有理数全章复习与巩固(提高)知识讲解

合集下载

七级数学教案有理数

七级数学教案有理数

七级数学教案有理数第一章:有理数的概念与分类1.1 学习目标了解有理数的定义与特点掌握有理数的分类及相互关系1.2 教学内容有理数的定义与特点有理数的分类:整数(正整数、负整数、零)、分数(正分数、负分数)有理数的大小比较1.3 教学步骤1. 引入话题:讨论日常生活中的数量,引导学生思考如何表示正负数和零。

2. 讲解有理数的定义与特点,通过实例加深理解。

3. 讲解有理数的分类,引导学生通过图形表示理解不同类型的有理数。

4. 练习有理数的大小比较,让学生通过实际操作来掌握规则。

1.4 作业布置完成课后练习题,巩固有理数的概念与分类。

第二章:有理数的运算2.1 学习目标掌握有理数的加法、减法、乘法、除法的运算规则能够正确进行有理数的混合运算2.2 教学内容有理数的加法与减法:同号相加、异号相加、零的加减法有理数的乘法:正数乘以正数、负数乘以正数、正数乘以负数、负数乘以负数有理数的除法:整数除以整数、分数除以整数、整数除以分数2.3 教学步骤1. 复习有理数的分类,引导学生回顾有理数的概念。

2. 讲解有理数的加法与减法运算规则,通过示例进行演示。

3. 讲解有理数的乘法运算规则,引导学生通过实际操作来理解。

4. 讲解有理数的除法运算规则,通过示例进行演示。

5. 练习有理数的混合运算,让学生通过实际操作来掌握规则。

2.4 作业布置完成课后练习题,巩固有理数的运算规则。

第三章:有理数的应用3.1 学习目标能够运用有理数解决实际问题掌握有理数在生活中的应用3.2 教学内容有理数在生活中的应用:购物、计算距离、温度转换等有理数的估算:整数与分数的估算方法3.3 教学步骤1. 引入话题:讨论日常生活中遇到的有理数问题,引导学生思考如何运用有理数解决实际问题。

2. 讲解有理数在生活中的应用,通过实例加深理解。

3. 讲解有理数的估算方法,引导学生通过实际操作来掌握。

3.4 作业布置完成课后练习题,巩固有理数在生活中的应用。

第二章有理数的运算整章教案

第二章有理数的运算整章教案
教学准备:多媒体
教学过程
一、复习
1.叙述有理数的加法法则.
2.“有理数加法”与小学里学过的数的加法有什么区别和联系?
答:进行有理数加法运算,先要根据具体情况正确地选用法则,确定和的符号,这与小学里学过的数的加法是不同的;而计算“和”的绝对值,用的是小学里学过的加法或减法运算.
3.计算下列各题,并说明是根据哪一条运算法则?
教学重点与难点:
教学重点:把加、减混合的算式化为省略加号的和式,并运用加法运算律合理地进行运算。
教学难点:把加、减混合运算统一成加减运算,需要一个比较复杂的思维和表述过程
教学准备:幻灯片
教学过程:
一、创设问题情境
1、计算:
(1)(+ )-(+ ) (2)(- )-(- )
(3)(+6 )+(-5 )+(+4 )+(+2 )+(-1 )+(-1 )
(5)0+(-1.25);(6)(+19 )+(-11 );
学生练习(三):在数轴上表示下列有理数的运算,并求出计算结果:
(1)(-2)+(—4);(2)(-5)+4;
例2、某家庭工厂一月份收支结余为-1200.50元,二月份收入为2000.70元,问二月底家庭工厂的收支结余情况如何?
解:略。
学生练习(四):冬天的某一天,哈尔滨的气温为-38℃,北京的气温比比哈尔滨高32℃,问当天北京的气温为多少度?
(用彩色粉笔做适当的标记,帮助学生从实际情况理解有理数加法的意义和法则。渗透分类思想,培养学生观察、归纳等能力。)
三、知识讲解,巩固新知:
有理数的加法法则:一般地,同号两数相加,取与加数相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;一个数同零相加,仍得这个数。

有理数总复习

有理数总复习

a 10b第一章 有理数总复习知识点梳理:1.正数与负数:负数产生的必要性;具有相反意义的量。

2.有理数的分类:3.数轴、相反数、倒数、绝对值:(1)数轴的三要素是:________________________________(2)只有符号不同的两个数叫做互为____________,a 的相反数为___ ;(3)互为倒数的两个数乘积是 , 没有倒数;(4)一个正数的绝对值是____________;一个负数的绝对值是____________;零的绝对值是_______.(5)有理数的大小比较:方法一:0 一切正数,0 一切负数;两个负数作比较,绝对值大的 .方法二:在数轴上,________表示的数总比________表示的数大。

4.科学记数法:把一个大于10的数表示成a ×10n 的形式, (其中a 是____________ ,n 是____________ )5.近似数【自主学习、巩固训练】要求:自主完成下列各题,并把自己疑惑的、不懂的做好批注,时间10分钟.1. 在 -1,+7, 0, 23-, 516中,正数有 ( ) A 、1个 B 、2个 C 、3个 D 、4个2.在–2,+3.5,0,32-,–0.7,11中.负分数有…………( ) A 、l 个 B 、2个 C 、3个 D 、4个3. 下列数据是近似数的是( )A.小白数学得了90分B. 小明身高约173cmC.数学课本有86页D.(1)班有45名同学4.如图 , ,那么下列结论正确的是( ) A .a 比b 大 B .b 比a 大C .a 、b 一样大D .a 、b 的大小无法确定5.我国最长的河流长江全长约为6300千米,用科学记数法表示为( )A. 63×102千米B. 6.3×102千米或者有理数 有理数C. 6.3×104千米D. 6.3×103千米6.用数轴上的点表示下列有理数, 并求其相反数、倒数和绝对值。

第一章有理数全章教案

第一章有理数全章教案

第一章有理数全章教案有理数教学目标〔知识与技能〕1、了解正数、负数的实际意义,会判断一个数是正数还是负数。

2、掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

3、理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.4、会利用数轴和绝对值比较有理数的大小。

5、理解乘方的意义,会进行乘方的计算。

掌握有理数加减、乘除、乘方的混合运算。

6、通过实例进一步感受大数,并能用科学记数法表示;了解近似数和有效数字的概念。

〔过程与方法〕1、经历探索有理数运算法则和运算律的过程,体会类比、转化、数形结合等思想方法.2、培养学生应用数学知识的意识,提高学生运用知识解决实际问题的能力。

〔情感、态度与价值观〕1、通过教学活动,激励学生学习数学的兴趣;使学生感受数学知识与现实世界的联系。

2、给学生渗透辩证唯物主义思想。

重点难点有理数的运算是重点;准确理解负数、绝对值的意义和运算符号的确定是难点。

课时分配1.1正数和负数2课时1.2有理数5课时1.3有理数的加减法3课时1.4有理数的乘除法5课时1.5有理数的乘方4课时本章小结2课时人教版数学第一章有理数全章教案1.1.1 正数和负数的概念〔教学目标〕1、了解负数产生是生活、生产的需要;2、掌握正、负数的概念和表示方法,理解数0表示的量的意义;3、理解具有相反意义的量的含义。

〔重点难点〕正确理解正、负数的概念,数0表示的量的意义和具有相反意义的量是重点;正确理解负数、数0表示的量的意义是难点。

〔教学过程〕一、负数的引入我们知道,数产生于人们实际生产和生活的需要。

[投影1~3:图1.1-1]人们由记数、排序,产生了数1,2,3 ;为了表示“没有”、“空位”引进了数0,测量和分配有时不能得到整数的结果,为此产生了分数和小数。

在生活、生产、科研中经常遇到数的表示与数的运算的问题。

[投影4](1)北京冬季里某天的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?(2)有三个队参加的足球比赛中,红队胜黄队(4U1),黄队胜蓝队(1U0),蓝队胜红队(1U0),三个队的净胜球分别是2,-2,0,如何确定排名顺序?(3)2022年我国产量比上年增长1.8%,油菜籽产量比上年增长-2.7%,这里的增长-2.7%代表什么意思?上面三个问题中,哪些数的形式与以前学习的数有区别?数-3、-2、-2.7%与以前学习的数有区别。

2019年备战中考数学(苏科版)巩固复习第二章有理数(含解析)-文档资料

2019年备战中考数学(苏科版)巩固复习第二章有理数(含解析)-文档资料

2019备战中考数学(苏科版)巩固复习-第二章有理数(含解析)一、单选题1.移动互联网已全面进入人们的日常生活,某市4G用户总数达到3820000,数据3820000用科学记数法表示为()A. 3.8×106B. 3.82×105C. 3.82×106D. 3.82×1072.若5个有理数之积为负数,则这5个因数中负因数的个数可能是( )A. 1B. 3C. 1或3或5D. 2或4或没有3.﹣3的倒数是()A. -3B. 3C. -D.4.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A. 485×105B. 48.5×106C. 4.85×107D. 0.485×1085.下列运算正确的是()A. + =B. (a﹣b)2=a2﹣b2C. (π﹣2)0=1D. (2ab3)2=2a2b66.下列四个有理数中,比-1小的数是()A. -2B. 0C. 1D. 27.-2的倒数是()A. 2B. -2C.D. -8.下列说法正确的是()A. 0既不是正数,也不是负数,所以0不是有理数B. 在﹣3与﹣1之间仅有一个有理数C. 一个负数的倒数一定还是负数D. 一个数的绝对值越大,表示它的点在数轴上越靠右二、填空题9.数轴上到原点的距离等于4的数是________ .10.如果收入15•元记作+•15•元,•那么支出20•元记作________元.11.绝对值是的数是________12.绝对值小于π的所有正整数的积等于________.13.甲、乙两人同时从A地出发,如果向南走48m,记作+48m,则乙向北走—32m,记为________m14.纪录片《穹顶之下》让大众进一步认识了雾霾对健康的危害,目前,我国受雾霾影响的区域约为1500000平方公里,将数据1500000用科学记数法表示为________ .15.某省进入全民医保改革3年来,共投入36400000元,将36400000用科学记数法表示为________。

