2019-2020学年下学期深圳中学九年级入学考试数学模拟试卷及答案解析
广东省深圳市2019-2020学年中考数学模拟试题含解析
广东省深圳市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°2.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.3.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是()A.15B.25C.35D.454.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为()A.B.C.D.5.某市2010年元旦这天的最高气温是8℃,最低气温是﹣2℃,则这天的最高气温比最低气温高()A.10℃B.﹣10℃C.6℃D.﹣6℃6.如图,向四个形状不同高同为h的水瓶中注水,注满为止.如果注水量V(升)与水深h(厘米)的函数关系图象如图所示,那么水瓶的形状是()A.B.C.D.7.下列4个点,不在反比例函数图象上的是()A.(2,-3)B.(-3,2)C.(3,-2)D.(3,2)8.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B.C.2 D.49.如图,数轴上有A,B,C,D四个点,其中绝对值最小的数对应的点是( )A.点A B.点B C.点C D.点D10.如图,AB是定长线段,圆心O是AB的中点,AE、BF为切线,E、F为切点,满足AE=BF,在»EF 上取动点G,国点G作切线交AE、BF的延长线于点D、C,当点G运动时,设AD=y,BC=x,则y与x所满足的函数关系式为()A.正比例函数y=kx(k为常数,k≠0,x>0)B.一次函数y=kx+b(k,b为常数,kb≠0,x>0)C.反比例函数y=kx(k为常数,k≠0,x>0)D.二次函数y=ax2+bx+c(a,b,c为常数,a≠0,x>0)11.根据文化和旅游部发布的《“五一”假日旅游指南》,今年“五一”期间居民出游意愿达36.6%,预计“五一”期间全固有望接待国内游客1.49亿人次,实现国内旅游收入880亿元.将880亿用科学记数法表示应为()A.8×107B.880×108C.8.8×109D.8.8×101012.如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤23AM MF=.其中正确结论的是()A.①③④B.②④⑤C.①③⑤D.①③④⑤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,x 的取值范围是___.14.A .如果一个正多边形的一个外角是45°,那么这个正多边形对角线的条数一共有_____条. B .用计算器计算:7•tan63°27′≈_____(精确到0.01).15.若分式的值为0,则a 的值是 .16.使得关于x 的分式方程111x k k x x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k +≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.17.中国的陆地面积约为9 600 000km 2,把9 600 000用科学记数法表示为 .18.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?20.(6分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg ),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中m 的值为 ;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ) 根据样本数据,估计这2500只鸡中,质量为2.0kg 的约有多少只?21.(6分)(14分)如图,在平面直角坐标系中,抛物线y=mx 2﹣8mx+4m+2(m >2)与y 轴的交点为A ,与x 轴的交点分别为B (x 1,0),C (x 2,0),且x 2﹣x 1=4,直线AD ∥x 轴,在x 轴上有一动点E (t ,0)过点E 作平行于y 轴的直线l 与抛物线、直线AD 的交点分别为P 、Q .(1)求抛物线的解析式;(2)当0<t≤8时,求△APC 面积的最大值;(3)当t >2时,是否存在点P ,使以A 、P 、Q 为顶点的三角形与△AOB 相似?若存在,求出此时t 的值;若不存在,请说明理由.22.(8分)计算:4sin30°+(120﹣|﹣2|+(12)﹣2 23.(8分)如图1,BAC ∠的余切值为2,5AB =D 是线段AB 上的一动点(点D 不与点A 、B 重合),以点D 为顶点的正方形DEFG 的另两个顶点E 、F 都在射线AC 上,且点F 在点E 的右侧,联结BG ,并延长BG ,交射线EC 于点P .(1)点D 在运动时,下列的线段和角中,________是始终保持不变的量(填序号);①AF ;②FP ;③BP ;④BDG ∠;⑤GAC ∠;⑥BPA ∠;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域;(3)如果PFG ∆与AFG ∆相似,但面积不相等,求此时正方形的边长.24.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,一天可售出100件.后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场一天可获利润y元.①若商场经营该商品一天要获利润2160元,则每件商品应降价多少元?②求出y与x之间的函数关系式,并通过画该函数图象的草图,观察其图象的变化趋势,结合题意写出当x取何值时,商场获利润不少于2160元.25.(10分)如图1在正方形ABCD的外侧作两个等边三角形ADE和DCF,连接AF,BE.请判断:AF与BE的数量关系是,位置关系;如图2,若将条件“两个等边三角形ADE和DCF”变为“两个等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)问中的结论是否仍然成立?请作出判断并给予证明;若三角形ADE和DCF为一般三角形,且AE=DF,ED=FC,第(1)问中的结论都能成立吗?请直接写出你的判断.26.(12分)如图,∠A=∠B=30°(1)尺规作图:过点C作CD⊥AC交AB于点D;(只要求作出图形,保留痕迹,不要求写作法)(2)在(1)的条件下,求证:BC2=BD•AB.27.(12分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.2.B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力.3.B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.4.C【解析】【分析】先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.【详解】如图,根据勾股定理得,BC==12,∴sinA=.故选C.【点睛】本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.5.A【解析】【分析】用最高气温减去最低气温,再根据有理数的减法运算法则“减去一个数等于加上这个数的相反数”即可求得答案.【详解】8-(-2)=8+2=10℃.即这天的最高气温比最低气温高10℃.故选A.6.D【解析】【分析】根据一次函数的性质结合题目中的条件解答即可.【详解】解:由题可得,水深与注水量之间成正比例关系,∴随着水的深度变高,需要的注水量也是均匀升高,∴水瓶的形状是圆柱,故选:D .【点睛】此题重点考查学生对一次函数的性质的理解,掌握一次函数的性质是解题的关键.7.D【解析】 分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上. 解答:解:原式可化为:xy=-6,A 、2×(-3)=-6,符合条件;B 、(-3)×2=-6,符合条件; C 、3×(-2)=-6,符合条件;D 、3×2=6,不符合条件.故选D .8.C【解析】二元一次方程组的解和解二元一次方程组,求代数式的值,算术平方根.【分析】∵=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,∴2+=8{2=1m n n m -,解得=3{=2m n . 2=232=4=2m n -⨯-.即2m n -的算术平方根为1.故选C .9.B【解析】试题分析:在数轴上,离原点越近则说明这个点所表示的数的绝对值越小,根据数轴可知本题中点B 所表示的数的绝对值最小.故选B .10.C【解析】【分析】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,由AE 与BF 为圆的切线,利用切线的性质得到AE 与EO 垂直,BF 与OF 垂直,由AE=BF ,OE=OF ,利用HL 得到直角三角形AOE 与直角BOF 全等,利用全等三角形的对应角相等得到∠A=∠B ,利用等角对等边可得出三角形QAB 为等腰三角形,由O 为底边AB 的中点,利用三线合一得到QO 垂直于AB ,得到一对直角相等,再由∠FQO 与∠OQB 为公共角,利用两对对应角相等的两三角形相似得到三角形FQO 与三角形OQB 相似,同理得到三角形EQO 与三角形OAQ 相似,由相似三角形的对应角相等得到∠QOE=∠QOF=∠A=∠B ,再由切线长定理得到OD 与OC 分别为∠EOG 与∠FOG 的平分线,得到∠DOC 为∠EOF 的一半,即∠DOC=∠A=∠B ,又∠GCO=∠FCO ,得到三角形DOC 与三角形OBC 相似,同理三角形DOC 与三角形DAO 相似,进而确定出三角形OBC 与三角形DAO 相似,由相似得比例,将AD=x ,BC=y 代入,并将AO 与OB 换为AB 的一半,可得出x 与y 的乘积为定值,即y 与x 成反比例函数,即可得到正确的选项.【详解】延长AD ,BC 交于点Q ,连接OE ,OF ,OD ,OC ,OQ ,∵AE ,BF 为圆O 的切线,∴OE ⊥AE ,OF ⊥FB ,∴∠AEO=∠BFO=90°,在Rt △AEO 和Rt △BFO 中,∵{AE BF OE OF= , ∴Rt △AEO ≌Rt △BFO (HL ),∴∠A=∠B ,∴△QAB 为等腰三角形,又∵O 为AB 的中点,即AO=BO ,∴QO ⊥AB ,∴∠QOB=∠QFO=90°,又∵∠OQF=∠BQO ,∴△QOF ∽△QBO ,∴∠B=∠QOF ,同理可以得到∠A=∠QOE ,∴∠QOF=∠QOE ,根据切线长定理得:OD平分∠EOG,OC平分∠GOF,∴∠DOC=12∠EOF=∠A=∠B,又∵∠GCO=∠FCO,∴△DOC∽△OBC,同理可以得到△DOC∽△DAO,∴△DAO∽△OBC,∴AD AO OB BC,∴AD•BC=AO•OB=14AB2,即xy=14AB2为定值,设k=14AB2,得到y=kx,则y与x满足的函数关系式为反比例函数y=kx(k为常数,k≠0,x>0).故选C.【点睛】本题属于圆的综合题,涉及的知识有:相似三角形的判定与性质,切线长定理,直角三角形全等的判定与性质,反比例函数的性质,以及等腰三角形的性质,做此题是注意灵活运用所学知识.11.D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】880亿=880 0000 0000=8.8×1010,故选D.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.D【解析】【分析】根据正方形的性质可得AB=BC=AD,∠ABC=∠BAD=90°,再根据中点定义求出AE=BF,然后利用“边角边”证明△ABF和△DAE全等,根据全等三角形对应角相等可得∠BAF=∠ADE,然后求出∠ADE+∠DAF=∠BAD=90°,从而求出∠AMD=90°,再根据邻补角的定义可得∠AME=90°,从而判断①正确;根据中线的定义判断出∠ADE≠∠EDB ,然后求出∠BAF≠∠EDB ,判断出②错误;根据直角三角形的性质判断出△AED 、△MAD 、△MEA 三个三角形相似,利用相似三角形对应边成比例可得2AM MD AD EM AM AE===,然后求出MD=2AM=4EM ,判断出④正确,设正方形ABCD 的边长为2a ,利用勾股定理列式求出AF ,再根据相似三角形对应边成比例求出AM ,然后求出MF ,消掉a 即可得到AM=23MF ,判断出⑤正确;过点M 作MN ⊥AB 于N ,求出MN 、NB ,然后利用勾股定理列式求出BM ,过点M 作GH ∥AB ,过点O 作OK ⊥GH 于K ,然后求出OK 、MK ,再利用勾股定理列式求出MO ,根据正方形的性质求出BO ,然后利用勾股定理逆定理判断出∠BMO=90°,从而判断出③正确.【详解】在正方形ABCD 中,AB=BC=AD ,∠ABC=∠BAD=90°,∵E 、F 分别为边AB ,BC 的中点,∴AE=BF=12BC , 在△ABF 和△DAE 中,AE BF ABC BAD AB AD ⎧⎪∠∠⎨⎪⎩=== ,∴△ABF ≌△DAE (SAS ),∴∠BAF=∠ADE ,∵∠BAF+∠DAF=∠BAD=90°,∴∠ADE+∠DAF=∠BAD=90°,∴∠AMD=180°-(∠ADE+∠DAF )=180°-90°=90°,∴∠AME=180°-∠AMD=180°-90°=90°,故①正确;∵DE 是△ABD 的中线,∴∠ADE≠∠EDB ,∴∠BAF≠∠EDB ,故②错误;∵∠BAD=90°,AM ⊥DE ,∴△AED ∽△MAD ∽△MEA , ∴2AM MD AD EM AM AE=== ∴AM=2EM ,MD=2AM ,∴MD=2AM=4EM ,故④正确;设正方形ABCD 的边长为2a ,则BF=a ,在Rt △ABF 中,==∵∠BAF=∠MAE ,∠ABC=∠AME=90°,∴△AME∽△ABF,∴AM AE AB AF=,即25AMa a=,解得AM=255a∴MF=AF-AM=25355=a aa-,∴AM=23MF,故⑤正确;如图,过点M作MN⊥AB于N,则MN AN AMBF AB AF==即25525MN ANa a a==解得MN=a52,AN=45a,∴NB=AB-AN=2a-45a=65a,根据勾股定理,222262210555NB MN a a a⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭过点M作GH∥AB,过点O作OK⊥GH于K,则OK=a-a52=a53,MK=65a-a=15a,在Rt△MKO中,22221310555MK OK a a a⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭根据正方形的性质,BO=2a×222a=,∵BM 2+MO 2=2222a ⎫⎫+=⎪⎪⎝⎭⎝⎭)2222BO a ==∴BM 2+MO 2=BO 2,∴△BMO 是直角三角形,∠BMO=90°,故③正确;综上所述,正确的结论有①③④⑤共4个.故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2, 0≤x≤2或43≤x≤2. 【解析】【分析】(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由 函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x 的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y =kx ,由图象可知,(4,20)在函数图象上,代入得:20=4k ,∴k =5,∴甲的函数解析式为:y =5x ①设乙的函数解析式为:y =k′x+b ,将坐标(2,0),(2,20)代入得:0202k b k b =+⎧⎨=+⎩ , 解得2020k b =⎧⎨=-⎩ , ∴乙的函数解析式为:y =20x ﹣20 ②由①②得52020y x y x =⎧⎨=-⎩ ,∴43203xy⎧=⎪⎪⎨⎪=⎪⎩,故43≤x≤2符合题意.