AD AB =故()22123333AE AC CE AC CD AC AD AC AC AD =+=+=+-=+()111151323262AC AB CA CB CA CA CB =+=-+-=-+方法二:不妨设ABC 是等腰直角三角形 且4CA CB == 以C 为坐标原点建立平面直角坐标系 如图所示 则()()()()20,0,0,4,4,0,3,1,2,3C A B D E ⎛⎫ ⎪⎝⎭则()()0,4,4,0CA CB == 设m A CA nCB E =+故()()102,0,44,03m n ⎛⎫-=+ ⎪⎝⎭所以1042,43n m ==- 解得51,62m n =-=故5162CA C A B E -=+.故选:D .4.函数()()()2sin 0,ππf x x ωϕωϕ=+>-<<的部分图像如图所示,则ω ϕ的值分别是( )A .2 π6- B .2 π3-C .2π3D .4 5π6-【答案】B【分析】根据三角函数图像与性质求ω ϕ的值即可. 【详解】设()f x 的周期为T则由图像知35π9π3πππ4123124T T ⎛⎫=--==⇒= ⎪⎝⎭所以2π2Tω==,则()()2sin 2f x x ϕ=+ 因为()f x 在5π12x =处取得最大值 所以5π2π2π,Z 122k k ϕ⨯+=+∈ 得π2π,Z 3k k ϕ=-+∈因为ππϕ-<< 所以π0,3k ϕ==-.故选:B5.在数列{}n a 中的相邻两项n a 与()*1n a n +∈N 之间插入一个首项为1n a n- 公差为1n -的等差数列的前n 项记构成的新数列为{}n b 若21n a n =+,则{}n b 前65项的和为( ) A .252-B .-13C .272-D .-14【答案】A【分析】根据题意 得到数列{}n b 中n a 及其后面n 项的和为n S ()()1112n n n n S n a n+=+-⨯求解. 【详解】解:数列{}n b 为:1122233331121,1,,,1,,,,1,,,233n n a a a a a a a a a a a n-------1231,,,,1,,n n n n n n a a a a a n nn+-----设n a 及其后面n 项的和为n S ,则()()()1111123222n n n n n S n a n n ++=+-⨯=-=- 所以数列{}n S 是以1为首项 公差为12-的等差数列.所以{}n b 前65项的和为1210710125222S S S ⎛⎫- ⎪⎝⎭+++==-故选:A.6.冬季是流感高发期 其中甲型流感病毒传染性非常强.基本再生数0R 与世代间隔T 是流行病学基本参考数据.某市疾控中心数据库统计分析 可以用函数模型()2rtW t =来描述累计感染甲型流感病毒的人数()W t 随时间t Z t ∈(单位:天)的变化规律 其中指数增长率r 与基本再生数0R 和世代间隔T 之间的关系近似满足01R rT =+ 根据已有数据估计出04R =时 12T =.据此回答 累计感染甲型流感病毒的人数增加至()0W 的3倍至少需要(参考数据:lg 20.301≈ lg30.477≈)( )A .6天B .7天C .8天D .9天【答案】B【分析】先求得r 然后根据“()0W 的3倍”列方程 化简求得需要的时间. 【详解】依题意 01R rT =+ 且04R =时 12T =即14112,4r r =+⨯= 所以()142tW t = ()10W =令()1423tW t == 两边取以10为底的对数得14lg 340.477lg 2lg 3, 6.34lg 20.301t t ⨯==≈≈ 所以至少需要7天. 故选:B7.如图 在长方形ABCD 中 2AB = 1BC = E 为DC 的中点 F 为线段EC (端点除外)上的动点.现将AFD △沿AF 折起 使平面ABD ⊥平面ABC 在平面ABD 内过点D 作DK AB ⊥ K 为垂足.设AK t ,则t 的取值范围是( )A .10,4⎛⎫ ⎪⎝⎭B .11,42⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .51,4⎛⎫ ⎪⎝⎭【答案】C【分析】设DF x = 求得x 关于t 的表达式 根据x 的取值范围求得t 的取值范围. 【详解】如图 在平面ADF 内过点D 作DH AF ⊥垂足为H 连接HK .过点F 作//FP BC 交AB 于点P .设FAB θ∠= AE AC == 所以cos θ∈⎝⎭.设DF x =,则12x <<.因为平面ABD ⊥平面ABC 平面ABD ⋂平面ABC AB =DK AB ⊥ DK ⊂平面ABD 所以DK ⊥平面ABC又AF ⊂平面ABC 所以DK AF ⊥. 又因为DHAF ⊥DKDH D = DK DH ⊂平面DKH 所以AF ⊥平面DKH 所以AF HK ⊥ 即AH HK ⊥.在Rt ADF 中 AF DH因为ADF △和APF 都是直角三角形 PF AD = 所以Rt Rt ADF FPA ≌△△ AP DF x ==.因为AHD ADF ∽△△,1AH DH AH AH AD DF ===所以cos AH AP AK AF θ=== 得1x t=. 因为12x << 所以112t<< 所以112t <<.故选:C【点睛】方法点睛:线面垂直 面面垂直转化的过程中 要从线面垂直得到面面垂直 需要“经过一个平面的垂线” 要从面面垂直得到线面垂直,则需要“在一个平面内 垂直于交线” 在答题过程中 要注意使用正确的符号语言.8.在直角坐标系xOy 内 圆22:(2)(2)1C x y -+-= 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点,则实数m 的取值范围是( )A.⎡⎣ B.44⎡--⎣C.22⎡--⎣D.2⎡-⎣【答案】A【分析】由题意首先得出旋转后的直线为1:0l x y m 然后由直线与圆的位置关系列出不等式即可求解. 【详解】连接OP 设POx θ∠=(即以x 轴正方向为始边 OP 为终边的角)由题意对于直线:0l x y m ++=上任意一点(),P x y存在R a θ=∈ 使得()cos ,sin P a a θθ 则直线:0l x y m ++=绕原点O 顺时针旋转90后 点()cos ,sin P a a θθ对应点为1ππcos ,sin 22P a a θθ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 即()1sin ,cos Pa a θθ- 因为()cos ,sin P a a θθ在直线:0l x y m ++=上 所以满足cos sin 0a a m θθ++= 设11sin ,cos x a y a θθ==- 所以110y x m -++= 即()1sin ,cos P a a θθ-所在直线方程为1:0l xy m而圆22:(2)(2)1C x y -+-=的圆心 半径分别为()2,2,1r = 若直线:0l x y m ++=绕原点O 顺时针旋转90后与圆C 存在公共点所以圆心()2,2C 到直线1:0l x y m 的距离1d r =≤= 解得m ≤故选:A.【点睛】关键点睛:关键是求出旋转后的直线 从而即可顺利得解.二 多选题9.某校举行演讲比赛 6位评委对甲 乙两位选手的评分如下: 甲:7.5 7.5 7.8 7.8 8.0 8.0 乙:7.5 7.8 7.8 7.8 8.0 8.0 则下列说法正确的是( )A .评委对甲评分的平均数低于对乙评分的平均数B .评委对甲评分的方差小于对乙评分的方差C .评委对甲评分的40%分位数为7.8D .评委对乙评分的众数为7.8 【答案】ACD【分析】由平均数 方差 百分位数 众数的概念及求法分别求解判断即可. 【详解】选项A 评委对甲评分的平均数7.57.57.87.88.08.017.87.8630x +++++==-<甲评委对乙评分的平均数7.57.87.87.88.08.017.87.8660x +++++==+>乙所以x x <甲乙 故A 正确选项B 由A 知 两组数据平均数均约为7.8且纵向看 甲组数据与乙组数据仅一组数据7.5,7.8不同 其余数据相同 又甲组数据7.5与平均数的差明显大于乙组数据7.8与平均数的差 且差距较大 故与平均数比较 甲组数据波动程度明显大些即评委对甲评分的方差大于对乙评分的方差 故B 错误 选项C 由640% 2.4⨯=不是整数则评委对甲评分的40%分位数为从小到大第3个数据 即:7.8 故C 正确 选项D 评委对乙评分中最多的数据 即众数为7.8 故D 正确.故选:ACD.10.下列说法正确的是( )A .“α为第一象限角”是“2α为第一象限角或第三象限角”的充分不必要条件 B .“π2π6k α=+ Z k ∈”是“1sin 2α=”的充要条件C .设ππ,Z 4M k k αα⎧⎫==±∈⎨⎬⎩⎭ π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭,则“M θ∈”是“N θ∈”的充分不必要条件D .“sin 0θ>”是“θtan 02>”的必要不充分条件 【答案】AC【分析】对于A 利用象限角 求得角α的范围 可判定充分性 取π3α= 验证必要性即可 对于B 考查1sin 2α=时 α的取值范围 可判定必要性不成立 对于C 根据集合M N 的关系即可判定 对于D 根据条件求得α的取值范围即可判断. 【详解】对于A,因为α为第一象限角 所以π2π2π,Z 2k k k α<<+∈ 则πππ,Z 4k k k α<<+∈, 当k 为偶数时 α为第一象限角 当k 为奇数时 α为第三象限角 所以充分性成立 当π3α=时 α为第一象限角,则2π23α= 为第二象限角 即必要性不成立 故A 正确 对于B 当π2π6k α=+ Z k ∈时 1sin 2α=成立,则充分性成立当1sin 2α=时 π2π6k α=+或5π2π6k α=+ Z k ∈, 故必要性不成立,则B 错误对于C ()41πππ,Z ,Z 44k M k k k αααα⎧⎫⎧⎫⎪⎪==±∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭而π,Z 4k N k αα⎧⎫==∈⎨⎬⎩⎭则MN 故则“M θ∈”是“N θ∈”的充分不必要条件 故C 正确对于D,当sin 0θ>时 2π2ππ,Z k k k θ<<+∈, 则πππ,Z 22k k k θ<<+∈ 则θtan 02> 故充分性成立 当θtan02>时 πππ,Z 22k k k θ<<+∈则2π2ππ,Z k k k θ<<+∈ 则sin 0θ>成立 所以“sin 0θ>”是“θtan 02>”的充要条件 故D 错误 故选:AC.11.椭圆C 的标准方程为22121,,82x y F F +=为椭圆的左 右焦点 点()2,1P .12PF F △的内切圆圆心为(),I I I x y 与1212,,PF PF F F 分别相切于点,,D E H ,则( )A .126PF F S =△ B .13x C .1233y = D .226PD PE ==【答案】BCD【分析】根据椭圆中焦点三角形的性质求解12PF F S再结合三角形内切圆的几何性质逐项判断即可得结论.【详解】椭圆C :22182x y +=,则22,2,826a b c ===-= 所以()()126,0,6,0F F又()2,1P 所以点P 再椭圆上 连接12,,,,,ID IE IH IP IF IF则121211122PF F p SF F y =⋅=⨯ 故A 不正确由椭圆的定义可得122PF PF a +==又12PF F △的内切圆圆心为(),I I I x y 所以内切圆半径I r y = 由于121212PF F IF F IF PIF PSSSS=++()(121212121111122222I I I I I F F y PF y PF y y F F PF PF y =⨯⨯+⨯⨯+⨯⨯=⋅++=⋅故3I r y === 故C 正确又1122,,PD PE DF F H EF HF ===所以12121212PF PF PD DF PE EF PD F H PE HF PD PE F F +=+++=+++=++=则2PD = 所以PD PE == 故D 正确又2PF == 所以222HF EF PF PE ==-又H I x x = I x = 即1x 故B 正确. 故选:BCD.12.