第5讲 有理数章末复习 (解析版)

第5讲 有理数章末复习 (解析版)

第5讲 有理数章末复习一、知识梳理1. 有理数1.有理数:(1)凡能写成)0p q ,p (p q ≠为整数且形式的数,都是有理数.(2) 有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,互为相反数,即a 和- a 互为相反数;0的相反数还是0;(2) a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)绝对值的意义是数轴上表示某数的点离开原点的距离; (2) ⎪⎩⎪⎨⎧<-=>=)0()0(0)0(a a a a a a 或⎩⎨⎧<-≥=)0a (a )0a (a a 或⎩⎨⎧≤->=)0()0(a a a a a ; 正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;绝对值的问题经常分类讨论,零既可以和正数一组也可以和负数一组;5.有理数比大小:两个负数比大小,绝对值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数-小数 > 0,小数-大数 < 0.6.倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a 1;若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.【例1】.(1)下列各数中,最小的数是( )A .﹣2B .0C .﹣6D .3【分析】根据负数都小于0,负数都小于正数,得出﹣2和﹣6小,根据两个负数比较大小,其绝对值大的反而小,即可得出答案.【解答】解:∵﹣6<﹣2<0<3,∴最小的数是﹣6,故选:C .(2)下列说法不正确的是( )A .﹣3.14既是负数、分数,也是有理数B .0既不是正数,也不是负数,但是整数C .﹣2019是负整数,但不是有理数D .0是正数和负数的分界【分析】依据有理数分类、正负数分类逐项判断即可.【解答】解:A 、﹣3.14属于负数,分数,有理数,故A 不符合题意;B 、0不属于正数,也不属于负数,属于整数,故B 不符合题意;C 、﹣2019属于有理数,故C 符合题意;D 、0为正数和负数的分界,故D 符合题意.(3)在数轴上从左到右有A,B,C三点,其中AB=1,BC=2,如图所示.设点A,B,C所对应数的和是x,则下列说法错误的是()A.若以点A为原点,则x的值是4B.若以点B为原点,则x的值是1C.若以点C为原点,则x的值是﹣4D.若以BC的中点为原点,则x的值是﹣2【分析】利用数轴的意义对各选项进行分析判断即可.【解答】解:A、若以点A为原点,则B、C对应的数为1,3,则x=0+1+3=4,故本选项说法正确,不符合题意;B、若以点B为原点,则A、C对应的数为﹣1,2,则x=0﹣1+2=1,故本选项说法正确,不符合题意;C、若以点C为原点,则B、A对应的数为﹣2,﹣3,则x=0﹣2﹣3=﹣5≠﹣4,故本选项说法错误,符合题意;D、若以BC的中点为原点,则B、C对应的数为﹣1,1,A对应的数为﹣2,则x=﹣2﹣1+1=﹣2,故本选项说法正确,不符合题意;故选:C.(4)﹣1的倒数是﹣,相反数是1绝对值是1.【分析】利用绝对值、倒数、相反数的定义进而求出即可.【解答】解:﹣1的倒数是:﹣,相反数是:1;绝对值是:1;故答案为:﹣;1;1.【变式训练1】.(1)下列各数中最大的是()A.﹣3B.﹣2C.0D.1【分析】正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的其值反而小,依此比较大小【解答】解:因为﹣3<﹣2<0<1,所以其中最大的数为1.故选:D.(2)下列说法中正确的个数有()①﹣4.2是负分数;②3.7不是整数;③非负有理数不包括零;④正有理数、负有理数统称为有理数;⑤0是最小的有理数A.1个B.2个C.3个D.4个【分析】结合有理数的分类分析即可.【解答】解:①﹣4.2是负分数是正确的;②3.7不是整数是正确的;③非负有理数包括零,原来的说法错误;④正有理数、0、负有理数统称为有理数,原来的说法错误;⑤没有最小的有理数,原来的说法错误.故说法中正确的个数有2个.故选:B.(3)如图所示,有理数a、b在数轴上的位置如图,则下列说法错误的是()A.b﹣a>0B.a+b<0C.ab<0D.b<a【分析】根据数轴上点的位置关系,可得a、b的大小,判定D,根据有理数的加法,可判断B;根据有理数的乘法,可判断C;根据有理数的减法,可判断A.【解答】解:由数轴上点的位置关系,得a>0>b,|a|<|b|,A.b﹣a<0,故此选项错误;B.a+b<0,故此选项正确;C.ab<0,故此选项正确;D.b<a,故此选项正确.故选:A.(4)﹣1.2的倒数是﹣,相反数是 1.2,绝对值是 1.2.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数,根据只有符号不同的两个数互为相反数,可得一个数的相反数,再根据负数的绝对值等于他的相反数,可得一个数的绝对值.【解答】解:﹣1.2的倒数是﹣,相反数是1.2,绝对值是1.2,故答案为:﹣,1.2,1.2.2.有理数的四则运算1. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.2.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).3.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).4. 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正.5. 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .6.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即a.【例2】.(1)计算:11.125﹣1+4﹣4.75.【分析】根据有理数的加减运算法则及加法交换律和结合律进行计算.【解答】解:原式=11﹣1+4﹣4=(11+4)﹣(1+4)=16﹣6=10(2)计算:(﹣)÷(﹣2)×.【分析】直接利用有理数的乘除运算法则计算得出答案.【解答】解:原式=××=.【变式训练2】.(1)计算:.【分析】先将减法转化为加法,再依据法则计算可得.【解答】解:原式=0.4+3.6﹣8﹣12=4﹣20=﹣16.(2)计算:1×1.4.【分析】将带分数化为假分数,小数化为分数,除法变为乘法,再约分计算即可求解.【解答】解:1×1.4=××3.有理数的乘方与有理数的混合运算1.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;2.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n .3.混合运算法则:先乘方,后乘除,最后加减.,有括号的先算括号.【例3】.(1)下列算式中结果为负数的是()A.﹣(﹣3)B.|﹣2|C.(﹣2)3D.(﹣2)2【分析】根据相反数、绝对值、和理数的乘方逐一判断即可.【解答】解:A.﹣(﹣3)=3,不合题意;B.|﹣2|=2,不合题意;C.(﹣2)3=﹣8,符合题意;D.(﹣2)2=4,不合题意.故选:C.(2)计算:[2+(﹣5)2]÷3×﹣|﹣4|+23.【分析】先算乘方,再算乘除,最后算加减.同级运算,从左往右计算.【解答】解:原式=[2+25]÷3×﹣4+8=27÷3×﹣4+8=9×﹣4+8=7.【变式训练3】.(1)已知下列各数:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数的有()A.1个B.2个C.3个D.4个【分析】从6个数中找到非负数即可.【解答】解:﹣(﹣2),﹣34,5.2,﹣|﹣|,(﹣1)2009,0中,其中是非负数有:其中是非负数的有:﹣(﹣2),5.2,0共3个,故选:C.(2)计算:24÷(﹣2)3+[(﹣3)2+5]×|﹣|.【分析】先算乘方,再算乘除,最后算加减.【解答】原式=24÷(﹣8)+[9+5]×=﹣3+14×=﹣3+7=4.4.科学记数法与近似数1.科学记数法:把一个大于10的数记成a×10n的形式,(其中1≤a<10)这种记数法叫科学记数法.2.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.3.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.【例3】.(1)2021年5月21日,国新办举行新闻发布会,介绍第七次全国人口普查情况,全国人口总数约为14.12亿人.用科学记数法表示14.12亿人,可以表示为 1.412×109人.【分析】把一个大于10的数写成科学记数法形式:a×10n,其中1≤a<10,n为正整数,n的值比这个数的整数位数少1.【解答】解:14.12亿=1412000000=1.412×109,故答案为:1.412×109.(2)用四舍五入法把数6.5378精确到0.01,得近似数为 6.54.【分析】对千分位数字四舍五入即可.【解答】解:用四舍五入法把数6.5378精确到0.01,得近似数为6.54,故答案为:6.54.(3)近似数0.0320有3个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出有效数字的个数,从而可以解答本题.【解答】解:近似数0.0320有3个有效数字,故答案为:3.【变式训练3】.(1)人民网哈尔滨1月10日电,1月10日在黑龙江省政府新闻办举办的“重振雄风再出发﹣﹣龙江这一年”系列主题新闻发布会上表示,全省实现旅游收入2683.8亿元,将2683.8亿用科学记数法表示为2.683×1011.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数.【解答】解:2683.8亿=268380000000=2.683×1011,故答案为:2.683×1011.(2)用四舍五入法将3.1415精确到百分位约等于 3.14.【分析】把千分位上的数字1进行四舍五入即可.【解答】解:3.1415(精确到百分位)是3.14.故答案为:3.14.(3)近似数1.024有4个有效数字.【分析】根据有效数字的定义和题目中的数据,可以写出相应的有效数字.【解答】解:似数1.024有四个有效数字,故答案为:4.二、课堂训练1.在四个数﹣5、﹣1、0、3中最小的数是()A.﹣5B.﹣1C.0D.3【分析】正数大于0,负数小于0,两个负数比较大小,绝对值大的反而小.【解答】解:∵﹣5<﹣1<0<3,∴最小的数为﹣5,故选:A.2.下列数轴表示正确的是()A.B.C.D.【分析】注意数轴的三要素以及在数轴上,右边的数总比左边的数大即可做出判断.【解答】解:A选项,应该正数在右边,负数在左边,故该选项错误;B选项,负数的大小顺序不对,故该选项错误;C选项,没有原点,故该选项错误;D选项,有原点,正方向,单位长度,故该选项正确;故选:D.3.﹣(﹣6)的相反数是()A.B.C.﹣6D.6【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣(﹣6)=6,故﹣(﹣6)的相反数是﹣6.故选:C.4.如图是小竹观察到温度计的示数,该示数的绝对值是()A.﹣9B.9C.﹣11D.11【分析】观察温度计的示数,这个示数在0℃以下,这个示数为﹣9,所以绝对值为9.【解答】解:观察温度计,这个示数为﹣9,所以该示数的绝对值为9,故选:B.5.经过4.6亿公里的飞行,我国首次火星探测任务“天问一号”探测器于2021年5月15日在火星表面成功着陆,火星上首次留下了中国的印迹.将4.6亿用科学记数法表示为()A.4.6×109B.0.46×109C.46×108D.4.6×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.6亿=460000000=4.6×108.故选:D.6.用四舍五入法将0.0375精确到0.01是0.04.【分析】把千分位上的数字7进行四舍五入即可.【解答】解:将0.0375精确到0.01是0.04.故答案为0.04.7.比较大小:>.【分析】先比较与的大小,再根据比较两个负数大小的方法确定最后答案.【解答】解:∵|﹣|=,|﹣2|=,<,∴﹣>﹣2,故答案为:>.8.已知A,B是数轴上的两点,且AB=4.5,点B表示的数为1,则点A表示的数为﹣3.5或5.5.【分析】根据AB=4.5,点B表示的数为1,进行分类讨论A可以在B的左边或右边,求得点A表示的数.【解答】解:∵AB=4.5,B表示1,∴A表示为1﹣4.5=﹣3.5或1+4.5=5.5.故答案是:﹣3.5或5.5.9.计算:.【分析】利用有理数混合运算的法则运算:先做乘方,再做乘除,最后做加减,有括号的先做括号里面的.【解答】解:原式=﹣9÷(4﹣1)+(﹣)×24=﹣9÷3+(×24﹣×24)=﹣3+(16﹣6)=﹣3+10=7.10.一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):+6,﹣2,+10,﹣8,﹣7,+11,﹣10.(1)守门员是否回到了原来的位置?(2)守门员离开球门的位置最远是多少?(3)守门员一共走了多少路程?【分析】(1)只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)将所有绝对值相加即可.【解答】解:(1)根据题意得:6﹣2+10﹣8﹣7+11﹣10=0.答:回到了原来的位置.(2)第一次离开6米,第二次离开4米,第三次离开14米,第四次离开6米,第五次离开1米,第六次离开10米,第七次离开0米,则守门员离开守门的位置最远是14米;(3)总路程=|+6|+|﹣2|+|+10|+|﹣8|+|﹣7|+|+11|+|﹣10|=54米.三、课后巩固1.下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃﹣183﹣253﹣196﹣268.9则沸点最高的液体是()A.液态氧B.液态氢C.液态氮D.液态氦【分析】根据有理数大小的比较方法解答即可.【解答】解:因为﹣268.9<﹣253<﹣196<﹣183,所以沸点最高的液体是液态氧.故选:A.15.下列各数中,既是分数又是负数的是()A.﹣3.1B.﹣4C.0D.2.8【分析】根据小于零的分数是负分数,可得答案.【解答】解:A、﹣3.1既是分数又是负数,故本选项符合题意;B、﹣4是负整数,故本选项不合题意;C、0不是正数,也不是负数,故本选项不合题意;D、2.8是正分数,故本选项不合题意;故选:A.3.下列几种说法正确的是()A.0是最小的数B.最大的负有理数是﹣1C.1是绝对值最小的正数D.平方等于本身的数只有0和1【分析】根据有理数是有限小数或无限循环小数,平方的意义,可得答案.【解答】解:A、没有最小的数,故A错误;B、没有最大的负有理数,故B错误;C、没有绝对值最小的正数,故C错误;D、平方等于它本身的数只有0和1,故D正确;故选:D.4.已知a,b,c三个数在数轴上,对应点的位置如图所示,下列各式错误的是()A.b<a<c B.﹣a<b C.a+b<0D.c﹣a>0【分析】先根据在数轴上,右边的数总比左边的数大,得出b<a<c,再由相反数的定义、绝对值的性质以及有理数的加减法法则得出结果.【解答】解:根据数轴可得:b<a<0<c,∴a+b<0、c﹣a>0.∴A、C、D选择正确.∵a<0.∴﹣a>0.∴﹣a>b.∴B选项错误.故选:B.5.﹣|﹣2021|的相反数为()A.﹣2021B.2021C.﹣D.【分析】根据绝对值的定义、相反数的定义解题即可.【解答】解:∵﹣|﹣2021|=﹣2021,∴﹣2021的相反数为2021.故选:B.6.计算:﹣(﹣1)4=﹣1.【分析】根据乘方的意义直接得出.【解答】解:﹣(﹣1)4=﹣1.故答案为:﹣1.7.“⊗”定义新运算:对于任意的有理数a和b,都有a⊗b=b2+1.例如:9⊗5=52+1=26.当m为有理数时,则m⊗(m⊗3)等于101.【分析】根据题目中的新定义a⊗b=b2+1.可以计算出所求式子的值.【解答】解:∵a⊗b=b2+1.∴m⊗(m⊗3)=m⊗(32+1)=m⊗(9+1)=m⊗10=102+1=100+1=101,故答案为:101.8.上海市于2011年6月8日宣布撤销黄浦区、卢湾区建制,设立新的黄浦区,新黄浦区全区户籍人口约有906300人,把这个人口数用科学记数法来表示为9.063×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:906300=9.063×105.故答案为:9.063×105.9.计算:﹣22+3×(﹣1)2021﹣(﹣12)×().【分析】根据有理数的乘方、有理数的乘法和加减法可以解答本题.【解答】解:﹣22+3×(﹣1)2021﹣(﹣12)×()=﹣4+3×(﹣1)+12×﹣12×=﹣4+(﹣3)+4﹣9=﹣12.10.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):+14,﹣9,+8,﹣7,+13,﹣6,+12,﹣5.(1)请你帮忙确定B地相对于A地的方位?(2)救灾过程中,冲锋舟离出发点A最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?【分析】(1)把题目中所给数值相加,若结果为正数则B地在A地的东方,若结果为负数,则B地在A地的西方;(2)分别计算出各点离出发点的距离,取数值较大的点即可;(3)先求出这一天走的总路程,再计算出一共所需油量,减去油箱容量即可求出途中还需补充的油量.【解答】解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,∴B地在A地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5千米;14﹣9+8=13千米;14﹣9+8﹣7=6千米;14﹣9+8﹣7+13=19千米;14﹣9+8﹣7+13﹣6=13千米;14﹣9+8﹣7+13﹣6+12=25千米;14﹣9+8﹣7+13﹣6+12﹣5=20千米.∴最远处离出发点25千米;(3)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升)。

