人教版数学九年级下《第26章反比例函数》单元检测题含答案
人教版初三数学9年级下册 第26章(反比例函数)单元测试卷1(含答案)
第1页,共5页人教版九年级数学下册第 26章反比例函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.如果函数y =(k +4)x k 2−17是反比例函数,那么( )A. k =4B. k =−4C. k =±4D. k ≠42.如果反比例函数y =a−2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是()A. a <0 B. a >0C. a <2D. a >23.在下列反比例函数中,其图象经过点(3,4)的是( )A. y =−12xB. y =12xC. y =7xD. y =−7x4.如图,反比例函数y =−6x 的图象过点A ,则矩形ABOC 的面积为等于( )A. 3B. 1.5C. 6D. −65.一次函数y =kx−k 与反比例函数y =kx (k ≠0)在同一个坐标系中的图象可能是( )A. B.C. D.6.若点A(2,y 1),B(3,y 2)是反比例函数y=−6x 图象上的两点,则y 1与y 2的大小关系是( ).A. y1<y2B. y1>y2C. y1=y2D. 3y1=2y27.若点A(x1,−6),B(x2,−2),C(x3,2)均在反比例函数y=k2+1x的图象上,则x1,x2,x3的大小关系正确的是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A. 4B. −4C. 2D. ±29.点A(−1,1)是反比例函数y=m+1x的图象上一点,则m的值为( )A. −1B. −2C. 0D. 110.如图,直线y=−3x+3与x轴交于点A,与y轴交于点B,以AB为边在直线AB的左侧作正方形ABDC,反比例函数y=kx的图象经过点D,则k的值是( )A. −3B. −4C. −5D. −6二、填空题(本大题共5小题,共15分)11.反比例函数y=6x的图象经过点(m,−3),则m=________.12.反比例函数y=1−2mx的图象有一支位于第一象限,则常数m满足的条件是__.13.反比例函数y=2m−5x的图象的两个分支分别在第二、四象限,则m的取值范围为______,在每个象限内y随x的增大而______.14.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.15.如图,一次函数y=−x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D 两点,连结OA,OB,过A作AE⊥x轴于点E,交OB 于点F,设点A的横坐标为m.(1)b=______ (用含m的代数式表示);第3页,共5页(2)若S △OAF +S 四边形EFBC =4,则m 的值是______ .三、解答题(本大题共6小题,共55分)16.在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为y ,依次确定有理数xy .(1)请用画树状图或列表的方法,写出xy 的所有可能的有理数;(2)求有理数xy 为整数的概率.17.已知平面直角坐标系xOy 中,O 是坐标原点,点A(2,5)在反比例函数y =kx 的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.18.如图,已知反比例函数y =6x 的图象与一次函数y =kx +b 的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;≥kx+b的解集;(2)直接写出不等式6x在第一象限的图像,如图所示,过点A(1,0)作x轴的垂线,交反比19.反比例函数y=kx的图像于点M,△AOM的面积为3.例函数y=kx(1)求反比例函数的解析式.(2)设点B的坐标为(t,0),其中t>1,若以AB为一边的正方形ABCD有一个顶点的图像上,求t的值.在反比例函数y=kx20.阅读材料:公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂=动力×动力臂.第5页,共5页问题解决:若工人师傅欲用提棍动一块大石头,已知阻力和阻力臂不变,分别为1500N 和0.4m .(1)动力F(N)与动力臂l(m)有怎样的函数关系⋅当动力臂为1.5m 时,提动石头需要多大的力⋅(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少⋅数学思考(3)请用数学知识解释:我们使用攉棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版
九年级数学下册《第二十六章反比例函数》单元测试卷附答案解析-人教版班级:___________姓名:___________考号:____________一、单选题1.如果反比例函数的图象经过点P (﹣3,﹣1),那么这个反比例函数的表达式为( ) A .y =3xB .y =﹣3xC .y =13xD .y =﹣13x2.若反比例函数2y x=的图像经过(),n n ,则n 的值是( )A .2±B .CD .3.如图,点A 在x 轴正半轴上,B (5,4).四边形AOCB 为平行四边形,反比例函数y =8x的图象经过点C和AB 边的中点D ,则点D 的坐标为( )A .(2,4)B .(4,2)C .(83,3)D .(3,83)4.对于反比例函数4y x=,下列说法错误的是( ) A .它的图象与坐标轴永远不相交 B .它的图象绕原点旋转180°能和本身重合 C .它的图象关于直线y x =±对称D .它的图象与直线y x =-有两个交点5.如图是同一直角坐标系中函数12y x =和22y x=的图象.