故答案为0≤x≤2或43≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据14.20 5.1【解析】【分析】A、先根据多边形外角和为360°且各外角相等求得边数,再根据多边形对角线条数的计算公式计算可得;B、利用计算器计算可得.【详解】A、根据题意,此正多边形的边数为360°÷45°=8,则这个正多边形对角线的条数一共有8(83)2⨯-=20,故答案为20;B、7•tan63°27′≈2.646×2.001≈5.1,故答案为5.1.【点睛】本题主要考查计算器-三角函数,解题的关键是掌握多边形的内角与外角、对角线计算公式及计算器的使用.15.1.【解析】试题分析:根据分式的值为0的条件列出关于a的不等式组,求出a的值即可.试题解析:∵分式的值为0,∴,解得a=1.考点:分式的值为零的条件.16.12.1【解析】依据分式方程11x k k x x +-+-=1的解为负整数,即可得到k >12,k≠1,再根据不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解,即可得到0≤k <4,进而得出k 的值,从而可得符合题意的所有k 的和.【详解】 解分式方程11x k k x x +-+-=1,可得x=1-2k , ∵分式方程11x k k x x +-+-=1的解为负整数, ∴1-2k <0,∴k >12, 又∵x≠-1,∴1-2k≠-1,∴k≠1,解不等式组322144x x x k +≥-⎧⎨-≤⎩,可得344x k x ≥-⎧⎪⎨+≤⎪⎩, ∵不等式组322144x x x k +≥-⎧⎨-≤⎩有1个整数解, ∴1≤44k +<2, 解得0≤k <4, ∴12<k <4且k≠1, ∴k 的值为1.1或2或2.1或3或3.1,∴符合题意的所有k 的和为12.1,故答案为12.1.【点睛】本题考查了解一元一次不等式组、分式方程的解,解题时注意分式方程中的解要满足分母不为0的情况.17.9.6×1.【解析】【详解】将9600000用科学记数法表示为9.6×1. 故答案为9.6×1. 18.1【解析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°,∵AB∥CD,∴∠1+∠3=180°,∴∠1=180°﹣70°=1°,故答案为1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:185{80%20%91x yx y+=+=,解之得:90 {95 xy==.答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.答:他的测试成绩应该至少为1分.考点:一元一次不等式的应用;二元一次方程组的应用.20.(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.【解析】分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;(Ⅱ)根据众数、中位数、加权平均数的定义计算即可;(Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解. 解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;(Ⅱ)观察条形统计图,∵1.05 1.211 1.514 1.8162.041.5251114164x⨯+⨯+⨯+⨯+⨯==++++,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8.∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有1.5 1.51.52+=,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为2.0kg的数量占8%.∴由样本数据,估计这2500只鸡中,质量为2.0kg的数量约占8%.有25008%200⨯=.∴这2500只鸡中,质量为2.0kg的约有200只.点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.21.(1);(2)12;(3)t=或t=或t=1.【解析】试题分析:(1)首先利用根与系数的关系得出:,结合条件求出的值,然后把点B,C的坐标代入解析式计算即可;(2)(2)分0<t<6时和6≤t≤8时两种情况进行讨论,据此即可求出三角形的最大值;(3)(3)分2<t≤6时和t>6时两种情况进行讨论,再根据三角形相似的条件,即可得解.试题解析:解:(1)由题意知x1、x2是方程mx2﹣8mx+4m+2=0的两根,∴x1+x2=8,由.解得:.∴B(2,0)、C(6,0)则4m﹣16m+4m+2=0,解得:m=,∴该抛物线解析式为:y=;.(2)可求得A(0,3)设直线AC的解析式为:y=kx+b,∵∴∴直线AC的解析式为:y=﹣x+3,要构成△APC,显然t≠6,分两种情况讨论:当0<t<6时,设直线l与AC交点为F,则:F(t,﹣),∵P(t,),∴PF=,∴S△APC=S△APF+S△CPF===,此时最大值为:,②当6≤t≤8时,设直线l与AC交点为M,则:M(t,﹣),∵P(t,),∴PM=,∴S△APC=S△APF﹣S△CPF===,当t=8时,取最大值,最大值为:12,综上可知,当0<t≤8时,△APC面积的最大值为12;(3)如图,连接AB,则△AOB中,∠AOB=90°,AO=3,BO=2,Q(t,3),P(t,),①当2<t≤6时,AQ=t,PQ=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=2(舍),②当t>6时,AQ′=t,PQ′=,若:△AOB∽△AQP,则:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,则:,即:,∴t=0(舍)或t=1,∴t=或t=或t=1.考点:二次函数综合题.22.1.【解析】【分析】按照实数的运算顺序进行运算即可.【详解】 原式14124,2=⨯+-+ =1.【点睛】本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及绝对值,熟练掌握各个知识点是解题的关键.23.(1)④⑤;(2)2(12)2x y x x =<-…;(3)75或54. 【解析】【分析】(1)作BM AC ⊥于M ,交DG 于N ,如图,利用三角函数的定义得到2AM BM=,设BM t =,则2AM t =,利用勾股定理得222(2)t t +=,解得2t =,即2BM =,4AM =,设正方形的边长为x ,则2AE x =,3AF x =,由于1tan 3GF GAF AF ∠==,则可判断GAF ∠为定值;再利用//DG AP 得到BDG BAC ∠=∠,则可判断BDG ∠为定值;在Rt BMP ∆中,利用勾股定理和三角函数可判断PB 在变化,BPM ∠在变化,PF 在变化;(2)易得四边形DEMN 为矩形,则NM DE x ==,证明BDG BAP ∆∆∽,利用相似比可得到y 与x 的关系式;(3)由于90AFG PFG ︒∠=∠=,PFG ∆与AFG ∆相似,且面积不相等,利用相似比得到13PF x =,讨论:当点P 在点F 点右侧时,则103AP x =,所以21023x x x =-,当点P 在点F 点左侧时,则83AP x =,所以2823x x x =-,然后分别解方程即可得到正方形的边长. 【详解】(1)如图,作BM AC ⊥于M ,交DG 于N ,在Rt ABM ∆中,∵cot 2AM BAC BM ∠==, 设BM t =,则2AM t =,∵222AM BM AB +=,∴222(2)t t +=,解得2t =,∴2BM =,4AM =,设正方形的边长为x ,在Rt ADE ∆中,∵cot 2AE DAE DE ∠==, ∴2AE x =,∴3AF x =,在Rt GAF ∆中,1tan 33GF x GAF AF x ∠===, ∴GAF ∠为定值;∵//DG AP ,∴BDG BAC ∠=∠,∴BDG ∠为定值;在Rt BMP ∆中,222PB PM =-,而PM 在变化,∴PB 在变化,BPM ∠在变化,∴PF 在变化,所以BDG ∠和GAC ∠是始终保持不变的量;故答案为:④⑤(2)∵MN ⊥AP ,DEFG 是正方形, ∴四边形DEMN 为矩形,∴NM DE x ==,∵//DG AP , ∴BDG BAP ∆∆∽,∴DG BN AP BM=, 即22x x y -=, ∴2(12)2x y x x =<-… (3)∵90AFG PFG ︒∠=∠=,PFG ∆与AFG ∆相似,且面积不相等,∴GF PF AF GF =,即3x PF x x=, ∴13PF x =, 当点P 在点F 点右侧时,AP=AF+PF=133x x +=103x , ∴21023x x x =-,解得75x=,当点P在点F点左侧时,18333AP AF PF x x x =-=-=,∴2823xxx=-,解得54x=,综上所述,正方形的边长为75或54.【点睛】本题考查了相似形综合题:熟练掌握锐角三角函数的定义、正方形的性质和相似三角形的判定与性质.24.(1)一天可获利润2000元;(2)①每件商品应降价2元或8元;②当2≤x≤8时,商店所获利润不少于2160元.【解析】:(1)原来一天可获利:20×100=2000元;(2)①y=(20-x)(100+10x)=-10(x2-10x-200),由-10(x2-10x-200)=2160,解得:x1=2,x2=8,∴每件商品应降价2或8元;②观察图像可得25.(1)AF=BE,AF⊥BE;(2)证明见解析;(3)结论仍然成立【解析】试题分析:(1)根据正方形和等边三角形可证明△ABE≌△DAF,然后可得BE=AF,∠ABE=∠DAF,进而通过直角可证得BE⊥AF;(2)类似(1)的证法,证明△ABE≌△DAF,然后可得AF=BE,AF⊥BE,因此结论还成立;(3)类似(1)(2)证法,先证△AED≌△DFC,然后再证△ABE≌△DAF,因此可得证结论.试题解析:解:(1)AF=BE,AF⊥BE.(2)结论成立.证明:∵四边形ABCD 是正方形,∴BA="AD" =DC ,∠BAD =∠ADC = 90°.在△EAD 和△FDC 中,,{,,EA FD ED FC AD DC ===∴△EAD ≌△FDC .∴∠EAD=∠FDC .∴∠EAD+∠DAB=∠FDC+∠CDA ,即∠BAE=∠ADF .在△BAE 和△ADF 中,,{,,BA AD BAE ADF AE DF =∠=∠=∴△BAE ≌△ADF .∴BE = AF ,∠ABE=∠DAF .∵∠DAF +∠BAF=90°,∴∠ABE +∠BAF=90°,∴AF ⊥BE .(3)结论都能成立.考点:正方形,等边三角形,三角形全等26.见解析【解析】【分析】(1)利用过直线上一点作直线的垂线确定D 点即可得;(2)根据圆周角定理,由∠ACD=90°,根据三角形的内角和和等腰三角形的性质得到∠DCB=∠A=30°,推出△CDB ∽△ACB ,根据相似三角形的性质即可得到结论.【详解】(1)如图所示,CD 即为所求;(2)∵CD⊥AC,∴∠ACD=90°∵∠A=∠B=30°,∴∠ACB=120°∴∠DCB=∠A=30°,∵∠B=∠B,∴△CDB∽△ACB,∴BC AB BD BC=,∴BC2=BD•AB.【点睛】考查了等腰三角形的性质和相似三角形的判定和性质和作图:在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.27.(1)见解析(2)BD=2【解析】解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,AD AD {CD DE==,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.。
2019-2020学年下学期深圳市福田区侨香外国语学校九年级入学考试数学模拟试卷及答案解析
2019-2020学年下学期福田区侨香外国语学校九年级入学考数学模拟试卷(4月)(考试时间:90分;满分:100分)班级: 姓名: 考号: 成绩:一.选择题(共10小题,满分30分,每小题3分)1.下列二次根式中属于最简二次根式的是( )A .√22B .√15C .√32D .√82.新冠病毒(2019﹣nCoV )是一种新的Sarbecovirus 亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA 病毒,其遗传物质是所有RNA 病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm ,平均直径为100nm (纳米).1米=109纳米,100nm 可以表示为( )米.A .0.1×10﹣6B .10×10﹣8C .1×10﹣7D .1×10113.数据0,1,1,4,3,3的中位数和平均数分别是( )A .2.5和2B .2和2C .2.5和2.4D .2和2.44.下列图形中,既是轴对称图形又是中心对称图形的有( )A .1个B .2个C .3个D .4个 5.若式子√x−1x−2在实数范围内有意义,则x 的取值范围是( ) A .x ≥1且x ≠2 B .x ≤1 C .x >1且x ≠2 D .x <16.方程2x 2﹣8x ﹣1=0的解的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个实数根7.如图所示,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB =4,AD =6,则tan B =( )A .2√3B .2√2C .114D .5√548.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩( )A .不赔不赚B .赚9元C .赔18元D .赚18元9.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )A .BD ⊥ACB .AC 2=2AB •AEC .△ADE 是等腰三角形D .BC =2AD 10.如图为二次函数y =ax 2+bx +c 的图象,给出下列说法:①ab <0;②方程ax 2+bx +c =0的根为x 1=﹣1,x 2=3;③a +b +c >0;④当x <1时,y 随x 值的增大而增大;⑤当y >0时,x <﹣1或x >3.其中,正确的说法有( )A .①②④B .①②⑤C .①③⑤D .②④⑤二.填空题(共6小题,满分18分,每小题3分)11.把多项式x 2y ﹣6xy +9y 分解因式的结果是 .12.已知代数式x ﹣2y 的值是5,则代数式﹣3x +6y +1的值是 .13.若不等式组{2x −b ≥0x +a ≤0的解集为3≤x ≤4,则不等式ax +b <0的解集为 .。
2019-2020学年下学期深圳外国语学校九年级入学考试数学模拟试卷及答案解析
1 / 27
2019-2020学年下学期深圳外国语学校九年级入学考试
数学模拟试卷(4月)
(考试时间:90分;满分:100分)
班级: 姓名: 考号: 成绩:
一.选择题(共12小题,满分36分,每小题3分)
1.若关于x 的不等式(a +2020)x >a +2020的解为x <1,则a 的取值范围是( )
A .a >﹣2020
B .a <﹣2020
C .a >2020
D .a <2020
2.由四舍五入得到的近似数8.01×104,精确到( )
A .万位
B .百位
C .百分位
D .个位
3.如图是一根空心方管,它的俯视图是( )
A .
B .
C .
D .
4.下列图案中是中心对称图形但不是轴对称图形的是( )
A .
B .
C .
D .