《有理数》全章复习与巩固(提高)知识讲解

《有理数》全章复习与巩固(提高)知识讲解

《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示2.数轴:规定了原点、正方向和单位长度的直线. 要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可. (3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负. 4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离. 要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010=a 2-(0+1)a+02009+(-1)2010=a 2-a+1.∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三: 【变式1】选择题 (1)已知四种说法:①|a|=a 时,a>0;|a|=-a 时, a<0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4(2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C【变式2】(呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 【答案】9.6×106.2.(江西校级模拟)如果m ,n 互为相反数,那么|m+n ﹣2016|=________. 【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n ﹣2016|. 【答案】2016.【解析】解:∵m ,n 互为相反数, ∴m+n=0,∴|m+n ﹣2016|=|﹣2016|=2016; 故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键.类型二、有理数的运算3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷- ()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】 解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-=(5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--251471834()199(2)492584929=⨯⨯-⨯-⨯- 118343()199(2)449292=-⨯-⨯-⨯20(3)3=--2033=-+123=(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯955515()()()()499289=⨯---⨯-+-⨯5951()()942817224=-⨯++=-4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (1)20052008+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1113200812007320086692008⎛⎫=- ⎪⎝⎭=⨯=【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【变式】用简单方法计算:120180148124181++++ 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(香洲区校级二模)(1)阅读下面材料:点A ,B 在数轴上分别表示实数a ,b ,A ,B 两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和. 【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A .【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来. 举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ).A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。

《数的开方》全章复习与巩固--知识讲解(提高)

《数的开方》全章复习与巩固--知识讲解(提高)

