高二数学下学期期中考试试卷
2024年苏州市高二下学期期中考试数学试题
![2024年苏州市高二下学期期中考试数学试题](https://img.taocdn.com/s3/m/4e059b235bcfa1c7aa00b52acfc789eb172d9ef9.png)
高二期中调研试卷数学2024.04注意事项学生在答题前请认真阅读本注意事项及各题答题要求:1.本卷共6页,包含单项选择题(第1题~第8题)、多项选择题(第9题~第11题)、填空题(第12题~第14题)、解答题(第15题~第19题).本卷满分150分,答题时间为120分钟.答题结束后,请将答题卡交回,2.答题前,请您务必将自己的姓名、调研序列号用0.5毫米黑色墨水的签字笔填写在答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.9(1)x −展开式中3x 的系数为( )A .504B .84C .84−D .504− 2.已知1x =是函数()()210x ax bx f x b e+=+≠的极值点,则实数a 的值为( ) A .1− B .0 C .1 D .无数多个3.一只蚂蚁从点A 出发沿着水平面的网格线爬行到点B ,再由点B 沿着长方体的棱爬行至顶点C 处,则它可以爬行的不同最短路径条数有( )A .40B .60C .80D .1204.若随机变量X 满足()1P X c ==,其中c 为常数,则()D X =( )A .0B .14C .12D .15.如图,圆C 与直角三角形AOB 的两直角边相切,射线OP 绕点O 由OA 逆时针匀速旋转到OB 的过程中,所扫过的圆内阴影部分而积S 关于时间t 的函数的大致图象为( )A .B .C .D .6.小明和小华进行乒乓球比赛,比赛规则是:若其中一人连续赢两局,则比赛结束,已知每局比赛结果相互独立,且每局小明赢的概率为0.6(没有平局),则在已知比赛是第三局结束条件下,小明获胜的概率为( )A .0.6B .0.4C .0.36D .0.1447.记()()()()()()()()()01021321sin ,,,,,x n n f x e x f x f x f x f x f x f x f x f x +′′′′===== ,n N ∈,则()20240f =( )A .5082B .5072−C .0D .50728.将1,2,3…,9这九个正整数,填在如图所示的九宫格里,九宫格的中间填5,四个角填偶数,其余位置填奇数,则每一横行、每一坚列以及两条对角线上3个数字的和都等于15的概率为( )A .13 B .16 C .172 D .1144二、选择题:本题共3小题,每小题6分,共18分。
广东省佛山市广东顺德德胜学校2023-2024学年高二下学期期中考试数学试卷(含简单答案)
![广东省佛山市广东顺德德胜学校2023-2024学年高二下学期期中考试数学试卷(含简单答案)](https://img.taocdn.com/s3/m/0d04b645fd4ffe4733687e21af45b307e871f998.png)
顺德德胜学校2023-2024学年高二下学期期中考试数学本试卷共4页.满分150分,考试时间120分钟.注意项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,2.考生作答时,将答案答在答题卡上.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效在草稿纸、试题卷上答题无效.3.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.4.保持答题卡卡面清洁,不折叠、不破损.考试结束后请将答题卡和答题卷交回,试卷由考生自己保管.第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共0分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某影城有一些电影新上映,其中有3部科幻片、4部警匪片、3部战争片及2部喜剧片,小明从中任选1部电影观看,不同的选法共有( )A. 9种B. 12种C. 24种D. 72种2. 已知函数,则( )A. 6 B. 8 C. 12 D. 163. 已知公差为的等差数列满足:,且,则( )A. B. C. D. 4. 函数的极小值点为( )A B. C. D. 5. 已知函数,则( )A. 1B. 2C.D. 6. 三次函数在上是减函数,则实数取值范围是( ).的()3f x x =0(2)(2)limx f x f x ∆→+∆-=∆d {}n a 5321a a -=20a =d =1-012()3612f x x x =+-()4,10-()2,10--42-()()2131ln 2f x f x x x ='-++()1f '=1212-()32f x mx x x =--(),-∞+∞mA. B. C D. 7. 某个体户计划同时销售A ,B 两种商品,当投资额为千元时,在销售A ,B 商品中所获收益分别为千元与千元,其中,,如果该个体户准备共投入5千元销售A ,B 两种商品,为使总收益最大,则B 商品需投( )千元.A. B. C. D. 8. 已知定义在上的函数满足,且,则的解集是( )A. B. C. D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 下列说法中正确的有( )A. 4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有种报名方法B. 4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有种报名方法C. 4名同学争夺跑步、跳高、跳远三项冠军(每项冠军只允许一人获得),共有种可能结果D. 4名同学争夺跑步、跳高、跳远三项冠军(每项冠军只允许一人获得),共有种可能结果10. 下面是关于公差的等差数列的四个命题,其中正确的有( )A. 数列是等差数列B. 数列是等差数列C. 数列是递增数列D. 数列是递增数列11. 已知函数的导函数为,则( )A. 函数的极小值点为B.C. 函数的单调递减区间为D. 若函数有两个不同的零点,则.1,3⎛⎤-∞- ⎥⎝⎦(),1-∞1,3⎛⎫-∞- ⎪⎝⎭(],1-∞()0x x >()f x ()g x ()2f x x =()()4ln 21g x x =+12325272()0,∞+()f x ()()0xf x f x '-<()22f =()ee 0x xf ->(),ln2-∞()ln2,+∞()20,e ()2e ,+∞344334430d >{}n a {}21n a -{}21n a -n a n ⎧⎫⎨⎬⎩⎭{}3n a nd +()(1)e x f x x =+()f x '()f x 21e -(2)0f '-=()f x (,2)-∞-()()g x f x a =-21,e a ⎛⎫∈-+∞ ⎪⎝⎭第II 卷(非选择题)三、填空题:本题共3小题,每小题6分,共15分12. 已知等比数列前项和为,,,则______.13. 如图,现在提供3种颜色给A ,B ,C ,D 4个区域涂色,规定每个区域只涂一种颜色,且相邻区域颜色不相同,共有___________种不同的涂色方案?14. 已知函数,,,则的最大值为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 求下列函数的导数:(1);(2);(3);(4);(5);(6)16. 已知是等差数列,是等比数列,且(1)求的通项公式;(2)设,求数列的前n 项和.17. 已知函数.(1)求函数在点处的切线方程(2)求函数在上的最大值和最小值18. 已知数列的前n 项和为.(1)求证:数列是等差数列;的{}n a n n S 5227a a =326S =414S a a =+()e 1x f x =-0a b >>()()f a f b =()e 2a b -ln 3y =3y x -=()1023y x =+21e x y +=()ln 32y x =-sin 4y x={}n a {}n b 23111443,9,,,b b a b a b ===={}n a n n nc a b =+{}n c ()33f x x x -=()f x ()2,2()f x []2,1-{}n a 1*11,1,2,n n n n S a a S n ++==+∈N 2n n S ⎧⎫⎨⎬⎩⎭(2)设的前n 项和为;①求;②若对任意的正整数n ,不等式恒成立,求实数的取值范围.19. 已知函数.(1)讨论的单调性;(2)当恒成立时,求取值范围;(3)证明:.的{},3n n n nS b b =n T n T 52n n T λ-<⋅λ()1e 1-=--x f x a x ()f x ()ln 0f x x x +-≥a 11eln(1)n i i n n =>++∑顺德德胜学校2023-2024学年高二下学期期中考试数学简要答案第I卷(选择题)一、单选题:本题共8小题,每小题5分,共0分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】C【6题答案】【答案】A【7题答案】【答案】B【8题答案】【答案】A二、多选题:本题共3小题,每小题6分,共18分.在每小题出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分【9题答案】【答案】BC【10题答案】【答案】ABD【11题答案】【答案】BC第II卷(非选择题)三、填空题:本题共3小题,每小题6分,共15分【12题答案】【答案】##【13题答案】【答案】24【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)(3)(4)(5) (6)【16题答案】【答案】(1)(2)【17题答案】【答案】(1);(2)的最小值是,的最大值是.【18题答案】【答案】(1)证明略(2)①;②1073171e0y '=43y x -'=-()92023y x '=+212e x y +'=32323y x x ⎛⎫'=> ⎪-⎝⎭4cos 4y x'=21n a n =-2312n n -+9160x y --=()f x 2-()f x 2()25253nn T n ⎛⎫=-+⨯ ⎪⎝⎭73λ>【19题答案】【答案】(1)答案略 (2) (3)证明略1a。
天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)
![天津市部分区2023-2024学年高二下学期期中练习数学试题(含答案)](https://img.taocdn.com/s3/m/2745ab5953ea551810a6f524ccbff121dd36c5e2.png)
天津市部分区2023~2024学年度第二学期期中练习高二数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共120分,考试用时100分钟.祝各位考生考试顺利!第Ⅰ卷一、选择题:本大题公共9小题,每小题4分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.曲线1y x x=-在2x =处的切线斜率为( )A . 3-B .34C .54D . 52.用0~6这7个自然数,可以组成没有重复数字的三位数的个数为( )A .60B .90C .180D .2103.函数ln xy x=的单调递增区间为( )A . (),e -∞B . ()0,e C . ()1,+∞D . ()e,+∞4. ()()52x y x y +-的展开式中33x y 项的系数为( )A . 30-B . 10-C . 10D .305.已知函数()y f x =,其导函数()y f x '=的图象如图所示,则对于()y f x =的描述正确的是()A .在区间(),0-∞上单调递减B .当0x =时取得最大值C .在区间()3,+∞上单调递减D .当1x =时取得最小值6.甲乙两位同学从5种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A .30种B .60种C .120种D .240种7.已知函数()32113f x x x ax =+-+在R 上单调递增,则实数a 的取值范围为( )A . (],1-∞-B . (),1-∞-C . ()1,-+∞D . [)1,-+∞8.函数()()sin 1cos f x x x x =-+在区间[]0,2π上的最大值为( )A . 1-B .1C .1π+D .2π+9.若对任意的()12,,x x m ∈+∞,不等式122112ln ln 2x x x x x x ->-恒成立,则实数m 的取值范围是( )A . 31,e e ⎛⎫ ⎪⎝⎭B . 31,e e ⎡⎤⎢⎥⎣⎦C . ()3e ,+∞D . )3e ,⎡+∞⎣第Ⅱ卷二、填空题:本大题共6小题,每小题4分,共24分.10.设函数()21ex f x -=,()f x '为其导函数,则()1f '=______.11.765765A 6A 6A --=______.12.在1,2,3,…,500中,被5除余3的数共有______个.13.在6⎛ ⎝的展开式中,2x 的系数是______.(用数字作答)14.如图,现要用4种不同的颜色对4个区域进行着色,要求有公共边的两个区域不能用同一种颜色,共有______种不同的着色方法.(用数字作答)15.已知函数()()()()22f x x a x a =--∈R ,当2x =时,()f x 有极大值,则a 的取值范围为______.三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()312f x x x =-.(1)求()f x 的单调区间;(2)求()f x 的极值.17.(本小题满分12分)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?18.(本小题满分12分)已知函数()()()256ln f x a x x a =-+∈R ,曲线()y f x =在点()()1,1f 处的切线与y 轴相交于点()0,6.(1)求a 的值;(2)求()f x 在区间[]1,3上的最小值.19.(本小题满分12分)已知函数()ln af x x x=+,a ∈R .(1)若()f x 在点()()1,1f 处取得极值.①求a 的值;②证明:()1f x ≥;(2)求()f x 的单调区间.20.(本小题满分12分)已知函数()e xf x x x a =--,()22g x x x =-,a ∈R .(1)求函数()y f x =-的导数;(2)若对任意的[]11,e x ∈,[]21,2x ∈,使得()()12f x g x ≥成立,求a 的取值范围;(3)设函数()()ln h x f x x =-,若()h x 在区间()0,e 上存在零点,求a 的最小值.天津市部分区2023~2024学年度第二学期期中练习高二数学参考答案一、选择题:本大题共9小题,每小题4分,共36分.题号123456789答案CCBBCBACD二、填空题:本大题共6小题,每小题4分,共24分.10.2e 11.012.10013.192-14.4815.2a >三、解答题:本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)解:(1)函数()f x 的定义域为R ,导函数()2312f x x '=-,令()0f x '=,解得2x =±,则()f x ',()f x 随x 的变化情况如下表:x(),2-∞-2-()2,2-2()2,+∞()f x '+0-0+()f x 单调递增取极大值单调递减取极小值单调递增故函数()f x 的单调增区间为(),2-∞-和()2,+∞,单调减区间为()2,2-;(2)由小问1知,当2x =-时,函数()f x 取得极大值16;当2x =时,函数()f x 取得极小值16-.17.(本小题满分12分)解:(1)每个小组从12名同学中选4名同学,选法种数为412C 495=;(2)每个小组从12名同学中选4名同学,选法种数为412C ,再从选出的同学中选定1名作为替补选法种数为14C ,因此还要从选出的同学中指定1名作替补,那么每个小组的选法种数为41124C C 1980=.(3)每个小组从12名同学中选4名同学并分别被指定为第一、二、三、四辩手,选法种数为412A 11880=.18.(本小题满分12分)解:(1)因为()()256ln f x a x x =-+,所以()()625f x a x x'=-+,令1x =,则()116f a =,()168f a '=-.所以曲线()yf x =在点()()1,1f 处的切线方程为()()16681y a a x -=--.由点()0,6在切线上,可得61686a a -=-,解得12a =.(2)由(1)得()()()2156ln 02f x x x x =-+>所以()()()2365x x f x x x x--'=-+=令()0f x '=,解得12x =,23x =.当x 变化时,()f x ',()f x 的变化情况如表所示.x()1,22()2,3()f x '+0-()f x 单调递增单调递减又由于()18f =,()326ln 38f =+>.所以,当1x =时,()f x 取得最小值8.19.(本小题满分12分)解:(1)①()221a x af x x x x-'=-+=,因为()f x 在点()()1,1f 处取得极值,所以()11101af a -'==-=;所以1a =.②中①得,()1ln f x x x =+,()21x f x x-'=令()0f x '=,解得1x =,当x 变化时,()f x ',()f x 的变化情况如表所示.x()0,11()1,+∞()f x '-0+()f x 单调递减1单调递增所以,当1x =时,()f x 取得最小值.所以()()11f x f ≥=,即()1f x ≥.(2)函数()f x 的定义域为()0,+∞,()221a x a f x x x x-'=-+=,当0a ≤时,()0f x '>恒成立,所以()f x 的单调递增区将为()0,+∞,无单调递减区间;当0a >时,令()0f x '=解得x a =,()0f x '>的解集为{}x x a >,()0f x '<的解集为{}0x x a <<,所以()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a 综上所述:当0a ≤时,()f x 的单调递增区间为()0,+∞,无单调递减区间;当0a >时,()f x 的单调递增区间为(),a +∞,单调递减区间为()0,a .20.(本小题满分12分)解:(1) ()e x y f x x x a -=-=-+-,所以e e 1x x y x --'=-++(2)因为()()1e 1x f x x '=+-,[]11,e x ∈,所以()0f x '≥,故()f x 在[]1,e 上单调递增,所以()e 1e 1,ee f x a a +⎡⎤∈----⎣⎦,又()()22211g x x x x =-=--,所以()g x 在[]1,2上也是单调递增,所以()[]1,0g x ∈-,因为对任意的[]11,e x ∈,[]21,2x ∈,使()()12f x g x ≥成立,等价于()()12min max f x g x ⎡⎤⎡⎤≥⎣⎦⎣⎦,即e 10a --≥,所以e 1a ≤-.故实数a 的范围是(],e 1-∞-.(3)由()e ln 0x h x x x x a =---=,即e ln x x x x a --=,令()e ln x p x x x x =--,()0,e x ∈,而()()()()1e 111e e 11e xx x xx x x p x x x x x x+-+'=+--=+-=,令()e 1x q x x =-,()0,e x ∈,则()ee 0xx q x x '=+>,即函数()q x 在()0,e 上单调递增,因为()010q =-<,()1e 10q =->,即()()010q q ⋅<,所以存在唯一的()00,1x ∈,使得()00q x =,即00e 10xx -=,即01ex x =,00ln x x =-,所以当00x x <<时,()0q x <,()0p x '<,函数()p x 单调递减;当0e x x <<时,()0q x >,()0p x '>,函数()p x 单调递增,所以()()0000000min e ln 11x p x p x x x x x x ==--=-+=,又0x +→时,()p x →+∞,所以要使()h x 在()0,e 存在零点,则1a ≥,所以a 的最小值为1.。
北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷(含简单答案)
![北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷(含简单答案)](https://img.taocdn.com/s3/m/c3dd2a327f21af45b307e87101f69e314332faa5.png)
北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷考生须知:1.本试卷共4页,分为两部分:第一部分为选择题,共40分;第二部分为非选择题,共60分.2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效.第一部分必须用2B 铅笔作答,第二部分必须用黑色字迹的签字笔作答.3.考试结束后,考生应将答题卡放在桌面上,待监考员收回.第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知等差数列通项公式为,则公差为()A 5B. 4C. 2D. 32. 下列函数中,既是奇函数又在区间上单调递增的函数是( )A. B. C. D.3. 已知函数,下面说法正确的是( )A. 在上的平均变化率为1B. C. 是的一个极大值点 D. 在处的瞬时变化率为24. 在数列中,,且,则其前项的和为()A. 841B. 421C. 840D. 4205. 已知函数的定义域为,其导函数的图象如图所示,则下列结论中错误的是( )的.{}n a 32n a n =+()0,∞+ln y x x=+3y x x =+1y x x=+2sin y x x=+()sin2f x x =()f x π0,4⎡⎤⎢⎥⎣⎦()cos2f x x'=π3x =()f x ()f x 0x ={}n a 11a =()*12N n n a a n n ++=∈41()y f x =R ()y f x ='A. 2是的极大值点B. 在处的切线斜率大于0C.D. 在上一定存在最小值6. 设等比数列的前项和为,则“” 是“数列为递增数列”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件7. 已知为等差数列,是其前项和,若,且,则当取得最大值时,( )A. 3B. 6C. 7D. 88. 若函数在上单调,则实数的取值范围是( )A B. C. D. 9. 给出以下值:①,②,③,④,其中使得函数有且仅有一个零点的是( )A. ①④B. ②④C. ①②③D. ①②④10. 李华学了“斐波那契数列”后对它十分感兴趣,于是模仿构造了一个数列:,,,. 给出下列结论:①;②;③设,则;④设,则有最大值,但没有最小值.其中所有正确结论的个数是( )A. 1B. 2C. 3D. 4第二部分(非选择题 共60分)二、填空题共5小题,每小题4分,共20分.11. 已知等比数列中,,,则该数列的前项和为______.12. 设,使存在极值的一个的值可以是______.13. 设,若的单调减区间为,则______,______..()f x ()f x ()()0,0f ()()34f f <()f x ()3,5-{}n a n n S 321a a a >>{}n S {}n a n S n 83S S >130S <n S n =()2ln 2x f x x =-(),m +∞m [)1,+∞()1,+∞()0,1(]0,1k e k =-1e k =-0k =1k =()e xk f x x=-{}n a 11a =22a =33a =312n n n n a a a a +++=+-20232023a =20242020a =-123n n S a a a a =++++ 20235056S =123n n T a a a a =⋅⋅⋅⋅ n T {}n a 28a =-34a =4()3231f x x ax x =+++()f x a ()2ln f x ax bx x =++()f x ()1,2=a b =14. 函数的定义如下表:1234551234已知,且数列满足对任意的,均有.若,则正整数的值为______.15. 牛顿和拉弗森在17世纪提出了“牛顿迭代法”,相比二分法可以更快速给出近似值,至今仍在计算机等学科中被广泛应用. 如图,设是方程的根,选取作为初始近似值.过点作曲线在处的切线,切线方程为,当时,称与轴的交点的横坐标是的1次近似值;过点作曲线在处的切线,切线方程为,当时,称与轴的交点的横坐标是的2次近似值;重复以上过程,得到的近似值序列. 这就是所谓的“牛顿迭代法”.(1)当,时,的次近似值与次近似值可建立等式关系:______;(2)若取作为2次近似值为______(用分数表示).三、解答题共4小题,共40分.解答应写出文字说明,演算步骤或证明过程.16. 已知函数.(1)求曲线在处切线方程;(2)求函数的单调区间;(3)求函数在区间上的最小值.17. 已知数列为等差数列,,,数列满足,.的的()f x x ()f x 04a ={}n a *n ∈N ()1n n a f a -=123180105m m m a a a a +++++++= m r ()0f x =0x r ()()00,x f x ()y f x =()()00,x f x 1l ()00f x '≠1l x 1x r ()()11,x f x ()y f x =()()11,x f x 2l ()10f x '≠2l x 2x r r {}n x ()0n f x '≠*n ∈N r 1n +1n x +n n x 1n x +=02x =r ()3211233f x x x x =+-+()y f x =0x =()f x ()f x []1,4-{}n a 11a =2410a a +={}n b 11b =121n n b b +=+(1)求数列的通项公式;(2)求证:数列是等比数列;(3)设,求数列的前项和.18. 设函数.(1)求的单调区间;(2)若,设,求证:不存在极大值.19. 已知数列是无穷数列,.(1)若,,写出,的值;(2)已知数列中,求证:数列中有无穷项为;(3)已知数列中任何一项都不等于,且,记,其中为,中较大的数. 求证:数列是递减数列.{}n a {}1n b +n n n c a b =+{}n c n n S ()2e axf x x =()f x 1a =()()g x f x x =-()g x {}n a 11111,0,0n n n n n n n n na a a a a a a a a --+----≥⎧=⎨--<⎩11a =22a =4a 5a {}n a 0k a ={}n a 0{}n a 0120a a >>{}()*212max ,n n n b a a n -=∈N{}max ,m n m n {}n b北京大学附属中学(行知、未名学院)2023-2024学年高二下学期期中考试数学试卷简要答案第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】D【4题答案】【答案】A【5题答案】【答案】C【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】A【9题答案】【答案】B【10题答案】【答案】C第二部分(非选择题共60分)二、填空题共5小题,每小题4分,共20分.【11题答案】【答案】10【12题答案】【答案】(答案不唯一).【13题答案】【答案】①.## ②. 【14题答案】【答案】145【15题答案】【答案】 ①. ②. 三、解答题共4小题,共40分.解答应写出文字说明,演算步骤或证明过程.【16题答案】【答案】(1)(2)增区间,减区间 (3)【17题答案】【答案】(1) (2)证明略 (3)【18题答案】【答案】(1)答案略 (2)证明略【19题答案】【答案】(1), (2)证明略(3)证明略4140.2532-()()n n n f x x f x '-975631y x =+()(),1,3,-∞+∞()1,3133-21n a n =-1222n n n ++--41a =50a =。