5.在﹣2,1,2,1,4,6中正确的是( )
A .极差为8
B .众数是﹣2
C .中位数是1
D .平均数3
6.下列运算正确的是( )
A .(2a )3=6a 3
B .2a 2﹣a 2=2
C .﹣=
D .a 2•a 3=a 6
7.如果一次函数y =2x ﹣4的图象与另一个一次函数y 1的图象关于y 轴对称,那么函数y
1。
【附5套中考模拟试卷】广东省深圳市2019-2020学年中考中招适应性测试卷数学试题(1)含解析
广东省深圳市2019-2020学年中考中招适应性测试卷数学试题(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正六边形ABCDEF 内接于O e ,M 为EF 的中点,连接DM ,若O e 的半径为2,则MD 的长度为( )A .7B .5C .2D .12.下面运算结果为6a 的是( )A .33a a +B .82a a ÷C .23•a aD .()32a -3.如图,数轴上的四个点A ,B ,C ,D 对应的数为整数,且AB =BC =CD =1,若|a|+|b|=2,则原点的位置可能是( )A .A 或B B .B 或C C .C 或D D .D 或A4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.小明和小亮按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列说法中正确的是( )A .小明不是胜就是输,所以小明胜的概率为12 B .小明胜的概率是13,所以输的概率是23 C .两人出相同手势的概率为12 D .小明胜的概率和小亮胜的概率一样6.已知a 为整数,且3<a<5,则a 等于( )A .1B .2C .3D .47.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°8.下列计算正确的是( )A .3a 2﹣6a 2=﹣3B .(﹣2a )•(﹣a )=2a 2C .10a 10÷2a 2=5a 5D .﹣(a 3)2=a 69.甲、乙两船从相距300km 的A 、B 两地同时出发相向而行,甲船从A 地顺流航行180km 时与从B 地逆流航行的乙船相遇,水流的速度为6km/h ,若甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为( )A .1806x +=1206x - B .1806x -=1206x + C .1806x +=120x D .180x =1206x - 10.解分式方程2236111x x x +=+-- ,分以下四步,其中,错误的一步是( ) A .方程两边分式的最简公分母是(x ﹣1)(x+1)B .方程两边都乘以(x ﹣1)(x+1),得整式方程2(x ﹣1)+3(x+1)=6C .解这个整式方程,得x =1D .原方程的解为x =111.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:912.下列计算正确的是( )A.(a2)3=a6B.a2+a2=a4C.(3a)•(2a)2=6a D.3a﹣a=3二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.14.二次根式1x-中字母x的取值范围是_____.15.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣4x图象上的两个点,则y1与y2的大小关系为__________.16.正方形EFGH的顶点在边长为3的正方形ABCD边上,若AE=x,正方形EFGH的面积为y,则y 与x的函数关系式为______.17.如图,随机闭合开关1K,2K,3K中的两个,能让两盏灯泡1l和2l同时发光的概率为___________.18.计算(32)3+-的结果是_____三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.20.(6分)如图,在△ABC中,∠ABC=90°,BD⊥AC,垂足为D,E为BC边上一动点(不与B、C重合),AE、BD交于点F.(1)当AE 平分∠BAC 时,求证:∠BEF=∠BFE ;(2)当E 运动到BC 中点时,若BE=2,BD=2.4,AC=5,求AB 的长.21.(6分)为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A .唐诗;B .宋词;C .论语;D .三字经.比赛形式分“单人组”和“双人组”.(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.22.(8分)如图,抛物线y =ax 2+bx+c (a >0)的顶点为M ,直线y =m 与抛物线交于点A ,B ,若△AMB 为等腰直角三角形,我们把抛物线上A ,B 两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB 称为碟宽,顶点M 称为碟顶.由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.23.(8分)一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y 1(km ),快车离乙地的距离为y 2(km ),慢车行驶时间为x (h ),两车之间的距离为S (km ),y 1,y2与x 的函数关系图象如图①所示,S 与x 的函数关系图象如图②所示:(1)图中的a=______,b=______.(2)求快车在行驶的过程中S 关于x 的函数关系式.(3)直接写出两车出发多长时间相距200km?24.(10分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率. 25.(10分)如图所示,点P 位于等边的内部,且∠ACP=∠CBP .(1)∠BPC 的度数为________°; (2)延长BP 至点D ,使得PD=PC ,连接AD ,CD .①依题意,补全图形;②证明:AD+CD=BD ;(3)在(2)的条件下,若BD 的长为2,求四边形ABCD 的面积.26.(12分)已知,抛物线2:23L y x bx =--(b 为常数).(1)抛物线的顶点坐标为( , )(用含b 的代数式表示);(2)若抛物线L 经过点()2,1M --且与k y x=图象交点的纵坐标为3,请在图1中画出抛物线L 的简图,并求k y x=的函数表达式; (3)如图2,规矩ABCD 的四条边分别平行于坐标轴,1AD =,若抛物线L 经过,A C 两点,且矩形ABCD 在其对称轴的左侧,则对角线AC 的最小值是 .27.(12分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,求证:AF=DC ;若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】连接OM 、OD 、OF ,由正六边形的性质和已知条件得出OM ⊥OD ,OM ⊥EF ,∠MFO=60°,由三角函数求出OM ,再由勾股定理求出MD 即可.【详解】连接OM 、OD 、OF ,∵正六边形ABCDEF 内接于⊙O ,M 为EF 的中点,∴OM ⊥OD ,OM ⊥EF ,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin ∠MFO=2×3=3, ∴MD=()2222327OM OD +=+=,故选A .【点睛】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM 是解决问题的关键.2.B【解析】【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【详解】A .3332a a a += ,此选项不符合题意;B .826a a a ÷=,此选项符合题意;C .235a a a ⋅=,此选项不符合题意;D .236()a a -=-,此选项不符合题意;故选:B .【点睛】本题考查了整式的运算,解题的关键是掌握合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方.3.B【解析】【分析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【详解】∵AB =BC =CD =1,∴当点A 为原点时,|a|+|b|>2,不合题意;当点B 为原点时,|a|+|b|=2,符合题意;当点C 为原点时,|a|+|b|=2,符合题意;当点D 为原点时,|a|+|b|>2,不合题意;故选:B .【点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值. 4.A【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.5.D【解析】【分析】利用概率公式,一一判断即可解决问题.【详解】A 、错误.小明还有可能是平;B 、错误、小明胜的概率是13,所以输的概率是也是13; C 、错误.两人出相同手势的概率为13; D 、正确.小明胜的概率和小亮胜的概率一样,概率都是13; 故选D .【点睛】本题考查列表法、树状图等知识.用到的知识点为:概率=所求情况数与总情况数之比.6.B【解析】【分析】 351,进而得出答案.【详解】∵a 35∴a=1.故选:B .【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.7.D【解析】【详解】解:∵35AOC ∠=o ,∴35BOD ∠=o ,∵EO ⊥AB ,∴90EOB ∠=o ,∴9035125EOD EOB BOD ∠=∠+∠=+=o o o ,故选D.8.B【解析】【分析】根据整式的运算法则分别计算可得出结论.【详解】选项A ,由合并同类项法则可得3a 2﹣6a 2=﹣3a 2,不正确;选项B ,单项式乘单项式的运算可得(﹣2a )•(﹣a )=2a 2,正确;选项C ,根据整式的除法可得10a 10÷2a 2=5a 8,不正确; 选项D ,根据幂的乘方可得﹣(a 3)2=﹣a 6,不正确.故答案选B .考点:合并同类项;幂的乘方与积的乘方;单项式乘单项式.9.A【解析】分析:直接利用两船的行驶距离除以速度=时间,得出等式求出答案.详解:设甲、乙两船在静水中的速度均为xkm/h ,则求两船在静水中的速度可列方程为:1806x +=1206x -. 故选A .点睛:此题主要考查了由实际问题抽象出分式方程,正确表示出行驶的时间和速度是解题关键. 10.D【解析】【分析】先去分母解方程,再检验即可得出.【详解】方程无解,虽然化简求得1x =,但是将1x =代入原方程中,可发现31x -和261x -的分母都为零,即无意义,所以1x ≠,即方程无解【点睛】本题考查了分式方程的求解与检验,在分式方程中,一般求得的x 值都需要进行检验11.A【解析】【分析】根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得. 【详解】由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC,∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴23OBOB'=,故选A.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.12.A【解析】【分析】根据同底数幂的乘法的性质,幂的乘方的性质,积的乘方的性质,合并同类项的法则,对各选项分析判断后利用排除法求解.【详解】A.(a2)3=a2×3=a6,故本选项正确;B.a2+a2=2a2,故本选项错误;C.(3a)•(2a)2=(3a)•(4a2)=12a1+2=12a3,故本选项错误;D.3a﹣a=2a,故本选项错误.故选A.【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方,积的乘方和单项式乘法,理清指数的变化是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】试题分析:当点B C1BB1=60°,则∠ABC1=90°,根据有一直角的平行四边形是矩形,可判定四边形ABC1D1为矩形;当点B时,D、B1两点重合,根据对角线互相垂直平分的四边形是菱形,可判定四边形ABC 1D 1为菱形. 试题解析:如图:当四边形ABC 1D 是矩形时,∠B 1BC 1=90°﹣30°=60°, ∵B 1C 1=1, ∴BB 1=113tan 603B C ==︒, 当点B 3ABC 1D 1为矩形; 当四边形ABC 1D 是菱形时,∠ABD 1=∠C 1BD 1=30°, ∵B 1C 1=1,∴BB 1=113tan 303B C ==︒, 当点B 3ABC 1D 1为菱形. 考点:1.菱形的判定;2.矩形的判定;3.平移的性质. 14.x≤1 【解析】 【分析】二次根式有意义的条件就是被开方数是非负数,即可求解. 【详解】根据题意得:1﹣x≥0, 解得x≤1. 故答案为:x≤1 【点睛】主要考查了二次根式的意义和性质.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义. 15.y 1<y 1 【解析】分析:根据反比例函数的性质和题目中的函数解析式可以判断y 1与y 1的大小,从而可以解答本题.详解:∵反比例函数y=-4x,-4<0, ∴在每个象限内,y 随x 的增大而增大, ∵A (-4,y 1),B (-1,y 1)是反比例函数y=-4x图象上的两个点,-4<-1, ∴y 1<y 1,故答案为:y 1<y 1.点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答. 16.y=2x 2﹣6x+2 【解析】 【分析】由AAS 证明△DHE ≌△AEF ,得出DE=AF=x ,DH=AE=1-x ,再根据勾股定理,求出EH 2,即可得到y 与x 之间的函数关系式. 【详解】 如图所示:∵四边形ABCD 是边长为1的正方形, ∴∠A=∠D=20°,AD=1. ∴∠1+∠2=20°,∵四边形EFGH 为正方形, ∴∠HEF=20°,EH=EF . ∴∠1+∠1=20°, ∴∠2=∠1,在△AHE 与△BEF 中23D A EH EF ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△DHE ≌△AEF (AAS ), ∴DE=AF=x ,DH=AE=1-x , 在Rt △AHE 中,由勾股定理得:EH2=DE2+DH2=x2+(1-x)2=2x2-6x+2;即y=2x2-6x+2(0<x<1),故答案为y=2x2-6x+2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y与x之间的函数关系式是解题的关键.17.1 3【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与能让两盏灯泡同时发光的情况,再利用概率公式求解即可求得答案.【详解】解:画树状图得:由树状图得:共有6种结果,且每种结果的可能性相同,其中能让两盏灯泡同时发光的是闭合开关为:K1、K3与K3、K1共两种结果,∴能让两盏灯泡同时发光的概率21 ==63,故答案为:13.【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.182【解析】【分析】根据二次根式的运算法则进行计算即可求出答案.【详解】(323-,.【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.详见解析. 【解析】 【分析】先证明△ADF ≌△CDE ,由此可得∠DAF =∠DCE ,∠AFD =∠CED ,再根据∠EAG =∠FCG ,AE =CF ,∠AEG =∠CFG 可得△AEG ≌△CFG ,所以AG =CG . 【详解】证明:∵四边形ABCD 是正方形, ∴AD =DC ,∵E 、F 分别是AB 、BC 边的中点, ∴AE =ED =CF =DF . 又∠D =∠D ,∴△ADF ≌△CDE (SAS ).∴∠DAF =∠DCE ,∠AFD =∠CED . ∴∠AEG =∠CFG . 在△AEG 和△CFG 中EAG FCG AE CFAEG CFG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEG ≌△CFG (ASA ). ∴AG =CG . 【点睛】本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法. 20.(1)证明见解析;(1)2 【解析】分析:(1)根据角平分线的定义可得∠1=∠1,再根据等角的余角相等求出∠BEF=∠AFD ,然后根据对顶角相等可得∠BFE=∠AFD ,等量代换即可得解;(1)根据中点定义求出BC ,利用勾股定理列式求出AB 即可. 详解:(1)如图,∵AE 平分∠BAC ,∴∠1=∠1.∵BD⊥AC,∠ABC=90°,∴∠1+∠BEF=∠1+∠AFD=90°,∴∠BEF=∠AFD.∵∠BFE=∠AFD(对顶角相等),∴∠BEF=∠BFE;(1)∵BE=1,∴BC=4,由勾股定理得:AB=22AC BC-=2254-=2.点睛:本题考查了直角三角形的性质,勾股定理的应用,等角的余角相等的性质,熟记各性质并准确识图是解题的关键.21.(1) 14;(2)112.【解析】【分析】(1)直接利用概率公式求解;(2)先画树状图展示所有12种等可能的结果数,再找出恰好小红抽中“唐诗”且小明抽中“宋词”的结果数,然后根据概率公式求解.【详解】(1)她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率=14;(2)画树状图为:共有12种等可能的结果数,其中恰好小红抽中“唐诗”且小明抽中“宋词”的结果数为1,所以恰好小红抽中“唐诗”且小明抽中“宋词”的概率=.22.(1)MN与AB的关系是:MN⊥AB,MN=12AB,(2)2,4;(2)①y=13x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【解析】【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.(1)MN 与AB 的关系是:MN ⊥AB ,MN =12AB , 如图1,∵△AMB 是等腰直角三角形,且N 为AB 的中点,∴MN ⊥AB ,MN =12AB , 故答案为MN ⊥AB ,MN =12AB ;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4; 故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0),得,9a ﹣4a ﹣53=0,解得:a =13,∴抛物线的解析式是:y =13x 2﹣2;②由①知,如图2,y =13x2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角,∴在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.23.(1)a=6, b=154;(2)1516060004151606006460(610)x x S x x x x ⎧⎛⎫-+< ⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟 ;(3)52h 或5h 【解析】 【分析】(1)根据S 与x 之间的函数关系式可以得到当位于C 点时,两人之间的距离增加变缓,此时快车到站,指出此时a 的值即可,求得a 的值后求出两车相遇时的时间即为b 的值;(2)根据函数的图像可以得到A 、B 、C 、D 的点的坐标,利用待定系数法求得函数的解析式即可. (3)分两车相遇前和两车相遇后两种情况讨论,当相遇前令s=200即可求得x 的值. 