《数的开方》全章复习与巩固—知识讲解(提高)责编:杜少波【学习目标】1.了解平方根、立方根的概念,会用根号表示数的平方根、立方根;了解开方与平方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根;2.理解无理数和实数的概念,知道实数与数轴上的点一一对应,了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化;3.能用适当的有理数估计一个无理数的大致范围.【知识网络】【要点梳理】要点一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示a±3a性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论⎩⎨⎧<-≥==≥=)0()0()0()(22aaaaaaaaa333333)(aaaaaa-=-==要点二:实数有理数和无理数统称为实数.1.实数的分类按定义分:实数⎧⎨⎩有理数:有限小数或无限循环小数无理数:无限不循环小数按与0的大小关系分:实数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正数正无理数负有理数负数负无理数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2等;②有特殊意义的数, 如π; ③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式. (4)实数和数轴上点是一一对应的. 2.实数与数轴上的点的对应关系数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应,即实数与数轴上的点一一对应. 3.实数的三个非负性及性质在实数范围内,正数和零统称为非负数。

我们已经学习过的非负数有如下三种形式: (1)任何一个实数a 的绝对值是非负数,即|a |≥0; (2)任何一个实数a 的平方是非负数,即2a ≥0;(30≥ (0a ≥).非负数具有以下性质: (1)非负数有最小值零;(2)有限个非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 4.实数的运算数a 的相反数是-a ;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里. 5.实数的大小的比较有理数大小的比较法则在实数范围内仍然成立.法则1. 实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3. 两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【典型例题】类型一、平方根和立方根1、下列命题:①负数没有立方根;②一个实数的算术平方根一定是正数;③一个正数或负数的立方根与这个数同号;④如果一个数的算术平方根是这个数本身,那么这个数是1或0;⑤如果一个数的立方根是这个数本身,那么这个数是1或0 ,其中错误的有( ) A.2个 B.3 个 C.4 个 D.5个 【答案】B ;【解析】①负数有立方根;②0的算术平方根是0;⑤立方根是本身的数有0,±1. 【总结升华】把握平方根和立方根的定义是解题关键. 举一反三:【变式】下列说法其中错误的是( )A .5是25的算术平方根B .()24-的平方根是-4 C .()34-的立方根是-4D .0的平方根与立方根都是0【答案】B ;2、已知M 是满足不等式63<<-a 的所有整数a 的和,N 是满足不等式2237-≤x 的最大整数.求M +N 的平方根. 【答案与解析】 解:∵36a -<<的所有整数有-1,0,1,2所有整数的和M =-1+1+0+2=2 ∵2237-≤x ≈2,N 是满足不等式2237-≤x 的最大整数. ∴N =2∴M +N =4,M +N 的平方根是±2.【总结升华】先由已知条件确定M 、N 的值,再根据平方根的定义求出M +N 的平方根. 类型二、实数的概念与运算3、(2014秋•章丘市校级期末)设x 是的整数部分,y 是的小数部分,化简|x﹣y ﹣3|.【思路点拨】求出的范围,得出x=5,y=﹣5,代入求出即可.【答案与解析】 解:∵<<,∴5<<6, ∴x=5,y=﹣5, ∴|x ﹣y ﹣3|=|5﹣(﹣5)﹣3|=|7﹣| =7﹣.【总结升华】本题考查了估算无理数的大小和绝对值,解此题的关键是求出x 、y 的大小. 举一反三:【变式】 已知5+11的小数部分为a ,5-11的小数部分为b ,则a +b 的值是 ;a -b 的值是_______.【答案】1;2117a b a b +=-=-;提示:由题意可知113a =-,411b =-.4、已知无理数10在3.1622与3.1623之间,π在3.1415与3.1416之间.求10−π的值.(结果精确到百分位)【思路点拨】先求出10−π的值的区间,再求出近似数. 【答案与解析】解:∵无理数10在3.1622与3.1623之间,π在3.1415与3.1416之间.∴3.1622-3.1416<10−π<3.1623-3.1415, 0.0206<10−π<0.0208, ∴10−π≈0.02.【总结升华】中间过程应多保留一位小数. 举一反三:【变式】(2015春•北京校级期中)阅读材料:学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值.小明的方法:∵<<,设=3+k (0<k <1), ∴()2=(3+k )2, ∴13=9+6k+k 2,∴13≈9+6k ,解得k ≈, ∴≈3+≈3.67.(上述方法中使用了完全平方公式:(a+b )2=a 2+2ab+b 2,下面可参考使用)问题: (1)请你依照小明的方法,估算 ≈ (结果保留两位小数); (2)请结合上述具体实例,m 的公式:已知非负整数a 、b 、m ,若a m <a+1,且m=a 2+b m ≈ (用含a 、b 的代数式表示).【答案】(1)6.08;(2).解:(1)∵<<,设=6+k (0<k <1),∴()2=(6+k )2, ∴37=36+12k+k 2, ∴37≈36+12k ,解得k ≈, ∴≈6+≈6.08.故答案为:6.08;(2)若a <m <a+1,且m=a 2+b ,则m ≈a+.故答案为:.类型三、实数综合应用5、(2016春•南昌期末)已知实数x 、y 满足,求2x ﹣的立方根.【答案与解析】解:由非负数的性质可知:2x ﹣16=0,x ﹣2y +4=0, 解得:x=8,y=6.∴2x ﹣y=2×8﹣×6=8. ∴2x ﹣的立方根是2.【总结升华】本题主要考查的是非负数的性质、立方根的定义,求得x 、y 的值是解题的关键.举一反三:【变式】设a 、b 、c 都是实数,且满足08)2(22=+++++-c c b a a , 求23a b c --的值.【答案】解:∵08)2(22=+++++-c c b a a∴220080a a b c c -=⎧⎪++=⎨⎪+=⎩,解得248a b c =⎧⎪=⎨⎪=-⎩∴2341280a b c --=-+=.6、如图,数轴上A、B两点,表示的数分别为-1和3,点B关于点A的对称点为C,求点C所表示的实数.【思路点拨】首先结合数轴和利用已知条件可以求出线段AB的长度,然后利用对称的性质即可求出点C所表示的实数.【答案与解析】解:∵数轴上A、B两点,表示的数分别为-13∴点B到点A的距离为13则点C到点A的距离也为13,设点C的坐标为x,则点A到点C的距离为-1-x=13∴x=-23【总结升华】此题主要考查了实数与数轴之间的定义关系,其中利用了:当点C为点B关于点A的对称点,则点C到点A的距离等于点B到点A的距离.两点之间的距离为两数差的绝对值.。

沪教版数学六年级下册第五章《有理数》全章教学设计及习题

沪教版数学六年级下册第五章《有理数》全章教学设计及习题

沪教版数学六年级下册第五章《有理数》全章教学设计及习题一. 教材分析沪教版数学六年级下册第五章《有理数》是学生学习数学的重要内容,本章主要介绍了有理数的定义、性质、运算及其应用。

教材通过丰富的实例和生动的语言,引导学生认识和理解有理数,掌握有理数的加、减、乘、除运算,并能运用有理数解决实际问题。

本章内容在数学体系中占据重要地位,为学生进一步学习代数、几何等数学分支奠定了基础。

二. 学情分析六年级的学生已经具备了一定的数学基础,对实数有一定的认识。

但在学习有理数时,仍存在以下问题:1. 对有理数的定义和性质理解不深刻;2. 有理数的运算规则掌握不熟练;3. 运用有理数解决实际问题的能力较弱。

因此,在教学过程中,要注重引导学生深入理解有理数的概念,熟练掌握有理数的运算方法,提高运用有理数解决实际问题的能力。

三. 教学目标1.理解有理数的定义,掌握有理数的性质;2. 熟练掌握有理数的加、减、乘、除运算方法;3. 能够运用有理数解决实际问题;4. 培养学生的逻辑思维能力和创新能力。

四. 教学重难点1.有理数的定义和性质;2. 有理数的运算方法;3. 运用有理数解决实际问题。

五. 教学方法1.情境教学法:通过生活实例引入有理数的概念,使学生能够直观地理解有理数;2. 讲授法:讲解有理数的定义、性质和运算方法,引导学生深入理解有理数;3. 练习法:布置适量的习题,让学生巩固所学知识;4. 小组讨论法:分组讨论,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学PPT和教学素材;2. 准备习题和实际问题;3. 准备黑板和粉笔。

七. 教学过程1.导入(5分钟)利用生活实例,如温度、海拔等,引导学生认识有理数,激发学生的学习兴趣。

2.呈现(10分钟)讲解有理数的定义、性质和运算方法,让学生初步了解有理数的基本概念和运算规则。

3.操练(10分钟)布置适量的习题,让学生独立完成,检验对有理数的理解和运算方法的掌握程度。

新浙教版七年级上册数学第一章《有理数》复习要点(知识点+例题+练习)

新浙教版七年级上册数学第一章《有理数》复习要点(知识点+例题+练习)

第一章从自然数到有理数的复习课一、目的要求进一步理解并运用有理数、数轴、相反数、绝对值等概念,会比较有理数的大小.二、内容分析小结与复习分作三部分。

第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,还有近似数与有效数字的问题,从而给出全章内容的大致轮廓,第二部分围绕有理数运算这一中心,提出了全章的三条教学要求,第三部分针对这一章新出现的思想、内容、方法等提出了5点应注意的问题。