天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)
![天津市河西区2023-2024学年高二下学期期中考试数学试卷(含解析)](https://img.taocdn.com/s3/m/22bc59e8f021dd36a32d7375a417866fb84ac0a1.png)
天津市河西区2023-2024学年高二下学期期中考试数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.已知全集,集合,,则( )A. B. C. D.2.对变量x ,y 有观测数据,得散点图1;对变量u ,v 有观测数据,得散点图2.由这两个散点图可以判断( )A.变量x 与y 正相关,u 与v 正相关B.变量x 与y 正相关,u 与v 负相关C.变量x 与y 负相关,u 与v 正相关D.变量x 与y 负相关,u 与v 负相关3.设,则“且”是“”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.即不充分也不必要条件4.的展开式中,系数最大的项是( )项B.第n 项C.第项D.第n 项与第项5.已知随机变量X 服从正态分布,且,则( )A.0.6B.0.3C.0.2D.0.16.设X 为随机变量,,若随机变量X 的数学期望,则等于( ){}1,2,3,4U ={}1,2A ={},32B =()U A B ð{}1,3,4{}3,4{}3{}4(),i i x y ()1,2,,10= i (),i i u v ()1,2,,10i = ,x y ∈R 2x ≥2y ≥224x y +≥()2*1()n x n +∈N 1+1n +1n +()22,N σ()40.8P X <=()02P X <<=1,3X B n ⎛⎫⎪⎝⎭()2E X =()2P X =7.某学习小组共有11名成员,其中有6名女生,为了解学生的学习状态,随机从这11名成员中抽选2名任小组组长,协助老师了解情况,A 表示“抽到的2名成员都是女生”,B表示“抽到的2名成员性别相同”,则( )8.的展开式中各项系数的和为2,则该展开式中常数项为( )A.-40 B.-20 C.20 D.409.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252 C.261 D.279二、填空题10.的展开式中的系数为________.11.命题,的否定是________.12.已知,则________.13.含有3个实数的集合可表示为,又可表示为,则________.14.三位老师分配到4个贫困村调查义务教育实施情况,若每个村最多去2个人,则不同的分配方法有种________.15.某公司有甲、乙两家餐厅,小李第一天午餐时随机地选择一家餐厅用餐,如果第,则小李第二天去乙家餐厅的概率为________.三、解答题16.(1)证明:组合数性质;(2)计算:(用数字作答).17.已知集合,若()|P A B =512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭822x y :p x ∀∈R 210x +>7270127(12)x a a x a x a x -=++++ 1357a a a a +++=,,1b a a ⎧⎫⎨⎬⎩⎭{}20,,a a b +20242024a b +=()1*1C C C ,m m n n n m n π-+=+∈N 2222234100C C C C ++++ {}23100A x x x =--≤(1),,求实数m 的范围;(2),,求实数m 的范围;(3),,求实数m 的范围.18.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(x 吨)与相应的生产能耗y (吨)标准煤的几组对照数据:(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程;(3)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?(参考:用最小二乘法求线性回归方程系数公式(参考数值:)19.某班主任对班级22名学生进行了作业量多少的调查,数据如下:在喜欢玩电脑游戏的12人中,有9人认为作业多,3人认为作业不多;在不喜欢玩电脑游戏的10人中,有4人认为作业多,6人认为作业不多.(1)根据以上数据填写列联表;关系?参考公式:B A ⊆{}121B x m x m =+≤≤-A B ⊆{}621B x m x m =-≤≤-B A ={}621B x m x m =-≤≤-ˆybx a =+ˆb=ˆy =-3 2.543546 4.566.53242526286⨯+⨯+⨯+⨯=+++=22⨯2K =参考数据:,,,.20.已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X 为取出3球所得分数之和.(Ⅰ)求X 的分布列;(Ⅱ)求X 的数学期望E(X).2( 2.072)0.15P K ≥=2( 2.706)0.10P K ≥=2( 3.841)0.05P K ≥=()2 5.0240.025P K ≥=参考答案1.答案:D解析:易知,则,故选:D.2.答案:C解析:变量x 与中y 随x 增大而减小,为负相关;u 与v 中,u 随v 的增大而增大,为正相关.3.答案:A解析:试题分析:若且,则,,所以,即;若,则如满足条件,但不满足且.所以“且”是“”的充分而不必要条件.故选A.4.答案:C解析:在的展开式中,第项的系数与第项的二项式系数相同,再根据中间项的二项式系数最大,展开式共有项,可得第项的系数最大,故选C.5.答案:B解析:由题意,随机变量X 服从正态分布,则正态分布曲线关于对称,又由,根据正态分布曲线的对称性,可得,所以,故选B.6.答案:A解析:因为,得,即.所以故选A 7.答案:A解析:由题意可知{}1,2,3A B = {}()4U A B = ð2x ≥2y ≥24x ≥24y ≥228x y +≥224x y +≥224x y +≥()2,2--2x ≥2y ≥2x ≥2y ≥224x y +≥()()2*1x n n +∈N 1r +1r +21n +1n +22,N σ()2x =(4)0.8P X <=(0)(4)1(4)0.2P X P X P X ≤=≥=-<=1(02)(0)0.50.20.32P X P X <<=-≤=-=()123E X n ==6n =16,3X B ⎛⎫ ⎪⎝⎭()2426112C 133P X ⎛⎫⎛⎫==⨯⨯-= ⎪ ⎪⎝⎭⎝⎭()2265211C C C P B +==()26211C C AB ==所以故选:A.8.答案:D解析:令得.故原式=.的通项,由得,对应的常数项,由得,对应的常数项,故所求的常数项为40,故选D 9.答案:B解析:由分步乘法原理知:用0,1,…,9十个数字组成的三位数(含有重复数字的)共有,组成无重复数字的三位数共有,因此组成有重复数字的三位数共有.10.答案:70解析:设的展开式中含的项为第项,则由通项知.令,解得,的展开式中的系数为.11.答案:,或,解析:全称量词命题的否定是存在量词命题,要注意否定结论,所以命题,的否定是:,故答案为:,12.答案:-1094解析:令,则,,()()()|P AB P A B P B ==1x =1a =5112x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭512x x ⎛⎫- ⎪⎝⎭521552155C (2)()C (1)2r r r r rr r r T x x x ----+=-=-521r -=2r =80=521r -=-3r =80=-91010900⨯⨯=998648⨯⨯=900648252-=822x y 1r +()811882222188C 1C rrr rr r r r r r T xy x y x y -----+--++⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭822r r -+-=4r =∴822x y ()4481C 70-=0x ∃∈R 2010x +≤x ∃∈R 210x +≤:p x ∀∈R 210x +>0x ∃∈R 2010x +≤0x ∃∈R 2010x +≤()7270127()12f x x a a x a x a x =-++++= 0127(1)1a a a a f ++++==- 701273(1)32187a a a a f a -++--==-=所以.故答案为:-109413.答案:1解析:因为有3个实数的集合可表示为,又可表示为,所以,即,则,即或,当时,集合为,与集合元素的互异性矛盾,故,,.故答案为:1.14.答案:60解析:若每个村去一个人,则有种分配方法;若有一个村去两人,另一个村去一人,则有种分配方法,所以共有60种不同的分配方法.解析:设“第1天去甲餐厅用餐“,“第1天去乙餐厅用餐”,“第2天去甲餐厅用餐”,“第2天去乙餐厅用餐”,根据题意得,则则由全概率公式得:,即1357(1)(1)10942f f a a a a --==-+++,,1b a a ⎧⎫⎨⎬⎩⎭{}2,0,a a b +a ≠0=0b =21a =1a =1a =-1a ={1,0,1}{1,1,0}1a =-0b =202420241a b +=34A 24=1234C A 36⨯=1A =1B =2A =2B =1122()()()()P A P B P A P B ====()21|A A =()21|P A B =21(|)P B A =()()()21211|P A B A B P B ==()214152P A B =⨯=()()()2112225|12P A B P B A P A ===()22|B A =21222121222()()()()(|)()(|)P B P A B P A B P A P B A P A P B A =+=+212113()252510P B =⨯+⨯=16.答案:(1)证明见解析;(2)166650解析:(1)证明:;(2)=.17.答案:(1);(2)(3)不存在满足题意的实数m解析:(1);当时,满足,则,解得:;当时,由得:,解得:;综上所述:实数m 的取值范围为.(2)由得:,解得:,即实数m 的取值范围为.(3),,方程组无解,不存在满足题意的实数m .18.答案:(1)见解析;(2);()()1!!!!(1)!C 1!C m m n n n n m n m m n m -+---++=()()()()()!1!1!!1!!1!!1!n n m n n m m n mm n m m n m m n m -+-++=+=-+-+-+()()11!!(1)C !(1)!!1!m n n n n m n m m n m +++===-+-+3223102222223223410044041300C C C C C C C C C C C =+++=+++++++ 22323310010010515100C C 10110099C C C 16665032C ⨯⨯==+++==+=⨯ (],3-∞[]3,4{}()(){}{}2310052025A x x x x x x x x =--≤=-+≤=-≤≤B =∅B A ⊆121m m +>-2m <B ≠∅B A ⊆12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩23m ≤≤(],3-∞A B ⊆62126521m m m m -≤-⎧⎪-≥-⎨⎪≤-⎩34m ≤≤[]3,4A B = 62215m m -=-⎧∴⎨-=⎩∴ˆ0.70.35yx =+(3)19.65吨解析:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下;(2)由对照数据,计算得,,,,回归方程的系数为,,所求线性回归方程为;(3)由(2)的线性回归方程,估计生产100吨甲产品的生产能耗为(吨,吨,预测比技改前降低了19.65吨标准煤.19.答案:(1)答案见解析;(2)有关系解析:(1)根据题中所给数据,得到如下列联表:1(3456) 4.54x =⨯+++=1(2.534 4.5) 3.54y =⨯+++=4222221345686ii x==+++=∑413 2.543546 4.566.5iii x y==⨯+⨯+⨯+⨯=∑∴266.54 4.5 3.5ˆ0.7864 4.5b -⨯⨯==-⨯ 3.50.7 4.5ˆ0.35a =-⨯=∴ˆ0.70.35yx =+0.71000.3570.35⨯+=)9070.3519.65∴-=22⨯由(1)中的的列联表,可得,所以有充分的理由认为假设不成立,即认为喜欢玩电脑游戏与认为作业多少有关,这种判断出错误的概率不超过0.10.20.答案:(Ⅰ)见解析;解析:(Ⅰ)X 的可能取值有:3,4,5,6.故,所求X 的分布列为22⨯()220.10226943 2.7641 2.7061210139K K ⨯⨯-⨯=≈>=⨯⨯⨯3539C (3)C P X ===215439C C (4)C X ===125439C C (5)C P X ===3439C (6)C P X ===()51051345642211421E X ⨯+⨯+⨯+⨯==。
河北省唐山市十县一中联盟2023-2024学年高二下学期期中考试数学试题(含简单答案)
![河北省唐山市十县一中联盟2023-2024学年高二下学期期中考试数学试题(含简单答案)](https://img.taocdn.com/s3/m/0d3f677bae45b307e87101f69e3143323968f5e0.png)
唐山市十县一中联盟2023-2024学年高二下学期期中考试数学本试卷共4页,19小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 某公园有4个门,从一个门进,另一个门出,则不同的走法种数为( )A. 4B. 6C. 12D. 162. 下列运算正确的是( )A. B. C. D. 3. 4幅不同的国画和2幅不同的油画排成一列,2幅油画不相邻,则不同的排法种数为( )A. 240B. 360C. 480D. 7204. 若曲线在点处的切线与直线平行,则( )A B. C. 0 D. 15. 在的展开式中只有第5项的二项式系数最大,则正整数( )A. 7B. 8C. 9D. 106. 从4名医生,3名护士中选出3人组成一个医疗队,要求医生和护士都有,则不同的选法种数为( )A. 12B. 18C. 30D. 607. 已知函数,则( )A. B. C. D. 8. 如图,已知正方形,边长为2,点,分别在线段,上,,将沿折起,使得点到达点的位置,且平面平面,则五棱锥体积的最大值为( ).ππ(sin )cos 33'=(2)2ln 2x x '=1[ln()]x x '-=-(cos )sin x x'=()sin ln(1)f x a x x =++(0,0)21y x =-=a 2-1-()1n x +n =22()e (2)1x f x f x -'=++(3)f '=e 2-e 2+e 5+e 10+ABCD E F AB BC //EF AC BEF △EF B P PEF ⊥ADCFE P ADCFE -A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知为函数导数,的图象如图所示,则( )A. 是的极大值点B. 当时,取得最小值C. 在区间上单调递减D. 在区间上单调递增10. 已知,是正整数,且,则下列等式正确的是( )A. B. C D. 11. 已知函数有两个极值点,,且,则( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 已知为函数的导数,则______.13. 从黄瓜、白菜、豆角、韭菜、青椒5种蔬菜种子中选出3种分别种在,,三块不同土地上,每块土地只种1种,其中黄瓜不种在土地上,则不同的种法共有__________种.14. 展开式中的的系数为__________.的.的()f x '()f x ()y f x ='0x =()f x 1x =()f x ()f x ()0,1()f x ()1,∞+m n m n ≤461010A A =3441C C C n n n ++=()111A A m m n n n +++=123C C C C 2n n n n n n ++++= ()32f x x kx =-+a b a b <0k ≥0a b +=()2f a >()2f b <()f x '21()f x x x=+()1f '=A B C A ()52x y y -+25x y四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15. 某学习小组共6人,其中男生3名,女生3名.(1)将6人排成一排,3名男生从左到右的顺序一定(不一定相邻),不同排法有多少种?(2)从6人中选出4人,女生甲和女生乙至少1人在内的不同选法共有多少种?16. 已知曲线上一点.(1)当时,求曲线在点处的切线方程;(2)若在点处的切线与两坐标轴围成的三角形面积为9,求实数的值.17. 已知函数.(1)求极值;(2)若方程有两个不相等的实数根,求的值.18. 已知,求下列各式的值.(1);(2);(3).19. 已知,为的导数.(1)证明:当时,;(2)讨论在上的零点个数,并证明的()31f x x mx =--()()1,1P f 2m =()y f x =P ()f x P m ()2e xf x x =()f x ()()f x a a =∈R a ()()523456012345621x x a a x a x a x a x a x a x +-=++++++5a 0246a a a a +++12345623456a a a a a a +++++()2cos e x f x x x =+-()f x '()f x 0x ≥()1f x '≤()f x R ()f x <唐山市十县一中联盟2023-2024学年高二下学期期中考试数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】B【6题答案】【答案】C【7题答案】【答案】A【8题答案】【答案】A二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BC【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】1【13题答案】【答案】48【14题答案】【答案】四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)120(2)14【16题答案】【答案】(1);(2)或.【17题答案】【答案】(1)极大值为,极小值为0 (2)【18题答案】【答案】(1)3(2)16 (3)0【19题答案】【答案】(1)证明略(2)有2个零点,证明略30-3y x =-527224e 24e a =。
福建省福州第八中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)
![福建省福州第八中学2023-2024学年高二下学期期中考试数学试卷(含简单答案)](https://img.taocdn.com/s3/m/f0897c5453ea551810a6f524ccbff121dd36c5a0.png)