【详解】解:(1)由s 与x 之间的函数的图像可知:当位于C 点时,两车之间的距离增加变缓,由此可以得到a=6,∵快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为600, ∴15600(10060)4b =÷+=; (2)∵从函数的图象上可以得到A 、B 、C 、D 点的坐标分别为:(0,600)、(154,0)、(6,360)、(10,600),∴设线段AB 所在直线解析式为:S=kx+b ,∴6001504b k b =⎧⎪⎨+=⎪⎩解得:k=-160,b=600,设线段BC 所在的直线的解析式为:S=kx+b ,∴15046360k b k b ⎧+=⎪⎨⎪+=⎩ 解得:k=160,b=-600,设直线CD 的解析式为:S=kx+b ,636010600k b k b +=⎧⎨+=⎩ 解得:k=60,b=0∴1516060004151606006460(610)x xS x xx x⎧⎛⎫-+<⎪⎪⎝⎭⎪⎪⎛⎫=-<⎨ ⎪⎝⎭⎪⎪⎪⎩……剟(3)当两车相遇前相距200km,此时:S=-160x+600=200,解得:52x=,当两车相遇后相距200km,此时:S=160x-600=200,解得:x=5,∴52x=或5时两车相距200千米【点睛】本题考查了一次函数的综合知识,特别是本题中涉及到了分段函数的知识,解题时主要自变量的取值范围. 24.小王在这两年春节收到的年平均增长率是【解析】【分析】增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.【详解】解:设小王在这两年春节收到的红包的年平均增长率是.依题意得:解得(舍去).答:小王在这两年春节收到的年平均增长率是【点睛】本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.25.(1)120°;(2)①作图见解析;②证明见解析;(3).【解析】【分析】(1)根据等边三角形的性质,可知∠ACB=60°,在△BCP中,利用三角形内角和定理即可得;(2)①根据题意补全图形即可;②证明,根据全等三角形的对应边相等可得,从而可得;(3)如图2,作于点,延长线于点,根据已知可推导得出,由(2)得,,根据即可求得.【详解】(1)∵三角形ABC是等边三角形,∴∠ACB=60°,即∠ACP+∠BCP=60°,∵∠BCP+∠CBP+∠BPC=180°,∠ACP=∠CBP,∴∠BPC=120°,故答案为120;(2)①∵如图1所示.②在等边中,,∴,∵,∴,∴,∴,∵,∴为等边三角形,∵,∴在和中,,∴ ,∴,∴; (3)如图2,作于点,延长线于点,∵,∴, ∴, ∴,又由(2)得,,.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添加辅助线是解题的关键.26.(1)2,3b b --;(2)图象见解析,6y x =或9y x=-;(32 【解析】 【分析】(1)将抛物线的解析式配成顶点式,即可得出顶点坐标;(2)根据抛物线经过点M ,用待定系数法求出抛物线的解析式,即可得出图象,然后将纵坐标3代入抛物线的解析式中,求出横坐标,然后将点再代入反比例函数的表达式中即可求出反比例函数的表示式;(3)设出A 的坐标,表示出C,D 的坐标,得到CD 的长度,根据题意找到CD 的最小值,因为AD 的长度不变,所以当CD 最小时,对角线AC 最小,则答案可求.【详解】解:(1)()2222222323()3y x bx x bx b b x b b =--=-+--=--+Q , ∴抛物线的顶点的坐标为2(,3)b b --.故答案为:2(,3)b b --(2)将(2,1)M --代入抛物线的解析式得:4431b +-=- 解得:12b =-, ∴抛物线的解析式为23y x x =+-.抛物线L 的大致图象如图所示:将3y =代入23y x x =+-得: 233x x +-=, 解得:2x =或3x =-∴抛物线与反比例函数图象的交点坐标为(2,3)或()3,3-.将(2,3)代入k y x=得:6k =, 6y x∴=. 将()3,3-代入k y x=得:9k =-, 9y x=-∴. 综上所述,反比例函数的表达式为6y x =或9y x=-. (3)设点A 的坐标为()2,23x x bx --,则点D 的坐标为()21,23x x bx +--,C 的坐标为21,(22)2)2(x x b x b ++---.()2223(22)22221DC x bx x b x b x b ⎡⎤∴=---+---=-+-⎣⎦ DC ∴的长随x 的增大而减小.Q 矩形ABCD 在其对称轴的左侧,抛物线的对称轴为x b =,1x b ∴+≤1x b ∴≤-∴当1x b =-时,DC 的长有最小值,DC 的最小值2(1)211b b =--+-=.AD Q 的长度不变,∴当DC 最小时,AC 有最小值.AC ∴的最小值=.【点睛】本题主要考查二次函数,反比例函数与几何综合,掌握二次函数,反比例函数的图象与性质是解题的关键.27.(1)见解析(2)见解析【解析】【分析】(1)根据AAS 证△AFE ≌△DBE ,推出AF=BD ,即可得出答案.(2)得出四边形ADCF 是平行四边形,根据直角三角形斜边上中线性质得出CD=AD ,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE .∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD .在△AFE 和△DBE 中,∵∠AFE=∠DBE ,∠FEA=∠BED , AE=DE ,∴△AFE ≌△DBE (AAS )∴AF=BD .∴AF=DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF=DC ,∴四边形ADCF 是平行四边形.∵AC⊥AB,AD是斜边BC的中线,∴AD=DC.∴平行四边形ADCF是菱形Administrator A d m i n i s t r a t o rGT ? M i c r o s o f t W o r d。
【新】2019-2020广东深圳中学初升高自主招生数学【4套】模拟试卷【含解析】
第一套:满分120分2020-2021年广东深圳中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线33y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。
2020年广东省深圳市初中毕业生学业考试全真模拟试卷深圳数学(九)答案
2020年深圳市初中毕业生学业考试数学全真模拟试卷(九)参考答案一、选择题1.C2.D3.A4.D5.B6.A7.A8.C9.C 10.D 11.D 12.B 【解答】∵∠ABE =90°,AB =BE ,∴∠AEB =∠BAE =45°,AE =2BE ,∵将△ABE 绕点A 逆时针旋转45°,∴∠DAE =∠AEB =45°,AD =AE =2BE ,DH =BE ,AH =AB ,∠ABE =∠AHD =90°,∴∠DAB =∠ABE =90°,AH =DH =AB =BE ,又∵DC ⊥BE ,∴四边形ABCD 是矩形,∴AB =CD =DH ,AD =BC =2BE ,∠BCD =∠DHE =90°,∵DH =DC ,DE =DE ,∴Rt △DEC ≌Rt △DEH (HL ),∴HE =EC ,∠AED =∠DEC =67.5°,∠CDE =∠HDE =22.5°,∴DE 平分∠HDC ,故①正确;∵AB =AH ,∠BAE =45°,∴∠ABH =∠AHB =67.5°,∴∠OHE =∠OEH =67.5°,∴OH =OE ,∠DHO =22.5°=∠HDO ,∴DO =HO ,∴OE =OD ,故②正确;如图,过点H 作HN ⊥BC 于N ,∴HN ∥CD ,∴△BHN ∽△BFC ,∴BF BH =FC HN =21,∴FC =2HN ,∵AE =2BE ,AH =BE ,∴HE =(2-1)BE =CE ,∵HN ⊥BC ,∠AEB =45°,∴HN =22HE =22(2-1)BE ,∴CF =2HN =(2-2)BE ,∵BC -CF =BE +CE -CF =BE +(2-1)BE -(2-2)BE =2(2-1)BE ,∴BC -CF =2CE ,故③正确;∵∠HFD =180°-67.5°=112.5°,∠HDF =45°,∴∠HFD ≠∠HDF ,∴HF ≠DH ,∴HF ≠CD ,故④错误,故正确的有3个,答案选B.13.2(a -b )214.9415.816.2-2【解答】如图,连接EF .∵四边形ABCD 是正方形,∴AB =AD =BC =CD =2,∠DCB =∠COD =∠BOC =90°,OD =OC ,∴BD =2AB =22,折叠性质可知,∠OEF =∠DCB =90°,∠EDF =∠CDF ,∴∠BEF =90°,∴∠BFE=∠FBE =45°,∴△BEF 是等腰直角三角形,∴BE =EF =CF =22-2,∵∠DCB =∠COD =90°,∠EDF =∠CDF ,∴△ODM ∽△CDF ,∴CD OD CF OM =即222-OM =22,∴OM =2-2.故答案为2-2.17.解:原式=4-4+23-1+1……………………………………(4分)=23.…………………………………(5分)18.解:原式=mm m m --⋅--3)22292(…………………………………(2分)=mm m m m --⋅-+-3222)3(3)()(…………………………………(4分)=2m +6.…………………………………(5分)当21-=m 时,原式=2×(-21)+6=5.…………………………………(6分)19.解:(1)100;…………………………………(1分)【解法提示】学校本次调查的学生人数为10÷10%=100名.(2)20;……………………………………(2分)【解法提示】m =100﹣25﹣25﹣20﹣10=20.补全图形如下:…………………………………(4分)(3)36°;…………………………………(5分)【解法提示】在扇形统计图中,“书法”所在扇形的圆心角度数为360°×10%=36°.(4)估计该校喜欢舞蹈的学生人数为1000×25%=250人.…………………(7分)20.解:设MC =x ,∵∠MAC =30°,∴在Rt △MAC 中,AC=MACMC ∠tan =3x .…………………………………(2分)∵∠MBC =45°,∴在Rt △MCB 中,MC =BC =x ,又∵AB =DE =40,∴AC ﹣BC =AB =40,即3x ﹣x =40,…………………(4分)解得:x =20+203≈54.6,…………………………………(6分)∴MF =MC +CF =54.6+1.5=56.1(米),答:楼MF 的高为56.1米.…………………………………(8分)21.解:(1)设A 奖品的单价是x 元/件,B 奖品的单价是y 元/件,根据题意,得:⎩⎨⎧=+=+4538534y x y x ,解得:⎩⎨⎧==1510y x .答:A 奖品的单价是10元/件,B 奖品的单价是15元/件.…………………(4分)(2)设购买A 种奖品m 件,购买总费用W 元,则购买B 种奖品(100-m )件,根据题意,得:W =10m +15(100-m )=-5m +1500.∵购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,∴⎩⎨⎧-≤≤+-)(m m m 1003115015005,解得:70≤m ≤75,∴W =-5m +1500(70≤m ≤75).…………………………………(6分)∵k =-5<0,∴W 随m 的增大而减小,∴当m =75时,W 取最小值,最小值=-5×75+1500=1125,此时100-m =100-75=25.答:购买总费用最少的方案是购买A 奖品75件、B 奖品25件.………………(8分)22.(1)证明:∵BF =DF ,∴∠BDF =∠DBF ,在△BCD 与△DGB 中,⎪⎩⎪⎨⎧=∠=∠∠=∠DB BD BDF DBF G BCD ,∴△BCD ≌△DGB (AAS ),∴CD =GB ;…………………………………(3分)(2)证明:如图1,连接OC ,∵∠COB =2∠CDB ,∠CFB =∠CDB +∠DBF =2∠CDB ,∴∠COB =∠CFB ,∵PC =PF ,∴∠COB =∠CFB =∠PCF ,∵AB ⊥CD ,∴∠COB +∠OCE =90°,∴∠PCF +∠OCE =∠PCO =90°,∴OC ⊥CP ,∵OC 是半径,∴PC 是⊙O 的切线;………………(6分)(3)解:如图2,连接AD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵AB ⊥CD ,∴弧BD =弧BC ,∴∠BDE =∠A =∠G ,∵tan G =31,∴tan A=AE DE =31,即AE =3DE ,同理可得:DE =3BE ,∴AE ﹣BE =3DE -31DE =338,解得:DE =3,∴CD =2DE =23,∴BE =31DE =33,∴BD =22BE DE +=330,∵∠BCD =∠FDB ,∠BDC =∠FBD ,∴△BCD ∽△FDB ,∴FDBC DB CD =,∵BC =BD ,∴FD =CD BD 2=32)330(2=935.…………………………………(9分)23.解:(1)由抛物线交点式表达式得:y =a (x +1)(x ﹣2),将(0,3)代入上式得:-2a =3,解得:a =23-,故抛物线的表达式为:y =23-x 2+23x +3;…………………………………(2分)(2)点C (0,3),B (2,0),设直线BC 的表达式为:y =kx +c ,则⎩⎨⎧=+=023n k c ,解得:⎪⎩⎪⎨⎧-==233k c 故直线BC 的表达式为:y=23-x +3,………………………(3分)如图,过点D 作y 轴的平行线交直线BC 与点H ,设点D (m ,23-m 2+23m +3),则点H (m ,23-m +3),S △BDC =S △DHC +S △HDB =21HD ×OB =21×2(23-m 2+23m +3+23m -3)=23-m 2+3m =231232+--)(m ,…………………………………(5分)∵-23<0,故△BCD 的面积有最大值,当m =1,△BCD 面积最大为23,此时D 点为(1,3);…………………………(6分)(3)存在,N 的坐标为:(0,3)或(2171+,﹣3)或(2171-,-3).…(9分)【解答】m =1时,D 点为(1,3),①当BD 是平行四边形的一条边时,设点N (n ,23-n 2+23n +3),则点N 的纵坐标为绝对值为3,即|23-n 2+23n +3|=3,解得:n =0或1(舍去)或,2171±,故点N 的坐标为(0,3)或(2171+,-3)或(2171-,-3),②当BD 是平行四边形的对角线时,DN ∥x 轴,∴N 的坐标为(0,3);综上,点N 的坐标为:(0,3)或(2171+,-3)或(2171-,-3).。
广东省深圳市2019-2020学年第四次中考模拟考试数学试卷含解析
广东省深圳市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x-对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差2.天气越来越热,为防止流行病传播,学校决定用420元购买某种牌子的消毒液,经过还价,每瓶便宜0.5元,结果比用原价购买多买了20瓶,求原价每瓶多少元?设原价每瓶x元,则可列出方程为( )A.4200.5x+-420x=20 B.420x-4200.5x+=20C.4200.5x--420x=20 D.420420200.5x x-=-3.如图,A,B,C,D,E,G,H,M,N都是方格纸中的格点(即小正方形的顶点),要使△DEF与△ABC 相似,则点F应是G,H,M,N四点中的()A.H或N B.G或H C.M或N D.G或M4.如图,点P(x,y)(x>0)是反比例函数y=kx(k>0)的图象上的一个动点,以点P为圆心,OP为半径的圆与x轴的正半轴交于点A,若△OPA的面积为S,则当x增大时,S的变化情况是()A.S的值增大B.S的值减小C.S的值先增大,后减小D.S的值不变5.已知一元二次方程2x6x c0-+=有一个根为2,则另一根为A.2 B.3 C.4 D.86.如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()A .B .C .D .7.下列计算中,错误的是()A.020181=;B.224-=;C.1242=;D.1133-=.8.下列汽车标志中,不是轴对称图形的是()A.B.C.D.9.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.1210.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或511.如图,已知△ABC,AB=AC,将△ABC沿边BC翻转,得到的△DBC与原△ABC拼成四边形ABDC,则能直接判定四边形ABDC是菱形的依据是( )A.四条边相等的四边形是菱形B.一组邻边相等的平行四边形是菱形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直平分的四边形是菱形12.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A .90°B .180°C .210°D .270°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若关于x 的一元二次方程x 2﹣2x+m=0有实数根,则m 的取值范围是 .14.已知一次函数y=ax+b 的图象如图所示,根据图中信息请写出不等式ax+b≥2的解集为___________.15.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________. 16.如图,是用三角形摆成的图案,摆第一层图需要1个三角形,摆第二层图需要3个三角形,摆第三层图需要7个三角形,摆第四层图需要13个三角形,摆第五层图需要21个三角形,…,摆第n 层图需要_____个三角形.17.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体一次,向上一面的数字是2的倍数或3的倍数的概率是____.1820-114+-3-2014-4+6 ()()=________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠ACB=90°,O 是AB 上一点,以OA 为半径的⊙O 与BC 相切于点D ,与AB 交于点E ,连接ED 并延长交AC 的延长线于点F .(1)求证:AE=AF ;(2)若DE=3,sin ∠BDE=13,求AC 的长.20.(6分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .(1)求证:DF 是BF 和CF 的比例中项;(2)在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .21.(6分)如图所示,一次函数y=kx+b 与反比例函数y=m x的图象交于A (2,4),B (﹣4,n )两点.分别求出一次函数与反比例函数的表达式;过点B 作BC ⊥x 轴,垂足为点C ,连接AC ,求△ACB 的面积.22.(8分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y (盒)与每盒售价x (元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P (元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?23.(8分)计算:﹣(﹣2)2+|﹣3|﹣20180×32724.(10分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.25.(10分)用你发现的规律解答下列问题. 111122=-⨯ 1112323=-⨯ 1113434=-⨯ ┅┅计算111111223344556++++=⨯⨯⨯⨯⨯ .探究1111......122334(1)n n ++++=⨯⨯⨯+ .(用含有n 的式子表示)若1111......133557(21)(21)n n ++++⨯⨯⨯-+的值为1735,求n 的值. 26.(12分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 27.(12分)如图,在Rt △ABC 中,∠C=90°,O 、D 分别为AB 、AC 上的点,经过A 、D 两点的⊙O 分别交于AB 、AC 于点E 、F ,且BC 与⊙O 相切于点D .