三、教学过程我们已经学过了有理数全章内容。

概括起来说,这一章我们学的是有理数的概念及其运算。

这节课我们将复习有理数的意义及其有关概念。

复习提问:1.为什么要引入负数?温度为-4℃是什么意思?答:为了表示具有相反意义的量。

温度为-4℃表示温度是零下4摄氏度。

2.什么是有理数?有理数集包括哪些数?答:整数和分数统称为有理数。

有理数集包括:3.什么叫数轴?画出一个数轴来。

答:规定了正方向、原点和单位长度的直线叫数轴。

图略。

4.有理数和数轴上的点有什么关系?答:每一个有理数都可以用数轴上唯一确定的点来表示.但反过来以后可以看到,数轴上任一点并不一定表示有理数。

表示正有理数的点在原点的右边,表示零的点是原点,表示负有理数的点在原点的左边。

5.怎样的两个数叫互为相反数?零的相反数是什么?a的相反数是什么?两个互为相反数的和是什么?答:只有符号不同的两个数叫做互为相反数;并说其中一个是另一个的相反数。

零的相反数是零,a的相反数是-a。

两个互为相反数的和为零。

6.有理数的绝对值的意义是什么?如果两个数互为相反数,那么它们的绝对值有什么关系?试举例说明。

答:一个数a的绝对值就是数轴上表示数a的点与原点的距离,数a的绝对值记作|a|。

如]|-6|=6,|6|=6;一般地,一个正数的绝对值是它本身。

一个负数的绝对值是它的相反数。

0的绝对值是0。

用式子表示就是:如果a>0,那么|a|=a;如果a<0,那么|a|=-a;如果a=0,那以|a|=0.如果两个数互为相反数,那么它们的绝对值相等。

数学《有理数》知识点与复习教案

数学《有理数》知识点与复习教案

数学《有理数》知识点与复习教案数学《有理数》教案一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。

在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。

“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。

通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。

所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。

另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。

《华师大版代数式》全章复习与巩固(提高)知识讲解1

《华师大版代数式》全章复习与巩固(提高)知识讲解1

《代数式》全章复习与巩固(提高)知识讲解【学习目标】1、进一步理解用字母表示数的意义,能分析简单问题的数量关系,并用代数式表示;2、理解代数式的含义,能解释一些简单代数式的实际背景或几何意义,体会数学与现实生活的密切联系;3、会求代数式的值,能解释值的实际意义,能根据代数式的值推断代数式反映的规律;4.理解并掌握单项式与多项式的相关概念;5.理解整式加减的基础是去括号和合并同类项,并熟练运用整式的加减运算法则,进行整式的加减运算、求值;6.深刻体会本章体现的主要的数学思想----整体思想.【知识网络】【要点梳理】要点一、代数式如:16n ,2a+3b ,34 ,2n ,2)(b a 等式子,它们都是用运算符号(+、-、×、÷、乘方、开方)把数和表示数的字母连接而成的,像这样的式子叫做代数式,单独的一个数或一个字母也是代数式.要点诠释:代数式的书写规范:(1)字母与数字或字母与字母相乘时,通常把乘号写成“· ”或省略不写;(2)除法运算一般以分数的形式表示;(3)字母与数字相乘时,通常把数字写在字母的前面;(4)字母前面的数字是分数的,如果既能写成带分数又能写成假分数,一般写成假分数的形式;(5)如果字母前面的数字是1,通常省略不写.要点二、整式的相关概念1.单项式:由数与字母的乘积积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式的系数是指单项式中的数字因数.(2)单项式的次数是指单项式中所有字母的指数和.2.多项式:几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项. 要点诠释:(1)在多项式中,不含字母的项叫做常数项.(2)多项式中次数最高的项的次数,就是这个多项式的次数.(3)多项式的次数是n次,有m个单项式,我们就把这个多项式称为n次m项式.3. 多项式的降幂与升幂排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把这个多项式按这个字母降幂排列.另外,把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把这个多项式按这个字母升幂排列.要点诠释:(1)利用加法交换律重新排列时,各项应连同它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列.4.整式:单项式和多项式统称为整式.要点三、整式的加减1.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项.所有的常数项都是同类项.要点诠释:辨别同类项要把准“两相同,两无关”:(1)“两相同”是指:①所含字母相同;②相同字母的指数相同;(2)“两无关”是指:①与系数无关;②与字母的排列顺序无关.2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项.要点诠释:合并同类项时,只是系数相加减,所得结果作为系数,字母及字母的指数保持不变.3.去括号法则:括号前面是“+”,把括号和它前面的“+”去掉后,原括号里各项的符号都不改变;括号前面是“-”,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变.4.添括号法则:添括号后,括号前面是“+”,括号内各项的符号都不改变;添括号后,括号前面是“-”,括号内各项的符号都要改变.5.整式的加减运算法则:几个整式相加减,通常用括号把每一个整式括起来,再用加、减号连接,然后去括号,合并同类项.【典型例题】类型一、代数式1.某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元.该商场为促销制定了如下两种优惠方式:第一种:买一支毛笔附赠一本书法练习本;第二种:按购买金额打九折付款.八年级(5)班的小明想为本班书法兴趣小组购买这种毛笔10支,书法练习本 x (x≥10)本.(1)用代数式分别表示两种购买方式应支付的金额.(2)若小明想为本班书法兴趣小组购买书法练习本30 本,试问小明应该选择哪一种优惠方式才更省钱【思路点拨】小明应该选择哪一种优惠方式才更省钱,是由购买的练习本的数量来确定的,把两种方式所应付的钱数,表示成练习本数量的代数式,进而比较代数式的值的大小.【答案与解析】解:设买练习本x,则得两种购买方法的代数式为:(1) 代数式分别为:25×10+5(x-10),(25×10+5x) ×90%(2)把x=30分别代入两个代数式:25×10+5(x-10) =25×10+5(30-10) =350(元)(25×10+5x) ×90%=(25×10+5×30) ×90% =360 (元)所以选择第一种优惠方式.【总结升华】本题这一类方案的选择问题是中考中经常出现的题目类型.类型二、整式的相关概念2.指出下列各式中的整式、单项式和多项式,是单项式的请指出系数和次数,是多项式的请说出是几次几项式.(1)3a - (2)5 (3)2b a - (4)2x y - (5)3xy (6)x π (7)5m n + (8)1+a% (9)1()2a b h + 【答案与解析】解:整式:(1)、(2)、(4)、(5)、(6)、(7)、(8)、(9)单项式:(2)、(5)、(6),其中:5的系数是5,次数是0;3xy 的系数是3,次数是2;x π的系数是1π,次数是1.多项式:(1)、(4)、(7)、(8)、(9),其中: 3a -是一次二项式;2x y -是一次二项式;5m n +是一次二项式;1+a%是一次二项式; 1()2a b h +是二次二项式. 【总结升华】①分母中出现字母的式子不是整式,故2b a -不是整式;②π是常数而不是字母,故xπ是整式,也是单项式;③(7)、(9)表示的是加、减关系而不是乘积关系,而单项式中不能有加减.如5m n +其实质为55m n +,1()2a b h +其实质为1122ah bh +. 举一反三: 【变式1】若单项式22a b x y+-与单项式253b y x -的和是单项式,那么3a b -= .【答案】15 【变式2】若多项式31(4)5(2)n m x x x n m -++---+是关于x 的二次三项式,则________m =, ________n =,这个二次三项式为 .【答案】4,3,-259x x --类型三、整式的加减运算3.若315212135m n m n x y x y --+-与是同类项,求出m, n 的值,并把这两个单项式相加. 【答案与解析】 解:因为312121535m n m n x y x y --+-与是同类项, 所以315,21 1.m n -=⎧⎨-=⎩ 解得2,1.m n =⎧⎨=⎩当2m =且1n =时,55553152121424214()()35353515m n m n x y x y x y x y x y x y --++-=-=-=. 【总结升华】本题考查了同类项:含有相同的字母,并且相同字母的指数相等;合并同类项就是把系数相加减,字母部分不变.举一反三:【变式】合并同类项.(1)2222344522x xy y x xy y -+-+-;(2)3232399111552424xy x y xy x y xy x y --+---. 【答案】(1)原式=22(35)(42)(42)x xy y -+-++-22222x xy y =--+(2)原式3232391191554422xy x y x y x y ⎛⎫⎛⎫=--+-+-- ⎪ ⎪⎝⎭⎝⎭32345x y x y =---. 【高清课堂:整式的加减单元复习388396经典例题3】4. 从一个多项式中减去234ab bc -+,由于误认为加上这个式子,得到221bc ab --,试求正确答案.【答案与解析】解:设该多项式为A ,依题意,(234)221A ab bc bc ab +-+=--(221)(234)A bc ab ab bc =----+(234)(221)2(234)A ab bc bc ab ab bc --+=----+221468869bc ab ab bc bc ab =---+-=--答:正确答案是869bc ab --.【总结升华】当整式是一个多项式,不是一个单项式时,应用括号把一个整式作为一个整体来加减.举一反三:【变式1】已知A =x 2+2y 2-z 2,B =-4x 2+3y 2+2z 2,且A +B +C =0,则多项式C 为( ).A .5x 2-y 2-z 2B .3x 2-5y 2-z 2C .3x 2-y 2-3z 2D .3x 2-5y 2+z 2【答案】B【变式2】先化简代数式22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭,然后选取一个使原式有意义的a 的值代入求值.【答案】22211(351)5333a a a a a ⎧⎫⎡⎤---+--⎨⎬⎢⎥⎣⎦⎩⎭22211[(3515)]333a a a a a =---+-- 222116[(34)]333a a a a =----222116(34)333a a a a =--++ 22816(4)333a a a =--++228164333a a a =+--2814433a a =--. 当0a =时,原式=0-0-4=-4. 【变式3】(1) (x +y )2-10x -10y +25=(x +y )2-10(______)+25;(2) (a -b +c -d )(a +b -c -d )=[(a -d )+(______)][(a -d )-(______)].【答案】(1)x +y (2)-b +c ,-b +c类型四、化简求值5. (1)直接化简代入当时,求代数式15a 2-{-4a 2+[5a -8a 2-(2a 2-a )+9a 2]-3a }的值.(2)条件求值已知(2a +b +3)2+|b -1|=0,求3a -3[2b -8+(3a -2b -1)-a ]+1的值.(3)整体代入 (鄂州)已知210m m +-=,求3222009m m ++的值.【思路点拨】对于化简求值问题,要先看清属于哪个类型,然后再选择恰当的方法进行 求解.【答案与解析】解:(1)原式=15a 2-[-4a 2+(5a -8a 2-2a 2+a +9a 2)-3a ]=15a 2-[-4a 2+(6a -a 2)-3a ]=15a 2-(-4a 2+6a -a 2-3a )=15a 2-(-5a 2+3a )=15a 2+5a 2—3a =20a 2—3a当时,原式===(2)由(2a +b +3)2+|b -1|=0可知:2a +b +3=0,b -1=0,解得a = -2,b =1.3a -3[2b -8+(3a -2b -1)-a ]+1=3a -3(2b -8+3a -2b -1-a )+1=3a -3(2a -9)+1=3a -6a +27+1=28—3a由a = -2 则 原式=28—3a =28+6=34(3)∵ 210m m +-=,∴ 21m m +=.∵ 22222009m m m +++3222009m m m =+++322()2009m m m =+++22()2009m m m m =+++22009m m =++12009=+2010=.所以3222009m m ++的值为2010.【总结升华】整体代入的一般做法是对代数式先进行化简,然后找到化简结果与已知条件之间的联系.举一反三: 【变式】已知26a b a b -=+,求代数式2(2)3()2a b a b a b a b -+++-的值. 【答案】 设2a b p a b -=+,则12a b a b p+=-,原式32p p =+. 又因为p =6,所以原式31261262=⨯+=. 类型五、综合应用6. 对于任意有理数x ,比较多项式2452x x -+与2352x x --的值的大小.【答案与解析】解:22222(452)(352)4523524x x x x x x x x x -+---=-+-++=+∵240x +>∴无论x 为何值,2452x x -+>2352x x --.【总结升华】本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.举一反三:【变式】如果关于x ,y 的多项式2(2)mx xy x +-与 2(323)x nxy y -+的差不含二次项,求m n 的值.【答案】解:原式=22(2)(323)mx xy x x nxy y +---+=2(3)(22)3m x n xy x y -++--由题意知,则30,220m n -=+=,∴3,1m n ==-.∴3(1)1m n =-=-.。