福州第八中学2023-2024学年高二下学期期中考试数学考试时间:120分钟试卷满分:150分一、单选题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知随机变量服从两点分布,,则其成功概率( )A. 0B. 1C. 0.3D. 2. 已知数列为等比数列,若,则的值为( )A. -4B. 4C. -2D. 23. 设随机变量,若,则等于()A. 0.2B. 0.7C. 0.8D. 0.94. 设是一个离散型随机变量,其分布列为则等于( )A. 1B. C.D. 5. 已知点P ,Q 分别为圆与上一点,则的最小值为()A. 4B. 5C. 7D. 106. 已知,则( )A. 64B. 32C. 63D. 317. 若,则( )A. B. C. D. 为X ()0.7E X =0.7{}n a 2580a a +=64a a ()24,X N σ~()0.8P X m >=()8P X m >-X X234P1212q-22q q 1121+22:1C x y +=22:(7)4D x y -+=||PQ ()01223344414729n n n n n n nn C C C C C -+-+⋅⋅⋅+-⋅⋅=123n n n n n C C C C +++⋅⋅⋅+=()221ln ln π,ln ,33ea b c ===-c a b <<b c a <<c b a<<b a c<<8. 已知双曲线的左顶点为是双曲线的右焦点,点在直线上,且的离心率是( )A. B. C.D. 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 连续抛掷一枚骰子2次,记事件A 表示“2次结果中正面向上的点数之和为奇数”,事件B 表示“2次结果中至少一次正面向上的点数为偶数”,则( )A. 事件A 与事件B 不互斥 B. 事件A 与事件B 相互独立C. D. 10. 已知直线经过抛物线的焦点,与交于A ,两点,与的准线交于点,则( )A. B. 若,则C. 若,则的取值范围是 D.若,,成等差数列,则11. 甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复次这样的操作,记甲口袋中黑球个数为,恰有1个黑球的概率为,恰有2个黑球的概率为,则下列结论正确的是( )A. ,B. 数列是等比数列C. 数列是等比数列D. 的数学期望三、填空题:本题共3小题,每小题5分,共15分.12. 已知抛物线C 的顶点在原点,焦点在x 轴上,且抛物线上有一点P (4,m )到焦点的距离为6.则抛物线C 的方程为________.2222:1(0,0)x y C a b a b -=>>()0,,A F c C P 2x c=tan APF ∠C 2+4+()34P AB =()2|3P A B =()1x my =-()2:20E x py p =>F E B E l C 2p =3AF FB =m =()0,1N -AN AF⎡⎣FA AC FB FC BF=()*Nn n ∈nXn p n q 21627p =2727q ={}21n n p q +-{}21n n p q +-n X ()()*11N 3nn E X n ⎛⎫=+∈ ⎪⎝⎭13. “畅通微循环,未来生活更舒适”.我国开展一刻钟便民生活圈建设,推进生活服务业“规范化、连锁化、便利化、品牌化、特色化、智能化”发展,以提质便民为核心,高质量建设国际消费中心城市,便民商业体系向高品质发展.某调研机构成立5个调研小组,就4个社区的便民生活圈的建设情况进行调研,每个调研小组选择其中1个社区,要求调研活动覆盖被调研的社区,共有派出方案种数为____________14. 设为的展开式的各项系数之和,,,表示不超过实数x 的最大整数,则的最小值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在中,内角A ,B ,C 的对边分别为a ,b ,c ,且.(1)求A 的大小;(2)若,BC 边上高的长.16. 已知是公差不为零的等差数列,,且成等比数列.(1)求数列通项公式;(2)若,求前1012项和.17. 已知函数,.(1)当时,求函数的极值;(2)若任意且,都有成立,求实数的取值范围.18. 为了引导居民合理用电,国家决定实行合理的阶梯电价,居民用电原则上以住宅为单位(一套住宅为一户).阶梯级别第一阶梯第二阶梯第三阶梯月用电范围(度)某市随机抽取10户同一个月的用电情况,得到统计表如下:居民用电户编号12345678910用电量(度)538690124214215220225420430的的*n n N a ∈,()()2+3+1n nx x -=23c t -R t ∈1222=[]+[]++[]555n n n b na a a n )22()+(+)n n t b c -ABC V 2cos 2a B c +=3b =c ={}n a 11a =125,,a a a {}n a 114(1)n n n n nb a a ++=-⋅{}n b 1012T 21()ln(1)14f x a x x =-++211()()1e 2x g x f x x ⎛⎫=+-- ⎪⎝⎭1a =-()f x 12,(1,)x x ∈+∞12x x ≠()()21211g x g x x x -≥-a [0,210](210,400](400,)+∞(1)若规定第一阶梯电价每度0.5元,第二阶梯超出第一阶梯部分每度0.6元,第三阶梯超出第二阶梯的部分每度0.8元,试计算某居民用电户用电450度时应交电费多少元?(2)现要从这10户家庭中任意选取3户,求取到第二阶梯电量的户数的分布列与期望;(3)以表中抽到的10户作为样本估计全市居民用电,现从全市中依次抽取10户,记取到第一阶梯电量的户数为,当时对应的概率为,求取得最大值时的值.19. 已知椭圆(常数),点,,为坐标原点.(1)求椭圆离心率的取值范围;(2)若是椭圆上任意一点,,求的取值范围;(3)设,是椭圆上的两个动点,满足,试探究的面积是否为定值,说明理由.的Y Yk =k P k P k 222:1x y aγ+=2a ≥(),1A a (),1B a -O P γOP mOA nOB =+m n +()11,M x y ()22,N x y γOM ON OA OB k k k k ⋅=⋅OMN V福州第八中学2023-2024学年高二下学期期中考试数学简要答案一、单选题:本题共8小题.每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】B【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】A【6题答案】【答案】C【7题答案】【答案】C【8题答案】【答案】B二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AD【10题答案】【答案】AD【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】y 2=8x 【13题答案】【答案】240【14题答案】【答案】##02四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值为,无极大值 (2)【18题答案】【答案】(1)259元 (2)分布列略,期望为 (3)4【19题答案】【答案】(1) (2) (3)的面积为定值,理由略.15π6A =3221n a n =-101220242025T =221,e ⎡⎫+∞⎪⎢⎣⎭65e ⎫∈⎪⎪⎭[]1,1m n +∈-OMN V 2a。
福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案
![福建省福州市2023-2024学年高二下学期期中联考试题 数学含答案](https://img.taocdn.com/s3/m/b953147759fb770bf78a6529647d27284b733721.png)
2023-2024学年第二学期期中质量检测高二数学试卷(答案在最后)(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62B.102C.152D.5402.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.5124.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A. B.C. D.5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π46.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.2157.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.8828.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.610.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412a b下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y gx =过点(1,0)的切线方程.16.已知n⎛⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.2023-2024学年第二学期期中质量检测高二数学试卷(满分:150分;考试时间:120分钟)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:选择性必修第二册第五章、选择性必修第三册第六章、第七章第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.计算52752+C A 的值是()A.62 B.102C.152D.540【答案】A 【解析】【分析】利用组合和排列数公式计算【详解】5275762254622C A =+´+创=故选:A2.下列导数运算正确的是()A.cos sin x x x '⎛⎫=- ⎪⎝⎭B.()21log ln 2x x '=C.()22xx'= D.()32e 3exxx x '=【答案】B 【解析】【分析】利用常见函数的导数可以判断B 、C 的真假,利用积的导数的运算法则判断D 的真假,利用商的导数的运算法则判断A 的真假.【详解】∵()22cos cos cos sin cos x x x x x x x x x x x ''⋅-⋅--⎛⎫== ⎪⎝'⎭,故A 错误;∵()21log ln 2x x '=,故B 正确;∵()22ln 2x x '=,故C 错误;∵()()()33323e e e 3e e x x x x x x x x x x ⋅'''=⋅+=+,故D 错误.故选:B.3.若9290129(2)x a a x a x a x -=++++L ,则129a a a +++ 的值为()A.1- B.1 C.511- D.512【答案】C 【解析】【分析】根据题意,分别令1x =与0x =代入计算,即可得到结果.【详解】当1x =时,20911a a a a ++++=L ;当0x =时,0512a =所以,1211511a a a +++=-L 故选:C4.若2()f x x bx c =++的图象的顶点在第二象限,则函数()f x '的图象是()A.B.C.D.【答案】C 【解析】【分析】求导后得到斜率为2,再由极值点是导数为零的点小于零,综合直线的特征可得正确答案.【详解】因为()2f x x b '=+,所以函数()f x '的图象是直线,斜率20k =>;又因为函数()f x 的顶点在第二象限,所以极值点小于零,所以()f x '的零点小于零,结合直线的特征可得C 符合.故选:C5.曲线()(22e 21xf x x x =--+-在0x =处的切线的倾斜角是()A.2π3B.5π6C.3π4 D.π4【答案】A 【解析】【分析】利用导数的几何意义求得切线斜率,即可求得切线的倾斜角.【详解】()()2e 22,0xf x x f =--∴'-'= ,设切线的倾斜角为[),0,πθθ∈,则tan θ=,即2π3θ=,故选:A .6.现有完全相同的甲,乙两个箱子(如图),其中甲箱装有2个黑球和4个白球,乙箱装有2个黑球和3个白球,这些球除颜色外完全相同.某人先从两个箱子中任取一个箱子,再从中随机摸出一球,则摸出的球是黑球的概率是()A.1115B.1130C.115D.215【答案】B 【解析】【分析】根据条件概率的定义,结合全概率公式,可得答案.【详解】记事件A 表示“球取自甲箱”,事件A 表示“球取自乙箱”,事件B 表示“取得黑球”,则()()()()1212,,2635P A P A P B A P B A =====,由全概率公式得()()()()111211232530P A P B A P A P B A +=⨯+⨯=.故选:B .7.有7种不同的颜色给下图中的4个格子涂色,每个格子涂一种颜色,且相邻的两个格子颜色不能相同,若最多使用3种颜色,则不同的涂色方法种数为()A.462B.630C.672D.882【答案】C 【解析】【分析】根据题意,按使用颜色的数目分两种情况讨论,由加法原理计算可得答案.【详解】根据题意,分两种情况讨论:若用两种颜色涂色,有27C 242⨯=种涂色方法;若用三种颜色涂色,有()37C 3221630⨯⨯⨯+=种涂色方法;所以有42630672+=种不同的涂色方法.故选:C.8.已知函数()e 2xx k f x =-,若0x ∃∈R ,()00f x ≤,则实数k 的最大值是().A.1eB.2eC.12eD.e e【答案】B 【解析】【分析】将问题转化为002e x x k ≤在0x ∈R 上能成立,利用导数求2()exxg x =的最大值,求k 的范围,即知参数的最大值.【详解】由题设,0x ∃∈R 使02e x x k ≤成立,令2()exxg x =,则()21e x g x x ⋅-'=,∴当1x <时()0g x '>,则()g x 递增;当1x >时()0g x '<,则()g x 递减;∴2()(1)e g x g ≤=,故2e k ≤即可,所以k 的最大值为2e.故选:B.二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知1)nx+*(N )n ∈展开式中常数项是2C n ,则n 的值为().A.3B.4C.5D.6【答案】AD 【解析】【分析】根据二项式展开式得到321C n r r r nT x-+=,再令302n r-=,则得到123C C n n n =,解出即可.【详解】展开式的通项为131221C ()()C n r r n rr rr nnT x x x---+==,若要其表示常数项,须有302n r-=,即13r n =,又由题设知123C C n n =,123n \=或123n n -=,6n ∴=或3n =.故选:A D .10.高中学生要从必选科目(物理和历史)中选一门,再在化学、生物、政治、地理这4个科目中,依照个人兴趣、未来职业规划等要素,任选2个科目构成“1+2选考科目组合”参加高考.已知某班48名学生关于选考科目的结果统计如下:选考科目名称物理化学生物历史地理政治选考该科人数36392412ab下面给出关于该班学生选考科目的四个结论中,正确的是()A.33a b +=B.选考科目组合为“历史+地理+政治”的学生可能超过9人C.在选考化学的所有学生中,最多出现6种不同的选考科目组合D.选考科目组合为“历史+生物+地理”的学生人数一定是所有选考科目组合中人数最少的【答案】AC 【解析】【分析】结合统计结果对选项逐一分析即可得.【详解】对A :由3924482a b +++=⨯,则33a b +=,故A 正确;对B :由选择化学的有39人,选择物理的有36人,故至少有三人选择化学并选择了历史,故选考科目组合为“历史+地理+政治”的学生最多有9人,故B 错误;对C :确定选择化学后,还需在物理、历史中二选一,在生物、地理、政治中三选一,故共有236⨯=种不同的选考科目组合,故C 正确;对D :由于地理与政治选考该科人数不确定,故该说法不正确,故D 错误.故选:AC.11.若不等式e ln 0x ax a -<在[)2,x ∞∈+时恒成立,则实数a 的值可以为()A.3eB.2eC.eD.2【答案】BCD 【解析】【分析】构造函数()ex xf x =,将e ln 0x ax a -<恒成立问题转化为()()ln f x f a <恒成立问题,求导,研究()e xxf x =单调性,画出其图象,根据图象逐一验证选项即可.【详解】由e ln 0x ax a -<得ln ln ln e ex a x a aa <=,设()e x x f x =,则()1ex xf x ='-,当1x <时,()0f x '>,()f x 单调递增,当1x >时,()0f x '<,()f x 单调递减,又()00f =,()11e f =,当0x >时,()0ex xf x =>恒成立,所以()ex xf x =的图象如下:,ln ln e ex a x a<,即()()ln f x f a <,2x ≥,对于A :当3e a =时,ln ln 31>2a =+,根据图象可得()()ln f x f a <不恒成立,A 错误;对于B :当2e a =时,()ln ln 211,2a =+∈,根据图象可得()()ln f x f a <恒成立,B 正确;对于C :当e a =时,ln 1a =,根据图象可得()()ln f x f a <恒成立,C 正确;对于D :当2a =时,ln ln 2a =,又()()ln 22ln 212ln 2ln 2,2e 2ef f ===,因为221263ln 23ln 2e e ⨯-⨯=,且2e,e 6>>,即26ln 1,1e ><,所以221263ln 23ln 02e e⨯-⨯=->,即()()ln 22f f >,根据图象可得()()ln f x f a <恒成立,D 正确;故选:BCD.【点睛】关键点点睛:本题的关键将条件变形为ln ln e e x ax a <,通过整体结构相同从而构造函数()e x x f x =来解决问题.第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.某气象台统计,该地区下雨的概率为415,刮四级以上风的概率为215,既刮四级以上的风又下雨的概率为110,设A 为下雨,B 为刮四级以上的风,则()P B A =___________.【答案】38【解析】【分析】利用条件概率的概率公式()()()P AB P B A P A =即可求解.【详解】由题意可得:()415P A =,()215P B =,()110P AB =,由条件概率公式可得()()()13104815P AB P B A P A ===,故答案为:38.13.某校一次高三数学统计,经过抽样分析,成绩X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为________.【答案】200【解析】【分析】根据X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,求得(130)p X ≥即可.【详解】因为X 近似服从正态分布()2110,N σ,且P (90110)X ≤≤0.3=,所以()()113012901300.22P X P X ⎡⎤≥=-≤≤=⎣⎦,又该校有1000人参加此次统考,估计该校数学成绩不低于130分的人数为10000.2200⨯=人.故答案为:200.14.将4名志愿者分配到3个不同的北京冬奥场馆参加接待工作,每个场馆至少分配一名志愿者的方案种数为________.(用数字作答)【答案】36【解析】【分析】先将4人分成2、1、1三组,再安排给3个不同的场馆,由分步乘法计数原理可得.【详解】将4人分到3个不同的体育场馆,要求每个场馆至少分配1人,则必须且只能有1个场馆分得2人,其余的2个场馆各1人,可先将4人分为2、1、1的三组,有211421226C C C A =种分组方法,再将分好的3组对应3个场馆,有336A =种方法,则共有6636⨯=种分配方案.故答案为:36四、解答题(本大题共5题,共77分,解答时应写出文字说明,证明过程或演算步骤)15.已知函数3()ln (R)f x x ax a =+∈,且(1)4f '=.(1)求a 的值;(2)设()()ln g x f x x x =--,求()y g x =过点(1,0)的切线方程.【答案】(1)1(2)22y x =-【解析】【分析】(1)利用导数求解参数即可.(2)先设切点,利用导数表示斜率,建立方程求出参数,再写切线方程即可.【小问1详解】定义域为,()0x ∈+∞,21()3f x ax x'=+,而(1)13f a '=+,而已知(1)4f '=,可得134a +=,解得1a =,故a 的值为1,【小问2详解】3()()ln g x f x x x x x =--=-,设切点为0003(,)x x x -,设切线斜率为k ,而2()31g x x '=-,故切线方程为300200()(31)()y x x x x x --=--,将(1,0)代入方程中,可得3200000()(31)(1)x x x x --=--,解得01x =(负根舍去),故切线方程为22y x =-,16.已知n ⎛ ⎝在的展开式中,第6项为常数项.(1)求n ;(2)求含2x 的项的系数;(3)求展开式中所有的有理项.【答案】(1)10n =;(2)454;(3)2454x ,638-,245256x.【解析】【分析】(1)求出n⎛ ⎝的展开式的通项为1r T +,当=5r 时,指数为零,可得n ;(2)将10n =代入通项公式,令指数为2,可得含2x 的项的系数;(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,求出r 的值,代入通项公式并化简,可得展开式中所有的有理项.【详解】(1)n ⎛ ⎝的展开式的通项为233311122r rn r r n r r r r n n T C x x C x ----+⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,因为第6项为常数项,所以=5r 时,有203n r -=,解得10n =.(2)令223n r -=,得()()116106222r n =-=⨯-=,所以含2x 的项的系数为221014524C ⎛⎫-= ⎪⎝⎭.(3)根据通项公式与题意得1023010r Zr r Z -⎧∈⎪⎪≤≤⎨⎪∈⎪⎩,令()1023r k k Z -=∈,则1023r k -=,即352r k =-.r Z ∈,∴k 应为偶数.又010r ≤≤,∴k 可取2,0,-2,即r 可取2,5,8.所以第3项,第6项与第9项为有理项,它们分别为2221012C x ⎛⎫- ⎪⎝⎭,551012C ⎛⎫- ⎪⎝⎭,8821012C x -⎛⎫- ⎪⎝⎭,即2454x ,638-,245256x .【点睛】关键点点睛:本题考查二项式展开式的应用,考查二项式展开式的通项公式以及某些特定的项,解决本题的关键点是求解展开式的有理项时,令()1023r k k Z -=∈,由r Z ∈以及010r ≤≤,求出k 的值,进而得出r 的值,代入通项公式化简可得有理项,考查了学生计算能力,属于中档题.17.如图,有三个外形相同的箱子,分别编号为1,2,3,其中1号箱装有1个黑球和3个白球,2号箱装有2个黑球和2个白球,3号箱装有3个黑球,这些球除颜色外完全相同.小明先从三个箱子中任取一箱,再从取出的箱中任意摸出一球,记事件i A (123i =,,)表示“球取自第i 号箱”,事件B 表示“取得黑球”.(1)求()P B 的值:(2)若小明取出的球是黑球,判断该黑球来自几号箱的概率最大?请说明理由.【答案】(1)712(2)可判断该黑球来自3号箱的概率最大.【解析】【分析】(1)因先从三个箱子中任取一箱,再从取出的箱中任意摸出一球为黑球,其中有三种可能,即黑球取自于1号,2号或者3号箱,故事件B 属于全概率事件,分别计算出()i P A 和(|),1,2,3i P B A i =,代入全概率公式即得;(2)由“小明取出的球是黑球,判断该黑球来自几号箱”是求条件概率(|),1,2,3i P A B i =,根据条件概率公式分别计算再比较即得.【小问1详解】由已知得:1231()()()3P A P A P A ===,12311(|),(|),(|)1,42P B A P B A P B A ===而111111()(|)(),4312P BA P B A P A =⋅=⨯=222111()(|)(),236P BA P B A P A =⋅=⨯=33311()(|)()1.33P BA P B A P A =⋅=⨯=由全概率公式可得:1231117()()()().126312P B P BA P BA P BA =++=++=【小问2详解】因“小明取出的球是黑球,该黑球来自1号箱”可表示为:1A B ,其概率为111()112(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自2号箱”可表示为:2A B ,其概率为221()26(|)7()712P A B P A B P B ===,“小明取出的球是黑球,该黑球来自3号箱”可表示为:3A B ,其概率为331()43(|)7()712P A B P A B P B ===.综上,3(|)P A B 最大,即若小明取出的球是黑球,可判断该黑球来自3号箱的概率最大.18.为普及空间站相关知识,某部门组织了空间站模拟编程闯关活动,它是由太空发射、自定义漫游、全尺寸太阳能、空间运输等10个相互独立的程序题目组成.规则是:编写程序能够正常运行即为程序正确.每位参赛者从10个不同的题目中随机选择3个进行编程,全部结束后提交评委测试,若其中2个及以上程序正确即为闯关成功.现已知10个程序中,甲只能正确完成其中6个,乙正确完成每个程序的概率为0.6,每位选手每次编程都互不影响.(1)求乙闯关成功的概率;(2)求甲编写程序正确的个数X 的分布列和期望,并判断甲和乙谁闯关成功的可能性更大.【答案】(1)0.648(2)分布列见解析,期望为95,甲比乙闯关成功的概率要大.【解析】【分析】(1)根据题意,直接列出式子,代入计算即可得到结果;(2)根据题意,由条件可得X 的可能取值为0,1,2,3,然后分别计算其对应概率,即可得到分布列,然后计算甲闯关成功的概率比较大小即可.【小问1详解】记事件A 为“乙闯关成功”,乙正确完成每个程序的概率为0.6,则()()2233C 0.610.6(0.6)0.648;P A =⨯⨯-+=【小问2详解】甲编写程序正确的个数X 的可能取值为0,1,2,3,()()()()211233464664333310101010C C C C C C 13110,1,2,3C 30C 10C 2C 6P X P X P X P X ============,故X 的分布列为:X0123P 1303101216故()1311901233010265E X =⨯+⨯+⨯+⨯=,甲闯关成功的概率1120.648263P =+=>,故甲比乙闯关成功的概率要大.19.已知曲线()31:3C y f x x ax ==-.(1)求函数()313f x x ax =-()0a ≠的单调递增区间;(2)若曲线C 在点()()3,3f 处的切线与两坐标轴围成的三角形的面积大于18,求实数a 的取值范围.【答案】(1)答案见解析(2)()()0,99,18U 【解析】【分析】(1)求出函数的导函数,分0a >、a<0两种情况讨论,分别求出函数的单调递增区间;(2)利用导数的几何意义求出切线方程,再令0x =、0y =求出在坐标轴上的截距,再由面积公式得到不等式,解得即可.【小问1详解】∵()313f x x ax =-定义域为R ,且()2f x x a '=-,①当a<0时,()20f x x a '=->恒成立,∴()f x 在R 上单调递增;②当0a >时,令()20f x x a '=->,解得x <x >,∴()f x 在(,∞-,)∞+上单调递增,综上:当a<0时,()f x 的单调递增区间为(),-∞+∞;当0a >时,()f x 的单调递增区间为(,∞-,)∞+.【小问2详解】由(1)得()2339f a a =-=-',又∵()393f a =-,∴切线方程为()()()9393y a a x --=--,依题意90a -≠,令0x =,得18y =-;令0y =,得189x a=-,切线与坐标轴所围成的三角形的面积11816218299S a a =⨯⨯=--,依题意162189a >-,即919a>-,解得09a <<或918<<a ,即实数a 的取值范围为()()0,99,18⋃.。