已知函数()()e xf x a x =+ ()()lng x x a x =+,则下列说法正确的是( )A .若函数()y f x =存在两个极值,则实数a 的取值范围为21,e ⎛⎫-∞ ⎪⎝⎭B .当1a =时 函数()y g x =在(0,)+∞上单调递增C .当1a =时 若存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立,则实数m 的最小值为0D .当1a =时 若()()12(0)f x g x t t ==>,则()121ln x x t +⋅的最小值为1e【答案】BC【分析】对A 选项:由极值点的性质结合导数讨论单调性即可得 对B 选项:结合导数讨论单调性即可得 对C 选项:结合()f x 单调性 可转化为当1x ≥时 有()1ln m x x ≥+成立 求出()1ln x x +最小值即可得 对D 选项:采用同构法可确定12e xx = 再将多变量化为单变量后结合导数讨论单调性即可得.【详解】对A 选项:()()()e e 1e x x xf x x a x a +=+'=++若函数()y f x =存在两个极值,则函数()f x '必有两个变号零点令()()1e 0x f x x a =++=',则()1e xa x =-+令()()1e xh x x =-+,则()()2e xh x x +'=-则当2x >-时 ()0h x '< 当<2x -时 ()0h x '> 故()h x 在(),2∞--上单调递增 在()2,∞-+上单调递减故()()()221221e e h x h -≤-=--+=又当1x >-时 ()()1e 0xh x x =-+<恒成立当x →-∞时 ()0h x →故当210,e a ⎛⎫∈ ⎪⎝⎭函数()f x '有两个变号零点即若函数()y f x =存在两个极值,则实数a 的取值范围为210,e⎛⎫ ⎪⎝⎭故A 错误对B 选项:当1a =时 ()(1)ln g x x x =+ ()11ln ln 1x g x x x x x='+=+++ 令()()x g x μ=',则()22111x x x x xμ'-=-= 则当()0,1x ∈时 ()0x μ'< 当()1,x ∞∈+时 ()0x μ'> 故()x μ在()0,1上单调递减 在()1,∞+上单调递增故()()120g x g '='≥> 故函数()y g x =在(0,)+∞上单调递增 故B 正确对C 选项:当1a =时 ()()e 1xf x x =+()()()e e 11e 1x x x f x x x =++=++'令()()m x f x =',则()()2e xm x x +'=则当<2x -时 ()0m x '< 当2x >-时 ()0m x '> 故()m x 在(),2∞--上单调递减 在()2,∞-+上单调递增故()()2212e 110e f x f -≥-=-+=-'>' 故()f x 在R 上单调递增则存在1x ≥ 使不等式()()2()ln f mx fxx x ≥+成立等价于存在1x ≥ 使不等式()2ln mx x x x ≥+成立则当1x ≥时 有()1ln m x x ≥+成立由当1a =时 ()(1)ln g x x x =+ 且()y g x =在(0,)+∞上单调递增 故()11ln10m ≥+= 即实数m 的最小值为0 故C 正确对D 选项:当1a =时 由B C 可知 ()f x ()g x 均为定义域上的增函数 由()00f = ()10g = 故有1>0x 21x >由()()12f x g x =,则()()1122e 11ln xx x x +=+即()()()111122e 1e 1ln e 1ln x x x x x x +=+=+ 故12e xx =又()()111e 10xf x t x ==+> 故()121ln ln x x t t t +⋅=令()ln n x x x =,则()1ln n x x x ='+ 令()()1ln p x n x x x==+'则()22111x p x x x x='-=- 则当()0,1x ∈时 ()0p x '< 当()1,x ∞∈+时 ()0p x '> 故()p x 在()0,1上单调递减 在()1,∞+上单调递增 即()()10n x n ''≥= 故()n x 在()0,∞+上单调递增 故()n x 无最小值 即()121ln x x t +⋅无最小值 故D 错误. 故选:BC.【点睛】思路点睛:本题考查导数在研究函数中的综合应用问题 其中D 选项中涉及到多变量问题的求解 求解此类问题的基本思路是根据已知中的等量关系 将多变量转化为单变量的问题 从而将其转化为函数最值问题的求解. 三 填空题13.()622x x y y ⎛⎫+- ⎪⎝⎭的展开式中42x y 的系数为 .(用数字作答)【答案】40-【分析】由二项式定理得到()62x y -的通项公式 结合2xy+得到34,T T 得到42x y 的系数. 【详解】()62x y -的通项公式为()()66166C 2C 2rrr r r r r r T x y x y --+=-=-令2r =得 ()22424236C 260T x y x y =-= 此时4242602120x y x y ⋅=令3r =得 ()33333346C 2160T x y x y =-=- 此时3342160160xx y x y y-⋅=- 故42x y 的系数为12016040-=- 故答案为:40-14.设数列{}n a 满足12a = 26a = 且2122n n n a a a ++-+= 若[]x 表示不超过x 的最大整数,则122021202120212021a a a ⎡⎤+++=⎢⎥⎣⎦. 【答案】2020【分析】根据题意 得到()()2112n n n n a a a a +++---= 得到{}1n n a a +-为等差数列 求得其通项公式 结合累加法 得到(1)n a n n =+ 求得2021112021()1n a n n =-+ 再利用裂项求和 求得12202120212021202120212021(2020,2021)2022a a a +++=⨯∈ 即可求解. 【详解】因为2122n n n a a a ++-+= 可得()()2112n n n n a a a a +++---= 又因为12a = 26a = 可得214a a -=所以数列{}1n n a a +-是首项为4 公差为2的等差数列 所以14(1)222n n n a n a +-=+-⨯=+ 当2n ≥时 112211()()()n n n n n a a a a a a a a ---=-+-++-+(1)22(1)2222(1)2n n n n n n +=+-++⨯+=⨯=+ 且当1n =时 12a =也成立 所以()1n a n n =+ 所以202111120212021()(1)1n a n n n n =⨯=-++ 所以122021202120212021111112021[(1)()()]22320212022a a a +++=-+-++- 120212021(1)2021(2020,2021)20222022=-=⨯∈所以1220212021202120212020a a a ⎡⎤+++=⎢⎥⎣⎦. 故答案为:2020.15.已知椭圆 22221(0)x y C a b a b+=>>:的左右焦点为12,F F .直线y kx =与椭圆C 相交于,P Q 两点 若112PF QF = 且12π3PFQ ∠= ,则椭圆C 的离心率为. 【分析】由椭圆的对称性可得四边形12PFQF 为平行四边形 再根据椭圆的定义求出12,PF PF 再在12PF F △中 利用余弦定理求出,a c 的关系即可得解.【详解】由椭圆的对称性可得四边形12PFQF 为平行四边形,则21PF QF =由12π3PFQ ∠= 得12π3F PF ∠= 因为112PF QF = 所以122PF PF = 又122PF PF a += 所以1242,33a aPF PF == 在12PF F △中 由余弦定理得222121212122cos F F PF PF PF PF F PF =+-∠ 即2222164421442993323a a a a ac =+-⨯⨯⨯=所以c a =即椭圆的离心率c e a ==16.已知A M N 是棱长为1的正方体表面上不同的三点,则·AM AN 的取值范围是 . 【答案】1,32⎡⎤-⎢⎥⎣⎦【分析】根据正方体的性质可得·3cos ,a AM AN AM AN =≤结合夹角的定义可得3a ≤ 可得其最大值 根据数量积的运算可知24≥-MN a 可得其最小值.【详解】正方体表面上任意两点间距不超过体对角线长度d 则,AM AN d ≤ 故·3cos ,a AM AN AM AN =≤ 而[]cos ,1,1AM AN ∈- 故3a ≤如图建立空间直角坐标系 取()0,0,0A ,M N 重合为()1,1,1时 则()()1,1,11,1,13a =⋅= 取得最大值3由对称性 设A 在下底面 (),,AM x y z = (),,AN a b c =由A 在下底面知0,0,0z c zc ≥≥≥ 当且仅当,M N 也在下底面时取等 此时,,A M N 共面时 设MN 中点为E ,则EM EN =-()()()()()2222··4MN a AM AN AE EM AE EN AE EN EN==++=-≥-=-当且仅当,A E 重合时取等又因为2MN ≤ 可得2142-≥-≥a MN 例如11,,022A ⎛⎫ ⎪⎝⎭ ()()1,0,0,0,1,0M N ,则11111·,,0,,022222a AM AN ⎛⎫⎛⎫==--=- ⎪⎪⎝⎭⎝⎭所以·AM AN 的取值范围是1,32⎡⎤-⎢⎥⎣⎦. 故答案为:1,32⎡⎤-⎢⎥⎣⎦.四 解答题(共70分)17.(本题10分)如图 在ABC 中 6AB AC == 点D 是边BC 上一点且,cos AD AB CAD ∠⊥=2AE EB =(1)求BCE 的面积 (2)求线段AD 的长. 【答案】(1)(2)=AD【分析】(1)根据13BCE ABC S S =△△求解即可(2)解法1:在ABC 中根据余弦定理求出BC 结合等腰三角形的性质求cos B 在ABD △中勾股定理求AD 即可 解法2:由A BCABDACDSSS=+求得AD .【详解】(1)12,3BCEABCAE EB SS =∴=而11πsin 66sin 222ABCSAB AC BAC CAD ⎛⎫=⋅⋅∠=⨯⨯⨯∠+ ⎪⎝⎭ 18cos 18CAD =∠== 1423BCEABCSS ∴==(2)解法1:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠= π1cos cos sin 23CAB CAD CAD ⎛⎫∴∠=∠+=-∠=- ⎪⎝⎭在ABC 中 22212cos 3636266963BC AB AC AB AC CAB ⎛⎫=+-⋅⋅∠=+-⨯⨯⨯-= ⎪⎝⎭BC ∴=∴在等腰ABC 中12cos BCB BA ==∴Rt ABD △中6cos ,BA BBD BD BD===∴=AD ∴==解法2:()1cos 0,π,sin 3CAD CAD CAD ∠=∠∈∴∠== 由A BCABDACDSSS=+得1166sin 22AD AD CAD =⨯⨯+⨯⨯⋅∠,即()11166223AD AD =⨯⋅+⋅⋅⋅解得=AD18.(本题12分)已知数列{}n a 的前n 项和为n S 11a = 且满足()()11112n n n S nS n n ++=-+.(1)求数列{}n a 的通项公式(2)设()23cos πn a n n b a n =+⋅ 求数列{}n b 的前n 项和n T .【答案】(1)n a n =(2)()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数【分析】(1)利用构造法和等差数列的定义与通项公式可得()12n n n S +=结合1n n n a S S -=-即可求解(2)由(1)知()()213nnn b n =-+- 利用分组求和法计算即可求解. 【详解】(1)根据题意 ()()11112n n n S nS n n ++=-+ 所以1112n n S S n n +-=+由于1111S a ==,则n S n ⎧⎫⎨⎬⎩⎭是以首项为1 公差为12的等差数列所以()111122n S n n n +=+-⨯= 所以()12n n n S += 当2n ≥时 1(1)(1)22n n n n n n na S S n -+-=-=-=. 