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章 《有理数》总复习教案

人教版七年级数学上册第一章《有理数》总复习教案第一章《有理数》总复习一、内容分析小结与复习分作两个部分。

第一部分概述了正数与负数、有理数、相反数、绝对值等概念,以及有理数的加、减、乘、除、乘方的运算方法与运算律,从而给出全章内容的大致轮廓,第二部分针对这一章新出现的内容、方法等提出了5个问题;通过这5个问题引发学生的思考,主动进行新的知识的建构。

二、课时安排:小节与复习的要求是要把这一章内容系统化,从而进一步巩固和加深理解学习内容。

本章的主要内容可以概括为有理数的概念与有理数的运算两部分。

因此,本章总复习的二课时这样安排(测验课除外):第一课时复习有理数的意义及其有关概念;第二课时复习有理数的运算。

三、教学方法的确定:设计典型例题,检测学生知识,科学地进行小结与归纳。

四、教学安排:第一课时:本节课将复习有理数的意义及其有关概念。

其内容包括正负数、有理数、数轴、有理数大小的比较、相反数与绝对值等。

在教学过程中,应利用数轴来认识、理解有理数的有关概念,借助数轴,把这些概念串在一起形成一个用以描述有理数特征的系统。

另外,在运用有理数概念的同时,还应注意纠正可能出现的错误认识。

一、教学目标;1.理解五个重要概念:有理数、数轴、倒数、绝对值、倒数。

2.使学生提高区分概念的能力,正确运用概念解决问题。

3、能正确比较两个有理数的大小。

二、教学重点:有理数五个概念的理解与应用:有理数、数轴、倒数、绝对值、倒数。

三、教学难点:对绝对值概念的理解与应用。

四、教学过程:(一)知识梳理:1.正数和负数:(给出四个问题,帮助学生理解负数的必要性及其在生产生活中的应用。

)回答下列问题(1)温度为-4℃是什么意思?(2)如果向正北规定为正,那么走-70米是什么意思?(3)21世纪的第一年,日本的服务出口额比上一年增长了-7.3%,这里的“服务出口额比上一年增长了-7.3%”是什么意思?(4)请同学们谈一谈,为什么要引入负数?你还能举出生活中有关负数的例子吗?2.有理数的分类:(通过两个问题让学生掌握有理数的两种分类方法,理解有理数的含义。

北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]

北师大版七年级上册数学[《有理数及其运算》全章复习与巩固(提高版)重点题型巩固练习]