山东省实验中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
![山东省实验中学2023-2024学年高二下学期期中考试数学试题(含简单答案)](https://img.taocdn.com/s3/m/fb0d6750ba68a98271fe910ef12d2af90342a81d.png)
山东省实验中学2023-2024学年高二下学期期中考试数学试题(考试时间:120分钟 试卷满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.展开式中 的系数为( )A. B. C. 30D. 902. 若是区间上的单调函数,则实数的取值范围是( )A. B. C. 或 D.3. 2020年是脱贫攻坚年,为顺利完成“两不愁,三保障”,即农村贫困人口不愁吃、不愁穿,农村贫困人口义务教育、基本医疗、住房安全有保障,某市拟派出6人组成三个帮扶队,每队两人,对脱贫任务较重的甲、乙、丙三县进行帮扶,则不同的派出方法种数共有A. 15 B. 60 C. 90 D. 5404. 若,则( )A. B. C. D. 5. 在5个大小相同的球中有2个红球和3个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率是( )A.B.C.D.6. 随机变量ξ的分布列如下:其中,则等于( )A.B.()()6231x x --3x 90-30-()32112132f x x x x =-+++()1,4m m -+m 5m ≤-3m ≥5m ≤-3m ≥53m -≤≤2022220220122022(32)x a a x a x a x -=++++ 2022a a =2022220221()220222(320223()2110142512ξ1-01Pabc2b a c =+(1)P ξ=1314C.D.7. 蜂房绝大部分是一个正六棱柱的侧面,但它的底部却是由三个菱形构成的三面角. 18世纪初,法国学者马拉尔奇曾经专门测量过大量蜂巢的尺寸. 令人惊讶的是,这些蜂巢组成底盘的菱形的所有钝角都是,所有的锐角都是. 后来经过法国数学家克尼格和苏格兰数学家马克洛林从理论上的计算,如果要消耗最少的材料,制成最大的菱形容器正是这个角度. 从这个意义上说,蜜蜂称得上是“天才的数学家兼设计师”. 如图所示是一个蜂巢和部分蜂巢截面. 图中竖直线段和斜线都表示通道,并且在交点处相遇.现在有一只蜜蜂从入口向下(只能向下,不能向上)运动,蜜蜂在每个交点处向左到达下一层或者向右到达下一层的可能性是相同的.蜜蜂到达第层(有条竖直线段)第通道(从左向右计)的不同路径数为. 例如:,. 则不等式的解集为()A. B. C. D. 8. 已知函数,若恰有四个不同的零点,则a 取值范围为()A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知A ,B ,C 为随机事件,则下列表述中不正确的是( )A B. C. D. 10. 对于函数,下列说法中正确是( )A. 存在有极大值也有最大值.的122310928'︒7032'︒n n m (),A n m ()3,11A =()4,23A =()10,81A m ≤{}1,2,3,7,8,9{}1,2,3,8,9,10{}1,2,3,9,10,11{}4,5,6,7,8()xf x x e =()()()21g x fx af x =-+()2,∞+1,e e⎛⎫++∞ ⎪⎝⎭12,e e ⎛⎫+⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭()()()P AB P A P B =()()()P B C A P B A P C A ⋃=+()1P A A =()()P A B P AB ≥()222272exx x f x +-=()f xB. 有三个零点C. 当时,恒成立D. 当时,有3个不相等的实数根11. 在信道内传输信号,信号的传输相互独立,发送某一信号时,收到的信号字母不变的概率为,收到其他两个信号的概率均为.若输入四个相同的信号的概率分别为,且.记事件分别表示“输入”“输入”“输入”,事件表示“依次输出”,则( )A. 若输入信号,则输出信号只有两个的概率为B.C.D. 三、填空题:本题共3小题,每小题5分,共15分.12. 若,则实数a 取值范围为________13. 编号为A 、B 、C 、D 、E 的5种蔬菜种在如图所示的五块实验田里,每块只能种一种蔬菜,要求A 品种不能种在1,2试验田里,B 品种必须与A 种在相邻的两块田里,则不同的种植方法种数为________14. 设为随机变量,从边长为1的正方体12条棱中任取两条,当两条棱相交时,;当两条棱异面时,;当两条棱平行时,的值为两条棱之间的距离,则数学期望=________.四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.的的()f x x ⎫∈+∞⎪⎪⎭()0f x >450,2e a ⎛⎫∈ ⎪⎝⎭()f x a =,,M N P ()01αα<<12α-,,MMMM NNNN PPPP 123,,p p p 1231p p p ++=111,,M N P MMMM NNNN PPPP D MNPM MMMM M ()221αα-()22112P D M αα-⎛⎫= ⎪⎝⎭()3112P D P αα-⎛⎫= ⎪⎝⎭()()1112311p P M D p ααα=-+-e ln()x ax x ax -≥-+ξ0ξ=1ξ=ξE ξ15. 在二项式的展开式中,已知第2项与第8项的二项式系数相等.(1)求展开式中各项系数之和;(2)求展开式中二项式系数最大的项;(3)求展开式中的有理项.16. 学生甲想加入校篮球队,篮球教练对其进行投篮测试.测试规则如下:①投篮分为两轮,每轮均有两次机会,第一轮在罚球线处,第二轮在三分线处;②若他在罚球线处投进第一球,则直接进入下一轮,若第一次没投进可以进行第二次投篮,投进则进入下一轮,否则不预录取;③若他在三分线处投进第一球,则直接录取,若第一次没投进可以进行第二次投篮,投进则录取,否则不予录取.已知学生甲在罚球线处投篮命中率为,在三分线处投篮命中率为.假设学生甲每次投进与否互不影响.(1)求学生甲被录取的概率;(2)在这次测试中,记学生甲投篮的次数为,求的分布列.17. 已知函数在点处切线与直线垂直.(1)求的值;(2)求的单调区间和极值.18. 人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.19. 已知函数,.的1n⎫⎪⎭3423X X ()21ex x af x -+=()()1,1f 420240x y ++=a ()f x 12()23ln f x a x ⎛⎫=+⎪⎝⎭R a ∈(1)若的定义域为,值域为,求的值;(2)若,且对任意的,当,时,总满足,求的取值范围.(附加题)20. 帕德近似是法国数学家亨利.帕德发明的用有理多项式近似特定函数的方法.给定两个正整数m ,n ,函数在处的阶帕德近似定义为:,且满足:,,,…,.(注:,,,,…;为的导数)已知在处的阶帕德近似为.(1)求实数a ,b 的值;(2)比较与的大小;(3)若在上存在极值,求的取值范围.()f x {|0,R}x x x ≠∈R a 0a >1,13c ⎡⎤∈⎢⎥⎣⎦1x 2x ∈()()12ln2f x f x -≤a ()f x 0x =[,]m n 011()1mm nn a a x a x R x b x b x+++=+++ (0)(0)f R =(0)(0)f R ''=(0)(0)f R ''''=()()(0)(0)m n m n f R ++=[]()()f x f x '='''[]()()f x f x ''''''=[](4)()()f x f x ''''=(5)(4)()()f x f x '⎡⎤=⎣⎦()()n f x (1)()n f x -()ln(1)f x x =+0x =[]1,1()1ax R x bx=+()f x ()R x ()1()()()2f x h x m f x R x ⎛⎫=-- ⎪⎝⎭(0,)+∞m山东省实验中学2023-2024学年高二下学期期中考试数学试题简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】C【3题答案】【答案】C【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】D【7题答案】【答案】B【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AB【10题答案】【答案】CD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】30【14题答案】四、解答题:本题共5小题,其中第15题13分,第16,17题15分,第18,19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)0(2)(3)有理项为,,【16题答案】【答案】(1)(2)分布列略【17题答案】【答案】(1)(2)单调递减区间为和,单调递增区间为,的极大值为,极小值为.【18题答案】【答案】(1) (2)①;②方案二中取到红球的概率更大.【19题答案】【答案】(1) (2)(附加题)【20题答案】【答案】(1),; (]0,e 4370x -228x -156x --1563a =-(),1-∞-()3,+∞()1,3-()f x ()263e f =()212e f -=-1120190a =45,7∞⎡⎫+⎪⎢⎣⎭1a =12b =(2)答案略;(3).10,2⎛⎫ ⎪⎝⎭。
河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)
![河北省石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试题(含简单答案)](https://img.taocdn.com/s3/m/c3102a327f21af45b307e87101f69e314332fae0.png)
石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷(时间:120分钟,分值150分)一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列函数的求导正确的是()A. B.C. D.2. 设曲线和曲线在它们的公共点处有相同的切线,则的值为()A. 0B.C. 2D. 33. 已知随机变量的分布列如下,随机变量满足,则随机变量的期望E(Y)等于()012A. B. C. D.4. 函数的大致图像是()A. B.C. D.5. 为了培养同学们的团队合作意识,在集体活动中收获成功、收获友情、收获自信、磨砺心志,2023年4月17日,石家庄二中实验学校成功举办了首届“踔厉奋发新征程,勇毅前行赢未来”25公里远足活动. 某班()22x x'-=-()2e2ex x'=()cos cos sinx x x x x'=-()()122xx x-'=⋅()e xf x a b=+()πcos2xg x c=+()02P,+ab cπX Y21Y X=-YXP1613a43835373()(1)ln1f x x x=+-现有5名志愿者分配到3个不同的小组里协助班主任摄影,记录同学们的青春光影,要求每个人只能去一个小组,每个小组至少有一名志愿者,则不同的分配方案的总数为( )A 120B. 150C. 240D. 3006. 的展开式中的系数为( )A B. 17C. D. 137. 设,,,则( )A. B. C. D. 8. 若方程有三个不同的解,则实数的取值范围是( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知,则下列结论正确的是( )A. B. C. D. 展开式中最大的系数为10. 已知函数,下列说法正确的有( )A. 若,,则函数F (x )有最小值B. 若,,则过原点可以作2条直线与曲线相切C. 若,且对任意,恒成立,则D. 若对任意,任意,恒成立,则的最小值是11 已知函数,若且,则有( )...()632x x ⎛- ⎝6x 17-13-35ln 23a =253e 5b =1c =c b a >>a b c >>a c b >>c a b>>()()23ln 12ln x a x ax x x--=a 224e 104e 4e ⎛⎫+ ⎪-⎝⎭,224e 114e 4e ⎛⎫+ ⎪-⎝⎭,()224e 10114e 4e ⎛⎫+⋃ ⎪-⎝⎭,,()224e 1014e 4e ⎧⎫+⋃⎨⎬-⎩⎭,()62601262a a x a x a x =+++⋯+3360a =-()()2202461351a a a a a a a +++-++=(6612622a a a ++⋯+=--2a ()()()2e 114ax F x m x m =++++0m =1a =-1m =-0a ≠()y F x =0a =m ∈R ()0F x >11x -<<R m ∈0x >()0F x ≥a 2e()()y f x x =∈R ()0f x >()()0f x xf x '+>A. 可能是奇函数或偶函数B. C. 当时, D. 三、填空题:本题共3小题,每小题5分,共15分.12. 为弘扬我国古代“六艺文化”,某夏令营主办方计划利用暑期开设“礼”、“乐”、“射”、“御”、“书”,“数”六门体验课程,每周一门,连续开设六周,则课程“御”“书”“数”排在不相邻的三周,共有______种排法.13. 某校辩论赛小组共有5名成员,其中女生比男生多,现要从中随机抽取2名成员去参加外校交流活动,若抽到一男一女的概率为,则抽到2名男生的概率为_____________.14. 若,使得成立(其中为自然对数的底数),则实数的取值范围是_____________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知二项式的展开式中,所有项的二项式系数之和为,各项的系数之和为,(1)求的值;(2)求其展开式中所有的有理项.16. 某学校为了增进全体教职工对党史知识的了解,组织开展党史知识竞赛活动并以支部为单位参加比赛.现有两组党史题目放在甲、乙两个纸箱中,甲箱有个选择题和个填空题,乙箱中有个选择题和个填空题,比赛中要求每个支部在甲或乙两个纸箱中随机抽取两题作答.每个支部先抽取一题作答,答完后题目不放回纸箱中,再抽取第二题作答,两题答题结束后,再将这两个题目放回原纸箱中.(1)如果第一支部从乙箱中抽取了个题目,求第题抽到的是填空题的概率;(2)若第二支部从甲箱中抽取了个题目,答题结束后错将题目放入了乙箱中,接着第三支部答题,第三支部抽取第一题时,从乙箱中抽取了题目.求第三支部从乙箱中取出的这个题目是选择题的概率.17. 已知函数.(1)求函数的极值;(2)若对任意恒成立,求的最大整数值.18. 张强同学进行三次定点投篮测试,已知第一次投篮命中的概率为,第二次投篮命中的概率为,前的()f x ()()11f f -<ππ42x <<()()cos22sin e cos x f x f x >()()01f >35[]0,2x ∃∈()1eln e e 1ln xa a x x a --+≥-+e 2.71828= a nx ⎛- ⎝a b 32a b +=n 5343222()ln f x x x x =+()f x ()()1k x f x -<1x >k 1312两次投篮是否命中相互之间没有影响.第三次投篮受到前两次结果的影响,如果前两次投篮至少命中一次,则第三次投篮命中的概率为,如果前两次投篮均未命中,则第三次投篮命中的概率为.(1)求张强同学三次投篮至少命中一次的概率;(2)记张强同学三次投篮命中的次数为随机变量,求的概率分布.19. 设定义在R 上的函数.(1)若存在,使得成立,求实数a 的取值范围;(2)定义:如果实数s ,t ,r 满足,那么称s 比t 更接近r .对于(1)中的a 及,问:和哪个更接近?并说明理由.石家庄市第二中学教育集团2023-2024学年高二下学期期中考试数学试卷 简要答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】C 【2题答案】【答案】C 【3题答案】【答案】C 【4题答案】【答案】B 【5题答案】【答案】B 【6题答案】2315ξξ()()e xf x ax a =-∈R [)01,x ∈+∞()0e f x a <-s r t r -≤-1x ≥ex1e x a -+ln x【答案】C 【7题答案】【答案】A 【8题答案】【答案】B二、选择题:本题共3小题,每小题6分,共18分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】BCD 【10题答案】【答案】ACD 【11题答案】【答案】BC三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】##【14题答案】【答案】四、解答题:本题共5小题,共77分. 解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)4 (2)【16题答案】【答案】(1) (2)【17题答案】【答案】(1)极小值,无极大值为1441100.121e,e ⎡⎤⎢⎥⎣⎦42135,54,81T x T x T x-===377122e --(2)3【18题答案】【答案】(1);(2)答案略.【19题答案】【答案】(1) (2)比更接近,理由略1115e a >ex1e x a -+ln x。
福建省漳州市平和县龙华中学2023-2024学年高二下学期期中考试数学试卷
![福建省漳州市平和县龙华中学2023-2024学年高二下学期期中考试数学试卷](https://img.taocdn.com/s3/m/1e21169baff8941ea76e58fafab069dc502247db.png)
福建省漳州市平和县龙华中学2023-2024学年高二下学期期中考试数学试卷一、单选题1.已知集合{}{}{}1,2,3,4,5,1,2,1,3,5U A B ===,则U A B =U ð( ) A .{}2B .{}1,2,4C .{}1,2,3,5D .{}1,3,4,52.某商场的展示台上有6件不同的商品,摆放时要求,A B 两件商品必须在一起,则摆放的种数为( )A .2525A AB .2424A AC .55AD .2526A A3.若随机变量X 满足1~6,2X B ⎛⎫⎪⎝⎭,则()E X =( )A .12B .2C .13D .34.色差和色度是衡量毛绒玩具质量优劣的重要指标.现抽检一批毛绒玩具,测得的色差和色度数据如表所示:根据表中数据可得色度y 关于色差x 的经验回归方程为$0.8 1.2y x =-,则m =( ) A .14B .15C .16D .175.已知某地市场上供应的一种电子产品中,甲厂产品占80%,乙厂产品占20%,甲厂产品的合格率是75%,乙厂产品的合格率是80%,则从该地市场上买到一个合格产品的概率是( ) A .0.75B .0.8C .0.76D .0.956.设随机变量X 的概率分布列如下表,则(21)P X -≤=( )A .14B .16C .56D .5127.函数()2e xx f x -=的单调递增区间为( ) A .(),3-∞B .()0,3C .()3,+∞D .(),2-∞8.当0x >时,24e 2ln 1x x x ax ⋅-≥+恒成立,则实数a 最大值为( ) A .4eB .4C .24e D .8二、多选题9.下列说法正确的是( ).A .命题“R x ∃∈,10x +≥”的否定是“R x ∀∈,10x +<”B .命题“R x ∃∈,210x x -+=”是假命题C .“a b >”是“22a b >”的充分条件D .“4x >”是“2x >”的充分不必要条件10.已知正态分布()21,N σ的正态密度曲线如图所示,()2~1,X N σ,则下列选项中,能表示图中阴影部分面积的是( )A .()102P X -≤B .()122P X -≥C .()1122P X -≤≤D .()()112022P X P X ≤-≤11.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-. 考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输 是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A .采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B .采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C .采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D .当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题12.二项式6212x x ⎛⎫- ⎪⎝⎭展开式中的常数项为(用数字作答).13.甲、乙等4人参加A ,B ,C 这三项活动,要求每人只参加一项活动,且每项活动至少有1人参加,则甲不单独参加活动,且乙不参加A 活动的概率是.14.如图,EFGH 是以O 为圆心,1为半径的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则(1)()P A =;(2)()P B A =.四、解答题15.某中学为丰富教职工生活,在元旦期间举办趣味投篮比赛,设置A ,B 两个投篮位置,在A 点投中一球得1分,在B 点投中一球得2分,规则是:每人按先A 后B 的顺序各投篮一次(计为投篮两次),教师甲在A 点和B 点投中的概率分别为12和13,且在A ,B 两点投中与否相互独立.(1)若教师甲投篮两次,求教师甲投篮得分0分的概率(2)若教师乙与教师甲在A ,B 投中的概率相同,两人按规则投篮两次,求甲得分比乙高的概率.16.为了有针对性地提高学生体育锻炼的积极性,某中学需要了解性别因素师范对本校学生体育锻炼的经常性有影响,在全校随机抽取50名学生进行调查,其中男生有27人,坚持锻炼的男生有18人,经常锻炼的女生有8人.(1)请根据提议完成下面的2×2列联表(2)根据(1)中的2×2列联表,依据小概率值α=0.05的独立性检验,能否认为性别因素与本校学生体育锻炼的经常性有关? 附:参考公式:()()()()()22n ad bc a b c d a c b d χ-=++++17.已知数()32284f x x ax x a =--+,a ∈R ,()f x '为()f x 的导函数,且()10f '-=.(1)讨论函数()f x 的单调性;(2)如果函数()()32ln g x f x x t x =-+在定义域内单调递减,求实数t 的取值范围.18.全球新能源汽车产量呈上升趋势.以下为2018−2023年全球新能源汽车的销售量情况统计.若y 与x 的相关关系拟用线性回归模型表示,回答如下问题: (1)求变量y 与x 的样本相关系数r (结果精确到0.01);(2)求y 关于x 的线性回归方程,并据此预测2024年全球新能源汽车的销售量.附:线性回归方程$$y bxa =+$,其中()()()1122211n niii ii i nniii i x x y y x y nxyb x x xnx ====---==--∑∑∑∑$,$ay bx =-$, 样本相关系数()()nniii ix x y y x y nxyr ---==∑∑.参考数据:61181.30i i i x y ==∑,621380.231i i y ==∑ 4.2≈11.2.19.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程; (2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性; (3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.。
山东省潍坊市2023-2024学年高二下学期期中考试数学试题