验证1n =时11a =满足通项公式 故数列{}n a 的通项公式为n a n =.(2)由(1)知()()()223cos π13n n na n nb a n n =+⋅=-+-.设()21nn -的前n 项和为n A ,则当n 为偶数时 ()22222212341n A n n =-+-+-⋅⋅⋅--+()()()()()()2121434311n n n n ⎡⎤⎡⎤=-++-++⋅⋅⋅+--+-⎣⎦⎣⎦ ()()1123412n n n n +=++++⋅⋅⋅+-+=. 当n 为奇数时 ()()2211122n n n n n n A A n n --+=-=-=-设()3n-的前n 项和为n B ,则()()()131333134nn nB +⎡⎤-⋅-----⎣⎦==+. 因为=+n n n T A B 所以()()()()11133,,24133,.24n n n n n n T n n n ++⎧++--⎪⎪=⎨++-⎪--⎪⎩为偶数为奇数 19.(本题12分)如图 在四棱锥P ABCD -中 PAD 为等边三角形 AD CD ⊥ //AD BC 且22AD BC ==CD =PB = E 为AD 中点.(1)求证:平面PAD ⊥平面ABCD(2)若线段PC 上存在点Q 使得二面角Q BE C --的大小为60︒ 求CQCP的值. 【答案】(1)证明见解析 (2)12【分析】(1)首先连接PE 根据线面垂直的判定定理证明PE ⊥平面ABCD 再利用面面垂直的判定定理证明平面PAD ⊥平面ABCD . (2)设()01CQ CP λλ=≤≤,再利用向量法求二面角Q BE C --的平面角 再列方程得到12λ= 即得CQCP 的值.【详解】(1)证明:连接PEPAD 是边长为2的等边三角形 E 是AD 的中点PE AD ⊥∴PE =//DE BC DE BC = AD CD ⊥ ∴四边形BCDE 是矩形BE CD ∴==222PE BE PB ∴+= PE BE ∴⊥又AD BE E = AD BE ⊂平面ABCDPE ∴⊥平面ABCD又PE ⊂平面PAD∴平面PAD ⊥平面ABCD .(2)以E 为原点 以EA EB EP 为坐标轴建立空间直角坐标系 如图所示:则(00P()C -()0B ()0,0,0E ()0EB ∴=, ()100BC =-,,(1CP = 设()01CQCPλλ=≤≤则()1BQ BC CQ BC CP λλ=+=+=- 设平面QBE 的法向量为(),,m x y z =则00m EB m BQ ⎧⋅=⎪⎨⋅=⎪⎩即()010x y z λ⎧=⎪⎨-=⎪⎩,,令1z = 得()301m λλ=-,,又PE ⊥平面ABCD()001n ∴=,,为平面BEC 的一个法向量cos 3m n m n m nλ⋅∴==,二面角Q BE C --的大小为60︒12= 解得12λ=. 12CQ CP ∴=. 20.(本题12分)2023年秋末冬初 呼和浩特市发生了流感疾病. 为了彻底击败病毒 人们更加讲究卫生讲究环保. 某学校开展组织学生参加线上环保知识竞赛活动 现从中抽取200名学生 记录他们的首轮竞赛成绩并作出如图所示的频率直方图 根据图形 请回答下列问题:(1)若从成绩低于60分的同学中按分层抽样方法抽取5人成绩 求5人中成绩低于50分的人数 (2)以样本估计总体 利用组中值估计该校学生首轮竞赛成绩的平均数(3)首轮竞赛成绩位列前10%的学生入围第二轮的复赛 请根据图中信息 估计入围复赛的成绩(记为K ). 【答案】(1)2人 (2)71 (3)88K ≥【分析】(1)利用分层抽样的定义求解即可 (2)利用平均数公式求解即可(3)根据题意设入围复赛的成绩的临界值为[)80,90K ∈,则()900.0250.050.1K -⨯+= 求出K 的值即可. 【详解】(1)成绩在[)40,50的人数为0.011020020⨯⨯=(人) 成绩在[)50,60的人数为0.0151020030⨯⨯=(人) 则按分层抽样方法从成绩低于60分的同学中抽取5人成绩低于50分的人数为20522030⨯=+(人). 故5人中成绩低于50分的人数为2人(2)由()0.010.0150.0150.0250.005101a +++++⨯= 得0.030a = 则平均数450.1550.15650.15750.3850.25950.0571x =⨯+⨯+⨯+⨯+⨯+⨯=故该校学生首轮竞赛成绩的平均数约为71分(3)根据频率分布直方图可知:[]90,100的频率为0.005100.05⨯= [)80,90的频率为0.025100.25⨯=所以入围复赛的成绩一定在[)80,90可知入围复赛的成绩的临界值为[)80,90K ∈则()900.0250.050.1K -⨯+= 解得88K =故估计入围复赛的成绩为88K ≥分.21.(本题12分)已知椭圆2222:1(0)x y C a b a b +=>> 斜率为2的直线l 与x 轴交于点M l 与C 交于A B 两点 D 是A 关于y 轴的对称点.当M 与原点O 重合时 ABD △面积为169. (1)求C 的方程(2)当M 异于O 点时 记直线BD 与y 轴交于点N 求OMN 周长的最小值.【答案】(1)22142x y += (2)2【分析】(1)设出各点坐标 表示出面积后 结合面积与离心率计算即可得(2)要求OMN 的周长,则需把各边长一一算出 即需把M x N y 算出 设出直线方程与椭圆方程联立得与横坐标有关韦达定理 借助韦达定理表示出M x N y 可得OMN 各边边长 结合基本不等式即可求得最值.【详解】(1)当M 与原点O 重合时 可设()00,A x y ,则有()00,B x y -- ()00,D x y -且002y x = 即有AD BD ⊥, 则()()00001116229ABD S AD BD x x y y =⋅=++=即201649x = 又00x > 故023x =,则043y = 即有22416199a b +=即c a =则22222a c b c ==+ 故222a b = 即有224161189b b += 解得22b = 故24a = 即C 的方程为22142x y +=(2)设直线l 方程为2y x t =+ 令0y = 有2t x =- 即2M t x =- 设点()11,A x y ()22,B x y ,则()11,D x y - 联立直线与椭圆方程:222142y x t x y =+⎧⎪⎨+=⎪⎩ 消去y 有2298240x tx t ++-= ()222Δ64362414480t t t =--=->即t -<有1289t x x -+= 212249t x x -= BD l 为()122212y y y x x y x x -=-+-- 令0x = 故21222122122221122121212N x y x y x y x y x y x y x y x y y y x x x x x x -+-+++=+==--++ 由2y x t =+ 故()()2112211212121212224x x t x x t x y x y x x t x x x x x x ++++==++++ 其中2121224198429t x x t t x x t -==-+-+ 即12442N t y t t t ⎛⎫=-++= ⎪⎝⎭则22OMN N M t C y x t =+=+2≥=当且仅当2t =±时等号成立故OMN周长的最小值为2+【点睛】本题考查了椭圆的方程 在求解直线与椭圆的位置关系问题时 常用方法是设而不求 借助韦达定理等手段 将多变量问题转变为单变量问题 再用基本不等式或函数方式求取范围或最值.22.(本题12分)已知函数21()ln 2f x x x ax =+-. (1)当12a =时 求在曲线()y f x =上的点(1,(1))f 处的切线方程 (2)讨论函数()f x 的单调性(3)若()f x 有两个极值点1x 2x 证明:()()121222f x f x a x x -<--. 【答案】(1)3230x y --=(2)详见解析(3)详见解析.【分析】(1)根据导数的几何意义求出(2)求出导函数()1(0)f x x a x x '=+-> 在定义域()0,∞+内分类讨论解含参不等式即可求出 (3)由题意得2a > 12x x a += 121=x x 而()()1212f x f x x x --1212ln ln 12x x a x x -=-- 只需证明1212ln ln 2x x x x -<- 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭ 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立即可. 【详解】(1)由题可知 当12a =时 211()ln 22f x x x x =+- ()112f x x x ∴=+-' ∴(1)0f = 3(1)2f '= ∴切点为(1,0) 切线的斜率为32 ∴切线方程为:30(1)2y x -=- 即3230x y --=(2)对函数()f x 求导可得 ()1(0)f x x a x x '=+->. 当2a ≤时 ()120f x x a a x=+-≥-≥'.则()f x 在(0,)+∞上单调递增. 当2a >时 ()2110x ax f x x a x x -+=+-=='.则1x =2x = 令()0f x '>,则10x x << 或2x x >.()0f x '<,则12x x x <<综上:当2a ≤时 ()f x 在(0,)+∞上单调递增当2a >时 ()f x在⎛ ⎝⎭和∞⎫+⎪⎪⎝⎭上单调递增 ()f x在⎝⎭上单调递减. (3)()f x 有两个极值1x 2x1x ∴ 2x 是方程210x ax -+=的两个不等实根则2a > 12x x a += 121=x x()()2211122212121211ln ln 22x x ax x x ax f x f x x x x x ⎛⎫+--+- ⎪-⎝⎭=-- ()()()121212*********ln ln ln ln 122x x x x x x a x x x x a a x x x x -+-+---==+--- 1212ln ln 12x x a x x -=--. 要证:()()121222f x f x a x x -<--.即证:1212ln ln 2x x x x -<-. 不妨设1210x x >>> 即证:11111ln ln 2x x x x ⎛⎫+<- ⎪⎝⎭. 即证:1111ln x x x <-对任意的1(1,)x ∈+∞恒成立. 令1()ln f x x x x =-+ (1)x >.则()22211110x x f x x x x -+=--=-<'. 从而()f x 在(1,)+∞上单调递减 故()(1)0f x f <=.所以()()121222f x f x a x x -<--.【点睛】本题考查了切线方程问题考查函数的单调性问题考查导数的应用以及分类讨论思想训练了构造函数法证明不等式的成立属难题.。
高二数学下学期期中考试试卷含答案
高二数学下学期期中考试试卷含答案高二下学期数学期中考试试卷(含答案)时量:120分钟满分:150分一、选择题(共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.已知全集 $U=R$,集合 $M=\{x|x<1\}$,$N=\{y|y=2x,x\in R\}$,则集合 $\complement_U (M\cup N)$ =()A。
$(-\infty。
-1]\cup [2,+\infty)$B。
$(-1,+\infty)$C。
$(-\infty,1]$D。
$(-\infty,2)$2.曲线 $f(x)=2x-x^2+1$ 在 $x=1$ 处的切线方程为()A。
$5x-y-3=0$B。
$5x-y+3=0$C。
$3x-y-1=0$D。
$3x-y+1=0$3.已知函数 $f(x)=\sin(\omegax+\frac{\pi}{3})(\omega>0,0<\frac{\pi}{3}<\omega<\frac{\pi}{2 })$ 的图象与直线 $y=1$ 的交点中相邻两点之间的距离为$2\pi$,且函数 $f(x)$ 的图象经过点 $(\frac{\pi}{6},0)$,则函数 $f(x)$ 的图象的一条对称轴方程可以为()A。