(1)求证:;(2)当AC=2,CD=1时,求⊙O 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A.【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.2.C【解析】【分析】关键描述语是:“结果比用原价多买了1瓶”;等量关系为:原价买的瓶数-实际价格买的瓶数=1.【详解】 原价买可买420x 瓶,经过还价,可买4200.5x -瓶.方程可表示为:4200.5x -﹣420x=1. 故选C .【点睛】考查了由实际问题抽象出分式方程.列方程解应用题的关键步骤在于找相等关系.本题要注意讨价前后商品的单价的变化.3.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、13、10,只能F是M或N时,其各边是6、213,210.与△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键4.D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.5.C【解析】试题分析:利用根与系数的关系来求方程的另一根.设方程的另一根为α,则α+2=6,解得α=1.考点:根与系数的关系.6.C【解析】【分析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【详解】解: 从上面看易得: 有2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形; 7.B【解析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A .020181=,故A 正确;B .224-=-,故B 错误;C .1242=.故C 正确;D .1133-=,故D 正确; 故选B .点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.8.C【解析】【分析】根据轴对称图形的概念求解.【详解】A 、是轴对称图形,故错误;B 、是轴对称图形,故错误;C 、不是轴对称图形,故正确;D 、是轴对称图形,故错误.故选C .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 9.C∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,又∵∠ADE=∠EFC ,∴∠B=∠EFC ,△ADE ∽△EFC ,∴BD ∥EF ,DE AD FC EF=, ∴四边形BFED 是平行四边形,∴BD=EF , ∴563DE AD BD ==,解得:DE=10. 故选C.10.A【解析】试题解析:∵x 1,x 2是方程x 2-2x-1=0的两个实数根,∴x 1+x 2=2,x 1∙x 2=-1 ∴2112x x x x +=2221212121212()24261x x x x x x x x x x ++-+===--. 故选A.11.A【解析】【分析】根据翻折得出AB=BD ,AC=CD ,推出AB=BD=CD=AC ,根据菱形的判定推出即可.【详解】∵ 将 △ABC 延底边 BC 翻折得到 △DBC ,∴AB=BD , AC=CD ,∵AB=AC ,∴AB=BD=CD=AC ,∴ 四边形 ABDC 是菱形;故选A.【点睛】本题考查了菱形的判定方法:四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;有一组邻边相等的平行四边形是菱形.12.B【解析】试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m≤1.【解析】试题分析:由题意知,△=4﹣4m≥0,∴m≤1.故答案为m≤1.考点:根的判别式.14.x≥1.【解析】试题分析:根据题意得当x≥1时,ax+b≥2,即不等式ax+b≥2的解集为x≥1.故答案为x≥1.考点:一次函数与一元一次不等式.15.【解析】【分析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.【点睛】本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.16.n 2﹣n+1【解析】【分析】观察可得,第1层三角形的个数为1,第2层三角形的个数为3,比第1层多2个;第3层三角形的个数为7,比第2层多4个;…可得,每一层比上一层多的个数依次为2,4,6,…据此作答.【详解】观察可得,第1层三角形的个数为1,第2层三角形的个数为22−2+1=3,第3层三角形的个数为32−3+1=7,第四层图需要42−4+1=13个三角形摆第五层图需要52−5+1=21.那么摆第n 层图需要n 2−n+1个三角形。
{3套试卷汇总}2019-2020深圳市中考数学联合模拟试题及答案
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒【答案】B 【解析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C .【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C ,∴AC =A′C ,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°,∴∠B =∠A′B′C =65°.故选B .【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.2.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是( )A .B .C .D .【答案】A详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.3.如图是测量一物体体积的过程:步骤一:将180 mL的水装进一个容量为300 mL的杯子中;步骤二:将三个相同的玻璃球放入水中,结果水没有满;步骤三:再将一个同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测一个玻璃球的体积在下列哪一范围内?(1 mL=1 cm3)().A.10 cm3以上,20 cm3以下B.20 cm3以上,30 cm3以下C.30 cm3以上,40 cm3以下D.40 cm3以上,50 cm3以下【答案】C【解析】分析:本题可设玻璃球的体积为x,再根据题意列出不等式组求得解集得出答案即可.详解:设玻璃球的体积为x,则有3300180 4300180 xx-⎧⎨-⎩<>解得30<x<1.故一颗玻璃球的体积在30cm3以上,1cm3以下.故选C.点睛:此题考查一元一次不等式组的运用,解此类题目常常要根据题意列出不等式组,再化简计算得出x 的取值范围.4.某班7名女生的体重(单位:kg)分别是35、37、38、40、42、42、74,这组数据的众数是()A.74 B.44 C.42 D.40【答案】C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.5.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′,连接CC′.若∠CC′B′=32°,则∠B的大小是()【答案】C【解析】试题分析:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.考点:旋转的性质.6.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h【答案】B【解析】由图可知,甲用4小时走完全程40km,可得速度为10km/h;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.故选B7.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF【答案】B【解析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.8.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=570【答案】A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.9.如图所示的几何体的俯视图是()A .B .C .D .【答案】D【解析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【详解】从上往下看,该几何体的俯视图与选项D 所示视图一致.故选D .【点睛】本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.10.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD 于点F ,已知S △AEF =4,则下列结论:①12AF FD =;②S △BCE =36;③S △ABE =12;④△AEF ~△ACD ,其中一定正确的是( )A .①②③④B .①④C .②③④D .①②③【答案】D 【解析】∵在▱ABCD 中,AO=12AC , ∵点E 是OA 的中点,∴AE=13CE , ∵AD ∥BC , ∴△AFE ∽△CBE , ∴AF AE BC CE ==13, ∵AD=BC ,∴AF=13AD , ∴12AF FD =;故①正确; ∵S △AEF =4, AEFBCE S S =(AF BC )2=19, ∴S △BCE =36;故②正确;∴AEF ABE S S =13, ∴S △ABE =12,故③正确;∵BF 不平行于CD ,∴△AEF 与△ADC 只有一个角相等,∴△AEF 与△ACD 不一定相似,故④错误,故选D .二、填空题(本题包括8个小题)11.计算:2633⨯+=________. 【答案】3【解析】根据二次根式的运算法则先算乘法,再将3分母有理化,然后相加即可. 【详解】解:原式=233+ =3【点睛】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.【答案】35【解析】判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.【详解】解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.故答案为.【点睛】考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.13.计算tan 260°﹣2sin30°2cos45°的结果为_____.【解析】分别算三角函数,再化简即可.【详解】解:原式=23()-2×12-2×22=1.【点睛】本题考查掌握简单三角函数值,较基础.14.如图,矩形ABCD ,AB=2,BC=1,将矩形ABCD 绕点A 顺时针旋转90°得矩形AEFG ,连接CG 、EG ,则∠CGE=________.【答案】45°【解析】试题解析:如图,连接CE ,∵AB=2,BC=1,∴DE=EF=1,CD=GF=2,在△CDE 和△GFE 中,CD GF CDE GFE DE EF =⎧⎪∠=∠⎨⎪=⎩∴△CDE ≌△GFE(SAS),∴CE=GE ,∠CED=∠GEF ,90AEG GEF ∠+∠=,90CEG AEG CED ∴∠=∠+∠=,45.CGE ∴∠=15.如图,已知AB ∥CD ,若14AB CD =,则OA OC=_____.【答案】14【解析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD , ∴14OA AB OC CD ==, 故答案为14. 【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.16.一元二次方程2x 2﹣3x ﹣4=0根的判别式的值等于_____.【答案】41【解析】已知一元二次方程的根判别式为△=b 2﹣4ac ,代入计算即可求解.【详解】依题意,一元二次方程2x 2﹣3x ﹣4=0,a =2,b =﹣3,c =﹣4∴根的判别式为:△=b 2﹣4ac =(﹣3)2﹣4×2×(﹣4)=41故答案为:41【点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax 2+bx+c =0(a≠0)的根的判别式为△=b 2﹣4ac 是解决问题的关键.17.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______.【答案】1【解析】根据待定系数法求得一次函数的解析式,解答即可.【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3),∴3=4-m ,解得m=1,故答案为:1.此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式.18.如果53xx y=-,那么xy=______.【答案】52;【解析】先对等式进行转换,再求解.【详解】∵53 xx y-=∴3x=5x-5y ∴2x=5y∴5.2 xy=【点睛】本题考查的是分式,熟练掌握分式是解题的关键.三、解答题(本题包括8个小题)19.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)【答案】热气球离地面的高度约为1米.【解析】作AD⊥BC交CB的延长线于D,设AD为x,表示出DB和DC,根据正切的概念求出x的值即可.【详解】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,在Rt △ADC 中,∠ACD=35°,∴tan ∠ACD= AD CD, ∴ 100x x + = 710 , 解得,x≈1.答:热气球离地面的高度约为1米.【点睛】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.20.如图,∠A =∠D ,∠B =∠E ,AF =DC .求证:BC =EF .【答案】证明见解析.【解析】想证明BC=EF ,可利用AAS 证明△ABC ≌△DEF 即可.【详解】解:∵AF =DC ,∴AF+FC =FC+CD ,∴AC =FD ,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 21.如图,某市郊外景区内一条笔直的公路a 经过三个景点A 、B 、C ,•景区管委会又开发了风景优美的景点D ,经测量,景点D 位于景点A 的北偏东30′方向8km 处,•位于景点B 的正北方向,还位于景点C 的北偏西75°方向上,已知AB=5km.景区管委会准备由景点D 向公路a 修建一条距离最短的公路,不考试其他因素,求出这条公路的长.(结果精确到0.1km ).求景点C 与景点D 之间的距离.(结果精确到1km ).【答案】(1)景点D 向公路a 修建的这条公路的长约是3.1km ;(2)景点C 与景点D 之间的距离约为4km .【解析】解:(1)如图,过点D 作DE ⊥AC 于点E ,过点A 作AF ⊥DB ,交DB 的延长线于点F ,在Rt △DAF 中,∠ADF=30°,∴AF=12AD=12×8=4,∴DF=22228443AD AF -=-=, 在Rt △ABF 中BF=2222AB AF 54-=-=3,∴BD=DF ﹣BF=43﹣3,sin ∠ABF=45AF AB =, 在Rt △DBE 中,sin ∠DBE=DB BD ,∵∠ABF=∠DBE ,∴sin ∠DBE=45, ∴DE=BD•sin ∠DBE=45×(43﹣3)=163125-≈3.1(km ),∴景点D 向公路a 修建的这条公路的长约是3.1km ;(2)由题意可知∠CDB=75°,由(1)可知sin ∠DBE=45=0.8,所以∠DBE=53°, ∴∠DCB=180°﹣75°﹣53°=52°, 在Rt △DCE 中,sin ∠DCE=DB DC ,∴DC= 3.1sin 520.79DE ︒=≈4(km ), ∴景点C 与景点D 之间的距离约为4km .22.如图,已知,等腰Rt △OAB 中,∠AOB=90°,等腰Rt △EOF 中,∠EOF=90°,连结AE 、BF .求证:(1)AE=BF ;(2)AE ⊥BF .【答案】见解析【解析】(1)可以把要证明相等的线段AE ,CF 放到△AEO ,△BFO 中考虑全等的条件,由两个等腰直角三角形得AO=BO ,OE=OF ,再找夹角相等,这两个夹角都是直角减去∠BOE 的结果,所以相等,由此可以证明△AEO ≌△BFO ;(2)由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,由此可以证明AE ⊥BF【详解】解:(1)证明:在△AEO 与△BFO 中,∵Rt △OAB 与Rt △EOF 等腰直角三角形,∴AO=OB ,OE=OF ,∠AOE=90°-∠BOE=∠BOF ,∴△AEO ≌△BFO ,∴AE=BF ;( 2)延长AE 交BF 于D ,交OB 于C ,则∠BCD=∠ACO由(1)知:∠OAC=∠OBF ,∴∠BDA=∠AOB=90°,∴AE ⊥BF .23.解不等式组22(4)113x x x x -≤+⎧⎪-⎨+⎪⎩<,并写出该不等式组的最大整数解. 【答案】﹣2,﹣1,0【解析】分析:先解不等式①,去括号,移项,系数化为1,再解不等式②,取分母,移项,然后找出不等式组的解集.本题解析:()224113x x x x ⎧-≤+⎪⎨-<+⎪⎩①②, 解不等式①得,x≥−2,解不等式②得,x<1,∴不等式组的解集为−2≤x<1.∴不等式组的最大整数解为x=0,24.如图,AB 为⊙O 的直径,点D 、E 位于AB 两侧的半圆上,射线DC 切⊙O 于点D ,已知点E 是半圆弧AB 上的动点,点F 是射线DC 上的动点,连接DE 、AE ,DE 与AB 交于点P ,再连接FP 、FB ,且∠AED =45°.求证:CD ∥AB ;填空:①当∠DAE=时,四边形ADFP是菱形;②当∠DAE=时,四边形BFDP是正方形.【答案】(1)详见解析;(2)①67.5°;②90°.【解析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①连接AF与DP交于点G,如图所示,∵四边形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP是正方形,∴BF =FD =DP =PB ,∠DPB =∠PBF =∠BFD =∠FDP =90°,∴此时点P 与点O 重合,∴此时DE 是直径,∴∠EAD =90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.25.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?【答案】(1)20%;(2)能.【解析】(1)设年平均增长率为x ,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.【详解】(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88, 解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该企业从2014年到2016年利润的年平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,所以该企业2017年的利润能超过3.4亿元.【点睛】此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大. 26.在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.表示出所有可能出现的结果;小黄和小石做游戏,制定了两个游戏规则:规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.【答案】(1):()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(2)小黄要在游戏中获胜,小黄会选择规则1,理由见解析【解析】(1)利用列举法,列举所有的可能情况即可;(2)分别求出至少有一张是“6”和摸出的红心牌点数是黑桃牌点数的整数倍时的概率,进行选择即可.