![山东省潍坊市2023-2024学年高二下学期期中考试数学试题](https://img.taocdn.com/s3/m/c2fe0bad760bf78a6529647d27284b73f3423661.png)
山东省潍坊市2023-2024学年高二下学期期中考试数学试题一、单选题1.记n S 为等比数列{}n a 的前n 项和,若23a =,292S =,则公比q =( ) A .12B .13C .3D .22.已知随机变量ξ服从正态分布()22,N σ,且()020.4P ξ<<=,则()0P ξ>=( )A .0.9B .0.8C .0.4D .0.13.函数()f x 的图象如图所示,且()f x '是()f x 的导函数,记()()43a f f =-,()3b f =',()4c f =',则( )A .a b c <<B .b a c <<C .b<c<aD .c<a<b4.若银行的储蓄卡密码由六位数字组成,小王在银行自助取款机上取钱时,忘记了密码的最后一位数字,但记得密码的最后一位是奇数,则不超过2次就按对密码的概率是( )A .15B .25C .110D .3105.记数列{}n a 的前n 项和为n S ,若()()121nn a n =--,则101S =( ) A .301B .101C .101-D .301-6.函数()()322,f x x ax bx a a b =+++∈R 在0x =处取得极大值9,则a b +=( )A .3B .3-C .3-或3D .07.设函数()f x 是定义在R 上的奇函数,()f x '为其导函数.当0x >时,()()0xf x f x '->,()10f =,则不等式()0f x >的解集为( )A .()(),11,-∞-⋃+∞B .()(),10,1-∞-⋃C .()()1,00,1-UD .()()1,01,-⋃+∞8.某高校为研究学生每周平均体育运动时间进行了一次抽样调查,已知被抽取的男、女生人数相同.调查显示:抽取的男生中每周平均体育运动时间超过4小时的人数占比为45,抽取的女生中每周平均体育运动时间超过4小时的人数占比为35,若在犯错误的概率不超过1%的前提下,可以认为该校学生每周平均体育运动时间与性别有关,则被抽取的男生人数至少为( ) 附:()()()()()22n ad bc a b c d a c b d χ-=++++A .60B .65C .70D .75二、多选题9.下列函数的导数运算正确的是( ) A .()e e e x x x x x '=+B .'=C .2sin 1cos cos x x x '⎛⎫=- ⎪⎝⎭D .()1lg 2ln10x x '=⎡⎤⎣⎦10.有6个相同的小球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.用x 表示第一次取到的小球的标号,用y 表示第二次取到的小球的标号,记事件A :x y +为偶数,B :xy 为偶数,C :2x >,则( )A .()34P B =B .A 与B 相互独立C .A 与C 相互独立D .B 与C 相互独立11.黎曼函数(Riemann function )在高等数学中有着广泛应用,其一种定义为:[]0,1x ∈时,()()*1,,,0,0,10,1p p x p q q q q R x x ⎧⎛⎫=∈⎪ ⎪=⎨⎝⎭⎪=⎩N 为既约真分数和内的无理数,若数列2221n n n a R ⎛⎫-= ⎪-⎝⎭,*n ∈N ,则( )A .121n n a =- B .12n n a a ++>C .()111112321nii i n i a a ++==--∑ D .1211ni i a n =≤-+∑三、填空题12.从4名男生和2名女生中任选3人参加演讲比赛,则所选3人中至少有1名女生的概率是.13.记公差不为0的等差数列{}n a 的前n 项和为n S ,若()15485k S a a a =++,则k =. 14.已知函数()ln x f x x=,设()()()2g x f x af x =-,若()g x 只有一个零点,则实数a 的取值范围是;若不等式()0g x >的解集中有且只有三个整数,则实数a 的取值范围是.四、解答题15.已知函数()2ln f x x x x =+-.(1)求()f x 的单调区间和极值;(2)求()f x 在区间1,1e ⎡⎤⎢⎥⎣⎦上的最值.16.某高中学校组织乒乓球比赛,经过一段时间的角逐,甲、乙两名同学进入决赛.决赛采取7局4胜制,假设每局比赛中甲获胜的概率均为23,且各局比赛的结果相互独立. (1)求比赛结束时恰好打了5局的概率;(2)若前三局比赛甲赢了两局,记还需比赛的局数为X ,求X 的分布列及数学期望. 17.已知数列{}n a 满足123111n n a a a a a n -⋅⋅⋅=+. (1)求数列{}n a 的通项公式; (2)令21n n b a =,设数列{}n b 的前n 项和为n S ,若不等式2122n n n S n λ⋅-≥+对*n ∀∈N 恒成立,求实数λ的取值范围.18.近年来,中国新能源汽车产业,不仅技术水平持续提升,市场规模也持续扩大,取得了令人瞩目的成就.以小米SU7、问界M9等为代表的国产新能源汽车,正逐步引领全球新能源汽车的发展潮流,某新能源汽车制造企业对某地区新能源汽车的销售情况进行了调研,数据如下:(1)已知y 与x 线性相关,求出y 关于x 的线性回归方程,并估计该地区新能源汽车在2024年5月份的销量;(2)该企业为宣传推广新能源汽车,计划在宣传部门开展人工智能工具使用的培训.该次培训分为四期,每期培训的结果是否“优秀”相互独立,且每期培训中员工达到“优秀”标准的概率均为()01p p <<.该企业规定:员工至少两期培训达到“优秀”标准.才能使用人工智能工具,(i )记某员工经过培训后,恰好两期达到“优秀”标准的概率为()f p .求()f p 的最大值点0p ; (ii )该企业宣传部现有员工100人,引进人工智能工具后,需将宣传部的部分员工调整至其他部门,剩余员工进行该次培训已知开展培训前,员工每人每年平均为企业创造利润12万元,开展培训后,能使用人工智能工具的员工预计每人每年平均为企业创造利润16万元,本次培训费每人1万元.现要求培训后宣传部员工创造的年利润不低于调整前的年利润,以(i )中确定的0p 作为p 的值.预计最多可以调多少人到其他部门?参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nx ybx x xnx====---==--∑∑∑∑,ˆˆay bx =-. 19.已知函数()()220m f x mx m m x-=+->. (1)当1m =时,求函数()f x 在()()1,1f 处的切线方程;(2)若()2ln 2f x x ≥-在[)1,+∞上恒成立,求实数m 的取值范围; (3)证明:()()*11ln 122nk n n n kn =>++∈+∑N .。
江西省部分学校2023-2024学年高二下学期期中考试数学试题
![江西省部分学校2023-2024学年高二下学期期中考试数学试题](https://img.taocdn.com/s3/m/fc4fab1d32687e21af45b307e87101f69e31fb0b.png)
江西省部分学校2023-2024学年高二下学期期中考试数学试题一、单选题1.已知函数()221f x x x =-+,则()f x 从1到1Δx +的平均变化率为( )A .2B .2Δ3x +C .22(Δ)3Δx x +D .22(Δ)Δ1x x -+ 2.曲线()()1e x f x x =+在0x =处的切线方程为( )A .1y x =+B .2y x =+C .22y x =+D .21y x =+ 3.一个质点做直线运动,其位移s (单位:米)与时间t (单位:秒)满足关系式522(3)2s t t =+--,则当1t =时,该质点的瞬时速度为( )A .10米/秒B .8米/秒C .6米/秒D .12米/秒 4.下列导数运算正确的是( )A .'=B .()1x x a xa -'= C .1ln x x '⎛⎫= ⎪⎝⎭ D .(sin )cos x x '=-5.已知函数()()32213f x x f x '=++,则()2f =( )A .3B .2C .1-D .1 6.若sin 2()x f x x =,则(π)f '=( ) A .2π B .1π C .2 D .2π7.函数()e 2x f x x =-+在[]22-,上的值域为( ) A .23,e ⎡⎤⎣⎦ B .23,e 4-⎡⎤+⎣⎦ C .22e 4,e -⎡⎤+⎣⎦ D .2e 1,e ⎡⎤+⎣⎦8.某工厂需要建一个面积为2512m 的矩形堆料场,一边可以利用原有的墙壁,则要使砌墙所用材料最省,则堆料场的长和宽各为( )A .16 m ,16mB .32m ,16mC .32 m ,8mD .16m ,8m二、多选题9.若函数()f x 的导函数为()f x ',且()1ln e e f x x f x ⎛⎫=-+ ⎪⎝⎭',则( )A .e e 1f ⎛⎫'= ⎪⎝⎭B .20e f ⎛⎫= ⎪⎭'⎝C .()2ln2f =D .()1e f =10.下列求导运算正确的是( ).A .322113x x x x '⎛⎫+=+ ⎪⎝⎭B .2ln 1ln x x x x '-⎛⎫= ⎪⎝⎭C .()22e 2e '=x xD .()2cos 2sin x x x x '=-11.设函数()f x 在R 上可导,其导函数为f ′ x ,且函数()()1y x f x =-'的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 在()2,∞+上为增函数B .函数()f x 在()2,1-上为增函数C .函数()f x 有极大值()2f 和极小值f 1D .函数()f x 有极大值()2f -和极小值()2f三、填空题12.已知函数()y f x =在1x =处的切线方程为43y x =-,求()(1)1f f '+=.13.已知函数()y f x =的导函数为()y f x ''=,定义方程()()f x f x '=的实数根0x 叫做函数()y f x =的“新驻点”.设()cos f x x =,则()y f x =在区间()0π,上的“新驻点”为. 14.某个体户计划同时销售A ,B 两种商品,当投资额为x ()0x >千元时,在销售A ,B 商品中所获收益分别为()f x 千元与()g x 千元,其中()2f x x =,()()4ln 21g x x =+,如果该个体户准备共投入5千元销售A ,B 两种商品,为使总收益最大,则B 商品需投千元.四、解答题15.求下列函数的导数.(每小题4分,需有答题过程)(1)cos ()e xx f x =; (2)()()22131y x x =-+;(3)()f x = (4)1cos sin x y x+=. 16.已知函数()2ln f x x ax x =++(a ∈R ),且()14f '=.(1)求()f x 的解析式;(2)求函数()f x 的图象在点()()22f ,处的切线方程.17.已知函数2()f x x x =+与函数()ln 2g x x x =+.(1)求曲线()y f x =在点(0,0)处的切线方程;(2)求曲线()y f x =与曲线()y g x =在公共点处的公切线方程.18.已知函数()()21e x f x x x =++.(1)求函数()f x 在0x =处的切线方程;(2)求函数()f x 的单调区间.19.高二学农期间,某高中组织学生到工厂进行实践劳动.在设计劳动中,某学生欲将一个底面半径为20cm ,高为40cm 的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.(1)求该圆柱的侧面积的最大值;(2)求该圆柱的体积的最大值.。
吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案
![吉林省四平市2023-2024学年高二下学期期中质量监测数学试题含答案](https://img.taocdn.com/s3/m/3f882f1fbf1e650e52ea551810a6f524ccbfcbb8.png)
四平市2023-2024学年度第二学期期中质量监测高二数学试题(答案在最后)全卷满分150分,考试时间120分钟.注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将条形码粘贴在答题卡上的指定位置.2.请按题号顺序在答题卡上各题目的答题区域内作答,写在试卷、草稿纸和答题卡上的非答题区域均无效.3.选择题用2B 铅笔在答题卡上把所选答案的标号涂黑;非选择题用黑色签字笔在答题卡上作答;字体工整,笔迹清楚.4.考试结束后,请将试卷和答题卡一并上交.5.本卷主要考查内容:选择性必修第二册第五章,选择性必修第三册第六章.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数()23cos f x x x=+的导函数是()A.()6sin f x x x '=+B.()6sin f x x x '=-C.()3sin f x x x'=- D.()3sin f x x x'=+【答案】B 【解析】【分析】利用导数的运算法则即可求解.【详解】()()()23cos 6sin f x x x x x '''=+=-.故选:B.2.5(2)x -的展开式中3x 的系数为()A.40-B.20- C.20D.40【答案】D 【解析】【分析】写出展开式的通项,即可计算可得.【详解】因为5(2)x -展开式的通项为()515C 2rr rr T x -+=-(05r ≤≤且N r ∈),所以5(2)x -的展开式中3x 的系数为225C (2)40⨯-=.故选:D3.某学校广播站有6个节目准备分2天播出,每天播出3个,其中学习经验介绍和新闻报道两个节目必须在第一天播出,谈话节目必须在第二天播出,则不同的播出方案共有()A.108种B.90种C.72种D.36种【答案】A 【解析】【分析】先确定第一天和第二天播放的节目,然后再确定节目的播放顺序,利用分步乘法计数原理可得结果.【详解】第一步,从无限制条件的3个节目中选取1个,同学习经验介绍和新闻报道两个节目在第一天播出,共有1333C A 18=种;第二步,某谈话节目和其他剩余的2个节目在第二天播出,有33A 6=种播出方案,综上所述,由分步乘法计数原理可知,共有186108⨯=种不同的播出方案.故选:A4.已知*0,x n ≠∈N ,则“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件【答案】A 【解析】【分析】计算二项展开式中存在常数项的等价条件,根据充分条件和必要条件的定义分别进行判断即可.【详解】若8n =,则8312x x ⎛⎫+ ⎪⎝⎭的常数项为()626381C 2112x x ⎛⎫⋅= ⎪⎝⎭;若312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项,设二项式的通项为()33411=C22C rn rrn r r n r r nn T x x x ---+⎛⎫⋅=⋅⋅ ⎪⎝⎭,且存在常数项,则340n r -=,34nr =,r 为整数,所以n 能被4整除.所以“8n =”是“312nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的充分不必要条件.故选:A.5.已知曲线2ln y x x =-在点A 处的切线与直线20x y +-=垂直,则点A 的横坐标为()A.2-B.1-C.2D.1【答案】D 【解析】【分析】设点()00,A x y ,根据题意可得()01f x '=,从而求得0x .【详解】设()2ln f x x x =-,点()00,A x y ,则()12f x x x='-,由在点A 处的切线与直线20x y +-=垂直可得()01f x '=,即00121x x -=,又00x >,01x ∴=.故选:D6.已知函数()()22e xf x x ax a =++,若()f x 在2x =-处取得极小值,则a 的取值范围是()A.()4,+∞ B.[)4,+∞ C.[)2,+∞ D.()2,+∞【答案】A 【解析】【分析】利用求导得到导函数的零点2a-和2-,就参数a 分类讨论,判断函数()f x 的单调性,即可分析判断,确定参数a 的范围.【详解】由题意得,()()()()()()222e 4e 242e 22e x x x xf x x ax a x a x a x a x a x ⎡⎤=++++=+++=++⎣⎦',由()0f x '=可得,2ax =-或2x =-,①若22a -=-,即4a =时,()()222e 0x f x x =+≥',显然不合题意;②若22a -<-,即4a >时,当2ax <-或2x >-时,()0f x '>,即()f x 在(,2a -∞-和(2,)-+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(,2)2a--上单调递减,故()f x 在2x =-处取得极小值,符合题意;③若22a ->-,即4a <时,当<2x -或2x a >-时,()0f x '>,即()f x 在(,2)-∞-和(,)2a -+∞上单调递增;当22a x -<<-,()0f x '<,()f x 在(2,)2a--上单调递减,故()f x 在2x =-处取得极大值,不符题意.综上所述,当4a >时,()f x 在2x =-处取得极小值,故a 的取值范围是()4,∞+.故选:A.7.若()()()()23416321241811N x x x x =+-+-+-+-,则N =()A.()41x - B.()41+x C.()43x - D.()43x +【答案】B 【解析】【分析】利用二项式定理可得答案.【详解】()()()()23416321241811N x x x x =+-+-+-+-413222334444(1)C (1)2C (1)2C (1)22x x x x =-+-⋅+-⋅+-⋅+4(12)x =-+4(1)x =+.故选:B8.若函数()21ln 32f x x ax =++在区间()1,4内存在单调减区间,则实数a 的取值范围是()A.1,16⎛⎫-∞- ⎪⎝⎭B.()1,1,16⎛⎫-∞-+∞ ⎪⎝⎭C.(),1-∞- D.()0,1【答案】A 【解析】【分析】对()f x 求导,分0a ≥和a<0两种情况,结合()f x 在区间()1,4内存在单调减区间,求出a 的取值范围即可.【详解】()21ln 32f x x ax =++,()211ax f x ax x x+'=+=,当0a ≥时,()0f x ¢>,不符合题意;当0a <时,令()0f x '<,解得x >()f x 在区间()1,4内存在单调减区间,∴4<,解得116a <-.∴实数a 的取值范围是1,16⎛⎫-∞-⎪⎝⎭.故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.A ,B ,C ,D ,E 五个人并排站在一起,下列说法正确的是()A.若A ,B 不相邻,有72种排法B.若A ,B 不相邻,有48种排法C.若A ,B 相邻,有48种排法D.若A ,B 相邻,有24种排法【答案】AC 【解析】【分析】求得A ,B 不相邻时的排法总数判断选项AB ;求得A ,B 相邻时的排法总数判断选项CD.【详解】A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 不相邻,则先让C ,D ,E 自由排列,再让A ,B 去插空即可,则方法总数为3234A A 72=(种).则选项A 判断正确;选项B 判断错误;A ,B ,C ,D ,E 五个人并排站在一起,若A ,B 相邻,则将A ,B “捆绑”在一起,视为一个整体,与C ,D ,E 自由排列即可,则方法总数为2424A A 48=(种).则选项C 判断正确;选项D 判断错误.故选:AC10.在62x⎛⎝的展开式中,下列命题正确的是()A.偶数项的二项式系数之和为32B.第3项的二项式系数最大C.常数项为60D.有理项的个数为3【答案】AC 【解析】【分析】根据题意,由二项式展开式的通项公式以及二项式系数的性质,代入计算,对选项逐一判断,即【详解】偶数项的二项式系数之和为152232n -==,故A 正确;根据二项式,当3r =时36C 的值最大,即第4项的二项式系数最大,故B 错误()()36662166C 21C 2r r rr rr r r T x x---+⎛==-⋅⋅⋅ ⎝,令3602r -=,4r =,∴4256C 260T =⋅=,故C 正确;362r -为整数时,0,2,4,6r =,故有理项的个数为4,故D 错误.故选:AC .11.已知函数()ln xxf x e =,则下列说法正确的是()A.()f x 有且仅有一个极值点B.()f x 有且仅有两个极值点C.当01x <<时,()f x 的图象位于x 轴下方D.存在0x ,使得()01f x e=【答案】AC 【解析】【分析】利用导数与极值、最值的关系求解即可.【详解】由题意知,()1ln xxx f x e -'=,令()1ln h x x x =-,()211h x x x '=--,易得()h x 在()0,∞+上单调递减,又()110h =>,()12ln 202h =-<,所以()01,2x ∃∈,使得()00h x =,所以当00x x <<时,()0f x '>,当0x x >时,()0f x '<,故()f x 在()00,x 上单调递增,在()0,x ∞+上单调递减,所以()f x 有且仅有一个极值点.故A 正确,B 错误;当01x <<时,ln 0x <,e 0x >,所以()0f x <,故C 正确;所以()()0000max 0ln 11ex x x f x f x e x e ===<,故D 错误.三、填空题:本题共3小题,每小题5分,共15分.12.三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有___________种.【答案】8【解析】【分析】利用分步加法计数原理计算即得.【详解】依题意,可由三名学生依次选修课程,故分三步完成,由分步乘法计数原理知,不同的选法有322228⨯⨯==(种).故答案为:8.13.函数()ln f x x x =-的单调减区间为___________.【答案】(]0,1【解析】【分析】首先求出函数的定义域为()0,∞+,再求出()f x ',令()0f x '≤,解不等式即可求解.【详解】函数()ln f x x x =-的定义域为()0,∞+,且()111x f x x x-'=-=,令()0f x '≤,即10x x-≤,解不等式可得01x <≤,所以函数的单调递减区间为(]0,1.故答案为:(]0,1【点睛】本题考查了利用导数研究函数的单调性,解题的关键是求出导函数,属于基础题.14.已知函数()f x 的导函数()f x '满足()()f x f x '>在R 上恒成立,则不等式()()23e 21e 10x f x f x --->的解集是______.【答案】2,3⎛⎫+∞ ⎪⎝⎭【解析】【分析】根据已知关系式可构造函数()()xf xg x =e,可知()g x 在R 上单调递增,将所求不等式转化为()()211g x g x ->-,利用单调性可解不等式求得结果.【详解】令()()x f x g x =e ,则()()()0ex f x f x g x '-'=>,所以()g x 在R 上单调递增,由()()23e 21e 10xf x f x --->,得()()211>1e21ex xf x f x ----,即()()211g x g x ->-,又()g x 在R 上单调递增,所以211x x ->-,解得23x >.所以不等式()()23e 21e 10xf x f x --->的解集是2,3⎛⎫+∞⎪⎝⎭.故答案为:2,3⎛⎫+∞⎪⎝⎭.【点睛】关键点点睛:此类问题要结合代数式的特点,选择适当的函数,通过导函数研究出函数的单调性,从而解不等式即可.四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15.(1)求值:2222310C C C +++ ;(2)解方程:32213A 2A 6A x x x +=+.【答案】(1)165;(2)5x =【解析】【分析】(1)利用组合数性质计算可得原式等于311C 165=;(2)由排列数计算公式可得(32)(5)0x x --=,可得5x =.【详解】(1)因为11C C C m m m n nn -+=+,所以11C C C m m m n n n -+-=,原式()()()()333333333345410911103C C C C C C C C C ++++-+=--- 31111109C 165123⨯⨯===⨯⨯;(2)因为32213A 2A 6A x x x +=+,所以!(1)!!326(3)!(1)!(2)!x x x x x x +⨯=⨯+⨯---,化简可得(32)(5)0x x --=,同时3x ≥,解得5x =.16.已知二项式nx⎛- ⎝的展开式中,所有项的二项式系数之和为a ,各项的系数之和为b ,32a b +=(1)求n 的值;(2)求其展开式中所有的有理项.【答案】(1)4(2)42135,54,81T x T x T x-===【解析】【分析】(1)先利用题给条件列出关于n 的方程,解之即可求得n 的值;(2)利用二项展开式的通项公式即可求得其展开式中所有的有理项.