$x=\frac{\pi}{6}$B。
$x=\frac{\pi}{4}$C。
$x=\frac{\pi}{3}$D。
$x=\frac{\pi}{2}$4.函数 $f(x)=\frac{e^x-1}{x(x-3)}$ 的图象大致是()A.图略]B.图略]C.图略]D.图略]5.在 $\triangle ABC$ 中,角 $A,B,C$ 的对边分别为$a,b,c$,$C=120^\circ$,若 $b(1-\cos A)=a(1-\cos B)$,则$A=$()A。
$90^\circ$B。
$60^\circ$C。
$45^\circ$D。
高二期中考试(数学)试卷含答案解析
高二期中考试(数学)(考试总分:150 分)一、单选题(本题共计12小题,总分60分)1.(5分)1.2i12i-=+()A.1 B.−1 C.i D.−i2.(5分)2.函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+13.(5分)3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(5分)4.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56%C.46% D.42%5.(5分)5.设一组样本数据x1,x2,…,x n的方差为0.01,则数据10x1,10x2,…,10x n的方差为()A.0.01B.0.1C.1D.106.(5分)6.从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[)[)[)[]5.31,5.33,5.33,5.35,,5.45,5.47,5.47,5.49,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C .20D .367.(5分)7.在5(2)x -的展开式中,2x 的系数为( ).A .5-B .5C .10-D .108.(5分)8.要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( ) A .2种B .3种C .6种D .8种9.(5分)9.北京2022年冬奥会和冬残奥会色彩系统的主色包括霞光红、迎春黄、天霁蓝、长城灰、瑞雪白;间色包括天青、梅红、竹绿、冰蓝、吉柿;辅助色包括墨、金、银.若各赛事纪念品的色彩设计要求:主色至少一种、至多两种,间色两种、辅助色一种,则某个纪念品的色彩搭配中包含有瑞雪白、冰蓝、银色这三种颜色的概率为( ) A .8225B .245C .115D .21510.(5分)10.如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称a i ,a j ,a k 为原位大三和弦;若k –j =4且j –i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( ) A .5B .8C .10D .1511.(5分)11.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名B .18名C .24名D .32名12.(5分)12.已知定义在(0,+∞)上的连续函数()y f x =满足:()()x xf x f x xe '-=且(1)3f =-,(2)0f =.则函数()y f x =( )A .有极小值,无极大值B .有极大值,无极小值C .既有极小值又有极大值D .既无极小值又无极大值二、 填空题 (本题共计4小题,总分20分)13.(5分)13.设函数e ()xf x x a =+.若(1)4e f '=,则a =_________.14.(5分)14.262()x x+的展开式中常数项是__________(用数字作答).15.(5分)15.设复数1z ,2z 满足12||=||=2z z ,12i z z +=,则12||z z -=__________.16.(5分)16.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.18.(12分)18.(12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)80i i x x =-=∑(,2021)9000i iy y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.19.(12分)19.(12分)已知函数3()6ln f x x x =+,()'f x 为()f x 的导函数.(Ⅰ)求曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅰ)求函数9()()()g x f x f x x'=-+的单调区间和极值; 20.(12分)20.(12分)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n . (1)求p 1、q 1和p 2、q 2;(2)求X 2的分布列和数学期望E (X 2) .21.(12分)21.(12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且2SO 浓度不超过150”的概率;(2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,22.(12分)22.(12分)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点; (Ⅰ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:(Ⅰ0x ≤≤; (Ⅰ)00(e )(e 1)(1)x x f a a ≥--.答案一、 单选题 (本题共计12小题,总分60分) 1.(5分)1D 2.(5分) 2B 3.(5分) 3 C 4.(5分) 4C 5.(5分) 5C 6.(5分)6B 7.(5分) 7C 8.(5分) 8 C 9.(5分) 9 B 10.(5分) 10C 11.(5分) 11 B 12.(5分) 12 A二、 填空题 (本题共计4小题,总分20分) 13.(5分)13.1 14.(5分) 14. 24015.(5分) 15. 16.(5分) 16.45三、 解答题 (本题共计6小题,总分70分)17.(10分)17.(10分)【解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.……(5分)(2)()()()()22222121211f x x a x a x a x a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞.……(10分)18.(12分)18.(12分)【答案】(1)12000;(2)0.94;(3)详见解析【解】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=……(4分) (2)样本(,)i i x y (i =1,2,…,20)的相关系数为20()()0.943iix x y y r --===≈∑……(4分)(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性, 由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大, 采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计. ……(4分)19.(12分)19.(12分) 【答案】(Ⅰ)98y x =-;(Ⅰ)()g x 的极小值为(1)1g =,无极大值;【解】(Ⅰ) ∵()36ln f x x x =+,()26'3f x x x=+.可得()11f =,()'19f =, ∴曲线()y f x =在点()()1,1f 处的切线方程为()191y x -=-,即98y x =-.…4分 (Ⅰ) 依题意,()()32336ln ,0,g x x x x x x=-++∈+∞. 从而可得()2263'36g x x x x x =-+-,整理可得:323(1)(1)()x x g x x '-+=,令()'0g x =,解得1x =.当x 变化时,()()',g x g x 的变化情况如下表:,+∞); g (x )的极小值为g (1)=1,无极大值. ……(12分)20.(12分)20.(12分)【答案】(1)112212716,,332727p q p q ====;;(2);详见解析【解】(1)11131232,333333p q ⨯⨯====⨯⨯, 211131211227++3333333927p p q ⨯⨯=⨯⨯=⨯⨯=⨯⨯, 211231122222516+0+3333333927q p q ⨯⨯+⨯=⨯⨯+=⨯⨯=⨯⨯.……(8分) (2)227(2)27P X p ===;2216(1)27P X q ===;22124(0)33327P X ==⨯⨯=;∴2X 的分布列为故210()9E X =.;……(12分) 21.(12分)21.(12分)【答案】(1)0.64;(2)答案见解析;(3)有.【解】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=;……(4分) (2)由所给数据,可得22⨯列联表为:(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>,因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. ……(12分)22.(12分)22.(12分)【答案】(I )证明见解析,(II )(i )证明见解析,(ii )证明见解析. 【解】(I )()1,0,1,()0,()x x f x e x e f x f x ''=->∴>∴>∴在(0,)+∞上单调递增,2212,(2)240,(0)10a f e a e f a <≤∴=--≥->=-<,所以由零点存在定理得()f x 在(0,)+∞上有唯一零点;……(4分) (II )(i )000()0,0xf x e x a =∴--=,002000012(1)xxx e x x e x ≤⇔--≤≤--,令22()1(02),()1(02),2xxx g x e x x x h x e x x =---<<=---<<一方面:1()1(),xh x e x h x '=--= 1()10x h x e '=->,()(0)0,()h x h h x ''∴>=∴在(0,2)单调递增,()(0)0h x h ∴>=,2210,2(1)2xx x e x e x x ∴--->-->,另一方面:1211a a <≤∴-≤,所以当01x ≥0x ≤成立,因此只需证明当01x <<时2()10x g x e x x =---≤,因为11()12()()20ln 2x x g x e x g x g x e x ''=--==-=⇒=, 当(0,ln 2)x ∈时,1()0g x '<,当(ln 2,1)x ∈时,1()0g x '>, 所以()max{(0),(1)},(0)0,(1)30,()0g x g g g g e g x ''''''<==-<∴<,()g x ∴在(0,1)单调递减,()(0)0g x g ∴<=,21x e x x ∴--<,综上,002000012(1),x xex x e x x ∴--≤≤--≤≤(8分)(ii )0000000()()()[(1)(2)]xa a t x x f e x f x a x e x a e ==+=-+-,00()2(1)(2)0a a t x e x a e '=-+->0x ≤,0()(2)](1)(1)2)a a a a t x t e a e e a e ∴≥=--=--+-,因为12a <≤,所以,2(1)ae e a a >≥-,0()(1)(1)2(2)a t x e a a e ∴≥--+--,只需证明22(2)(1)(1)a a e e a --≥--, 即只需证明224(2)(1)(1)ae e a -≥--, 令22()4(2)(1)(1),(12)as a e e a a =----<≤, 则22()8(2)(1)8(2)(1)0aas a e e e e e e '=---≥--->,2()(1)4(2)0s a s e ∴>=->,即224(2)(1)(1)a e e a -≥--成立,因此()0x 0e (e 1)(1)x f a a≥--.……(12分)。