【详解】(1)所有可能出现的结果如下:()2,6,()2,7,()2,8,()4,6,()4,7,()4,8,()6,6,()6,7,()6,8共9种;(1)摸牌的所有可能结果总数为9,至少有一张是6的有5种可能,∴在规划1中,P (小黄赢)59=; 红心牌点数是黑桃牌点数的整倍数有4种可能, ∴在规划2中,P (小黄赢)49=. ∵5499>,∴小黄要在游戏中获胜,小黄会选择规则1. 【点睛】考查列举法以及概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.下列计算正确的是( )A .(a+2)(a ﹣2)=a 2﹣2B .(a+1)(a ﹣2)=a 2+a ﹣2C .(a+b )2=a 2+b 2D .(a ﹣b )2=a 2﹣2ab+b 2【答案】D【解析】A 、原式=a 2﹣4,不符合题意;B 、原式=a 2﹣a ﹣2,不符合题意;C 、原式=a 2+b 2+2ab ,不符合题意;D 、原式=a 2﹣2ab+b 2,符合题意,故选D2.二次函数2y x =的对称轴是( )A .直线y 1=B .直线x 1=C .y 轴D .x 轴 【答案】C【解析】根据顶点式y=a (x-h )2+k 的对称轴是直线x=h ,找出h 即可得出答案.【详解】解:二次函数y=x 2的对称轴为y 轴.故选:C .【点睛】本题考查二次函数的性质,解题关键是顶点式y=a (x-h )2+k 的对称轴是直线x=h ,顶点坐标为(h ,k ). 3.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( ) A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根【答案】D【解析】根据方程有两个相等的实数根可得出b=a+1或b=-(a+1),当b=a+1时,-1是方程x 2+bx+a=0的根;当b=-(a+1)时,1是方程x 2+bx+a=0的根.再结合a+1≠-(a+1),可得出1和-1不都是关于x 的方程x 2+bx+a=0的根.【详解】∵关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根, ∴()()2210{2410a b a +≠-+==, ∴b=a+1或b=-(a+1).当b=a+1时,有a-b+1=0,此时-1是方程x 2+bx+a=0的根;当b=-(a+1)时,有a+b+1=0,此时1是方程x2+bx+a=0的根.∵a+1≠0,∴a+1≠-(a+1),∴1和-1不都是关于x的方程x2+bx+a=0的根.故选D.【点睛】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.4.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m【答案】A【解析】过C作CE⊥AB,Rt△ACE中,∵∠CAD=60°,AC=15m,∴∠ACE=30°,AE=12AC=12×15=7.5m,CE=AC•cos30°=15×3=153,∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴BE=CE•tan60°=153×3=22.5m,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【点睛】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.5.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x轴,可知,tan∠PNM =2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN =,∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.6.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y ==【答案】A 【解析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 7.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k≤4C .k<4且k≠3D .k≤4且k≠3 【答案】B【解析】试题分析:若此函数与x 轴有交点,则2(3)21=0k x x -++,Δ≥0,即4-4(k-3)≥0,解得:k≤4,当k=3时,此函数为一次函数,题目要求仍然成立,故本题选B.考点:函数图像与x 轴交点的特点.8.某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为( )A .20%B .11%C .10%D .9.5%【答案】C 【解析】设二,三月份平均每月降价的百分率为x ,则二月份为1000(1)x -,三月份为21000(1)x -,然后再依据第三个月售价为1,列出方程求解即可.【详解】解:设二,三月份平均每月降价的百分率为x .根据题意,得21000(1)x -=1.解得10.1x =,2 1.9x =-(不合题意,舍去).答:二,三月份平均每月降价的百分率为10%【点睛】本题主要考查一元二次方程的应用,关于降价百分比的问题:若原数是a ,每次降价的百分率为a ,则第一次降价后为a (1-x );第二次降价后后为a (1-x )2,即:原数x (1-降价的百分率)2=后两次数. 9.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )A .30°B .45°C .90°D .135°【答案】C【解析】根据勾股定理求解.【详解】设小方格的边长为1,得, 22222+= ,22222+= ,AC=4,∵OC 2+AO 2=22(22)(22)+=16,AC 2=42=16,∴△AOC 是直角三角形,∴∠AOC=90°.故选C .【点睛】考点:勾股定理逆定理.10.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C 选项符合题意.故选C .二、填空题(本题包括8个小题)11.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 .【答案】7【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC .∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC .又∵∠B=∠C=60°,∴△ABD ∽△DCE .∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=.12.如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 (把所有正确结论的序号都填在横线上)∠DCF=∠BCD ,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF【答案】①②④【解析】试题解析:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.13.关于x的一元二次方程ax2﹣x﹣14=0有实数根,则a的取值范围为________.【答案】a≥﹣1且a≠1【解析】利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣14)≥1,然后求出两个不等式的公共部分即可.【详解】根据题意得a≠1且△=(﹣1)2﹣4a•(﹣14)≥1,解得:a≥﹣1且a≠1.故答案为a≥﹣1且a≠1.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.14.某种商品两次降价后,每件售价从原来元降到元,平均每次降价的百分率是__________.【答案】【解析】设降价的百分率为x,则第一次降价后的单价是原来的(1−x),第二次降价后的单价是原来的(1−x)2,根据题意列方程解答即可.【详解】解:设降价的百分率为x,根据题意列方程得:100×(1−x)2=81解得x1=0.1,x2=1.9(不符合题意,舍去).所以降价的百分率为0.1,即10%.故答案为:10%.本题考查了一元二次方程的应用.找到关键描述语,根据等量关系准确的列出方程是解决问题的关键.还要判断所求的解是否符合题意,舍去不合题意的解.15.因式分解:9a2﹣12a+4=______.【答案】(3a﹣1)1【解析】直接利用完全平方公式分解因式得出答案.【详解】9a1-11a+4=(3a-1)1.故答案是:(3a﹣1)1.【点睛】考查了公式法分解因式,正确运用公式是解题关键.16.若3,a,4,5的众数是4,则这组数据的平均数是_____.【答案】4【解析】试题分析:先根据众数的定义求出a的值,再根据平均数的定义列出算式,再进行计算即可.试题解析:∵3,a,4,5的众数是4,∴a=4,∴这组数据的平均数是(3+4+4+5)÷4=4.考点:1.算术平均数;2.众数.17.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).【答案】3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型18.若a2+3=2b,则a3﹣2ab+3a=_____.【答案】1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值.【详解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1.【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键.三、解答题(本题包括8个小题)19.如图,在Rt△ABC中,AB=AC,D、E是斜边BC上的两点,∠EAD=45°,将△ADC绕点A顺时针旋转90°,得到△AFB,连接EF.求证:EF=ED;若AB=22,CD=1,求FE的长.【答案】(1)见解析;(2)EF=5 3 .【解析】(1)由旋转的性质可求∠FAE=∠DAE=45°,即可证△AEF≌△AED,可得EF=ED;(2)由旋转的性质可证∠FBE=90°,利用勾股定理和方程的思想可求EF的长.【详解】(1)∵∠BAC=90°,∠EAD=45°,∴∠BAE+∠DAC=45°,∵将△ADC绕点A顺时针旋转90°,得到△AFB,∴∠BAF=∠DAC,AF=AD,CD=BF,∠ABF=∠ACD=45°,∴∠BAF+∠BAE=45°=∠FAE,∴∠FAE=∠DAE,AD=AF,AE=AE,∴△AEF≌△AED(SAS),∴DE=EF(2)∵AB=AC=2,∠BAC=90°,∴BC=4,∵CD=1,∴BF=1,BD=3,即BE+DE=3,∵∠ABF=∠ABC=45°,∴∠EBF=90°,∴BF2+BE2=EF2,∴1+(3﹣EF)2=EF2,∴EF=53【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键.20.如图,平面直角坐标系中,直线AB:13y x b=-+交y轴于点A(0,1),交x轴于点B.直线x=1交AB于点D,交x轴于点E,P是直线x=1上一动点,且在点D的上方,设P(1,n).求直线AB的解析式和点B的坐标;求△ABP的面积(用含n的代数式表示);当S△ABP=2时,以PB为边在第一象限作等腰直角三角形BPC,求出点C的坐标.【答案】(1) AB的解析式是y=-13x+1.点B(3,0).(2)32n-1;(3) (3,4)或(5,2)或(3,2).【解析】试题分析:(1)把A的坐标代入直线AB的解析式,即可求得b的值,然后在解析式中,令y=0,求得x的值,即可求得B的坐标;(2)过点A作AM⊥PD,垂足为M,求得AM的长,即可求得△BPD和△PAB的面积,二者的和即可求得;(3)当S△ABP=2时,32n-1=2,解得n=2,则∠OBP=45°,然后分A、B、P分别是直角顶点求解.试题解析:(1)∵y=-13x+b经过A(0,1),∴b=1,∴直线AB的解析式是y=-13x+1.当y=0时,0=-13x+1,解得x=3,∴点B(3,0).(2)过点A作AM⊥PD,垂足为M,则有AM=1,∵x=1时,y=-13x+1=23,P在点D的上方,∴PD=n-23,S△APD=12PD•AM=12×1×(n-23)=12n-13由点B(3,0),可知点B到直线x=1的距离为2,即△BDP的边PD上的高长为2,∴S△BPD=12PD×2=n-23,。
2019-2020年深圳市初三中考数学一模模拟试卷【含答案】
2019-2020年深圳市初三中考数学一模模拟试卷【含答案】一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.2 B.﹣2 C.D.2.(3分)如图所示,m和n的大小关系是()A.m=n B.m=1.5n C.m>n D.m<n3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形4.(3分)据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为()A.2.52×107B.2.52×108C.0.252×107D.0.252×108 5.(3分)如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°6.(3分)某公司销售部有7个职员,他们5月份的工资分别是5300元、5800元、5300元、5500元、5800元、6500元和5800元,那么他们5月份工资的众数是()A.5300元B.5500元C.5800元D.6500元7.(3分)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.(3分)如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A.B.C.D.9.(3分)已知代数式a﹣2b+7的值是13,那么代数式2a﹣4b的值是()A.6 B.12 C.15 D.2610.(3分)如图,在四边形ABCD中,AD∥BC,AB=CD,B=60°,AD=2,BC=8,点P从点B出发沿折线BA﹣AD﹣DC匀速运动,同时,点Q从点B出发沿折线BC﹣CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)因式分解:x2y﹣y3=.12.(4分)81的平方根等于.13.(4分)不等式组的解集是.14.(4分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣1,0)、C(0,1),将△ABC绕点B顺时针旋转90°,得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,则点A1的坐标为.15.(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E 为AD的中点,则OE的长为.16.(4分)如图所示,在平面直角坐标系中,点A(,0)、B(0,),以AB为边作正方形ABCB1,延长CB1交x轴于点A1,以A1B1为边作正方形A1B1C1B2,延长C1B2交x轴于点A2,以A2B2为边作正方形A2B2C2B3,延长C2B3交x轴于点A3,以A3B3为边作正方形A3B3C3B4,…,依此规律,则△A6B7A7的周长为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:|﹣3|﹣(2019+sin45°)0+﹣118.(6分)先化简,再求值:,其中x=.19.(6分)如图,在Rt△ABC中,∠C=90°,AB=8.(1)作△ABC的内角∠CAB的平分线,与边BC交于点D(用尺规作图,保留作图痕迹,不要求写作法);(2)若AD=BD,求CD的长度.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.(1)大巴与小车的平均速度各是多少?(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?21.(7分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B=30°时,试猜想四边形ACEF是什么图形,并说明理由.22.(7分)为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)这一调查属于(选填“抽样调查”或“普查”),抽取的学生数为名;(2)估计喜欢收听易中天《品三国》的学生约占全校学生的%(精确到小数点后一位);(3)已知该校女学生共有1800名,则该校喜欢收听刘心武评《红楼梦》的女学生大约有多少名?五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k 为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.24.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.25.(9分)如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)1.(3分)﹣的倒数是()A.2 B.﹣2 C.D.【分析】利用倒数的定义:乘积是1的两数互为倒数,进而得出答案.【解答】解:∵﹣2×(﹣)=1,∴﹣的倒数是﹣2.故选:B.【点评】此题主要考查了倒数的定义,正确把握定义是解题关键.2.(3分)如图所示,m和n的大小关系是()A.m=n B.m=1.5n C.m>n D.m<n【分析】根据数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,可得:m>n.【解答】解:根据图示,可得:m>0>n,∴m>n.故选:C.【点评】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.3.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正五边形D.正方形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.(3分)据有关部门统计,2019年春节期间,广东各大景点的游客总数约25200000人次,将数25200000用科学记数法表示为()A.2.52×107B.2.52×108C.0.252×107D.0.252×108【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:25200000=2.52×107.故选:A.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.5.(3分)如图,直线l1∥l2,将等边三角形如图放置若∠α=25°,则∠β等于()A.35°B.30°C.25°D.20°【分析】过点B作BD∥l1,如图,根据平行线的性质可得∠ABD=∠β.根据平行线的传递性可得BD∥l2,从而得到∠DBC=∠α=35°.再根据等边△ABC可得到∠ABC=60°,就可求出∠DBC,从而解决问题.【解答】解:过点B作BD∥l1,如图,则∠ABD=∠β.∵l1∥l2,∴BD∥l2,∵∠DBC=∠α=35°.∵△ABC是等边三角形,∴∠ABC=60°,∴∠β=∠ABD=∠ABC﹣∠DBC=60°﹣25°=35°.故选:A.【点评】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长BA与l2交于点E,运用平行线的性质及三角形外角的性质解决问题.6.(3分)某公司销售部有7个职员,他们5月份的工资分别是5300元、5800元、5300元、5500元、5800元、6500元和5800元,那么他们5月份工资的众数是()A.5300元B.5500元C.5800元D.6500元【分析】众数是一组数据中出现次数最多的数.【解答】解:他们5月份工资的众数是5800元,故选:C.【点评】此题考查了众数,众数是一组数据中出现次数最多的数.7.