【小问1详解】因为2,(2)n n a b ==-,所以2(2)32n n +-=,当n 为奇数时,此方程无解,当n 为偶数时,方程可化为2232n ⨯=,解得4n =;【小问2详解】由通项公式3442144C (3)C rrr r r r r T x x--+=⋅=-⋅,当342r -为整数时,1r T +是有理项,则0,2,4r =,所以有理项为0442214422143454(3)C ,(3)C 54,(3)C 81T x x T x x T xx --=-==-==-=.17.为庆祝3.8妇女节,某中学准备举行教职工排球比赛,赛制要求每个年级派出十名老师分为两支队伍,每支队伍五人,并要求每支队伍至少有两名女老师,现高二年级共有4名男老师,6名女老师报名参加比赛.(1)高二年级一共有多少不同的分组方案?(2)若甲,乙两位男老师和丙,丁,戊三位女老师组成的队伍顺利夺得冠军,在领奖合影时从左到右站成一排,丙不宜站最右端,丁和戊要站在相邻的位置,则一共有多少种排列方式?【答案】(1)120种;(2)36种.【解析】【分析】(1)利用分类加法计数原理,结合平均分组问题列式计算.(2)按相邻问题及有位置限制问题,利用分步乘法计数原理列式计算即得.【小问1详解】两组都是3女2男的情况有326422C C 60 A ⋅=(种):一组是1男4女,另一组是3男2女的情况有1446C C 60⋅=(种),所以总情况数为6060120+=(种),故一共有120种不同的分组方案.【小问2详解】视丁和戊为一个整体,与甲、乙任取1个站最右端,有13C 种,再排余下两个及丙,有33A 种,而丁和戊的排列有22A 种,所以不同排列方式的种数是132332C A A 36=.18.已知函数()()2212ln 2f x a x x ax a =-++∈R .(1)当1a =时,求曲线()y f x =在()()1,1f 处的切线方程;(2)讨论函数()f x 的单调性;【答案】(1)32y =(2)答案见解析【解析】【分析】(1)代入1a =,求出'(1),(1)f f 即可求得切线方程;(2)函数求导'(2)()()x a x a f x x+-=,对a 分类讨论,进而求得单调性.【小问1详解】当1a =时,()212ln 2f x x x x =-++,'2()1f x x x =-++,所以'3(1)2110,(1)2f f =-++==,曲线()y f x =在()()1,1f 处的切线方程为32y =.【小问2详解】22'2(2)()()x ax a x a x a f x x x+-+-==,①当0a =时,'()0f x x =>,所以函数在(0,)+∞上单调递增;②当0a >时,令'()0f x =,则12x a =-(舍)或2x a =,'()0,0f x x a <<<,当(0,)x a ∈时,函数()f x 单调递减;'()0,f x x a >>,当(,)x a ∈+∞时,函数()f x 单调递增.③当0a <时,令'()0f x =,则12x a =-或2x a =(舍),'()0,02f x x a <<<-,当(0,2)x a ∈-时,函数()f x 单调递减;'()0,2f x x a >>-,当(2,)x a ∈-+∞时,函数()f x 单调递增.综上所述:当0a =时,函数在(0,+∞)上单调递增;当0a >时,当(0,)x a ∈时,函数()f x 单调递减当(,)x a ∈+∞时,函数()f x 单调递增;当0a <时,当(0,2)x a ∈-时,函数()f x 单调递减;当(2,)x a ∈-+∞时,函数()f x 单调递增19.已知函数()ln 32a f x ax x =--,其中0a ≠.(1)求函数()f x 的单调区间;(2)若()10xf x +≥恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)[)2,+∞.【解析】【分析】(1)利用导数,讨论a 的符号判断函数单调性;(2)问题转化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭恒成立,取1x =,有310a -+≥,可得2a ≥,构造函数利用导数求最小值证明1ln 02x x ->,则12ln 30x x x --+≥恒成立,通过构造函数利用导数求最小值证明.【小问1详解】函数()f x 的定义域为()0,∞+,()()2122a x a f x a x x -'=-=,①当0a >时,()0f x '<解得102x <<,()0f x ¢>解得12x >,此时函数()f x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,②当0a <时,()0f x ¢>解得102x <<,()0f x '<解得12x >,此时函数()f x 的增区间为10,2⎛⎫ ⎪⎝⎭,减区间为1,2⎛⎫+∞⎪⎝⎭;【小问2详解】不等式()10xf x +≥可化为2ln 3102a ax x x x --+≥,由2ln 3102a ax x x x --+≥恒成立,取1x =,有310a -+≥,可得2a ≥,又由2ln 3102a ax x x x --+≥可化为1ln 3102ax x x x ⎛⎫--+≥ ⎪⎝⎭,令()1ln 2g x x x =-,有()121122x g x x x -'=-=,令()0g x '<解得102x <<,()0g x '>解得12x >此时函数()g x 的减区间为10,2⎛⎫ ⎪⎝⎭,增区间为1,2⎛⎫+∞ ⎪⎝⎭,有()111111ln ln 20222222g x g ⎛⎫≥=-=+> ⎪⎝⎭,可得1ln 02x x ->,可得211ln 2ln 2ln 22ax x x x x x x x x ⎛⎫⎛⎫-≥-=- ⎪ ⎪⎝⎭⎝⎭,下面证明22ln 310x x x x --+≥,即证明12ln 30x x x --+≥,令()12ln 3h x x x x =--+,有()()()222221111212x x x x h x x x x x+---'=--==,令()0h x '<解得01x <<,()0h x '>解得1x >,可得函数()h x 的减区间为()0,1,增区间为()1,+∞,有()()120310h x h ≥=--+=,可得不等式22ln 310x x x x --+≥成立,所以若()10xf x +≥恒成立,则实数a 的取值范围为[)2,+∞.。
北京市中国人民大学附属中学2023-2024学年高二下学期期中考试数学试题(含简单答案)
![北京市中国人民大学附属中学2023-2024学年高二下学期期中考试数学试题(含简单答案)](https://img.taocdn.com/s3/m/29f8715802d8ce2f0066f5335a8102d276a2619a.png)
中国人民大学附属中学2023-2024学年高二下学期期中考试数学说明:本试卷共六道大题,26道小题,共6页,满分150分,考试时间120分钟.第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1. 已知数列的通项公式是,则是该数列的()A. 第9项B. 第10项C. 第11项D. 第12项2. 若函数,则( )A. B. C. D. 3. 等差数列中,若,,则其公差等于( )A. 2B. 3C. 6D. 184. 如图是函数的导数的图象,则下面判断正确的是( )A. 是区间上的增函数B. 是区间上的减函数C. 1是的极大值点D. 4是的极小值点5. 若是等差数列的前项和,,则()A. B. C. D. 6. 若函数有极值,则实数的取值范围是( )A. B. C.D. {}n a 21n a n =+1222()f x x =0(1)(1)lim x f x f x∆→+∆-=∆1234{}n a 1233a a a ++=45621a a a ++=()y f x =()f x '()f x []3,1-()f x []1,2()f x ()f x n S {}n a n ()*88,N n S S n n >≠∈890,0a a ≥<890,0a a ><890,0=<a a 890,0a a >=()3213f x x x ax =-+a (],1-∞(),1-∞()1,+∞[)1,+∞7. 已知等差数列的公差为2,若成等比数列,则( )A. B. C. 4D. 8. 已知在处可导,在附近x 的函数值,可以用“以直代曲”的方法求其近似代替值:.对于函数的近似代替值( )A. 大于m B. 小于mC. 等于mD. 与m 的大小关系无法确定9. 设为无穷等比数列前n 项和,则“有最大值”是“有最大值”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件10. 设函数定义域为D ,若函数满足:对任意,存在,使得成立,则称函数满足性质.下列函数不满足性质的是( )A. B. C. D. 二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11. 函数,则_____.12. 用数学归纳法证明命题“,时,假设时成立,证明时也成立,可在左边乘以一个代数式______.13. 已知函数,若在区间上是增函数,则实数a 的取值范围是 ________.14. 小杰想测量一个卷纸展开后的总长度,卷纸中的纸是单层的,且卷纸整体呈一个空心圆柱形,即大圆柱在其正中间挖去了一个小圆柱,测得小圆柱底面的直径为5厘米,大圆柱底而的直径为11厘米.由于单层纸的厚度不易测量,小杰利用游标卡尺测得10层纸的总厚度为0.3厘米.试估算这个卷纸的总长度(单位:米)为______.(结果精确到个位,取)15. 与曲线在某点处的切线垂直,且过该点的直线称为曲线在某点处的法线.关于曲线的法线有下列四种说法:①存在一类曲线,其法线恒过定点;的.{}n a 124,,a a a 2a =10-6-4-()f x 0x x =0x ()f x ()()()()000f x f x f x x x '≈+-()f x =()4.001m f =n S {}n a {}n a {}n S ()f x ()f x c D ∈,a b D ∈()()()f a f b f c a b-'=-()f x ΓΓ2()f x x =3()f x x =()xf x e =()ln f x x=()sin 2f x x =()f x '=*n ∀∈N ()()()()1221321nn n n n n ++⋅⋅⋅+=⨯⨯⨯⋅⋅⋅⨯-n k =1n k =+21()2ln 2f x x ax x =+-()f x 1,12⎡⎤⎢⎥⎣⎦π 3.14=②若曲线的法线的纵截距存在,则其最小值为;③存在两条直线既是曲线的法线,也是曲线的法线;④曲线的任意法线与该曲线的公共点个数均为1.其中所有说法正确的序号是______.三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16. 已知函数,在处取得极值.(1)求在区间上的平均变化率;(2)求曲线在点处的切线方程;(3)求曲线过点的切线方程.17. 设等差数列的前项和为,,.(1)求的通项公式;(2)设数列的前项和为,求.18. 已知函数,其中.(1)当时,求的极值;(2)讨论当时函数的单调性;(3)若函数有两个不同的零点、,求实数a 的取值范围.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19. 已知函数满足:对任意,由递推关系得到的数列是单调递增的,则该函数的图象可以是( )A. B.4y x =34e x y =ln y x =sin y x =()2f x x ax =-()f x 0x =()f x []2023,2024()y f x =()()22f ,()y f x =()2,0{}n a n n S 53a =535S ={}n a {}n a n n T 10T ()()22ln f x ax a x x =-++R a ∈1a =-()f x 0a >()y f x =2()()g x f x ax =-1x 2x ()y f x =()10,1a ∈()1n n a f a +={}n aC. D.20. 设数列的前n 项和,若,则( )A. 数列满足B. 数列为递增数列C.的最小值为D. ,,不成等差数列21. 已知正项数列满足为前项和,则“是等差数列”是”的( )A 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件22. 已知无穷数列,.性质,,,性质,,,,给出下列四个结论:①若,则具有性质;②若,则具有性质;③若具有性质,则;④若等比数列既满足性质又满足性质,则其公比的取值范围为.则所有正确结论的个数为( )A. 1B. 2C. 3D. 4二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)23. 写出一个满足的函数______.24. 已知函数,设曲线在点处切线的斜率为,若,,均不相等,且,则___.25. 若曲线上两个不同点处的切线重合,则称这条切线为曲线的“自公切线”,则下列曲的.{}n a n S 23n S n n =++{}n a ()1122n n n a a a n -+=+≥{}n a nn S a n+17242S S -64S S -86S S -{}n a 213,n a a S ={}n a n {}n a {}n a 11a =:s m ∀*n ∈N m n m n a a a +>+:t m ∀*n ∈N 2m n ≤<11m n m n a a a a -++>+32n a n =-{}n a s 2n a n ={}n a t {}n a s n a n ≥{}n a s t ()2,+∞()221f x x '=+()f x =()()()()()1230f x a x x x x x x a =--->()y f x =()(),i i x f x ()1,2,3i k i =1x 2x 3x 22k =-1311k k +=()y f x =()y f x =线中,所有存在“自公切线”的序号为______.①;②;③;④.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)26. 已知无穷数列满足:①;②.设为所能取到的最大值,并记数列.(1)若数列为等差数列且,直接写出其公差的值;(2)若,求值;(3)若,,求数列的前100项和.的()y f x =22y x x =-3sin 4cos y x x =+13y x x=+y ={}n a ()*1,2,i a i ∈=⋅⋅⋅N ()11,2,,1,2,,3i j i j i j a a a a a i j i j ++≤≤++=⋅⋅⋅=⋅⋅⋅+≥*i a ()1,2,i a i =⋅⋅⋅{}*n a {}n a 11a =d 121a a ==*4a 11a =22a ={}*n a中国人民大学附属中学2023-2024学年高二下学期期中考试数学 简要答案第Ⅰ卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【1题答案】【答案】C 【2题答案】【答案】B 【3题答案】【答案】A 【4题答案】【答案】D 【5题答案】【答案】B 【6题答案】【答案】B 【7题答案】【答案】C 【8题答案】【答案】A 【9题答案】【答案】D 【10题答案】【答案】B二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)【11题答案】【答案】【12题答案】【答案】2cos 2x 42k【答案】【14题答案】【答案】【15题答案】【答案】①②④三、解答题(本大题共3小题,共35分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【16题答案】【答案】(1)4047 (2) (3)或【17题答案】【答案】(1) (2)【18题答案】【答案】(1)的极大值为,无极小值. (2)答案略(3).第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)【19题答案】【答案】C 【20题答案】【答案】C 【21题答案】【答案】C3,4⎡⎫+∞⎪⎢⎣⎭2544y x =-0y =816y x =-132n a n =-52()f x 3ln24--12,2e⎛⎫-- ⎪⎝⎭【答案】C二、填空题(共3小题,每小题5分,共15分,把答案填在答题纸上的相应位置.)【23题答案】【答案】(答案不唯一)【24题答案】【答案】##【25题答案】【答案】①②④三、解答题(本小题15分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)【26题答案】【答案】(1)或 (2) (3)()ln 21x +120.51237500。
山东省德州市2023-2024学年高二下学期期中考试数学试题
![山东省德州市2023-2024学年高二下学期期中考试数学试题](https://img.taocdn.com/s3/m/1cb473a5f605cc1755270722192e453610665bee.png)
山东省德州市2023-2024学年高二下学期期中考试数学试题一、单选题1.设()f x 是可导函数,且()()333lim 33x f x f x∆→-∆-=∆,则()3f '=( )A .3-B .1-C .1D .32.记n S 为等差数列{}n a 的前n 项和,若4624a a +=,12216S =,则数列{}n a 的公差为( ) A .1B .2C .3D .43.设()f x 是定义在[]3,3-上的奇函数,其导函数为()'f x ,当03x ≤≤时,()f x 图象如图所示,且()f x 在1x =处取得极大值,则()()'0f x f x ⋅>的解集为( )A .()()3,10,1--UB .()()3,11,3--⋃C .()()1,00,1-UD .()()1,01,3-U4.等比数列{}n a 的各项均为正实数,其前n 项和为n S ,已知212S =,415S =,则3a =( )A .14B .12C .2D .45.已知定义在R 上的函数()f x 的导函数为()f x ',()01f =,且对任意的x 满足()()f x f x '<,则不等式()e xf x >的解集是( )A .(),1∞-B .(),0∞-C . 0,+∞D . 1,+∞6.已知等差数列 a n , b n 的前n 项和分别为n A ,n B ,且32n n A n B n +=+,则1010a b =( ) A .1312B .2221C .2322D .24237.如图,将一根直径为d 的圆木锯成截面为矩形ABCD 的梁,设BAC α∠=,且梁的抗弯强度()321sin cos 6W d ααα=,则当梁的抗弯强度()W α最大时,cos α的值为( )A .14B .13CD8.已知无穷数列{}n a 满足:如果m n a a =,那么11m n a a ++=,且151a a ==,37a =-,49a =,2a 是1a 与4a 的等比中项.若{}n a 的前n 项和n S 存在最大值S ,则S =( )A .2-B .0C .1D .2二、多选题9.下列结论正确的是( )A .若()2e f x =,则()0f x '=B .若()3f x a =,则()23f x a '=C .若()ln 2f x x =,则()1f x x'=D .若()()cos 23f x x =-,则()()3sin 32f x x '=--10.已知正项数列 a n 满足1,231nn n nn a a a a a +⎧⎪=⎨⎪-⎩当为偶数时,当为奇数时,则下列结论正确的是( )A .若13a =,则52a =B .若28a =,则13a =或116a =C .若110a =,则5n n a a +=D .若164a =,则前100项中,值为1和2的项数相同11.设函数()2,0e ln 2,0x x x f x x x x +⎧≤⎪=⎨⎪+>⎩,函数()()g x f x m =-有三个零点123,,x x x ,且满足123x x x <<,则下列结论正确的是( )A .1230x x x ⋅⋅≥恒成立B .实数m 的取值范围是12,e e ⎛⎫- ⎪⎝⎭C .函数()g x 的单调减区间11,e ⎛⎫- ⎪⎝⎭D .若20x >,则232ex x +>三、填空题12.已知2x =是3()32f x x ax =-+的极小值点,那么函数()f x 的极大值为.13.等比数列{}n a 的公比为q ,其前n 项和记为n S ,202420262025S S S <<,则q 的取值范围为. 14.为提升同学们的科创意识,学校成立社团专门研究密码问题,社团活动室用一把密码锁,密码一周一换,密码均为7N的小数点后前6位数字,设定的规则为: ①周一至周日中最大的日期为x ,如周一为3月28日,周日为4月3日,则取周四的3月31日的31作为x ,即31x =;②若x 为偶数,则在正偶数数列中依次插入数值为3n 的项得到新数列{}n a ,即2,13,4,6,8,23,10,12,14,…;若x 为奇数,则在正奇数数列中依次插入数值为2n 的项得到新数列{}n a ,即1,12,3,22,5,7,32,9,11,13,…;③N 为数列{}n a 的前x 项和,如9x =,则9项分别为1,12,3,22,5,7,32,9,11,故50N =,因为507.14285717≈,所以密码为142857. 若周一为4月22日,则周一到周日的密码为.四、解答题15.已知函数21()ln (1)2f x a x x a x =+-+.(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 为定义域上的单调函数,求a 的值和此时在点()()1,1f 处的切线方程. 16.已知公差不为零的等差数列{}n a ,37a =,1a 和7a 的等比中项与2a 和4a 的等比中项相等. (1)若数列{}n b 满足11n n n b a a +=,求数列{}n b 的前n 项和n T ; (2)若数列{}n c 满足11c =,()()113n n n n a c a c +-=+(*n ∈N ),求数列{}n c 的通项公式.17.某工厂生产某产品的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()31150150p x x x =+;当产量不小于60万箱时,()64002011860p x x x=+-,若每箱产品的售价为200元,通过市场分析,该厂生产的产品可以全部销售完.(1)求销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该厂在生产中所获得利润最大?18.已知函数()3213f x x x =+和数列{}n c ,函数()f x 在点()(),n n c f c 处的切线的斜率记为1n c +,且已知11c =.(1)若数列{}n b 满足:()2log 1n n b c =+,求数列{}n b 的通项公式; (2)在(1)的条件下,若数列{}n a 满足112a =,1212n n n a a b ++=+,是否存在正整数n ,使得1122nii a n ==-∑成立?若存在,求出所有n 的值;若不存在,请说明理由. 19.若函数()f x 在[],a b 上有定义,且对于任意不同的[]12,,x x a b ∈,都有()()1212f x f x x x λ-<-,则称()f x 为[],a b 上的“λ类函数”.(1)若()22x f x x =+,判断()f x 是否为 1,2 上的“2类函数”;(2)若()()21e ln 2xx f x a x x x =---,为 1,2 上的“2类函数”,求实数a 的取值范围.。
北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案
![北京市丰台区2023-2024学年高二下学期期中考试数学试卷(B卷)含答案](https://img.taocdn.com/s3/m/c1af7827178884868762caaedd3383c4ba4cb444.png)