山东省德州市2023-2024学年高二下学期期中考试数学试题
山东省德州市2023-2024学年高二下学期期中考试数学试题一、单选题1.设()f x 是可导函数,且()()333lim 33x f x f x∆→-∆-=∆,则()3f '=( )A .3-B .1-C .1D .32.记n S 为等差数列{}n a 的前n 项和,若4624a a +=,12216S =,则数列{}n a 的公差为( ) A .1B .2C .3D .43.设()f x 是定义在[]3,3-上的奇函数,其导函数为()'f x ,当03x ≤≤时,()f x 图象如图所示,且()f x 在1x =处取得极大值,则()()'0f x f x ⋅>的解集为( )A .()()3,10,1--UB .()()3,11,3--⋃C .()()1,00,1-UD .()()1,01,3-U4.等比数列{}n a 的各项均为正实数,其前n 项和为n S ,已知212S =,415S =,则3a =( )A .14B .12C .2D .45.已知定义在R 上的函数()f x 的导函数为()f x ',()01f =,且对任意的x 满足()()f x f x '<,则不等式()e xf x >的解集是( )A .(),1∞-B .(),0∞-C . 0,+∞D . 1,+∞6.已知等差数列 a n , b n 的前n 项和分别为n A ,n B ,且32n n A n B n +=+,则1010a b =( ) A .1312B .2221C .2322D .24237.如图,将一根直径为d 的圆木锯成截面为矩形ABCD 的梁,设BAC α∠=,且梁的抗弯强度()321sin cos 6W d ααα=,则当梁的抗弯强度()W α最大时,cos α的值为( )A .14B .13CD8.已知无穷数列{}n a 满足:如果m n a a =,那么11m n a a ++=,且151a a ==,37a =-,49a =,2a 是1a 与4a 的等比中项.若{}n a 的前n 项和n S 存在最大值S ,则S =( )A .2-B .0C .1D .2二、多选题9.下列结论正确的是( )A .若()2e f x =,则()0f x '=B .若()3f x a =,则()23f x a '=C .若()ln 2f x x =,则()1f x x'=D .若()()cos 23f x x =-,则()()3sin 32f x x '=--10.已知正项数列 a n 满足1,231nn n nn a a a a a +⎧⎪=⎨⎪-⎩当为偶数时,当为奇数时,则下列结论正确的是( )A .若13a =,则52a =B .若28a =,则13a =或116a =C .若110a =,则5n n a a +=D .若164a =,则前100项中,值为1和2的项数相同11.设函数()2,0e ln 2,0x x x f x x x x +⎧≤⎪=⎨⎪+>⎩,函数()()g x f x m =-有三个零点123,,x x x ,且满足123x x x <<,则下列结论正确的是( )A .1230x x x ⋅⋅≥恒成立B .实数m 的取值范围是12,e e ⎛⎫- ⎪⎝⎭C .函数()g x 的单调减区间11,e ⎛⎫- ⎪⎝⎭D .若20x >,则232ex x +>三、填空题12.已知2x =是3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为.13.等比数列{}n a 的公比为q ,其前n 项和记为n S ,202420262025S S S <<,则q 的取值范围为. 14.为提升同学们的科创意识,学校成立社团专门研究密码问题,社团活动室用一把密码锁,密码一周一换,密码均为7N的小数点后前6位数字,设定的规则为: ①周一至周日中最大的日期为x ,如周一为3月28日,周日为4月3日,则取周四的3月31日的31作为x ,即31x =;②若x 为偶数,则在正偶数数列中依次插入数值为3n 的项得到新数列{}n a ,即2,13,4,6,8,23,10,12,14,…;若x 为奇数,则在正奇数数列中依次插入数值为2n 的项得到新数列{}n a ,即1,12,3,22,5,7,32,9,11,13,…;③N 为数列{}n a 的前x 项和,如9x =,则9项分别为1,12,3,22,5,7,32,9,11,故50N =,因为507.14285717≈,所以密码为142857. 若周一为4月22日,则周一到周日的密码为.四、解答题15.已知函数21()ln (1)2f x a x x a x =+-+.(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 为定义域上的单调函数,求a 的值和此时在点()()1,1f 处的切线方程. 16.已知公差不为零的等差数列{}n a ,37a =,1a 和7a 的等比中项与2a 和4a 的等比中项相等. (1)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n T ; (2)若数列{}n c 满足11c =,()()113n n n n a c a c +-=+(*n ∈N ),求数列{}n c 的通项公式.17.某工厂生产某产品的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()31150150p x x x =+;当产量不小于60万箱时,()64002011860p x x x=+-,若每箱产品的售价为200元,通过市场分析,该厂生产的产品可以全部销售完.(1)求销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该厂在生产中所获得利润最大?18.已知函数()3213f x x x =+和数列{}n c ,函数()f x 在点()(),n n c f c 处的切线的斜率记为1n c +,且已知11c =.(1)若数列{}n b 满足:()2log 1n n b c =+,求数列{}n b 的通项公式; (2)在(1)的条件下,若数列{}n a 满足112a =,1212n n n a a b ++=+,是否存在正整数n ,使得1122nii a n ==-∑成立?若存在,求出所有n 的值;若不存在,请说明理由. 19.若函数()f x 在[],a b 上有定义,且对于任意不同的[]12,,x x a b ∈,都有()()1212f x f x x x λ-<-,则称()f x 为[],a b 上的“λ类函数”.(1)若()22x f x x =+,判断()f x 是否为 1,2 上的“2类函数”;(2)若()()21e ln 2xx f x a x x x =---,为 1,2 上的“2类函数”,求实数a 的取值范围.。
山东省泰安市2023-2024学年高二下学期4月期中考试数学试卷(含解析)
山东省泰安市2023-2024学年高二下学期4月期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知函数,则A.1B.C.2D.e2.若函数,则( )A. B.C. D.3.函数的图象如图所示,是函数的导函数,则下列数值排序正确的是( )A. B.C. D.4.在的展开式中,含的项的系数是( )A. B. C.69 D.705.为了落实五育并举,全面发展学生素质,学校准备组建书法、音乐、美术、体育社团,现将6名同学分配到这4个社团进行培训,每名同学只分配到1个社团,每个社团至少分配1名同学,则不同的分配方案的种数为( )A.1200B.1560C.2640D.48006.已知对任意实数x ,,则下列结论成立的是( )A. B.()ln f x x x =+limx ∆→2-()2cos 2x f x x =+1()2sin 2ln 2f x x x '=+()2ln 2sin 2x f x x '=+()12sin 2ln 2f x x x -'=()2ln 22sin 2x f x x'=-()y f x =()f x '()f x 2(3)2(1)(3)(1)f f f f ''<<-2(3)(3)(1)2(1)f f f f ''<-<2(1)2(3)(3)(1)f f f f ''<<-(3)(1)2(3)2(1)f f f f ''-<<4567(1)(1)(1)(1)x x x x -+-+-+-3x 69-70-8280128(21)(1)(1)(1)x a a x a x a x -=+++++++ 1281a a a +++= 802468312a a a a a +++++=C. D.7.已知A. B. C. D.8.已知定义在上的函数,,其导函数分别为,,且,则必有( )A. B.C. D.二、多项选择题9.已知,则下列结论正确的是( )A.有三个零点B.有两个极值点C.若方程有三个实数根,则D.曲线关于点对称10.现有4个编号为1,2,3,4的不同的球和5个编号为1,2,3,4,5的不同的盒子,把球全部放入盒子内,则下列说法正确的是( )A.共有种不同的放法B.恰有一个盒子不放球,共有120种放法C.每个盒子内只放一个球,恰有2个盒子的编号与球的编号相同,不同的放法有24种D.将4个不同的球换成相同的球,恰有一个空盒的放法有5种11.在探究的展开式的二项式系数性质时,我们把二项式系数写成一张表,借助它发现二项式系数的一些规律,我们称这个表为杨辉三角(如图1),小明在学完杨辉三角之后进行类比探究,将的展开式按x 的升幂排列,将各项系数列表如下(如图2):812028256222a a a a ++++= 123823816a a a a ++++= a ===cb a >>ac b >>c a b >>a b c>>(0,)+∞()f x ()g x ()f x '()g x '()()()g x g x xf x x''-<()()()()2122221g f g f +>+()()()()2122221g f g f +<+()()()()4221241f g g f +>+()()()()4221241f g g f +<+321()2313f x x x x =-++()f x ()f x ()f x a =71,3a ⎛⎫∈ ⎪⎝⎭()y f x =71,3⎛⎫ ⎪⎝⎭45()n a b +()21n x x++上表图2中第n 行的第m 个数用表示,即展开式中的系数为,则( )A.B.C.D.三、填空题12.现有四种不同颜色的彩灯装饰五面体的六个顶点,要求A ,B 用同一种颜色的彩灯,其它各棱的两个顶点挂不同颜色的彩灯,则不同的装饰方案共有________种.(用数字作答)13.已知不等式恒成立,则实数a 的取值范围是________.四、双空题14.已知的展开式中第二项与第四项的二项式系数相等,且常数项与展开式中的常数项相等,则________,________.五、解答题15.已知函数(1)求在处的切线方程;(2)求的极值.16.从甲、乙、丙等7人中选出5人排成一排.(以下问题均用数字作答)1D m n -()21nx x ++m x D m n 35D 15=2(1)D 2n n n +=()1111D D D D 121,kk k k n n n n k n k +-++=++≤≤-∈*N 00112233202420242024202420242024202420242024202420242024D C D C D C D C D 0C -+-++= AB CDEF -ln 1e axx ax x -+>2nx x ⎛⎫ ⎪⎝⎭-321x a x ⎛⎫-+ ⎪⎝⎭n =a =()f x =()f x 0x =()f x(1)甲、乙、丙三人恰有两人在内,有多少种排法?(2)甲、乙、丙三人全在内,且甲在乙、丙之间(可以不相邻)有多少种排法?(3)甲、乙、丙都在内,且甲、乙必须相邻,甲、丙不相邻,有多少种排法?17.已知的展开式中,所有项的系数之和是512.(1)求展开式中有理项有几项;(2)求展开式中系数绝对值最大的项是第几项.18.