(3分)在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据非负数的性质确定出点P的纵坐标是正数,然后根据各象限内点的坐标特征解答.【解答】解:∵x2≥0,∴x2+1≥1,∴点P(﹣2,x2+1)在第二象限.故选:B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(3分)如图,在平面直角坐标系中,点M的坐标为M(,2),那么cosα的值是()A.B.C.D.【分析】如图,作MH⊥x轴于H.利用勾股定理求出OM,即可解决问题.【解答】解:如图,作MH⊥x轴于H.∵M(,2),∴OH=,MH=2,∴OM==3,∴cosα==,故选:D.【点评】本题考查解直角三角形的应用,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.(3分)已知代数式a﹣2b+7的值是13,那么代数式2a﹣4b的值是()A.6 B.12 C.15 D.26【分析】首先根据a﹣2b+7=13,求出a﹣2b的值是多少;然后把求出的a﹣2b的值代入,求出代数式2a﹣4b的值是多少即可.【解答】解:∵a﹣2b+7=13,∴a﹣2b=13﹣7=6,∴2a﹣4b=2(a﹣2b)=2×6=12.故选:B.【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.10.(3分)如图,在四边形ABCD中,AD∥BC,AB=CD,B=60°,AD=2,BC=8,点P从点B出发沿折线BA﹣AD﹣DC匀速运动,同时,点Q从点B出发沿折线BC﹣CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.【分析】①当点P在AB上运动时(0≤x≤6),y=BQ×BP sin B=x2,当x=6时,y =9;②6<t<8,y为常数;③当x≥8时,点PC=6+2+6﹣t=14﹣t,QC=t﹣8,则PQ=22﹣2t,而△BPQ的高常数,即可求解.【解答】解:由题意得:四边形ABCD为等腰梯形,如下图,分别过点A、D作梯形的高AM、DN交BC于点M、N,则MN=AD=2,BM=NC=(BC﹣AD)=3,则AB=2BM=6,①当点P在AB上运动时(0≤x≤6),y=BQ×BP sin B=x2,当x=6时,y=9,图象中符合条件的有B、D;②6<t<8,y为常数;③当x≥8时,点PC=6+2+6﹣t=14﹣t,QC=t﹣8,则PQ=22﹣2t,而△BPQ的高常数,故y的表达式为一次函数,故在B、D中符合条件的为B,故选:B.【点评】本题考查的是动点图象问题,涉及到二次函数、一次函数、解直角三角形等知识,此类问题关键是,要弄清楚不同时间段,图象和图形的对应关系,进而求解.二、填空题(本大题6小题,每小题4分,共24分)11.(4分)因式分解:x2y﹣y3=y(x+y)(x﹣y).【分析】先提公因式,再利用平方差公式分解因式即可;【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故答案为y(x+y)(x﹣y)【点评】本题考查因式分解﹣提公因式法,解题的关键是熟练掌握因式分解的方法,属于中考常考题型、12.(4分)81的平方根等于±9 .【分析】一个正数有两个平方根,这两个平方根互为相反数,据此求解即可.【解答】解:81的平方根等于:±=±9.故答案为:±9.【点评】此题主要考查了平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.13.(4分)不等式组的解集是2<x≤3 .【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:解不等式x﹣1>1,得:x>2,解不等式3+2x≥4x﹣3,得:x≤3,所以不等式组的解集为2<x≤3,故答案为:2<x≤3.【点评】本题考查了不等式组的解法,求不等式组中每个不等式的解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.14.(4分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,3)、B(﹣1,0)、C(0,1),将△ABC绕点B顺时针旋转90°,得到△A1B1C1,点A、B、C的对应点分别为A1、B1、C1,则点A1的坐标为(2,1).【分析】正确画出图形解决问题即可.【解答】解:观察图象可知:点A1的坐标为(2,1).故答案为(2,1).【点评】本题考查坐标与图形变化的性质,解题的关键是理解题意,学会正确画出图形解决问题.15.(4分)如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4,E 为AD的中点,则OE的长为.【分析】直接利用菱形的面积和性质得出AO,DO的长,再利用勾股定理得出菱形的边长,进而利用直角三角形中线的性质得出答案.【解答】解:∵菱形ABCD的对角线AC、BD相交于点O,且AC=4,菱形ABCD的面积为4,∴AO=2,DO=,∠AOD=90°,∴AD=3,∵E为AD的中点,∴OE的长为:AD=.故答案为:【点评】此题主要考查了菱形的性质,正确得出AD的长是解题关键.16.(4分)如图所示,在平面直角坐标系中,点A(,0)、B(0,),以AB为边作正方形ABCB1,延长CB1交x轴于点A1,以A1B1为边作正方形A1B1C1B2,延长C1B2交x轴于点A2,以A2B2为边作正方形A2B2C2B3,延长C2B3交x轴于点A3,以A3B3为边作正方形A3B3C3B4,…,依此规律,则△A6B7A7的周长为27(3+).【分析】利用相似三角形的性质,探究规律,利用规律解决问题即可.【解答】解:由题意:A1B1∥A2B2,∴∠AA1B1=∠A1A2B2,∵∠AB1A1=∠A1B2A2=90°,∴△AB1C1∽△A1B2C2,∴=,∵△AB1A1的周长为3+,△A1B2A2的周长为(3+)•,△A2B3A3的周长为(3+)•()2,…,△AB n+1A n+1的周长为(3+)•()n,n∴△A6B7A7的周长为(3+)•()6=27(3+).故答案为:27(3+).【点评】本题考查相似三角形的判定和性质,规律型问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(6分)计算:|﹣3|﹣(2019+sin45°)0+﹣1【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:原式=3﹣1﹣3=﹣1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:,其中x=.【分析】根据分式的加法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:==2x,当x=时,原式=2(﹣1)=2﹣2.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(6分)如图,在Rt△ABC中,∠C=90°,AB=8.(1)作△ABC的内角∠CAB的平分线,与边BC交于点D(用尺规作图,保留作图痕迹,不要求写作法);(2)若AD=BD,求CD的长度.【分析】(1)利用基本作图作∠BAC的平分线;(2)利用等腰三角形的性质和三角形内角和计算出∠CAD=∠B=30°,在Rt△ACB中利用含30度的直角三角形三边的关系得到AC=4,然后在Rt△ACD中求CD.【解答】解:(1)如图,AD为所作;(2)∵AD=BD,∴∠DAB=∠B,∵AD平分∠BAC,∴∠DAB=∠CAD,∴∠DAB=∠CAD=∠B,而∠DAB+∠CAD+∠B=90°,∴∠CAD=∠B=30°,在Rt△ACB中,AC=AB=4,在Rt△ACD中,tan∠CAD=,∴CD=4tan30°=4×=.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了角平分线的性质.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(7分)某旅游团于早上8:00从某旅行社出发,乘大巴车前往“珠海长隆”旅游,“珠海长隆”离该旅行社有100千米,导游张某因有事情,于8:30从该旅行社自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比该旅游团提前20分钟到达“珠海长隆”.(1)大巴与小车的平均速度各是多少?(2)导游张某追上大巴的地点到“珠海长隆”的路程有多远?【分析】(1)设大巴的平均速度为x千米/时,则小车的平均速度为1.5x千米/时,根据题意列出方程,求出方程的解得到结果;(2)设导游张某追上大巴的地点到“珠海长隆”的路程为y千米,根据题意列出方程,求出方程的解得到结果.【解答】解:(1)设大巴的平均速度为x千米/时,则小车的平均速度为1.5x千米/时,根据题意得:=++,解得:x=40,经检验x=40是分式方程的解,且1.5×40=60,则大巴与小车的平均速度各是40千米/时,60千米/时;(2)设导游张某追上大巴的地点到“珠海长隆”的路程为y千米,由题意得:=+,解得:y=40,经检验y=40是分式方程的解,且符合题意,则导游张某追上大巴的地点到“珠海长隆”的路程有40千米.【点评】此题考查了分式方程的应用,弄清题意是解本题的关键.21.(7分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,点F在DE的延长线上,且AF=CE=AE.(1)求证:四边形ACEF是平行四边形;(2)当∠B=30°时,试猜想四边形ACEF是什么图形,并说明理由.【分析】(1)易知DE是△ABC的中位线,则FE∥AC,BE=EA=CE=AF;因此△AFE、△AEC都是等腰三角形,可得∠F=∠5=∠1=∠2,即∠FAE=∠AEC,由此可证得AF∥EC,即可得出结论;(2)证出AC=CE,即可得出结论.【解答】(1)证明:四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠FAE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)解:当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形.【点评】本题考查了平行四边形的判定,菱形的判定,垂直平分线的性质,本题中熟练掌握含30°的直角三角形的性质是解题的关键.22.(7分)为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:请根据统计图提供的信息回答以下问题:(1)这一调查属于抽样调查(选填“抽样调查”或“普查”),抽取的学生数为300 名;(2)估计喜欢收听易中天《品三国》的学生约占全校学生的35.3 %(精确到小数点后一位);(3)已知该校女学生共有1800名,则该校喜欢收听刘心武评《红楼梦》的女学生大约有多少名?【分析】(1)男女生所有人数之和;(2)听品三国的学生生人数除以总人数.(3)求出抽取的样本中收听品红楼梦的女学生所占的比例,乘1800即可求解;【解答】解:(1)这一调查属于抽样调查,抽查的人数为:20+10+30+15+30+38+64+42+6+45=300人;故答案为:抽样调查,300;(2)(64+42)÷300≈35.3%;故答案为:35.3;(3)×1800=540人该校喜欢收听刘心武评《红楼梦》的女学生大约有540名.【点评】本题考查条形统计图、用样本估计总体以及从统计表中获取信息的能力,及统计中用样本估计总体的思想.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(9分)如图,在平面直角坐标系中,一次函数y=ax+b的图象与反比例函数y=(k 为常数,k≠0)的图象交于二、四象限内的A、B两点,与y轴交于C点.点A的坐标为(m,3),点B与点A关于y=x成轴对称,tan∠AOC=.(1)求k的值;(2)直接写出点B的坐标,并求直线AB的解析式;(3)P是y轴上一点,且S△PBC=2S△AOB,求点P的坐标.【分析】(1)作AD⊥y轴于D,根据正切函数,可得AD的长,得到A的坐标,根据待定系数法,可得k的值;(2)根据题意即可求得B点的坐标,然后根据待定系数法即可求得直线AB的解析式;(3)先根据S△AOB=S△AOC+S△BOC求得△AOB的面积为4,然后设P(0,t),得出S△PBC=|t ﹣2|×3=|t﹣2|,由S△PBC=2S△AOB列出关于t的方程,解得即可.【解答】解:(1)作AD⊥y轴于D,∵点A的坐标为(m,3),∴OD=3,∵tan∠AOC=.∴=,即=,∴AD=1,∴A(﹣1,3),∵在反比例函数y=(k为常数,k≠0)的图象上,∴k=﹣1×3=﹣3;(2)∵点B与点A关于y=x成轴对称,∴B(3,﹣1),∵A、B在一次函数y=ax+b的图象上,∴,解得,∴直线AB的解析式为y=﹣x+2;(3)连接OC,由直线AB为y=﹣x+2可知,C(0,2),∵S△AOB=S△AOC+S△BOC=×2×1+×2×3=4,∵P是y轴上一点,∴设P(0,t),∴S△PBC=|t﹣2|×3=|t﹣2|,∵S△PBC=2S△AOB,∴|t﹣2|=2×4,∴t=或t=﹣,∴P点的坐标为(0,)或(0,﹣).【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积,利用待定系数法是解题关键.24.(9分)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AO交BC于点O,以O为圆心,OC长为半径作⊙O,⊙O交AO所在的直线于D、E两点(点D在BC左侧).(1)求证:AB是⊙O的切线;(2)连接CD,若AC=AD,求tan∠D的值;(3)在(2)的条件下,若⊙O的半径为5,求AB的长.【分析】(1)过点O作OF⊥AB,由角平分线到性质可得OC=OF,即可证AB是⊙O的切线;(2)通过证明△ACE∽△ADC,可得==,即可求tan∠D的值;(3)由相似三角形的性质可得,即可求AD=18,AC=12=AF,通过证明△OBF ∽△ABC,可得,可得关于OB,BF的方程组,即可求BF的长,即可求AB 的长.【解答】证明:(1)如图,过点O作OF⊥AB,∵AO平分∠BAC,OF⊥AB,∠ACB=90°∴OC=OF,∴OF为⊙O半径,且OF⊥AB∴AB是⊙O切线.(2)连接CE∵DE是直径∴∠DCE=90°∵∠ACB=90°∴∠DCE=∠ACB∴∠DCO=∠ACE∵OC=OD∴∠D=∠DCO∴∠ACE=∠D,且∠A=∠A∴△ACE∽△ADC∴==∴tan∠D=(3)∵△ACE∽△ADC∴∴AC2=AD(AD﹣10),且AC=AD∴AD=18∴AC=12∵AO=AO,OC=OF∴Rt△AOF≌Rt△AOC(HL)∴AF=AC=12∵∠B=∠B,∠OFB=∠ACB=90°∴△OBF∽△ABC∴即∴∴BF=∴AB=FA+BF=12+【点评】本题是圆的综合题,考查了圆的有关知识,相似三角形的判定和性质,全等三角形的判定和性质,利用方程的思想求BF的长度是本题的关键.25.(9分)如图,在矩形ABCD中,CD=3cm,BC=4cm,连接BD,并过点C作CN⊥BD,垂足为N,直线l垂直BC,分别交BD、BC于点P、Q.直线l从AB出发,以每秒1cm的速度沿BC方向匀速运动到CD为止;点M沿线段DA以每秒1cm的速度由点D向点A匀速运动,到点A为止,直线1与点M同时出发,设运动时间为t秒(t>0).(1)线段CN=;(2)连接PM和QN,当四边形MPQN为平行四边形时,求t的值;(3)在整个运动过程中,当t为何值时△PMN的面积取得最大值,最大值是多少?【分析】(1)由矩形的性质和勾股定理可求BD的长,由三角形的面积公式可求CN的长;(2)由勾股定理可求DN的长,通过证明△DMN∽△DAB,可得,可得DM的值,即可求t的值;(3)分两种情况讨论,利用三角形面积公式列出△PMN的面积与t的关系式,可求△PMN 的面积的最大值.【解答】解:(1)∵四边形ABCD是矩形∴BC=AD=4cm,∠BCD=90°=∠A,∴BD==5cm,∵S△BCD=BC×CD=×BD×CN∴CN=故答案为:(2)在Rt△CDN中,DN==∵四边形MPQN为平行四边形时∴PQ∥MN,且PQ⊥BC,AD∥BC∴MN⊥AD∴MN∥AB∴△DMN∽△DAB∴即∴DM=cm∴t=s(3)∵BD=5,DN=∴BN=如图,过点M作MH⊥BD于点H,∵sin∠MDH=sin∠BDA=∴∴MH=t当0<t<∵BQ=t,∴BP=t,∴PN=BD﹣BP﹣DN=5﹣﹣t=﹣t∴S△PMN=×PN×MH=×t×(﹣t)=﹣t2+t∴当t=s时,S△PMN有最大值,且最大值为,当t=s时,点P与点N重合,点P,点N,点M不构成三角形;当<t≤4时,如图,∴PN=BP﹣BN=t﹣∴S△PMN=×PN×MH=×t×(t﹣)=t2﹣t当<t≤4时,S△PMN随t的增大而增大,∴当t=4时,S△PMN最大值为,∵>∴综上所述:t=4时,△PMN的面积取得最大值,最大值为.【点评】本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,利用分类讨论思想解决问题是本题关键.中学数学一模模拟试卷一、选择题(本大题共12小题,共48.0分)1.2的相反数是()A. B. C. D. 22.人数相同的八年级甲、乙两班学生在同一次数学单元测试,班级平均分和方差如下:甲=乙=80,s甲2=240,s乙2=180,则成绩较为稳定的班级是()A. 甲班B. 乙班C. 两班成绩一样稳定D. 无法确定3.如图,DE是△ABC的中位线,则△ADE与△ABC的面积之比是()A. 1:1B. 1:2C. 1:3D. 1:44.关于方程x2+2x-4=0的根的情况,下列结论错误的是()A. 有两个不相等的实数根B. 两实数根的和为C. 两实数根的差为D. 两实数根的积为5.函数y=中自变量x的取值范围是()A. B. C. D.6.下列计算正确的是()A. B. C. D.7.在下列图形中,既是中心对称图形又是轴对称图形的是()A. 等腰三角形B. 圆C. 梯形D. 平行四边形8.如图,函数y1=-2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式-2x>ax+3的解集是()A.B.C.D.9.若正六边形外接圆的半径为4,则它的边长为()A. 2B.C. 4D.10.小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修后,因怕耽误上课,他比修车前加快了骑车速度继续匀速行驶,正面是行驶路程S(米)关于时间t(分)的函数图象,那么符合这个同学行驶情况的图象大致是()A. B.C. D.11.已知方程x2+(2k+1)x+k2-2=0的两实根的平方和等于11,k的取值是()A. 或1B.C. 1D. 312.某超市(商场)失窃,大量的商品在夜间被罪犯用汽车运走.三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在甲、乙、丙三人之外;(2)丙作案时总得有甲作从犯;(3)乙不会开车.在此案中,能肯定的作案对象是()A. 嫌疑犯乙B. 嫌疑犯丙C. 嫌疑犯甲D. 嫌疑犯甲和丙二、填空题(本大题共6小题,共24.0分)13.在0,3,-,这四个数中,最大的数是______.14.分解因式:-4xy2+x=______.15.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西______度.16.平移抛物线y=x2+2x-8,使它经过原点,写出平移后抛物线的一个解析式______.17.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为______m.18.已知|a+1|=-(b-2019)2,则a b=______.三、计算题(本大题共1小题,共8.0分)19.解方程:四、解答题(本大题共7小题,共70.0分)20.某中学部分同学参加全国初中数学竞赛,取得了优异的成绩,指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频率分布直方图”(如图).请回答:(1)该中学参加本次数学竞赛的有多少名同学?(2)如果成绩在90分以上(含90分)的同学获奖,那么该中学参赛同学的获奖率是多少?(3)这次竞赛成绩的中位数落在哪个分数段内?(4)图中还提供了其它信息,例如该中学没有获得满分的同学等等,请再写出两条信息.21.有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.22.已知正比例函数y=kx与反比例函数y=的图象都过A(m,1)点,求出正比例函数解析式及另一个交点的坐标.23.如图,AB是⊙O的直径,弦BC=OB,点D是上一动点,点E是CD中点,连接BD分别交OC,OE于点F,G.(1)求∠DGE的度数;(2)若=,求的值;(3)记△CFB,△DGO的面积分别为S1,S2,若=k,求的值.(用含k的式子表示)24.超市里,某商户先后两次购进若干千克的黄瓜,第一次用了300元,第二次用了900元,但第二次的进货单价比第次的要高1.5元,而所购的黄瓜数量是第一次的2倍.(1)问该商户两次一共购进了多少千克黄瓜?(2)当商户按每千克6元的价格卖掉了时,商户想尽快卖掉这些黄瓜,于是商户决定将剩余的黄瓜打折销售,请你帮忙算算,剩余的黄瓜至少打几折才能使两次所进的黄瓜。