北师大版七年级上册数学重难点突破知识点梳理及重点题型巩固练习【巩固练习】 一、选择题 1.(2015•咸宁)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 2. a b -与a 比较大小,必定为( ).A .a b a -<B .a b a ->C .a b a -≤D .这要取决于b 3.下列语句中,正确的个数是( ).①一个数与它的相反数的商为-1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0 B .1 C .2 D .34.已知||5m =,||2n =,||m n n m -=-,则m n +的值是( ).A .-7B .-3C .-7或-3D .±7或±3 5.将一刻度尺如图所示放在数轴上(数轴的单位长度是1cm ),刻度尺上的“0cm”、“15cm”分别对应数轴上的 3.6x -和,则( ).A .910x <<B .1011x <<C .1112x <<D .1213x << 6. 如图:数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、 D 对应的数分别是整数a,b,c,d ,且b-2a=9,那么数轴的原点对应点是 ( ).A .A 点B .B 点C .C 点D .D 点7.有理数a,b,c 的大小关系如图:则下列式子中一定成立的是( ).A .0a b c ++>B .a b c +<C .a c a c -=+D .b c c a ->- 8.记12n n S a a a =+++…,令12nn S S S T n+++=…,称n T 为1a ,2a ,…,n a 这列数的“理想数”.已知1a ,2a ,…,500a 的“理想数”为2004,那么8,1a ,2a ,…,500a 的“理想数”为( ).A .2004B .2006C .2008D .2010 二、填空题9.已知a 是有理数,有下列判断:①a 是正数;②-a 是负数;③a 与-a 必有一个是负数;④a 与-a 互为相反数,其中正确的有________个.10.(2015春•万州区期末)绝对值小于4,而不小于2的所有整数有 . 11.一种零件的尺寸在图纸上是0.050.027+-(单位:mm ),表示这种零件加工要求最大不超过________,最小不小于________. 12.(2016•巴中)|﹣0.3|的相反数等于 .13.如图,有理数,a b 对应数轴上两点A ,B ,判断下列各式的符号:a b +________0;a b -________0;()()________a b a b +-0; 2(1)ab ab +________0.14.已知,,a b c 满足()()()0,0a b b c c a abc +++=<,则代数式a b ca b c++的值是 15.某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,则此处的高度是 千米.16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯. 三、 解答题 17.(2016春•新泰市校级月考)计算: (1)24+(﹣22)﹣(+10)+(﹣13) (2)(﹣1.5)+4+2.75+(﹣5)(3)(﹣8)+(﹣7.5)+(﹣21)+(+3) (4)(﹣24)×(﹣++)18.(2015•燕山区一模)为了节能减排,近期纯电动出租车正式上路运行.某地纯电动出租车的运价为3公里以内10元;超出3公里后每公里2元;单程超过15公里,超过部分每公里3元.小周要到离家10公里的博物馆参观,若他往返都乘坐纯电动出租车,共需付车费多少元?19.已知三个互不相等的有理数,即可以表示为1,a+b ,a 的形式,又可表示为0,b a,b 的形式,且x 的绝对值为2,求200820092()()()a b ab a b ab x ++-+-+的值.20.一粒米微不足道,平时总会在饭桌上毫不经意地掉下几粒,甚至有些挑食的同学会把整碗米饭倒掉.针对这种浪费粮食现象,老师组织同学们进行了实际测算,称得500粒大米约重10克.现在请你来计算 (1)一粒大米重约多少克?(2)按我国现有人口13亿,每年365天,每人每天三餐计算,若每人每餐节约一粒大米,一年大约能节约大米多少千克?(用科学记数法表示)(3)假若我们把一年节约的大米卖成钱,按2元∕千克计算,可卖得人民币多少元?(用科学记数法表示)(4)对于因贫困而失学的儿童,学费按每人每年500元计算,卖得的钱可供多少名失学儿童上一年学?(5)经过以上计算,你有何感想和建议? 【答案与解析】 一、选择题 1.【答案】C.【解析】∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C . 2.【答案】 D 【解析】当b 为0时,a b a -=;当b 为正数时,a b a -<;当b 为负数时,a b a -> 3.【答案】 B【解析】只有④正确,其他均错. 4.【答案】C【解析】n m ≥,2,5n m =±=-,所以7m n +=-或3- 5.【答案】C【解析】( 3.6)15,11.4x x --==6.【答案】C【解析】由图可知:4b a -=,又29b a -=,所以5a =- 7.【答案】C【解析】由图可知:0a b c <<<,且c a c a -=-表示数轴上数a 对应点与数c 对应点之间的距离,此距离恰好等于数a 对应点到原点的距离与数c 对应点到远点的距离之和,所以选项C 正确.8.【答案】C 【解析】∵ 1a ,2a ,…,500a 的“理想数”为2004,∴125002004500S S S +++=,∴ 125002004500S S S +++=⨯.8,1a ,2a ,…,500a 中,18S '=;218S S '=+;328S S '=+;…,5005008S S '=+ ∴ 8,1a ,2a ,…,500a 的理想数为:12350012500501888888501501501S S S S S S S T +++++++++⨯++++==850120045002008501⨯+⨯== 二、填空题9.【答案】1【解析】不论a 是正数、0、负数,a 与-a 都互为相反数,∴④正确. 10.【答案】±3,±2.【解析】结合数轴和绝对值的意义,得绝对值小于4而不小于2的所有整数±3,±2. 11.【答案】 7.05mm, 6.98mm【解析】7+0.05=7.05mm, 7-0.02=6.98mm. 12.【答案】-0.3【解析】解:∵|﹣0.3|=0.3,0.3的相反数是﹣0.3,∴|﹣0.3|的相反数等于﹣0.3. 故答案为:﹣0.3.13.【答案】>, >, >, < 【解析】由图可得:1,10a b >-<<,特殊值法或直接推理可得:0,0,ab a b <+>20,10a b ab ->+>.14.【答案】1【解析】()()()0,a b b c c a +++=又0abc <可得:三数必一负两正,不防设:0,0,0a b a c >=-<>,代入原式计算即可.15.【答案】 10【解析】21-(-39)÷6×1=10(千米). 16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+. 三、解答题 17.【解析】 解:(1)24+(﹣22)﹣(+10)+(﹣13)=24﹣22﹣10﹣13 =2﹣23 =﹣21; (2)(﹣1.5)+4+2.75+(﹣5)=﹣1.5﹣5.5+4.25+2.75=﹣7+7 =0;(3)(﹣8)+(﹣7.5)+(﹣21)+(+3)=﹣8﹣21﹣7.5+3.5 =﹣30﹣4=﹣34;(4)(﹣24)×(﹣++)=﹣24×(﹣)﹣24×﹣24×=16﹣18﹣2=﹣4. 18.【解析】解:由3<10<15,得到车费为2[10+2(10﹣3)]=48(元),则共付车费48元. 19.【解析】解:由1,a+b ,a 与0,ba,b 相同, 由ba得:分母有0a ≠,所以0a b += 又由三数互不相等,所以1b =,ba a=化简得:1a =-,1b =,0a b +=,1ab =-∴ 200820092()()()01142a b ab a b ab x ++-+-+=--+=.20.【解析】 解:(1)10÷500≈0.02(克)答:一粒大米重约0.02克.(2)0.02×1×3×365×1300000000÷1000=2.847×107(千克)答:一年大约能节约大米2.847×107千克.(3)2×2.847×107=5.694×107(元)答:可卖得人民币5.694×107元.(4)5.694×107÷500=1.1388×105答:可供11388名失学儿童上一年学.(5)一粒米虽然微不足道,但是我们一年节约下来的钱数大的惊人.所以提倡节约,杜绝浪费,我们要行动起来.。

北师大版初中数学七年级上册知识讲解,巩固练习:第8讲第2章《有理数及其运算》全章复习和巩固(含答案)

北师大版初中数学七年级上册知识讲解,巩固练习:第8讲第2章《有理数及其运算》全章复习和巩固(含答案)