已知函数,.(1)若,讨论函数的单调性;(2)若,且,求证:.19.①在高等数学中,关于极限的计算,常会用到:i )四则运算法则:如果,,则,,若,则必达法则1:若函数,的导函数分别为,,且,则,k 是大于1的正整数,若函数满足:对,均有成立,则称函数为区间上的k 阶无穷递降函数.结合以上两个信息,回答下列问题:(1)计算:①②(2)试判断上的2阶无穷递降函数;并证明:,.3nx ⎛ ⎝()ln f x x x =-2()23g x x x =-+()(2)e ()x h x x ag x =-+()h x 1()()()2x f x g x ϕ=+()()120x x ϕϕ+=122x x +≥lim ()x a f x A →=lim ()x a g x B →=lim[()()]lim ()lim ()x a x a x af xg x f x g x A B →→→±=±=±lim[()()]lim ()lim ()x a x a x a f x g x f x g x AB →→→⋅=⋅=0B ≠lim ()()lim ()lim ()x a x a x af x f xg x g x →→→==()f x ()g x ()f x '()g x 'lim ()lim ()0x a x a f x g x →→==lim ()0x ag x →'≠()lim ()x a x a f x g x →→=0>()f x (0,)x a ∀∈()x f x f k ⎛⎫≥ ⎪⎝⎭()f x (0,)a 0x →0lim(12x x →+()f x =π0,2⎫⎪⎭π0,2x ⎛⎫∀∈ ⎪⎝⎭()1f x >参考答案1.答案:C 解析:函数,则,所以.故选:C.2.答案:D解析:由,故选:D.3.答案:B解析:由函数的图象可知为单调递增函数,故函数在每一处的导数值,即得,,设,由于曲线是上升的,故,所以,作出曲线在,处的切线,设为,,A ,B 连线为,结合图象可得,,的斜率满足,即,即.故选:B.4.答案:A解析:的展开式中,含的项为,()ln f x x x =+()1f x '=()1112f ='+=()()()Δ01Δ1lim 12Δx f x f f x →'+-==()2cos 2()2l 2sin 2n x x x f x x f x x '=+⇒=-()f x ()f x ()0f x '>()30f '>()10f '>(1,(1))A f (3,B f =(3)(1)f f >(3)(1)0f f ->1x =3x =1l 3l 2l 1l 2l 3l 321k k k <<(3)(1)(3)(1)2f f f f '<'-<2(3)(3)(1)2(1)f f f f ''<-<4567(1)(1)(1)(1)x x x x -+-+-+-3x ()()()()3333333334567C C C C 69x x x x x -+-+-+-=-所以的项的系数是.故选:A.5.答案:B解析:先将6名同学分为1,1,2,2或1,1,1,3的四组,共有种,再将4组分到书法、音乐、美术、体育社团,共有种,所以共有种.故选:B.6.答案:C 解析:因(*)对于A 项,当时,代入(*)可得,当时,代入(*)可得,所以,故A 项错误;对于B 项,当时,代入(*)可得,又,所以对于C 项,当,故C 项正确;对于D 项,对(*)两边求导可得,当时,,故D 项错误故选:C.7.答案:D解析:令当时,,当时,,所以在单调递减,在上单调递增,3x 69-1122111365426543223223C C C C C C C C 65A A A +=44A 24=65241560⨯=8280128(21)(1)(1)(1)x a a x a x a x -=+++++++ 1x =-803a =0x =80128(1)1a a a a +++⋅⋅⋅+=-=812813a a a +++=- 2x =-88012378(5)5a a a a a a -+-+⋅⋅⋅-+=-=01281a a a a +++⋅⋅⋅+=02468a a a a a ++++=x =()88120282256222a a a ++++=-= 727123816(21)2(1)3(1)8(1)x a a x a x a x -=+++++++ 0x =7123823816(1)16a a a a ++++=⋅-=- ()f x =()f x '=e x >2ln 1()0ln x f x x -'=>1e x <<()0f x '<()f x ()1,e ()e,+∞又,,,且,,所以,,故选:D.8.答案:A解析:由,设,则,故函数在上单调递增,所以,即,所以.故选:A.9.答案:BC解析:,令解得,令解得或,所以在单调递增,单调递减,单调递增,因为,极大值,且极小值,所以在有一个零点,共1个零点,A 错误;由A 知,函数有1,3两个极值点,故B 正确;由A 知,函数在单调递增,单调递减,单调递增,且时,,时,,所以方程有三个实数根,需,即,故C 正确;因为,所以点在函数图象上,(e 1)a f =-(2)b f =2e (2c f =1e 12e <-<<2e e 42<<a b >()2e 44242ln 42ln 2ln 2c f f b ⎛⎫=<==== ⎪⎝⎭()()(g x g x xf x x ''-<()f x '<()()h x f x =-,()0x ∈+∞2()()()()0xg x g x h x f x x '-''=->()h x (0,)+∞(2)(1)h h >(2)(2)(1)(1)2g f f g ->-()()()()2122221g f g f +>+2()43f x x x '=-+()0f x '<13x <<()0f x '>1x <3x >()f x (),1-∞()1,3()3,+∞13(1)03f -=-<7(1)03f =>1(3)0f =>()f x (1,1)-()f x (),1-∞()1,3()3,+∞x →-∞()f x →-∞x →+∞()f x →+∞()f x a =(3)(1)f a f <<71,3a ⎛⎫∈ ⎪⎝⎭(3)1f =(3,1)又点关于点的对称点为,而即不是函数图象上的点,故函数不关于点对称,故D 错误.故选:BC.10.答案:ABD解析:对于A ,每个球都有5种放法,共有种放法,故A 正确;对于B ,把球全部放入盒子内,恰有一个盒子不放球,则有4个盒子每个盒子放1个球,有种放法,故B 正确;对于C ,每个盒子内只放一个球,恰有2个盒子的编号与球的编号相同,不同的放法有种放法,故C 错误;对于D ,将4个不同的球换成相同的球,恰有一个空盒,即有4个盒子每个盒子放1个球的放法有5种,故D 正确,故选:ABD.11.答案:BCD解析:依据题意结合图2可知图2中每一行的每一个数等于其上一行头顶和左右肩上共三个数的和(没有的用0代替),如:第四行的第三个数10,等于上一行头顶上的数3加上左右肩上的数1和6;第三行中的第二个数3,等于上一行头顶上的数1加上左右肩上的数0(左肩上没有数,故用0代替)和2;所以,对于A ,由上,故A 错;对于B ,由图可知以此类推可得对于C ,由上可知正确,故C 对;对于D ,(3,1)71,3⎛⎫ ⎪⎝⎭111,3⎛⎫- ⎪⎝⎭(1)f -=111,3⎛⎫- ⎪⎝⎭()f x ()f x 71,3⎛⎫ ⎪⎝⎭5555555⨯⨯⨯⨯=45A 5432120=⨯⨯⨯=()24C 1218⨯+=21111D D D D mm m m n n n n -----=++()221,m n m ≤≤-∈*N 335444124101630D D D D =++=++=211D ==223==236==2410==2D n =()1111D D D D 121,k k k k n n n nk n k +-++=++≤≤-∈*N因为,,则,所以根据乘法规则的展开式中的系数为:,又,其通项为,因为,故展开式中的系数为0,故,故D 正确.故选:BCD.12.答案:解析:首先给A ,B 两个顶点挂彩灯,有4种方法,再给C 顶点挂彩灯,有3种方法,①若D 、F 挂同一种颜色的彩灯,则有2种方法,最后挂E 点有2种方法,故有种;②若D 、F 挂不同种颜色的彩灯,此时挂D 点有2种方法,挂F 点有1种方法,最后挂E 点有1种方法,故有种;综上可得一共有种不同的方法.故答案为:.13.答案:解析:由可得,即恒成立,令,则不等式可化为:,令,则()2024201202420242024202420241D D ...D x x x x++=+++()2024012023202320242024202420230202420242024202420242024202420241C C ...C C C C ...C x x x x x x-=-+-+=-++()()()()2024202420120242024202420230202420242024202420242024202411D D ...D C C ...C x x x x x x x ++-=+++-++()()20242024211x x x ++-2024x 00112233202420242024202420242024202420242024202420242024D C D C D C D C D C -+-++ ()()()20242024202423111x x x x ++-=-()()()333120242024C 1C Z,0r 2024rr r rr r T x x r +=-=-∈≤≤202436742=⨯+()202431x -2024x 00112233202420242024202420242024202420242024202420242024D C D C D C D C D 0C -+-++= 72432248⨯⨯⨯=4321124⨯⨯⨯⨯=482472+=721,e ⎛⎫+∞ ⎪⎝⎭ln 1e ax x ax x -+>ln e ln 1eax ax x x -+>e ln 1e ax ax x x +>()e 0axt t x=>()1ln 10t t t+>>()()1ln 0f t t t t =+>()211f t t t ='=-所以,当时,,在上单调递减;当时,,在上单调递增.所以,故要使恒成立,只需,即令令,则,所以时,,在上单调递增,且当时,,时,,在上单调递减,且当时,,所以故故答案为:.14.答案:4;3解析:中第二项和第四项的二项式系数分别为和,所以,根据组合数的性质可得.对于,易得通项公式为,其中令得,所以常数项为.在中,取得常数的项情况有两种:选2个x ,1个,0个所以常数项为,解得.故答案为:4;3.15.答案:(1)01t <<()0f t '<()f t ()0,t 1t >()0f t '>()f t (),t +∞()()11f t f ≥=()1ln 10t t t +>>t ≠1≠a ≠()g x =()g x '=()0g x '=e x =0e x <<()0g x '>()g x ()0,e 0x →()g x →-∞e x >()0g x '<()g x ()e,+∞x →+∞()0g x →()()e g x g ≤=a >1,e ⎛⎫+∞ ⎪⎝⎭2nx x ⎛⎫- ⎪⎝⎭1C n 3C n 13C C n n =134n =+=42x x ⎛⎫- ⎪⎝⎭()42414C 12k k k k k T x --+=-240k -=2k =224234C (1)26424T -=-=⨯=321x a x ⎛⎫-+ ⎪⎝⎭21333313C C (1)C 324a a -+=-+=3a =210x y --=(2)有极大值为解析:(1),又,在处的切线方程为,即切线方程为.(2)令,解得,当x 变化时,,的变化情况如下表所示,16.答案:(1)1440种(2)240种(3)216种解析:(1)由于甲、乙、丙三人中恰有两人在内,所以可以分3步完成:第1步,从3人中选中2人,有种选法.第2步,从其余4人中选出3人,有种选法.第3步,将选出的5个人全排列,有种排法.根据分步乘法计数原理,不同的排法有种;(2)由于三人全在内,且甲在乙、丙之间,所以可以分3步完成:第1步,从其余4人中选出2人,有种选法.第2步,将2人安排到5个位置,有种方法.