丰台区2023-2024学年度第二学期期中练习高二数学(B 卷)考试时间:120分钟(答案在最后)第I 卷(选择题共40分)一、选择题:共10小题,每小题4分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知函数()cos 2f x x =,则()f x 的导数()f x '=(A )sin 2x-(B )2sin 2x-(C )sin 2x(D )2sin 2x(2)若随机变量2)(3N σξ~,,则)(3P ξ=≤(A )0.4(B )0.5(C )0.6(D )0.7(3)现有甲、乙、丙、丁4人从宫灯、纱灯、吊灯这三种灯笼中任意选购1种,则不同的选购方式有(A )321⨯⨯种(B )432⨯⨯种(C )43种(D )34种(4)抛掷一颗质地均匀的骰子,事件{}135A =,,,事件{}12456B =,,,,,则|P A B =()(A )15(B )25(C )35(D )45(5)若2340123441a a x a x x a x a x =+++++(),则1234a a a a +++=(A )15(B )16(C )20(D )24(6)某班从3名男同学和4名女同学中选取3人参加班委会选举,要求男女生都有,则不同的选法种数是(A )60(B )45(C )35(D )30(7)某次社会实践活动中,甲、乙两班的同学在同一个社区进行民意调查.甲、乙两班人数之比为5:3,甲班女生占甲班总人数的23,乙班女生占乙班总人数的13.则该社区居民遇到一位进行民意调查的同学恰好是女生的概率为(A )19(B )29(C )12(D )1324(8)某种新产品的社会需求量y 与时间t 存在函数关系()y f t =.经过一段时间的市场调研,估计社会需求量y 的市场饱和水平为500万件,且()f t 的导函数f t '()满足:))500)))(((((0f t kf t f t k ->='.若0f y =(0),则函数()f t 的图象可能为(A )①②(B )①③(C )②④(D )③④(9)已知定义在R 上的函数()f x ,()g x 的导函数分别为()()f x g x '',,且满足()()()()0f x g x f x g x '+<',当a x b <<时,下列结论正确的是(A )()()()()f x g b f b g x >(B )()()()()f x g a f a g x >(C )()()()()f xg x f b g b >(D )()()()()f xg x f a g a >(10)已知函数()ln f x x =和()1g x ax =+.若存在01[,)ex ∈+∞,使得00()()f xg x =-恒成立,则实数a 的取值范围是(A )21[2e,]e-(B )21[,2e]e-(C )21[,e 2e](D )21[,2e]e第Ⅱ卷(非选择题共110分)二、填空题:共5小题,每小题5分,共25分.(11)用1,2,3,4这四个数字可以组成___个无重复数字的四位数.(12)已知离散型随机变量ξ的分布列如表所示,则m =___,()D ξ=___.(13)函数()f x =的导数()f x '=___.(14)已知5*)1((n x n x+∈N 的展开式中存在常数项,写出一个满足条件的n 的值:___.(15)莱布尼茨三角形(如下图)具有很多优美的性质,给出下列四个结论:①第8行第2个数是172;②111111(,2)(1)C (1)C C r r r n n n r r n n n n ++-+=∈-++N ≤;③当2024n =时,中间一项为1012202412025C ;④当n 是偶数时,中间的一项取得最小值;当n 是奇数时,中间的两项相等,且同时取得最小值.其中所有正确结论的序号是___.三、解答题:共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.(16)(本小题14分)已知函数32(2)21x a x x x b f =-++在2x =处取得极小值5.(Ⅰ)求实数a ,b 的值;(Ⅱ)求()f x 在区间[03],上的最小值.(17)(本小题14分)从4名男生和3名女生中选出4人去参加一项创新大赛.(Ⅰ)如果从男生和女生中各选2人,那么有多少种选法?(Ⅱ)如果男生甲和女生乙至少要有1人被选中,那么有多少种选法?(Ⅲ)如果恰有2人获得了本次比赛的冠军、亚军,那么有多少种获奖方式?(18)(本小题14分)为了增加系统的可靠性,人们经常使用“备用冗余设备”(即正在使用的设备出故障时才启动的设备).已知某计算机网络的服务器采用的是“一用两备”(即一台正常设备,两台备用设备)的配置,这三台设备中,只要有一台能正常工作,计算机网络就不会断掉.如果三台设备各自能正常工作的概率都为0.9,它们之间相互不影响,设能正常工作的设备台数为X .(Ⅰ)求X 的分布列;(Ⅱ)求计算机网络不会断掉的概率.(19)(本小题14分)已知函数()ln f x x x =.(Ⅰ)求曲线()y f x =在点()1(1)f ,处的切线方程;(Ⅱ)求()f x 的极值;(Ⅲ)若关于x 的方程()f x k =有两个实数根,直接写出实数k 的取值范围.(20)(本小题14分)某地旅游局对本地区民宿中普通型和品质型两类房间数量进行了调研,随机选取了10家民宿,统计得到各家民宿两类房间数量如下表:(Ⅰ)若旅游局随机从乙、丙2家民宿中各选取2个房间,求选出的4个房间均为普通型的概率;(Ⅱ)从这10家中随机选取4家民宿,记其中普通型房间不低于17间的有X 家,求X 的分布列和数学期望.(21)(本小题15分)民宿甲乙丙丁戊己庚辛壬癸普通型19541713189201015品质型61210111091285已知函数()()0ekx xf x k =≠.(Ⅰ)若1k =,求()f x 的单调区间;(Ⅱ)若()f x 在区间(11)-,上单调递增,求实数k 的取值范围.(考生务必将答案写在答题卡上,在试卷上作答无效)丰台区2023-2024学年度第二学期期中练习高二数学(B )卷参考答案第Ⅰ卷(选择题共40分)题号12345678910答案BBCBADDBCB第Ⅱ卷(非选择题共110分)二、填空题(每小题5分,共25分)(11)24;(12)23;29(13)22(1)x+-;(14)6;(答案不唯一)(15)①③④.(注:15题给出的结论中,有多个符合题目要求.全部选对得5分,不选或有错选得0分,其他得3分.)三、解答题(共85分)(16)(本小题14分)解:(Ⅰ)因为()26212f x x ax '=-+,且()f x 在2x =处取极小值5,所以()2244120f a '=-+=,得9a =,所以()222912f x x x x b =-++.又因为()245f b =+=,所以1b =.因为()f x 在区间()1,2上单调递减,在区间()2,+∞上单调递增,所以()f x 在2x =时取极小值,符合题意.……………6分(Ⅱ)()3229121f x x x x -+=+,所以()()()612f x x x '=--.令0f x '=(),解得1x =,或2x =.当x 变化时,(),()f x f x '的变化情况如表所示.因此,当2x =时,函数()3229121f x x x x -+=+有极小值,并且极小值为(2)5f =.又由于(0)1f =,(3)10f =,所以函数()3229121f x x x x -+=+在区间[0,3]上的最小值是1.…………14分(17)(本小题14分)解:(Ⅰ)如果从男生和女生中各选2人,选择方法数为:22436318C C =⨯=种…………4分(Ⅱ)如果男生中的甲和女生中的乙至少有1人被选中:男生甲被选中,女生乙没有被选中的方法数为:3510C =种;女生乙被选中,男生甲没有被选中的方法数为:3510C =种;男生甲和女生乙都被选中的方法数为:2510C =种;所以,男生甲和女生乙至少有1人被选中的方法数为30种.…………9分(Ⅲ)恰有2人获得了本次比赛的冠军、亚军的方法数为:4274420C A =种.…………14分(18)(本小题14分)解:(Ⅰ)由题意可知X 服从二项分布,即~(3,0.9)X B .033(0)C 0.9(10.9)0.001P X ==⨯⨯-=,1123(1)C 0.9(10.9)0.027P X ==⨯⨯-=,2213(2)C 0.9(10.9)0.243P X ==⨯⨯-=,3303(3)C 0.9(10.9)0.729P X ==⨯⨯-=,从而X 的分布列为X 0123P0.0010.0270.2430.729…………10分(Ⅱ)要使得计算机网络不会断掉,也就是要求能正常工作的设备至少有一台,即1X ≥ ,因此所求概率为:(1)1(1)1(0)10.0010.999P X P X P X =-<=-==-=≥ .…………14分(19)(本小题14分)解:(Ⅰ)因为()ln f x x x =,所以()1ln f x x '=+,则()11k f '==,()10.f =所以切线方程为10.x y --=……………4分(Ⅱ)由()1ln f x x '=+,()0,x ∈+∞,令()0f x '=即1ln 0x +=,解得1ex =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 在区间1(0,)e 上单调递减,在区间1(,)e+∞上单调递增,当1e x =()f x 有极小值11()e ef =-,无极大值.……11分(Ⅲ)1,0e(-)……14分(20)(本小题14分)解:(Ⅰ)设“从乙家民宿中选取2个房间,选到的2个房间均为普通型为事件A ;“从丙家民宿中选取2个房间,选到的2个房间均为普通型”为事件B ;所以选出的4间均为普通型房间的概率为22542266C C 4()()()C C 15P AB P A P B ==⨯=.……………5分(Ⅱ)记其中普通型房间不低于17间的有X 家,则X 的可能取值为0,1,2,3,4.()()464101346410C 10,C 14C C 81,C21P X P X ======()()()2246410314641044410C C 32,C 7C C 43,C 35C 14,C210P X P X P X =========用表格表示X 的分布列,如下表.158090241()01234 1.6.210210*********E X =⨯+⨯+⨯+⨯+⨯=所以……14分(21)(本小题15分)解:(Ⅰ)2e e 1()e ekx kx kx kx kx kx f x --'==若1k =,则1()ex x f x -'=,令()0f x '=,解得1x =.当x 变化时,(),()f x f x '的变化情况如表所示.所以()f x 的单调递增区间为(,1)-∞,单调递减区间为(1,).+∞……5分(Ⅱ)因为()()0e kx x f x k =≠所以2e e 1().e ekx kx kx kx kx kx f x --'==令()0f x '=,解得1x k=.①0k >时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递增,在1(,)k +∞上单调递减.②0k <时,当x 变化时,(),()f x f x '的变化情况如表所示.所以,()f x 在1(,k-∞上单调递减,在1(,)k +∞上单调递增.若函数()f x 在区间()1,1-内单调递增,则0k >时,11k≥,即01k <≤;则0k <时,11k-≤,即10k -<≤;所以k 的范围是[1,0)(0,1]- .……………15分。
辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案
![辽宁省鞍山市2023-2024学年高二下学期期中考试数学试题含答案](https://img.taocdn.com/s3/m/c583c75fbfd5b9f3f90f76c66137ee06eff94ea9.png)
2023-2024学年度下学期期中考试高二数学(A )(答案在最后)时间:120分钟满分:150分命题范围:选择性必修二,选择性必修三结束.第I 卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设随机变量X 服从正态分布()3,4N ,若()()263P X a P X a >-=<-,则a =()A.2-B.1- C.12D.1【答案】B 【解析】【分析】根据正态分布曲线的对称性即可求得答案.【详解】由题意随机变量X 服从正态分布()3,4N ,即正态分布曲线关于3x =对称,因为()()263P X a P X a >-=<-,故2(63)3,12a a a -+-=∴=-,故选:B2.设等比数列{}n a 的前n 项和为n S ,且213S a =,则公比q=A.12B.13C.2D.3【答案】C 【解析】【分析】将已知转化为1,a q 的形式,解方程求得q 的值.【详解】依题意1113a a q a +=,解得2q =,故选C.【点睛】本小题主要考查利用基本元的思想求等比数列的基本量1,a q ,属于基础题.基本元的思想是在等比数列中有5个基本量1,,,,n n a q a S n ,利用等比数列的通项公式或前n 项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1,a q ,进而求得数列其它的一些量的值.3.已知某公路上经过的货车与客车的数量之比为2:1,货车和客车中途停车修理的概率分别为0.02,0.01,则一辆汽车中途停车修理的概率为()A.1100B.160 C.150D.130【答案】B 【解析】【分析】利用全概率公式可求解得出.【详解】设B 表示汽车中途停车修理,1A 表示公路上经过的汽车是货车,2A 表示公路上经过的汽车是客车,则()123P A =,()213P A =,()10.02P B A =,()20.01P B A =,则由全概率公式,可知一辆汽车中途停车修理的概率为()()()()()11222110.020.013360P B P A P B A P A P B A =+⋅=⨯+⨯=.故选:B.4.函数()sin cos f x x x x =+的导数()f x '的部分图象大致为()A. B.C. D.【答案】D 【解析】【分析】根据已知,利用函数的求导公式以及函数的奇偶性、函数值进行排除.【详解】因为()sin cos f x x x x =+,所以()sin cos sin cos f x x x x x x x '=+-=,令()()cos g x f x x x '==,R x ∈,则()()cos g x x x g x -=-=-,所以函数()cos g x x x =是奇函数,故A ,C 错误;又()ππcos π=-π<0g =,故B 错误.故选:D.5.若(2nx 二项展开式的第二项的二项式系数等于第五项的二项式系数,则该展开式中的含4x 项的系数为()A.80B.14- C.14D.80-【答案】A 【解析】【分析】根据二项式定理,以及组合数的性质,建立方程,可得答案.【详解】由二项式(2nx ,则其展开式的通项()(()()121C 2C 210,N rn n rrrr n rr nnT x xr n r ---+==-≤≤∈,展开式的第二项和第五项的二项式系数分别为1C n ,4C n ,则14C C n n =,解得5n =,则通项为()()155215C 2105,N rr rr T xr r --+=-≤≤∈,令1542r -=,解得2r =,则展开式中含4x 项的系数为()22523554C 2128021-⨯⋅⋅-=⨯=⨯.故选:A.6.有一批灯泡寿命超过500小时的概率为0.9,寿命超过800小时的概率为0.8,在寿命超过,500小时的灯泡中寿命能超过800小时的概率为()A.89B.19 C.79D.59【答案】A 【解析】【分析】由条件概率公式求解即可.【详解】记灯泡寿命超过500小时为事件A ,灯泡寿命超过800小时为事件B ,则()()0.9,0.8P A P AB ==,所以()()()0.88|0.99P AB P B A P A ===.故选:A7.数学活动小组由12名同学组成,现将12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题,并要求每组选出一名组长,则不同的分配方案的种数为A.333412963C C C B.33341296433C C C A A C.33331296444C C C A D.333312964C C C 【答案】A 【解析】【详解】将这12名同学平均分成四组分别研究四个不同课题,且每组只研究一个课题只需每个课题依次选三个人即可,共有3331296C C C 中选法,最后选一名组长各有3种,故不同的分配方案为:333412963C C C ,故选A.8.已知函数32()1f x x ax x =-+--在R 上是单调函数,则实数a 的取值范围是()A.(,)-∞⋃+∞B.[C.(,)-∞⋃+∞D.(【答案】B 【解析】【分析】由题得()0f x '≤在R 上恒成立,解不等式24120a ∆=-≤即得解.【详解】由题意知,2()321f x x ax '=-+-,因为()y f x =在R 上是单调函数,且()y f x '=的图象开口向下,所以()0f x '≤在R 上恒成立,故24120a ∆=-≤,即a ≤≤故选:B【点睛】结论点睛:一般地,函数()f x 在某个区间可导,()f x 在这个区间是增函数⇒'()f x ≥0.一般地,函数()f x 在某个区间可导,()f x 在这个区间是减函数⇒'()f x ≤0.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得3分,有选错的得0分.9.对两个变量x 与y 进行线性相关性和回归效果分析,得到一组样本数据:()()()1122,,,,,,n n x y x y x y ⋅⋅⋅,则下列说法正确的是()A.残差平方和越小的模型,拟合的效果越好B.由样本数据利用最小二乘法得到的回归方程表示的直线必过样本点的中心()x yC.用相关指数2R 来刻画回归效果,2R 越小,说明模型的拟合效果越好D.若变量x 与y 之间的相关系数0.80r =,则变量x 与y 之间具有很强的线性相关性【答案】ABD 【解析】【分析】根据残差的平方和的性质判断A ,根据回归方程的性质判断B ,根据相关指数的性质判断C ,根据相关系数的定义判断D.【详解】对于A ,由残差的意义可得,残差平方和越小的模型,拟合的效果越好,A 正确;对于B ,若回归方程为ˆˆˆy bx a =+,则ˆˆy bx a =+,即回归方程表示的直线必过样本点的中心(,x y ,B 正确;对于C ,相关指数2R 越大,说明残差的平方和越小,即模型的拟合效果越好,C 正确;对于D ,变量x 与y 之间的相关系数0.80r =,故相关系数较为接近1,所以变量x 与y 之间具有很强的线性相关性.D 正确;故选:ABD.10.设等差数列{}的前n 项和为n S ,公差为d .已知312a =,100S >,60a <,则()A.数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项B.2445d -<<-C.50a > D.0n S >时,n 的最大值为5【答案】ABC 【解析】【分析】利用数列的单调性结合不等式的基本性质可判断A 选项的正误;根据已知条件列出关于d 的不等式组,求出d 的取值范围,可判断B 选项的正误;利用等差数列求和公式及等差数列下标和性质可判断C ,D 选项的正误.【详解】对于C 选项,由()()110105610=502a a S a a +=+>且60a <,可知50a >,故C 正确;对于B 选项,由53635632122031230252450a a d d a a d d a a a d d =+=+>⎧⎪=+=+<⎨⎪+=+=+>⎩,可得2445d -<<-,故B 正确;对于D 选项,因为100S >,()111116111102a a S a +==<,所以,满足0n S >的n 的最大值为10,故D 错误;对于A 选项,由上述分析可知,当15n ≤≤且*N n ∈时,0n a >;当6n ≥且*N n ∈时,0n a <,所以,当15n ≤≤且*N n ∈时,0nnS a >,当610n ≤≤且*N n ∈时,0nnS a <,当11n ≥且*N n ∈时,0nnS a >.由题意可知{}单调递减,所以当610n ≤≤且*N n ∈时,6789100a a a a a >>>>>,由题意可知{}n S 单调递减,即有6789100S S S S S >>>>>,所以678910111110a a a a a ->->->->->,由不等式的性质可得6789106789100S S S S Sa a a a a ->->->->->,从而可得6789106789100S S S S S a a a a a <<<<<,因此,数列n n S a ⎧⎫⎨⎬⎩⎭的最小项为第6项,故A 正确.故选:ABC.11.如果函数()f x 对定义域内的任意实数,都有()()0f x xf x '+>,则称函数()y f x =为“F 函数”.下列函数不是“F 函数”的是()A.()e xf x = B.()ln f x x =C.()2f x x= D.()sin f x x=【答案】ABD 【解析】【分析】令()()g x xf x =,则()()()0g x f x xf x ''=+>,可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”,逐项验证可得答案.【详解】令()()g x xf x =,则()()()0g x f x xf x ''=+>,即函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.对于A ,()e xf x =,()()()e=∈=xg xf x x x x R ,()()e e 1e x x x g x x x '=+=+,当1x >-时,()0g x '>,()g x 单调递增,当1x <-时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()e xf x =不是“F 函数”.故A 正确;对于B ,()ln f x x =,()()()ln 0>==g xf x x x x x ,()ln 1g x x '=+,当10e x <<时,()0g x '<,()g x 单调递减,当1ex >时,()0g x '>,()g x 单调递增,不符合在定义域内是单调递增函数,则函数()ln f x x =不是“F 函数”.故B 正确;对于C ,()2f x x =,()()()3=∈=g xf x xx x R ,()203'=≥x x g ,所以()g x 单调递增函数,则函数()2f x x =是“F 函数”.故C 错误;对于D ,()sin f x x =,()()()sin ∈==g x xf x x x x R ,()sin cos g x x x x '=+,当3ππ2<<x 时,()0g x '<,()g x 单调递减,不符合在定义域内是单调递增函数,则函数()sin f x x =不是“F 函数”.故D 正确.故选:ABD.【点睛】关键点点睛:本题解题的关键点是构造函数()()g x xf x =,根据()0g x '>可得函数()g x 在定义域内是单调递增函数,称函数()y f x =为“F 函数”.第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.12.演讲比赛结束后,4名选手与1名指导教师站成一排合影留念.要求指导教师不能站在两端,那么有______种不同的站法.(用数字作答)【答案】72【解析】【分析】根据题意,分2步进行分析:①,指导教师不能站在两端,易得指导教师有3种站法,②,其4名选手全排列,安排在其他4个位置,由分步计数原理计算可得答案.【详解】根据题意,分2步进行分析:①,指导教师不能站在两端,则指导教师有3个位置可选,有3种站法;②,其4名选手全排列,安排在其他4个位置,有4424A =种情况,则有32472⨯=种不同的站法;故答案为72.【点睛】本题考查排列、组合的应用,涉及分步计数原理的应用,属于基础题.13.已知随机变量X ,Y 满足21Y X =+,且随机变量X 的分布列如下:X 012P1613a则随机变量Y 的方差()D Y 等于______;【答案】209##229【解析】【分析】根据分布列中概率和为1可得a ,再由期望、方差公式计算出()D X ,最后利用()()2D aX b a D X +=计算可得答案.【详解】因为11163a ++=,所以12a =,()11140126323=⨯+⨯+⨯=E X ,()22214141450126333239⎛⎫⎛⎫⎛⎫=⨯-+⨯-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D X ,所以()()()520214499=+==⨯=D Y D X D X .故答案为:209.14.若函数()3231f x ax ax =-+有3个不同的零点,则实数a 的取值范围为______.【答案】1,4⎛⎫+∞ ⎪⎝⎭【解析】【分析】由已知()()'23632fx ax ax ax x =-=-,分为0a =、0a <和0a >进行讨论,利用函数的单调区间和()01f =即可得到答案.【详解】由已知()()'23632fx ax ax ax x =-=-,当0a =时,函数()0f x =无解,不符合题意;当0a <时,()'0fx >得02x <<,()'0f x <得0x <或2x >,即函数()f x 的增区间为()0,2,减区间为()(),0,2,-∞+∞,又()01f =,所以函数()f x 有且仅有1个零点,与题意不符;当0a >时,()'0fx >得0x <或2x >,()'0f x <得02x <<,即函数()f x 的增区间为()(),0,2,-∞+∞,减区间为()0,2,又()01f =,要使函数()3231f x ax ax =-+有3个不同的零点,则需()20f <,即81210a a -+<,解得14a >.故答案为:1,4⎛⎫+∞⎪⎝⎭.四、解答题:本题共5小题,共77分.解答应写出文字说阴、证明过程或演算步骤.15.已知数列{}n a 的前n 项和为n S ,123n = ,,,,从条件①、条件②和条件③中选择两个能够确定一个数列的条件,并完成解答.