观察图象可得不等式22x x >的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >6.如图,在平面直角坐标系中直线y mx =(0m ≠,m 为常数)与双曲线ky x=(0k ≠,k 为常数)交于点A ,B ,若()1,A a -和(),3B b -,过点A 作AM x ⊥轴,垂足为M ,连接BM ,则ABM ∆的面积是( )A .2B .1m -C .3D .67.如图,在平面直角坐标系中函数()0ky x x=>的图象经过点P 、Q 、R ,分别过这个三个点作x 轴、y 轴的平行线,阴影部分图形的面积从左到右依次为若OE ED DC ==,1310S S +=则k 的值为( )A .6B .12C .18D .24二、填空题8.平面直角坐标系xOy 中已知点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x =≠图象上的三点.若2ABC S =△,则k 的值为___________.9.如图,△AOB 中AO =AB ,OB 在x 轴上C ,D 分别为AB ,OB 的中点,连接CD ,E 为CD 上任意一点,连接AE ,OE ,反比例函数y k x=(x >0)的图象经过点A .若△AOE 的面积为2,则k 的值是___.10.在平面直角坐标系xOy 中过一点分别作坐标轴的垂线,若垂线与坐标轴围成矩形的周长的值与面积的值相等,则这个点叫做“和谐点”.已知直线y =﹣2x +k 1与y 轴交于点A ,与反比例函数y 2k x=的图象交于点P (52-,m ),且点P 是“和谐点”,则△OAP 的面积为___.11.不透明的袋子里装有除标号外完全一样的四个小球,小球上分别标有-1,2,3,4四个数,从袋子中随机抽取一个小球,记标号为k ,不放回,将袋子摇匀,再随机抽取一个小球,记标号为b ,两次抽取完毕后,则直线y kx =与反比例函数by x=的图象经过的象限相同的概率为______. 12.如图,点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴,作AC x ⊥轴于点C ,交OB 于点D .若2OD BD =,则k 的值是______.13.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数y =﹣6x(x <0)和y=8x(x >0)的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为__.14.一定质量的二氧化碳,其密度()3kg /m ρ=是体积()3m V 的反比例函数,请你根据图中的已知条件,写出反比例函数的关系式___________,当33m V =时,则ρ=_______3kg /m .三、解答题15.如图1,反比例函数()0my x x=>的图象过点()4,3M .(1)求反比例函数my x=的表达式,判断点()2,8在不在该函数图象上,并说明理由; (2)反比例函数()16my x x=≤≤的图象向左平移2个单位长度,平移过程中图象所扫过的面积是______; (3)如图2,直线:8l y x =-+与x 轴、y 轴分别交于点A 、点B ,点P 是直线l 下方反比例函数my x=图象上一个动点,过点P 分别作PC x ∥轴交直线l 于点C ,作PD y ∥轴交直线l 于点D ,请判断AC BD ⋅的值是否发生变化,并说明理由,如果不变化,求出这个值. 16.阅读下列材料定义运算min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a =.例如:min 1,31-=-与min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4--=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,则()()2min,213kx b x x x x-+=+--.求这两个函数的解析式. 17.在如图平面直角坐标系中矩形OABC 的顶点B 的坐标为(4,2),OA 、OC 分别落在x 轴和y 轴上,OB 是矩形的对角线.将△OAB 绕点O 逆时针旋转,使点B 落在y 轴上,得到△ODE ,OD 与CB 相交于点F ,反比例函数y =kx(x >0)的图象经过点F ,交AB 于点G .(1)求k 的值和点G 的坐标;(2)连接FG ,则图中是否存在与△BFG 相似的三角形?若存在,请把它们一一找出来,并选其中一种进行证明;若不存在,请说明理由;(3)在线段OA 上存在这样的点P ,使得△PFG 是等腰三角形.请直接写出点P 的坐标.18.我们不妨约定:在平面直角坐标系中若某函数图象上至少存在不同的两点关于直线x n =(n 为常数)对称,则把该函数称之为“()X n 函数”.(1)在下列关于x 的函数中是“()X n 函数”的是________(填序号); ①6y x=,②4y x =,③225y x x =-- (2)若关于x 的函数y x h =-(h 为常数)是“()3X 函数”,与my x=(m 为常数,0m >)相交于A (A x ,A y )、B (B x ,B y )两点,A 在B 的左边,5B A x x -=,求m 的值;(3)若关于x 的“()X n 函数”24y ax bx =++(a ,b 为常数)经过点(1-,1),且1n =,当1t x t -≤≤时,则函数的最大值为1y ,最小值为2y ,且1212y y -=,求t 的值. 19.如图,在平面直角坐标系中四边形ABCD 为正方形,已知点A (0,﹣6)、D (﹣3,﹣7),点B 、C 在第三象限内.(1)求点B 的坐标;(2)在y 轴上是否存在一点P ,使ABP 是AB 为腰的等腰三角形?若存在,求点P 的坐标;若不存在,请说明理由.