第3步,剩余3个位置排甲、乙、丙三人,有2种方法根据分步乘法计数原理,不同排法有种;()f x (2)f =()f x '=(0)2f '∴=(0)1f =-()f x ∴0x =12y x +=210x y --=()0f x '=2x =()f x '()f x 23C 34C 55A 235345C C A 1440⨯⨯=24C 25A 2245C A 2240⨯⨯=(3)由于甲、乙必须相邻,甲、丙不相邻,所以分3步完成:第1步:从其余4人中选出2人,有种选法.第2步:将甲、乙捆绑与选出的2人排列,有种方法.第3步:将丙插空有3种方法.根据分步乘法计数原理,不同排法共有种.17.答案:(1)有4项(2)第3项解析:(1)所有项的系数之和是512.令,得,,展开式的通项:,,,,3,6,9,展开式中有理项共有4项.(2)设第项系数的绝对值最大.则,解得,,展开式中系数绝对值最大的项为第3项.18.答案:(1)答案见解析(2)证明见解析解析:(1).①当时,令,解得,当时,,单调递增;当时,,单调递减;在上单调递减,在上单调递增.②当时,令,解得或,24C 2323A A ⨯223423C A A 3216⨯⨯⨯= 1x =2512n =9n ∴=∴949931993C ((1)3C kk k k k kk k T xx ---+⎛⎫==- ⎪⎝⎭{0,1,2,,9}k ∈ 9-∈Z 0k ∴=∴1k +99(1)19999(1)1993C 3C 3C 3C kkk k kk k k --++----⎧≥⎨≥⎩k k ⎧≥⎪⎪⎨⎪≤⎪⎩k ∈N 2k ∴=∴()2()(2)e 23x h x x a x x =-+-+()()(1)e 2(1)(1)e 2x x h x x a x x a '=-+-=-+0a ≥()0h x '=1x =1x >()0h x '>()h x 1x <()0h x '<()h x ()h x ∴(,1)-∞(1,)+∞0a <()0h x '=1x =ln(2)x a =-当时,在上单调递增,在上单调递减,在上单调递增,当时,在R 上单调递增,当时,在单调递增,在上单调递减,在上单调递增,综上所述:当时,在上单调递减,在上单调递增,当时,在上单调递增,在上单调递减,在上单调递增,当在上单调递增,当在上单调递增;在上单调递减,在上单调递增.(2)恒成立,在上单调递增,且,设,,设,,令,解得,当时,,单调递增,当时,,单调递减,,a <2)1a ->()h x (,1)-∞(1,ln(2))a -(ln(2),)a -+∞a =2)1a -=()h x a >2)1a -<()h x (,ln(2))a -∞-(ln(2),1)a -(1,)+∞0a ≥()h x (,1)-∞(1,)+∞e02a -<<()h x (,ln(2))a -∞-(ln(2),1)a -(1,)+∞a =()x (,)-∞+∞a <()x (,1)-∞(1,ln(2))a -(ln(2),)a -+∞2()ln 22x x x x ϕ=+-1()20x x xϕ'=+-≥()x ϕ∴(0,)+∞()10ϕ=223(2)3()()(2)ln 2ln(2)2(2)2222x x F x x x x x x x ϕϕ-=+-=+-++-+--+2ln[(2)]21x x x x =-+-+22ln 1(1)(1)x x ⎡⎤=--+-⎣⎦[0,1)x ∈()ln 1G x x x =-+0x >1()1G x x '=-=()0G x =1x =01x <<()0G x '>()G x 1x >()0G x '<()G x ()(1)0G x G ∴≤=,,不妨设,则,,,,在上单调递增,,即.19.答案:(1)①1;②(2)是,证明见解析解析:(1)①根据洛必达法则1,.②设设,,.(2),,,ln 1x x ∴≤-()()(2)F x x x ϕϕ∴=+-2222ln 1(1)(1)1(1)1(1)0x x x x ⎡⎤=--+-≤---+-=⎣⎦1201x x <<<()()1120x x ϕϕ+-≤()()112x x ϕϕ∴-≥-()()120x x ϕϕ+= ()()212x x ϕϕ∴≥-()x ϕ (0,)+∞212x x ∴≥-122x x +≥2e ()000sin sin limlim lim cos 1x x x x xx x x →→→'==='()(12g x x =+1()ln(12)g x x x =+=()h x =[]0000ln(12)ln(12)2()limlim lim 212x x x x x x h x x x x →→→→'++===='+0lim ln ()2x g x →∴=1ln ()20lim(12)lim ()lim e e g x xx x x x g x →→→∴+===()f x = π0,2x ⎛⎫∈ ⎪⎝⎭2x f ⎛⎫∴= ⎪⎝⎭()0f x >02x f ⎛⎫> ⎪⎝⎭242332222cos cos ()tan sin 228tan sin 1tan cos sin 222222x xf x x x x x x x x x x x f ∴=⋅==⎛⎫-- ⎪⎝⎭,,均有,是区间上的2阶无穷递降函数.方法一:由以上同理可得,由①,得,.方法二:设,,则,设.,则,在上单调递增,又,在上恒成立,在上单调递增,,在上恒成立,,444442222cos cos 1221cos sin 1tan cos sin cos sin 2222222xxx x xx x x x ===>⎛⎫⎛⎫---+ ⎪⎪⎝⎭⎝⎭π0,2x ⎛⎫∴∀∈ ⎪⎝⎭()2x f x f ⎛⎫> ⎪⎝⎭()f x ∴π0,2⎛⎫⎪⎝⎭()22n x x f x f f ⎛⎫⎛⎫>>> ⎪ ⎪⎝⎭⎝⎭0sin lim1x xx→=3233sin tansin222limlim lim2cos 222n n n n n n n n n n x x x x f x x x →∞→∞→∞⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭33sin sin 1122lim lim lim 1cos cos 2222n n n n n n n n n x x x x x x →∞→∞→∞⎧⎫⎡⎤⎡⎤⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎢⎥⎢⎥⎪⎪⎝⎭⎝⎭⎢⎥⎢⎥=⋅=⋅=⎨⎬⎛⎫⎛⎫⎢⎥⎢⎥⎪⎪ ⎪ ⎪⎢⎥⎢⎥⎪⎪⎝⎭⎝⎭⎣⎦⎣⎦⎩⎭π0,2x ⎛⎫∴∀∈ ⎪⎝⎭()1f x >()f x '=22()3cos 3sin cos sin x x x x x x x ϕ=-+π0,2x ⎛⎫∈ ⎪⎝⎭()4sin (sin cos )x x x x x ϕ'=-()sin cos m x x x x =-π0,2x ⎛⎫∈ ⎪⎝⎭()sin 0m x x x '=>()m x ∴π0,2⎛⎫⎪⎝⎭(0)0m =()0m x ∴>π0,2⎛⎫⎪⎝⎭()0x ϕ'∴>()x ϕ∴π0,2⎛⎫⎪⎝⎭(0)0ϕ= ()0x ϕ∴>π0,2⎛⎫⎪⎝⎭()0f x '∴>在上单调递增,又,.()f x ∴π0,2⎛⎫⎪⎝⎭330000sin 1sin 1lim ()lim lim lim 1cos cos x x x x x x f x x x x x →→→→⎡⎤⎛⎫⎛⎫=⋅=⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦π0,2x ⎛⎫∴∀∈ ⎪⎝⎭()1f x >。
高二下学期期中考试数学试卷含答案
高二下学期期中考试数学试卷含答案下学期期中考试数学试题一、选择题1.已知i是虚数单位,z是z的共轭复数,若z(1+i)=3+2i,则z的虚部为()。
A。
-1B。
iC。
-iD。
12.把4个不同的小球全部放入3个不同的盒子中,使每个盒子都不空的放法总数为()。
A。
2B。
3C。
4D。
53.曲线y=xex+1在点(0,1)处的切线方程是()。
A。
2x-y+1=0B。
x-y+1=0C。
x-y-1=0D。
x-2y+2=04.函数f(x)=xlnx的单调递减区间是()。
A。
(0,1/e)B。
(1/e,0)C。
(e,+∞)D。
(-∞,0)5.二项式1+x+x2(1-x)展开式中x4的系数为()。
A。
120B。
135C。
140D。
1006.设随机变量的分布列为P(X=k)=C(6,k)/2^6,则P(X≥3)的值为()。
A。
1B。
7/8C。
5/8D。
3/87.将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()种。
A。
10B。
12C。
9D。
88.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图像可能是()。
A.B.C.D.9.若z∈C且z+2-2i=1,则z-1-2i的最小值是()。
A。
3B。
2C。
4D。
510.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品任取3件,取出的3件产品中一等品件数多于二等品件数的概率是()。
A。
37/120B。
3/10C。
4/9D。
1/211.已知(1-x)^10=a+a1x+a2x^2+。
+a10x^10,则a8的值为()。
A。
-180B。
45C。
180D。
-4812.定义在R上的函数f(x)满足f(x)+f'(x)>1,f(0)=4,则不等式exf(x)>ex+3的解集为()。
A。
(0,+∞)B。
山东省枣庄市2023-2024学年高二下学期期中质量检测数学试题(含简单答案)
枣庄市2023-2024学年高二下学期期中质量检测数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知函数,则( )A. 2B. C. 4D. 2. 下列函数求导正确的是( )A B. C D. 3. 从4名男生与3名女生中选两人去参加一场数学竞赛,则男女各一人的不同的选派方法数为( )A. 7B. 12C. 18D. 244. 已知,,则( )A.B.C.D.5. 的展开式中,项的系数为( )A. 10B. C. 60D. 6. 随机变量的概率分布为1240.40.3则等于( )的..()2f x x=-()()22limh f h f h →+-=2-4-211x x'⎛⎫= ⎪⎝⎭()sin cos x x'=-()1ln22x x'=()()e 1e x xx x '=+()13P B A =()25P A =()P AB =5691021513()522x x y +-52x y 30-60-X XPa()54E X +A. 5B. 15C. 45D. 与有关7. 已知函数,是的唯一极小值点,则实数的取值范围为()A. B. C. D. 8. 已知实数分别满足,,且,则( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在定义域上为增函数的有( )A. B. C. D. 10. 下列排列组合数中,正确的是( )A. B. C. D. 11. 已知直线分别与函数和的图象交于点,则下列结论正确的是( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 某班联欢会原定3个节目已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目不相邻,那么不同的插法种数为_____________.13. 若能被64整除,则正整数的最小值为_____________.14 已知实数满足,则_____________...a ()()221()4442xf x e xx k x x =--++2x =-()f x k )2,e ⎡-+∞⎣)3,e ⎡-+∞⎣)2,e ⎡+∞⎣)3,e ⎡+∞⎣,a b e 1.02a =()ln 10.02b +=151c =a b c<<b a c <<b<c<ac<a<b()e xf x x=+()exf x x =()sin f x x x=-()2ln f x x x=-12344444A A A A 84+++=3333434520232024C C C C C ++++= 11A A A mm m n nn m -++=11C C mm n n m n --=2y x =-+e x y =ln y x =()()1122,,,A x y B x y 122x x +=12e e 2e x x +>1221ln ln 0x x x x +>12x x >()2024*381011a a -⨯+∈N a 12x x ,()136122e e ln 3e xx x x =-=,12x x =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在三个地区爆发了流感,这三个地区分别有的人患了流感,假设这三个地区的人口数的比为3:5:2,现从这三个地区中任意选取一个人(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A 地区的概率.16. 