《有理数及其运算》全章复习与巩固【学习目标】1.理解有理数及其运算的意义,提高运算能力.2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4.会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可.(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作.(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.π--a要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , . 2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,1b2(3)9-=3(3)27-=-正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法把一个大于10的数表示成的形式(其中1≤,是正整数),此种记法叫做科学记数法.例如:200 000=.【典型例题】 类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【变式】(1)的倒数是 ;的相反数是 ;的绝对值是 . -(-8)的相反数是 ;的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min .(4) 若a 、b 互为相反数,c 、d 互为倒数,则____ . 【答案】(1); ; ;-8;2 (2)降价5.8元,70.2 元;(3);(4)3; 10na ⨯10a <n 5210⨯321-321-321-21-=++)(323b a cd 35-21321333.7510⨯2.(2018•杭州模拟)已知|x|=|﹣3|,则x 的值为 . 【思路点拨】根据题意可知|x|=3,由绝对值的性质,即可推出x=±3. 【答案】±3.【解析】解:∵|﹣3|=3,∴|x|=3,∵|±3|=3,∴x=±3.【总结升华】本题主要考查绝对值的性质,关键在于求出3和﹣3的绝对值都为3. 3.在下列两数之间填上适当的不等号:________. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】 <【解析】解法一:作差法由于,所以 解法二:倒数比较法:因为所以 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.200520062006200720052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯2005200620062007<2006112007112005200520062006=+>+=2005200620062007<举一反三:【变式】(2018•宁德)有理数a ,b 在数轴上对应点的位置如图所示,下列各式正确的是( )A .a+b <0B . a ﹣b <0C . a•b>0D . >0【答案】B . 类型二、有理数的运算4.(2019•厦门)计算:.【思路点拨】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【答案与解析】解:原式=10+8×﹣2×5=10+2﹣10=2.【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.举一反三:【变式】计算:(1) (2)【答案】解:(1) (2)11(2)(2)22-⨯÷⨯-()20064261031-+--⨯-111(2)(2)(1)(2)(1)2(2)4222-⨯÷⨯-=-÷⨯-=-⨯⨯-=()20064261031-+--⨯-=-16+4-3×1=-15类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a 在数轴上对应的点如图所示,则a ,-a ,1的大小关系.A .-a <a <1B .1<-a <aC .1<-a <aD .a <1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y 的值.(3)转化思想:计算: 【答案与解析】解:(1)将-a 在数轴上标出,如图所示,得到a <1<-a ,所以大小关系为:a <1<-a . 所以正确选项为:D .(2)因为| x|=5,所以x 为-5或5因为|y|=3,所以y 为3或-3.当x =5,y =3时,x-y =5-3=2当x =5,y =-3时,x-y =5-(-3)=8当x =-5,y =3时,x-y =-5-3=-8当x =-5,y =-3时,x-y =-5-(-3)=-23135()147⎛⎫-÷- ⎪⎝⎭故(x-y )的值为±2或±8(3)原式= 【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.举一反三:【变式】若a 是有理数,|a|-a 能不能是负数?为什么?【答案】解: 当a >0时,|a|-a =a-a =0;当a =0时,|a|-a =0-0=0;当a <0时,|a|-a =-a-a =-2a >0.所以,对于任何有理数a ,|a|-a 都不会是负数.类型四、规律探索6.将1,,,,,,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】 33135(7)357724614142⎛⎫--⨯-=⨯+⨯= ⎪⎝⎭12-1314-1516-1200-【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是,以此类推向前10个,则得到第20行第10个数是. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.【巩固练习】一、选择题1.(2019•益阳)的相反数是( )A .2019B .﹣2019C .D .2.(2018•菏泽)如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB . 点NC . 点PD . 点Q3. 在-(-2),-|-7|,-|+1|,|-)511(-|32+,中,负数的个数是 ( ) A .1个 B .2个 C .3个 D .4个4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A .2.02×210人B .202×810人C .2.02×910人D .2.02×1010人5.若-1<a<0,则a ,2a ,a1从小到大排列正确的是( ) A .a 2<a<a 1 B .a <a 1< a 2 C .a 1<a< a 2 D .a < a 2 <a1 12101210-1200-6.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A .6B .-6C .-1D .-1或67.a,b 两数在数轴上的位置如图,则下列正确的是( )A . a+b>0B . ab>0C .ba >0 D .a-b>0 8.已知有理数a ,b 在数轴上对应的两点分别是A ,B .请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b -二、 填空题9.(2018•湖州)计算:23×()2= .10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为___ _____千米.12.7=x ,则______=x ; 7=-x ,则______=x . 13.已知实数a , 在数轴上如下图所示,则|1|-a = .14.若|a-2|+|b+3|=0,则3a+2b= .15.()221---= .16.(2019春•江苏校级期末)观察下列各式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…你从中发现底数为3的幂的个位数有什么规律吗?根据你发现的规律回答:32019的个位数字是 .三、 解答题17.计算:(1)222172(3)(6)3⎛⎫-+⨯-+-÷- ⎪⎝⎭ (2)4211(10.5)[2(3)]3---⨯⨯--(3)21-49.5+10.2-2-3.5+19 (4)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭18.已知a 、b 互为倒数,c 、d 互为相反数,且x 的绝对值为3,求2x 2-(ab-c-d)+|ab+3|的值.19.(2018•顺义区一模)居民用电计费实行“一户一表”政策,以年为周期执行阶梯电价,即:一户居民全年不超过2880度的电量,执行第一档电价标准为0.48元/度;全年用电量在2880度到4800度之间(含4800),超过2880度的部分,执行第二档电价标准为0.53元/度;全年用电量超过4800度,超过4800度的部分,执行第三档电价标准为0.78元/度.小敏家2018年用电量为3000度,则2018年小敏家电费为多少元?20.先观察下列各式: 11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭;11117103710⎛⎫=- ⎪⨯⎝⎭;...;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算:1111447710+++⨯⨯⨯ (120052008)+⨯的值. 【答案与解析】一、选择题1.【答案】C【解析】解:∵﹣与只有符号不同,∴﹣的相反数是.故选:C .【解析】∵点M ,N 表示的有理数互为相反数. ∴原点的位置大约在O 点,∴绝对值最小的数的点是P 点,故选C .3.【答案】 C【解析】负数有三个,分别是:-|-7|,-|+1|,)511(-+4.【答案】D5.【答案】C 【解析】由-1<a<0可知2a 为正数,而其它两数均为负数,且| a |<a 1,所以a >a1,所以a1<a< a 2. 6.【答案】D【解析】2.5+3.5=6, 2.5-3.5=-17.【答案】D【解析】由图可知,a 、b 异号,且b 的绝对值较大.8.【答案】D【解析】按正负对a ,b 分类讨论.二、填空题9.【答案】2.【解析】23×()2=8×=2.10.【答案】水位无变化11.【答案】1.02×101412.【答案】7,7±±【解析】由图可知:a-1<0,所以│a-1│=-(a-1)=1- a14.【答案】0【解析】∵|a-2|+|b+3|=0,∴a-2=0,b+3=0,即a=2,b=-3.∴3a+2b=6-6=0;15.【答案】-5【解析】()221415---=--=-16.【答案】1【解析】解:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,……,∵2019÷4=504,∴32019的个位数字与第4个数的个数数相同,是1.故答案为:1.三、解答题17.【解析】解: (1) 原式1 4929(6)9 =-+⨯+-÷4918(6)949185485 =-++-⨯=-+-=-(2) 原式1111115 11[2(9)]11112 232366⎛⎫=---⨯⨯--=--⨯⨯=--=- ⎪⎝⎭(3)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8(4) 原式=322 33519422519435⎡⎤⎛⎫⎛⎫⎛⎫-⨯--⨯+⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2794319162700 8251943258⎛⎫=-⨯-⨯+=-⨯=⎪⎝⎭18.【解析】解:将ab=1,c+d=0,|x|=3代入所给式子中得: 2×32-1+|1+3|=21.所以2x2-(ab-c-d)+|ab+3|=2119.【解析】解:根据题意得:2880×0.48+(3000﹣2880)×0.53=1446(元),则2018年小敏家电费为1446元.20.【解析】解:原式11111111111 1343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+-⎪⎝⎭1113200812007320086692008⎛⎫=-⎪⎝⎭=⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《有理数》全章复习与巩固(提高)知识讲解【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用;5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.数a的绝对值记作a.(2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·1b(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36. (3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ; (2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac 要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度. 要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些. 【典型例题】类型一、有理数相关概念1.已知x 与y 互为相反数,m 与n 互为倒数,|x+y |+(a-1)2=0,求a 2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】(1)若有理数x 与y 互为相反数,则x+y =0,反过来也成立. (2)若有理数m 与n 互为倒数,则mn =1,反过来也成立. 【答案与解析】解:因为x 与y 互为相反数,m 与n 互为倒数,(a-1)2≥0, 所以x+y =0,mn =1,a =1,所以a 2-(x+y+mn)a+(x+y)2009+(-mn)2010 =a 2-(0+1)a+02009+(-1)2010 =a 2-a+1.∵a =1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念. 举一反三:【高清课堂:有理数的复习与提高 357129 复习例题2】【变式1】选择题 (1)已知四种说法:①|a|=a 时,a >0;|a|=-a 时, a <0. ②|a|就是a 与-a 中较大的数. ③|a|就是数轴上a 到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A .1 B .2 C .3 D .4 (2)有四个说法:①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( )A .①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( )A .ab<0B .ab>0C .a>0且b<0D .a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A .120 B .-15 C .0 D .-120 (5)下列各对算式中,结果相等的是( )A .-a 6与(-a)6B .-a 3与|-a|3C .[(-a)2]3与(-a 3)2D .(ab)3与ab 3【答案】(1)C ;(2)C ;(3)A ;(4)D ;(5)C 【变式2】(2015•呼伦贝尔)中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 . 【答案】9.6×106.2. 在下列两数之间填上适当的不等号: 99100-________100101-. 【思路点拨】在a 、b 均为正数的条件下,根据“1a b >,1a b =,1ab<分别得到a >b ,a=b ,a <b”来比较两数的大小. 【答案】 >【解析】法一:作差法:99100--(100101-) =99100991011001001010010110110010100-⨯+⨯-+==>⨯, ∴99100100101->-. 法二:作商法:由于99100991019999110010110010010000÷=⨯=<,所以99100100101<. 再根据两个负数,绝对值大的反而小,得到:99100100101->-. 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用.举一反三:【变式】在下列两数之间填上适当的不等号. 1111111-_________111111111-. 【答案】> (提示:倒数法较简便)类型二、有理数的运算【高清课堂:有理数专题复习 357133 有理数的混合运算】3.(1)211143623324⎛⎫⎛⎫⎛⎫⎛⎫-----+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)5153()( 1.5)()1244-÷⨯-÷-()()23541(3)24121522⎛⎫-÷-⨯-⨯-+ ⎪⎝⎭(4)137775111 2.534812863⎡⎤⎛⎫⎛⎫⎛⎫+--÷--÷⨯- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦(5)()1003221511221132⎛⎫----÷- ⎪⎝⎭+--⨯【答案与解析】 解:(1)原式21111143622332412=-++-= (2)原式543421215239=-⨯⨯⨯=-(3)原式3132(4)12(1516)104=-÷-⨯-⨯-+=-(4)原式12561[1(2)1]()233253=+-++-⨯⨯-= (5)1125112()41192---÷-=+--⨯原式 3.9=-【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac ;逆向应用分配律:ab+ac =a(b+c)等. 举一反三: 【变式】(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯--(2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯【答案】解:(1)225117832[()10.25]199[()2]7148923-÷⨯-⨯-⨯-- (2)23155115(1)()()(2)()299229-⨯---⨯-+-⨯4. 先观察下列各式:11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭; 11117103710⎛⎫=- ⎪⨯⎝⎭;…;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算: 1111447710+++⨯⨯⨯ (1)20052008+⨯的值. 【答案与解析】 解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭… 【总结升华】根据题中提供的拆项方法把每一项拆成11133n n ⎛⎫- ⎪+⎝⎭的形式,然后再进行计算.举一反三:【高清课堂:有理数的复习与提高 例2】 【变式】用简单方法计算: 【答案】解:原式=1111111111115(...)244668810101222446101224++++=-+-++-=⨯⨯⨯⨯⨯ 类型三、数学思想在本章中的应用5.(2014•香洲区校级二模)(1)阅读下面材料:点A,B在数轴上分别表示实数a,b,A,B两点之间的距离表示为|AB|.当A,B两点中有一点在原点时,不妨设点A在原点,如图(1),|AB|=|OB|=|b|=|a﹣b|;当A,B两点都不在原点时,①如图(2),点A,B都在原点的右边,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|;②如图(3),点A,B都在原点的左边,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=|a﹣b|;③如图(4),点A,B在原点的两边,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=|a﹣b|;综上,数轴上A,B两点之间的距离|AB|=|a﹣b|.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;②数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;③当代数式|x+1|+|x﹣2|取最小值时,相应的x的取值范围是.④解方程|x+1|+|x﹣2|=5.【答案与解析】解:①数轴上表示2和5的两点之间的距离是|2﹣5|=3;数轴上表示﹣2和﹣5的两点之间的距离是|﹣2﹣(﹣5)|=3;数轴上表示1和﹣3的两点之间的距离是|1﹣(﹣3)|=4.②数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|=|x+1|,如果|AB|=2,那么x 为1或﹣3.③当代数式|x+1|十|x﹣2|取最小值时,∴x+1≥0,x﹣2≤0,∴﹣1≤x≤2.④当x≤﹣1时,﹣x﹣1﹣x+2=5,解得x=﹣2;当﹣1<x≤2时,3≠5,不成立;当x>2时,x+1+x﹣2=5,解得x=3.故答案为:3,3,4,|x+1|,1或﹣3,﹣1≤x≤2.【总结升华】此题综合考查了数轴、绝对值的有关内容,用几何方法借助数轴来求解,体现了数形结合的优点.类型四、规律探索6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ).A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和. 【答案】A【解析】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A .【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来. 举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( ). A .1132 B .1360 C .1495 D .1660【答案】B 提示:观察发现:分子总是1,第n 行的第一个数的分母就是n ,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的(1)2n-倍.根据图表的规律,则第10行从左边数第3个位置上的数是111094360=⨯⨯.。

相关文档
最新文档