(条件①:55a =;条件②:12n n a a +-=;条件③:24S =-.)选择条件和.(1)求数列{}n a 的通项公式;(2)设数列{}n b 满足n n b a =,并求数列{}n b 的前n 项的和n T 【答案】(1)25n a n =-(2)当12n ≤≤时2=4n T n n -+,当3n ≥时248n T n n =-+【解析】【分析】(1)根据12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,然后求出首项,即可得通项.(2)由52,12;25,3n n n b n n -≤≤⎧=⎨-≥⎩,分情况讨论即可得nT 【小问1详解】选①②,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,又55a =得13a =-,故()32125n a n n =-+-=-选②③,由12n n a a +-=可知数列{}n a 是以公差2=d 的等差数列,由24S =-可知124,a a +=-13a ∴=-,()32125n a n n =-+-=-选①③,无法确定数列.【小问2详解】52,12;252525,3n n n n n a n b a n n n -≤≤⎧=-∴==-=⎨-≥⎩ ,其中n N ∈,当12n ≤≤,n N ∈时,2=4n T n n-+当3n ≥,n N ∈时,数列{}n b 是从第三项开始,以公差2=d 的等差数列()()21252=4+482n n n T n n +--=-+.16.已知函数()ln 22f x x x =-+-.(1)求曲线()y f x =的斜率等于1的切线方程;(2)求函数()f x 的极值.【答案】(1)1y x =-;(2)极小值ln 21-,无极大值.【解析】【分析】(1)首先求函数的导数,根据()01f x '=,求切点坐标,再求切线方程;(2)根据极值的定义,利用导数求极值.【详解】(1)设切点为()00,x y ,因为()12f x x=-+',所以0121x -+=,01x =,0ln1220y =-+-=,所以切线方程l 为()011y x -=⨯-,即1y x =-.(2)()f x 的定义域为0,+∞.令()0f x '=即120x -+=,12x =,令()0f x '>,得12x >,令()0f x '<,得102x <<,故()f x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞⎪⎝⎭上单调递增,所以()f x 存在极小值1ln 212ln 212f ⎛⎫=+-=-⎪⎝⎭,无极大值.17.随着人们生活水平的提高,国家倡导绿色安全消费,菜篮子工程从数量保障型转向质量效益型.为了测试甲、乙两种不同有机肥料的使用效果,某科研单位用西红柿做了对比实验,分别在两片实验区各摘取100个,对其质量的某项指标值进行检测,质量指数值达到35及以上的为“质量优等”,由测量结果绘成如下频率分布直方图.其中质量指数值分组区间是:[)20,25,[)25,30,[)30,35,[)35,40,[]40,45.(1)请根据题中信息完成下面的列联表,并判断是否有99.9%的把握认为“质量优等”与使用不同的肥料有关;甲有机肥料乙有机肥料合计质量优等质量非优等合计(2)在摘取的用乙种有机肥料的西红柿中,从“质量优等”中随机选取2个,记区间[]40,45中含有的个数为X ,求X 的分布列及数学期望.附:()()()()()22n ad bc a b c d a c b d χ-=++++.()20P x χ≥0.1000.0500.0100.0050.001x 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析,有99.9%的把握认为,“质量优等”与使用不同的肥料有关(2)分布列见解析,2()3E X =【解析】【分析】(1)根据已知条件,结合独立性检验公式,即可计算并判断结果.(2)随机变量X 的可能取值有0,1,2,服从超几何分布,利用超几何分布的公式可计算概率值,从而列出分布列并计算期望.【小问1详解】解:由题意可得22⨯列联表为:甲有机肥料乙有机肥料合计质量优等603090质量非优等4070110合计100100200则()()()()()22n ad bc a b c d a c b d χ-=++++2200(42001200)20018.18210.8281001001109011⨯-=≈>⨯⨯=⨯.所以有99.9%的把握认为“质量优等”与使用不同的肥料有关.【小问2详解】由频率分布直方图可得“质量优等”有30个,区间[]40,45中含有10个,随机变量X 的可能取值有0,1,2,021020230C C 19038(0)C 43587P X ====,111020230C C 20040(1)C 43587P X ====,210230C 459(2)C 43587P X ====,随机变量X 的分布列如下:X012P38874087987384092()0128787873E X =⨯+⨯+⨯=.18.已知数列{}n a 满足11a =,11n n S a n +=--.(1)证明:数列{}1n a +是等比数列;(2)设1n n nb a =+,求数列{}n b 的前n 项和n S .【答案】(1)证明见解析;(2)222n nn S +=-.【解析】【分析】(1)利用给定的递推公式,结合12,n n n n a S S -≥=-推理判断作答.(2)由(1)求出n b ,再利用错位相减法求和作答.【小问1详解】当1n =时,122S a =-,解得23a =,当2n ≥时,11n n S a n +=--,1n n S a n -=-,两式相减得11n n n a a a +=--,即121n n a a +=+,即有()1121n n a a ++=+,而21142(1)a a +==+,则N n *∀∈,()1121n n a a ++=+,所以数列{}1n a +是以2为首项,2为公比的等比数列.【小问2详解】由(1)知12nn a +=,于是12n n n n nb a ==+,则231232222n n n S =++++ ,于是231112122222n n n n n S +-=++++ ,两式相减得2311111(1)11222112221212222121n n n n n n n n n S +++-+=++++-=-=--,所以222n n n S +=-.19.设函数()e xf x ax =-,0x ≥且R a ∈.(1)求函数()f x 的单调性;(2)若()21f x x ≥+恒成立,求实数a 的取值范围.【答案】(1)答案见解析(2)e 2a ≤-【解析】【分析】(1)求导后分1a ≤与1a >两种情况讨论即可;(2)方法一:讨论当0x =时成立,当0x >时参变分离可得2e 1x x a x --≤,再构造函数()2e 1x x g x x --=,0x >,求导分析最小值即可;方法二:将题意转化为2max11e x x ax ⎛⎫++≤ ⎪⎝⎭,再构造函数()21e xx ax h x ++=,求导分类讨论单调性与最大值即可.【小问1详解】()e x f x a '=-,0x ≥,当1a ≤时,()0f x '≥恒成立,则()f x 在[)0,+∞上单调递增;当1a >时,[)0,ln x a ∈时,()0f x '≤,则()f x 在[)0,ln a 上单调递减;()ln ,x a ∈+∞时,()0f x '≥,则()f x 在[)0,ln a 上单调递增.【小问2详解】方法一:2e 1x ax x -≥+在0x ≥恒成立,则当0x =时,11≥,显然成立,符合题意;当0x >时,得2e 1x x a x --≤恒成立,即2min e 1x x a x ⎛⎫--≤ ⎪⎝⎭记()2e 1x x g x x --=,0x >,()()()2e 11x x x g x x'---=,构造函数e1xy x =--,0x >,则e 10x y '=->,故e 1xy x =--为增函数,则0e 1e 010x x -->--=.故e 10x x -->对任意0x >恒成立,则()g x 在()0,1递减,在()1,+∞递增,所以()()min 1e 2g x g ==-∴e 2a ≤-.方法二:211e xx ax ++≤在[)0,+∞上恒成立,即2max11e x x ax ⎛⎫++≤ ⎪⎝⎭.记()21e x x ax h x ++=,0x ≥,()()()11e xx x a h x '-+-=-,当1a ≥时,()h x 在()0,1单增,在()1,+∞单减,则()()max 211ea h x h +==≤,得e 2a ≤-,舍:当01a <<时,()h x 在()0,1a -单减,在()1,1a -单增,在()1,+∞单减,()01h =,()21ea h +=,得0e 2a <<-;当0a =时,()h x 在()0,∞+单减,成立;当a<0时,()h x 在()0,1单减,在()1,1a -单增,在()1,a -+∞单减,()01h =,()121eaah a ---=,而1e 11a a -≥-+,显然成立.综上所述,e 2a ≤-.。
山东省枣庄市2023-2024学年高二下学期期中质量检测数学试题(含简单答案)
![山东省枣庄市2023-2024学年高二下学期期中质量检测数学试题(含简单答案)](https://img.taocdn.com/s3/m/a771c56ca22d7375a417866fb84ae45c3b35c2fb.png)
枣庄市2023-2024学年高二下学期期中质量检测数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知函数,则( )A. 2B. C. 4D. 2. 下列函数求导正确的是( )A B. C D. 3. 从4名男生与3名女生中选两人去参加一场数学竞赛,则男女各一人的不同的选派方法数为( )A. 7B. 12C. 18D. 244. 已知,,则( )A.B.C.D.5. 的展开式中,项的系数为( )A. 10B. C. 60D. 6. 随机变量的概率分布为1240.40.3则等于( )的..()2f x x=-()()22limh f h f h →+-=2-4-211x x'⎛⎫= ⎪⎝⎭()sin cos x x'=-()1ln22x x'=()()e 1e x xx x '=+()13P B A =()25P A =()P AB =5691021513()522x x y +-52x y 30-60-X XPa()54E X +A. 5B. 15C. 45D. 与有关7. 已知函数,是的唯一极小值点,则实数的取值范围为()A. B. C. D. 8. 已知实数分别满足,,且,则( )A B. C. D. 二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在定义域上为增函数的有( )A. B. C. D. 10. 下列排列组合数中,正确的是( )A. B. C. D. 11. 已知直线分别与函数和的图象交于点,则下列结论正确的是( )A. B. C. D. 三、填空题:本题共3小题,每小题5分,共15分.12. 某班联欢会原定3个节目已排成节目单,开演前又增加了2个节目,现将这2个新节目插入节目单中,要求新节目不相邻,那么不同的插法种数为_____________.13. 若能被64整除,则正整数的最小值为_____________.14 已知实数满足,则_____________...a ()()221()4442xf x e xx k x x =--++2x =-()f x k )2,e ⎡-+∞⎣)3,e ⎡-+∞⎣)2,e ⎡+∞⎣)3,e ⎡+∞⎣,a b e 1.02a =()ln 10.02b +=151c =a b c<<b a c <<b<c<ac<a<b()e xf x x=+()exf x x =()sin f x x x=-()2ln f x x x=-12344444A A A A 84+++=3333434520232024C C C C C ++++= 11A A A mm m n nn m -++=11C C mm n n m n --=2y x =-+e x y =ln y x =()()1122,,,A x y B x y 122x x +=12e e 2e x x +>1221ln ln 0x x x x +>12x x >()2024*381011a a -⨯+∈N a 12x x ,()136122e e ln 3e xx x x =-=,12x x =四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在三个地区爆发了流感,这三个地区分别有的人患了流感,假设这三个地区的人口数的比为3:5:2,现从这三个地区中任意选取一个人(1)求这个人患流感的概率;(2)如果此人患流感,求此人选自A 地区的概率.16. 一台笔记本电脑共有10台,其中A 品牌3台,B 品牌7台,如果从中随机挑选2台,其中A 品牌台数.(1)求的分布列;(2)求和.17. 已知展开式中,第三项的系数与第四项的系数比为.(1)求的值;(2)求展开式中有理项的系数之和.(用数字作答)18. 已知函数.(1)求曲线在点处的切线方程;(2)求的极值.19. 已知函数(1)讨论的单调性;(2)若有两个零点,求的取值范围.,,A B C 6%5%4%,,X X ()E X ()X σ2(n x +65n ()23ln f x x x x =+-()y f x =()()1,1f ()f x ()()()2e12e R xx f x a ax a =+--∈()f x ()f x a枣庄市2023-2024学年高二下学期期中质量检测数学简要答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】D【2题答案】【答案】D【3题答案】【答案】B【4题答案】【答案】C【5题答案】【答案】C【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BCD【11题答案】【答案】AB三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】12【13题答案】【答案】55【14题答案】【答案】四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1) (2)【16题答案】【答案】(1)分布列略 (2)【17题答案】【答案】(1)7; (2)702.【18题答案】【答案】(1) (2)极小值为,无极大值【19题答案】【答案】(1)当时,在上单调递增;当时,在上单调递减,在上单调递增. (2)6e 0.051617352y =20a ≤()f x R 0a >()f x (,ln )a -∞(ln ,)a +∞(1,)+∞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
~第二学期金台区中学教师命题比赛参赛试卷高二数学期中试卷命题人单位:卧龙寺中学 姓名:吴亮本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 第Ⅰ卷至页,第Ⅱ卷至页,满分分,考试时间分钟.一、选择题:(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数在点处的导数是( )A .0 B.1 C. 2 D.32. 函数的导数是( )A. B. C. D. 3 中三顶点对应的复数分别是,若复数满足,则所对应的点是的( )A 垂心B 外心C 内心D 重心4.函数的极值情况是( )A.有极大值2,极小值-2B.有极大值1,极小值-1C.无极大值,但有极小值-2D.有极大值2,无极小值.5.函数在上取得最大值时,的值为( )A.0B.C.D. 6 复数的平方是实数等价于( )A )B )且C )D )7.设函数y=f(x)在区间[0,2]上是连续函数,那么( ) A. B.C.+D. + 8.若函数y=f(x)是奇函数,则=( )A. 2B.2C.0D. 29 设则( )A 都不大于B 都不小于C 至少有一个不大于D 至少有一个不小于 10 给出下列命题(1)实数的共轭复数一定是实数;(2)满足的复数的轨迹是椭圆;(3)若,则 其中正确命题的序号是( )A B C D11若函数在区间内可导,且则 的值为( )A B C D12 ,若,则的值等于( )A B C D二、填空题:本大题共6小题,每小题5分,共30分, 把答案填第Ⅱ卷题中横线上 13.从中,得出的一般性结论是_________________14 函数在时有极值,那么的值分别为________ 15.函数f(x)=2x 3+3x 2-12x+1的增区间是16.17.=18. 已知,则 .12381501202x y =1=x x x x y +=sin x x x y 21cos sin /++=x x x y 21cos sin /+-=x x x y 21cos sin /-+=x x x y 21cos sin /--=ABC ∆321,,z z z z ||||||321z z z z z z -=-=-z ABC ∆xx y 1+=⎥⎦⎤⎢⎣⎡2,0πx 6π3π2π),(R b a bi a ∈+022=+b a 0=a 0=b 0≠a 0=ab ⎰=20)(dx x f ⎰+10xdx ⎰21)(dx x f ⎰+1)(dt t f ⎰2)(dx x f ⎰10)(dt t f ⎰21)(dx x f ⎰10)(dx x f ⎰25.0)(dx x f ⎰-11)(dx x f ⎰10)(dx x f ⎰-01)(dx x f ,,(,0),a b c ∈-∞111,,a b c b c a+++2-2-2-2-2z i z i -++=z 2,1m Z i ∈=-1230;m m m m i i i i ++++++=(1)(2)(3)(1)(3)(1)(4)()y f x =(,)a b 0(,)x a b ∈000()()lim h f x h f x h h→+--'0()f x '02()f x '02()f x -032()32f x ax x =++'(1)4f -=a 319316313310222576543,3432,11=++++=++=322(),f x x ax bx a =+++1=x 10b a ,=+⎰-dx x x x )4cos (1173⎰4122cos ππxdx 2z i =-32452z z z -++=第Ⅱ卷(非选择题)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上13.________________________ 14._______________________15._________________________ 16.______________________17._________________________ 18.________________________三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤.19 (10分) 已知求证:20.(12分)用数学归纳法证明,21.(12分)已知复数,当实数为何值时,(1)为实数;(2)为虚数;(3)为纯虚数.22(12分)已知函数的图象经过点P(0,2),且在点M(-1, )处的切线方程是,求的解析式;23(14分)已知函数在与时都取得极值(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围, a b c >>114.a b b c a c+≥---6)12)(1(3212222++=++++nnnn)(•∈Nn22(56)(215)z m m m m i=+++--mzzzdcxbxxxf+++=23)()1(-f076=+-yx)(xfy=32()f x x ax bx c=+++23x=-1x=,a b()f x[1,2]x∈-2()f x c<c金台区中学教师命题比赛参赛试卷高二数学期中试卷数学答案及评分标准13. 14. 15. (-,-2), (1,+) 16. 017. 18. 2三、解答题:本大题共5小题,共60分19.(10分)证明:…………2分,…………6分 …………………………10分 20. (12分) 证明:(1) 当时,左边,右边, 即原式成立…………………………………2分(2)假设当时,原式成立,即…6分当时, ……10分即原式成立根据(1)和(2)可知等式对任意正整数n 都成立…………12分21(12分)解:(1)若为实数,则,解得或;…4分(2)若为虚数,则,解得或;………8分(3)若为纯虚数,则解得.………………12分22. (12分)解:由的图像经过点P(0,2)知,d=2.…………………2分所以………………4分由在点M(-1, )处的切线方程为 得即 ………………10分即解得故所求解析式是 ……………12分 23.(14分) 解:(1)由,得……4分,函数的单调区间如下表:所以函数的递增区间是与,递减区间是; (8)分(2),当时, 为极大值,而,则为最大值,要使 恒成立,则只需要,得 ………………………14分2)12()23()1(-=-+⋅⋅⋅+++n n n n 4,11-∞∞41a c a c ab bc a b b ca b b c a b b c ---+--+-+=+----224b c a b a b b c --=++≥+=--()a b c >>1144,.a c a c a b b c a b b c a c--∴+≥∴+≥-----1n =1=(11)(21)16++==n k =2222(1)(21)1236k k k k ++++++=1n k =+222222(1)(21)123(1)(1)6k k k k k k ++++++++=++22(1)(21)6(1)(1)(276)66(1)(2)(23)6k k k k k k k k k k +++++++==+++=2222(1)(21)1236n n n n ++∴++++=z 22150m m --=3m =-5m =z 22150m m --≠3m ≠-5m ≠z 225602150m m m m ⎧++=⎪⎨--≠⎪⎩,,2m =-)(x f 2)(23+++=cx bx x x f c bx x x f ++=23)`(2)1(-f 076=+-y x 07)1(6=+---f .6)1`(,1)1(=-=-f f ⎩⎨⎧=+-=+-+-∴623121c b c b ⎩⎨⎧-=-=-320c b c b .3-==c b 233)(23+--=x x x x f 32'2(),()32f x x ax bx c f x x ax b =+++=++'2124()0393f a b -=-+='(1)320f a b =++=1,22a b =-=-'2()32(32)(1)f x x x x x =--=+-()f x ()f x (,)3-∞-(1,)+∞2(,1)3-321()2,[1,2]2f x x x x c x =--+∈-23x =-222()327f c -=+(2)2f c =+(2)2f c =+2(),[1,2]f x c x <∈-2(2)2c f c >=+1,2c c <->或试卷说明命题人吴亮1.命题意图本套试题依据“重视基础,考察能力,体现导向,注重发展”的命题原则。
注重学生的基础能力,同时考察学生的发展能力,体现了新课程标准数学发展的理念,更考察了学生在数学方面的运用能力以及核心知识的掌握情况,难度中等,对数学学科在新课程的理念下有很好的检测作用。
2.试卷结构特点本试题是对高二数学选修2-2理科的模块检测,满分150分,时间120分钟,分为Ⅰ卷和Ⅱ卷,共有试题23道,其中12道选择题,共60分;6道填空题,共30分;5道解答题,共60分。
难度为中等水平,既有基础能力题,也有拔高扩展题。
用基础题考察学生对知识的掌握能力,也同时用拔高题来提高学生的应变能力,为高三复习和知识扩展做好准备。
分值分布为:推理与证明32分,为1道选择题1道填空题和2道解答题。
导数及其应用66分,为6道选择题2道填空题和2道解答题。
定积分20分,为2道选择题2道填空题。
复数为32分,3道选择题1道填空题和1道解答题。
3.典型试题例说1.选择第3题:中三顶点对应的复数分别是,若复数满足,则所对应的点是的()A)垂心 B)外心 C)内心 D)重心【分析】此题考察的是复数与复平面点以及向量之间的对应关系,意在让学生把知识连在一起,从而提高学生的综合运用能力,此题不难,但如果单纯考虑复数,忘记了复数与其他的对应关系,此题将无从下手。
答案为B。
2.填空题第13题:从中,得出的一般性结论是_________________【分析】此题考察的是学生的归纳推理能力,要能从给出的3个式子中找出规律从而发现结论,此题的难点在于每个等式左边的项数和起始值,这将成为本题的突破口,更是考察了学生观察和推理的能力。
答案是3.解答题第23题:已知函数在与时都取得极值(1)求的值与函数的单调区间(2)若对,不等式恒成立,求的取值范围【分析】此题是对导数应用能力的综合测试,即有利用导数产生函数的单调区间,也有利用导数得出极值从而解决问题,所以本题给了14分,但只要学生牢固的掌握了基础,本题做起来将还是能从各步骤中得分的,尤其是本题既体现了基础又体现了扩展,所以不同层次的学生可以得到不同的分数。