一台笔记本电脑共有10台,其中A 品牌3台,B 品牌7台,如果从中随机挑选2台,其中A 品牌台数.(1)求的分布列;(2)求和.17. 已知展开式中,第三项的系数与第四项的系数比为.(1)求的值;(2)求展开式中有理项的系数之和.(用数字作答)18. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值.19. 已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.,,A B C 6%5%4%,,X X ()E X ()X σ2(n x +65n ()23ln f x x x x =+-()y f x =()()1,1f ()f x ()()()2e12e R xx f x a ax a =+--∈()f x ()f x a枣庄市2023-2024学年高二下学期期中质量检测数学简要答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BCD【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】12【13题答案】【答案】55【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)分布列略 (2)【17题答案】【答案】(1)7; (2)702.【18题答案】【答案】(1) (2)极小值为,无极大值【19题答案】【答案】(1)当时,在上单调递增;当时,在上单调递减,在上单调递增. (2)6e 0.051617352y =20a ≤()f x R 0a >()f x (,ln )a -∞(ln ,)a +∞(1,)+∞。
高二第二学期期中考试数学试卷
高二年级第二学期期中检测数学试题(满分:150分,考试时间:120分钟)一、选择题:本题共8小题,每小腿5分,共40分.只有一项符合题目要求.1.函数y = f (x )位点(x 0,y o )处的切线方形为y = 2x + 1.则x x x f x f x ∆∆--→2)2()(lim 000 等于( )A.4B. - 2C.2D.4 2.函数 f (x )= 的图象大致形状是( )3.(x + 2y )×(x - y )5的展开式中x 2y 4的系数为( )A. - 15B.5C. - 20D.254.甲、乙、丙等6人排成一排,则甲和乙相邻且他们和和两不相邻的排法共有( )A.36种B.72种C.144种D.246种 5.函数f (x )= k x- lnx 在[1,e ]上单调递增,则k 的收值范围是( )A. [1, +∞)B.(e 1, +∞)C.[e 1, +∞)D.(1, +∞) 6.若函数f (x )=31x 3 - 2+x 2 在(a - 4.a + 1)上有最大值,则实数a 的取值范围为( ) A.(- 3.2] B.(- 3,2) C.(- 3.0) D.(- 3.0]7.将5名北京冬奥会志愿者分配到花样滑冰.短道速滑和冰壶3个项目进行集训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( )种.A.30B60 C.90 D150 8.设a =24l 24e n )(- ,b = e 1,c =44ln ,则a ,b ,c 的大小顺序为( ) A.a < c < b B. c < a < b C .a < b < cD.b < a < c二、选择题:本题共4小题,每小题5分,共20分,有多项符合题目要求.全选对的得5分,部分选对的得2分,有选错的得0分.9.以下求导运算正确的是( ) A.)1(2x ʹ = 32x B.(ln 2x)ʹ = x 1 C .(l gx )ʹ =10l 1n x D .(cos 2)' =-sin 210.由0.1,2,3,5,组成的无重复数字的五位数的四数,则( )A.若五位数的个位数是0,则可组成24个无重复数字的五位数的偶数B.若五位数的个位数是2,则可组成18个无重复数字的五位数的偶数C.若五位数的个位数是2,则可组成24个无重复数字的五位数的偶数D.总共可组成48个无重复数字的五位数的偶数11.甲箱中有3个白球和3个黑球,乙箱中有2个白球和4个黑球.先从甲箱中随机抽出一球放入乙箱中,分别以A 1,A 2表示由甲箱中取出的是白球和黑球的事件;再从乙箱中随机取出一球,以B 表示从乙箱中取出的球是黑球的事件,则下列结论正确的是A.A 1,A 2两两互斥B.P (B|A 2) =75 C.事件B 与事件A 2相互独立 D.P (B ) = 149 12.已知函数f (x ) = e x - ax 2(a 为常数),则下列结论正确的有( )A.若f (x )有3个零点,则a 的取值范围为(42e ,+ )B.a = 2e 时,x = 1是f (x )的极值点 C.a =21 时,f (x )有唯一零点x 0且 - 1 < x 0 <- 21 D.a = 1时,f (x )≥0恒成立三、填空题:本题共4小题,每小题5分,共20分.13.已知函数f (x )= 2ln x - x 2 + 1,则f (x )的单调递增区间是 _________4.将3封不同的信随机放入2个不同的信箱中,共有n 种不同的放法,则在(x -x1)n 的展开式中,含x 2项的系数为 _________ .15.若直线y = kx + b 是曲线y = 1nx + 1的切线,也是曲线y = ln (x + 2)的切线.则b = _________16.给图中六个区域进行染色,每个区域只染一种颜色且相邻的区域不同色.若有4种不同的颜色可供选择,则共有_________ 种不同的染色方案.四、解答题:本题共6小圆,共70分.解答应写出文字说明,证明过程或演算.17.(本小题满分12分)已知数列{a n}的前n项和为S n且S n底2a n- 2(n∈N)(1)求数列{a n}的通项公式:(2)若b n =n naa 2log1+.求数列{b n}的前n项和T n18.(本小M满分12分)如图所示,在四棱锥P - ABCD中,PA⊥面ABCD,AB⊥BC,AB⊥AD,且PA = AB = BC = 0.5AD = 1. (1)求PB与CD所成的角:(2)求直线PD与面PAC所成的角的余弦值:(3)求点B到平面PCD的距离.从6名男生和4名女生中随机选出3名同学参加一项竞技测试.(1)求选出的3名同学中至少有1名女生的概率;(2)设∑表示选出的3名同学中男生的人数,求∑的分布列.20.(本小题满分12分)甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为4331,.(1)求第三次由乙投篮的概率:(2)在前3次投篮中,乙投篮的次数为∑求∑的分布列:(3)求∑的期望及标准差.已知函数f (x )= x ln x +2 x(1)求曲线y =f (x )在点(1,f (1))处的切线方程:(2)当x > 1时,mx - m < f (x )恒成立,求整数m 的最大值.22.(本小题满分12分)已知函数f (x ) = axlnx 2 - 2x .若f (x )在x = 1处取得极值,求f (x )的单调区间:(2)若a = 2,求f (x )在区同[0.5,2]上的最值:(3)若函数h (x ) =xx f )( - x 2 + 2有1个零点,求a 的取值范围.(修考做据:1 m2 = 0.693)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二下学期期中数学试卷
一、选择题
1. 设集合M={x|x2+2x﹣8<0},N={y|y=2x},则M∩N=()
A . (0,4)
B . [0,4)
C . (0,2)
D . [0,2)
2. 下列函数中,在其定义域上既是奇函数又是增函数的是()
A . y=logax
B . y=x3+x
C . y=3x
D . y=﹣
3. 已知a,b均为实数,则“ab(a﹣b)<0”是“a<b<0”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
4. 函数y= (0<a<1)的图象的大致形状是()
A .
B .
C .
D .
5. 在(1+x)6(1+y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()
A . 45
B . 60
C . 120
D . 210
6. 2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有
且只有两位女生相邻,则不同排法的种数是()
A . 60
B . 48
C . 42
D . 36
7. 设实数a,b,t满足|a+1|=|sinb|=t.则()
A . 若t确定,则b2唯一确定
B . 若t确定,则a2+2a唯一确定
C . 若t确定,则sin 唯一确定
D . 若t确定,则a2+a唯一确定
8. 已知函数f(x)=x2﹣(k+1)2x+1,若存在x1∈[k,k+1],x2∈[k+2,k+4],使得f(x1)=f(x2),则实数k的取值范围为()
A . [﹣,]
B . [﹣,﹣1]∪[1,3]
C . [﹣2,﹣1]∪[1,2]
D . [﹣,﹣]∪[ ,]
二、填空题
9. 已知集合A={|m|,0},B={﹣2,0,2},C={﹣2,﹣1,0,1,2,3},若A⊆B,则m=________;若集合P满足B⊆P⊆C,则集合P的个数为________个.
10. 已知C =36,则n=________;已知6p=2,log65=q,则
=________.
11. 若f(x)= ,则f(f(﹣1))=________,f(f(x))≥1的解集为________
12. 如图所示:有三根针和套在一根针上的若干金属片.按下列规则,把金属片从一根针上全部移到另一根针上.
(1)每次只能移动一个金属片;
(2)在每次移动过程中,每根针上较大的金属片不能放在较小的金属片上面.将n个金属片从1号针移到3号针最少需要移动的次数记为f(n);
①f(3)=________;
②f(n)=________.
13. 将5名志愿者分成4组,其中一组有2人,其余各组各1人,到4个路口协助交警执勤,则不同的分配方法有________种.(用数字作答)
14. 若存在x0∈[﹣1,1]使得不等式| ﹣a• +1|≤
成立,则实数a的取值范围是________.
15. 已知f(x)的定义域为R,f(1)= ,且满足4f(x)f(y)=f (x+y)+f(x﹣y),则f(2016)=________.
三、解答题
16. 函数f(x)= .
(1)求函数f(x)的定义域A;
(2)设B={x|﹣1<x<2},当实数a、b∈(B∩∁RA)时,证明:
|.
17. 若不等式对一切正整数n都成立,求正整数a的最大值,并证明结论.
18. 已知函数f(x)=3x2+2(k﹣1)x+k+5.
(1)求函数f(x)在[0,3]上最大值;
(2)若函数f(x)在[0,3]上有零点,求实数k的取值范围.
19. 已知F1,F2为椭圆的左、右焦点,F2在以
为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.
(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.
20. 若函数fA(x)的定义域为A=[a,b),且fA(x)=(+ ﹣1)2﹣+1,其中a,b为任意正实数,且a<b.
(1)求函数fA(x)的最小值和最大值;
(2)若x1∈Ik=[k2,(k+1)2),x2∈Ik+1=[(k+1)2,(k+2)2),其中k是正整数,对一切正整数k,不等式(x1)+ (x2))<m都有解,求m的取值范围;
(3)若对任意x1,x2,x3∈A,都有,,为三边长构成三角形,求的取值范围.。