2019-2020深圳市数学中考一模试题(附答案)精选全文完整版
精选全文完整版2019-2020深圳市数学中考一模试题(附答案)一、选择题1.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( ) A .154B .14C .1515D .417172.函数31x y x +=-中自变量x 的取值范围是( ) A .x ≥-3B .x ≥-3且1x ≠C .1x ≠D .3x ≠-且1x ≠3.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个4.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .45.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.56.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .547.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,如果使草坪部分的总面积为112m 2,设小路的宽为xm ,那么x 满足的方程是( )A .2x 2-25x+16=0B .x 2-25x+32=0C .x 2-17x+16=0D .x 2-17x-16=08.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .9.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tan tan αβB .sin sin βαC .sin sin αβD .cos cos βα10.根据以下程序,当输入x =2时,输出结果为( )A .﹣1B .﹣4C .1D .1111.下列计算正确的是( ) A .()3473=a ba b B .()232482--=--b a bab bC .32242⋅+⋅=a a a a aD .22(5)25-=-a a12.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .36二、填空题13.如图,∠MON=30°,点A 1,A 2,A 3,…在射线ON 上,点B 1,B 2,B 3,…在射线OM 上,△A 1B 1A 2,△A 2B 2A 3,△A 3B 3A 4…均为等边三角形.若OA 1=1,则△A n B n A n+1的边长为______.14.如图,添加一个条件: ,使△ADE ∽△ACB ,(写出一个即可)15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y =kx的图象上,则k 的值为________.16.已知62x =+,那么222x x -的值是_____.17.若一个数的平方等于5,则这个数等于_____. 18.使分式的值为0,这时x=_____.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是 .20.二元一次方程组627x y x y +=⎧⎨+=⎩的解为_____.三、解答题21.计算:103212sin45(2π)-+--+-.22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 23.某种蔬菜的销售单价y 1与销售月份x 之间的关系如图1所示,成本y 2与销售月份x 之间的关系如图2所示(图1的图象是线段,图2的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣成本)(2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.(3)已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?24.小慧和小聪沿图①中的景区公路游览.小慧乘坐车速为30 km/h 的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20 km/h ,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图②中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:(1)小聪上午几点钟从飞瀑出发?(2)试求线段AB ,GH 的交点B 的坐标,并说明它的实际意义;(3)如果小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他几点钟遇见小慧?25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C逆时针方向旋转60°得到BCE∆,连接DE.(1)如图1,求证:CDE∆是等边三角形;(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC2241-15,则cos B=BCAB=154,故选A2.B解析:B【解析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.3x+≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.3.C解析:C【解析】试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断. 解:图(1)有一条对称轴,是轴对称图形,符合题意;图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意; 图(3)有二条对称轴,是轴对称图形,符合题意; 图(3)有五条对称轴,是轴对称图形,符合题意; 图(3)有一条对称轴,是轴对称图形,符合题意. 故轴对称图形有4个. 故选C .考点:轴对称图形.4.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.5.B解析:B 【解析】 【分析】 【详解】解:∵∠ACB =90°,∠ABC =60°, ∴∠A =30°, ∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD , ∴BD =AD =6,∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B .6.B解析:B 【解析】 【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可. 【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置, ∴AE=AB ,∠E=∠B=90°, 又∵四边形ABCD 为矩形, ∴AB=CD , ∴AE=DC , 而∠AFE=∠DFC , ∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ), ∴EF=DF ;∵四边形ABCD 为矩形, ∴AD=BC=6,CD=AB=4, ∵Rt △AEF ≌Rt △CDF , ∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B . 【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理.7.C解析:C解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选C.点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关键.8.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.9.B解析:B【解析】【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【详解】在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=AC sinβ,∴AB:AD=ACsinα:ACsinβ=sinsinβα,故选B.【点睛】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题.10.D解析:D【解析】【分析】根据流程图所示顺序,逐框分析代入求值即可.【详解】当x=2时,x2﹣5=22﹣5=﹣1,结果不大于1,代入x2﹣5=(﹣1)2﹣5=﹣4,结果不大于1,代入x2﹣5=(﹣4)2﹣5=11,故选D.【点睛】本题考查了代数式求值,正确代入求值是解题的关键.11.C【解析】 【分析】根据幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式对各选项逐一计算即可得答案. 【详解】A.43123()a b a b =,故该选项计算错误,B.()232482b a bab b --=-+,故该选项计算错误,C.32242⋅+⋅=a a a a a ,故该选项计算正确,D.22(5)1025a a a -=-+,故该选项计算错误, 故选B. 【点睛】本题考查幂的乘方、单项式乘以单项式、合并同类项的运算法则及完全平方公式,熟练掌握运算法则是解题关键.12.C解析:C 【解析】A 、6不能化简;B 、12=23,故错误;C 、18=32,故正确;D 、36=6,故错误; 故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.2n-1【解析】【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3以及A2B2=2B1A2得出A3B3=4B1A2=4A4B4=8B1A2=8A5B5=16B1A2…进而得解析:2n-1 【解析】 【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案. 【详解】∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:△A n B n A n+1的边长为 2n-1.故答案是:2n-1.【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.14.∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;解析:∠ADE=∠ACB(答案不唯一)【解析】【分析】【详解】相似三角形的判定有三种方法:①三边法:三组对应边的比相等的两个三角形相似;②两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;③两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件:由题意得,∠A=∠A(公共角),则添加:∠ADE=∠ACB或∠AED=∠ABC,利用两角法可判定△ADE∽△ACB;添加:AD AEAC AB,利用两边及其夹角法可判定△ADE∽△ACB.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确 解析:4【解析】【分析】将所给等式变形为x =【详解】∵x =,∴x -=∴(22x =,∴226x -+=,∴24x -=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.17.【解析】【分析】根据平方根的定义即可求解【详解】若一个数的平方等于5则这个数等于:故答案为:【点睛】此题主要考查平方根的定义解题的关键是熟知平方根的性质解析:【解析】【分析】根据平方根的定义即可求解.若一个数的平方等于5,则这个数等于:5±.故答案为:5±.【点睛】此题主要考查平方根的定义,解题的关键是熟知平方根的性质.18.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.【解析】【分析】由加减消元法或代入消元法都可求解【详解】②﹣①得③将③代入①得∴故答案为:【点睛】本题考查的是二元一次方程组的基本解法本题属于基础题比较简单解析:15 xy=⎧⎨=⎩【解析】由加减消元法或代入消元法都可求解.【详解】627x y x y +=⎧⎨+=⎩①②, ②﹣①得1x =③将③代入①得5y =∴15x y =⎧⎨=⎩故答案为:15x y =⎧⎨=⎩【点睛】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.三、解答题21.13【解析】【分析】根据负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质分别化简各项后,再合并即可解答.【详解】原式11213=+-=111313=. 【点睛】本题主要考查了实数运算,利用负指数幂的性质、绝对值的性质、特殊角的三角函数值及零指数幂的性质正确化简各数是解题关键.22.49. 【解析】【分析】 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况, ∴两次两次抽取的卡片上数字之和是奇数的概率为49. 【点睛】本题考查列表法与树状图法.23.(1)6月份出售这种蔬菜每千克的收益是2元.(2)5月份出售这种蔬菜,每千克的收益最大.(3)4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】分析:(1)找出当x=6时,y 1、y 2的值,二者作差即可得出结论;(2)观察图象找出点的坐标,利用待定系数法即可求出y 1、y 2关于x 的函数关系式,二者作差后利用二次函数的性质即可解决最值问题;(3)求出当x=4时,y 1﹣y 2的值,设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据总利润=每千克利润×销售数量,即可得出关于t 的一元一次方程,解之即可得出结论.详解:(1)当x=6时,y 1=3,y 2=1,∵y 1﹣y 2=3﹣1=2,∴6月份出售这种蔬菜每千克的收益是2元.(2)设y 1=mx+n ,y 2=a (x ﹣6)2+1.将(3,5)、(6,3)代入y 1=mx+n , 3563m n m n +=⎧⎨+=⎩,解得:237m n ⎧=-⎪⎨⎪=⎩, ∴y 1=﹣23x+7; 将(3,4)代入y 2=a (x ﹣6)2+1,4=a (3﹣6)2+1,解得:a=13, ∴y 2=13(x ﹣6)2+1=13x 2﹣4x+13. ∴y 1﹣y 2=﹣23x+7﹣(13x 2﹣4x+13)=﹣13x 2+103x ﹣6=﹣13(x ﹣5)2+73. ∵﹣13<0,∴当x=5时,y 1﹣y 2取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大. (3)当t=4时,y 1﹣y 2=﹣13x 2+103x ﹣6=2. 设4月份的销售量为t 万千克,则5月份的销售量为(t+2)万千克,根据题意得:2t+73(t+2)=22, 解得:t=4,∴t+2=6.答:4月份的销售量为4万千克,5月份的销售量为6万千克.点睛:本题考查了待定系数法求一次(二次)函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:(1)观察函数图象,找出当x=6时y 1﹣y 2的值;(2)根据点的坐标,利用待定系数法求出y 1、y 2关于x 的函数关系式;(3)找准等量关系,正确列出一元一次方程.24.(1)小聪上午7:30从飞瀑出发;(2)点B 的实际意义是当小慧出发1.5 h 时,小慧与小聪相遇,且离宾馆的路程为30 km.;(3)小聪到达宾馆后,立即以30 km/h 的速度按原路返回,那么返回途中他11:00遇见小慧.【解析】【分析】(1)由时间=路程÷速度,可得小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时),从10点往前推2.5小时,即可解答;(2)先求GH 的解析式,当s=30时,求出t 的值,即可确定点B 的坐标;(3)根据50÷30=53(小时)=1小时40分钟,确定当小慧在D 点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x 小时后两人相遇,根据题意得:30x+30(x ﹣)=50,解得:x=1,10+1=11点,即可解答.【详解】(1)小聪骑车从飞瀑出发到宾馆所用时间为:50÷20=2.5(小时), ∵上午10:00小聪到达宾馆,∴小聪上午7点30分从飞瀑出发.(2)3﹣2.5=0.5,∴点G 的坐标为(0.5,50),设GH 的解析式为s kt b =+,把G (0.5,50),H (3,0)代入得;150{230k b k b +=+=,解得:20{60k b =-=, ∴s=﹣20t+60,当s=30时,t=1.5,∴B点的坐标为(1.5,30),点B的实际意义是当小慧出发1.5小时时,小慧与小聪相遇,且离宾馆的路程为30km;(3)50÷30=53(小时)=1小时40分钟,12﹣53=1103,∴当小慧在D点时,对应的时间点是10:20,而小聪到达宾馆返回的时间是10:00,设小聪返回x小时后两人相遇,根据题意得:30x+30(x﹣13)=50,解得:x=1,10+1=11=11点,∴小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他11点遇见小慧.25.(1)详见解析;(2)存在,;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC是等边三角形可得∠DCB=60°,CD=CE,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE是等边三角形,由此可得DE=CD,因此当CD⊥AB时,CD最短,则DE最短,结合△ABC是等边三角形,AC=4即可求得此时DE=CD=(3)由题意需分0≤t<6,6<t<10和t>10三种情况讨论,①当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,由此可知:此时若△DBE是直角三角形,则∠BED=90°;②当6<t<10s时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE 是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴==∴cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020学年下学期深圳中学九年级入学考试
数学模拟试卷(4月)
(考试时间:90分;满分:100分)
班级:姓名:考号:成绩:
一.选择题(共12小题,每小题3分,共36分)
1.一个数的相反数是﹣2020,则这个数是()
A.2020B.﹣2020C.D.
2.2020年4月8日华为春季新品线上发布会上,华为P40系列是5G国产旗舰手机,它采用的麒麟990 。
5G芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()
A.1.03×109B.10.3×109C.1.03×1010D.1.03×1011 3.如图,图中所示的几何体为一桶快餐面,其俯视图正确的是()
A.B.C.D.
4.如图,四个图标分别是剑桥大学、北京大学、浙江大学和北京理工大学的校徽的重要组成部分,其中是轴对称图形但不是中心对称图形的是()
A.B.
C.D.
1/ 25。