(3)将正方形ABCD 沿y 轴向上平移,若存在某一位置,使在第二象限内点B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上,求该反比例函数的解析式.参考答案与解析1.【答案】A【分析】根据点P 的坐标,利用待定系数法即可得.【详解】解:设这个反比例函数的表达式为(0)ky k x =≠ 由题意,将点(3,1)P --代入得:3(1)3k =-⨯-= 则这个反比例函数的表达式为3y x =故选:A .【点睛】本题考查了求反比例函数的解析式,熟练掌握待定系数法是解题关键. 2.【答案】B【分析】将(),n n 代入解析式中即可求出n 的值. 【详解】解:将(),n n 代入2y x =中得2n n=解得:n =故选B.【点睛】此题考查的是根据点所在的图像求点的坐标,将点的坐标代入解析式求点的坐标是解决此题的关键.3.【答案】B【分析】作CE ⊥OA 于E ,依据反比例函数系数k 的几何意义求得OE ,即可求得C 的坐标,从而求得点A 坐标,再根据中点坐标公式即可求得D 的坐标. 【详解】解:作CE ⊥OA 于E ,如图∵B(5,4),四边形AOCB为平行四边形∴CE=4∵反比例函数y=8x的图象经过点C∴S△COE=12OE•CE=12×8∵CE=4∴OE=2∴C(2,4),OA=BC=5-2=3 ∴A(3,0)∵点D是AB的中点∴点D的坐标为(3+50+422,),即D(4,2)故选:B.【点睛】本题考查了平行四边形的性质,反比例函数系数k的几何意义等,求得点C和点A的坐标是解题的关键.4.【答案】D【分析】当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小,根据反比例函数的性质对四个选项进行逐一分析即可.【详解】解:A.∵反比例函数4yx=中4>0,∴此函数图象在一、三象限,故本选项正确;B.∵反比例函数4yx=的图象双曲线关于原点对称,故本选项正确;C.反比例函数的图象可知,图象关于直线y x=±对称,故本选项正确;D.∵反比例函数4yx=的图象位于第一、三象限,直线y x=-经过第二、四象限,所以直线y x=-与双曲线4yx=无交点,故本选项错误;故选D.【点睛】本题考查了反比例函数的性质,熟知反比例函数的增减性是解答此题的关键. 5.D【分析】根据图象进行分析即可得结果; 【详解】解:∵22x x> ∴12y y >由图象可知,函数12y x=和22y x =分别在一、三象限有一个交点,交点的横坐标分别为11x x ==-, 由图象可以看出当10x -<<或1x >时,则函数12y x=在22y x =上方,即12y y >故选:D .【点睛】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质是解本题的关键. 6.【答案】C【分析】根据直线y mx =与双曲线k y x =都经过点A ,得出1a mk a =-⎧⎪⎨=⎪⎩-,进而得到k m =,再由直线y mx =与双曲线k y x =都经过点B ,得到33k b bm ⎧-=⎪⎨⎪-=⎩,进而得到2b m k =,进而求出b 的值,得到点A 的坐标,即可得到答案.【详解】由题,直线y mx =与双曲线ky x=都经过点A ∴1a m k a =-⎧⎪⎨=⎪⎩- ,得:k m =直线y mx =与双曲线ky x=都经过点B 33bm k b -=⎧⎪∴⎨-=⎪⎩,得:2b m k = 21b ∴=0b >1b ∴=13B ∴-(,)将点B 代入y mx =,得:3m -=3y x ∴=-13A ∴-(,)111313322ABM S ∆∴=⨯⨯+⨯⨯=故选:C【点睛】本题考查一次函数与反比例函数的图像问题,根据两者的交点结合解析式求出点的坐标是解题关键.7.【答案】B【分析】设未知数,表示出点P 、Q 、R 的坐标,进而表示S 1、S 2、S 3,由S 1+S 3=10列方程求解即可. 【详解】解:设OE =ED =DC =a ∵函数ykx =(x >0)的图象经过点P 、Q 、R∴点P (3k a ,3a ),Q (2k a ,2a ),R (ka ,a )∴OF 3k a =,OG 2k a =,OA k a =∴S 1=OF •CD 3k a =⨯a 3k =S 3=AG •OE =(2k k a a -)×a 2k =又∵S 1+S 3=10 ∴32k k +=10 解得k =12 故选:B .【点睛】本题考查反比例函数系数k 的几何意义以及反比例函数图象上点的坐标特征,用坐标表示线段的长是解决问题的关键. 8.【答案】34##0.75 【分析】由点A 、B 、C 的坐标可知260k m =>,m =n ,点B 、C 关于原点对称,求出直线BC 的解析式,不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D ,根据2ABC S =△列式求出2m ,进而可得k 的值. 【详解】解:∵点(,6),(3,2),(3,2)--A m m B m n C m n 是函数(0)ky k x=≠图象上的三点 ∴260k m => 6k mn = ∴m =n∴(3,2)B m m (3,2)C m m -- ∴点B 、C 关于原点对称∴设直线BC 的解析式为()0y kx k =≠ 代入(3,2)B m m 得:23m mk = 解得:23k =∴直线BC 的解析式为23y x =不妨设m >0,如图,过点A 作x 轴的垂线交BC 于D 把x =m 代入23y x =得:23y m =∴D (m ,23m )∴AD =216633m m m -=∴()11633223ABCSm m m =⨯⋅+= ∴218m =∴2136684k m ==⨯=而当m <0时,则同样可得34k =故答案为:34【点睛】本题考查了反比例函数与几何综合,中心对称的性质,待定系数法求函数解析式,熟练掌握反比例函数的图象和性质,学会利用数形结合的数学思想解答是解题的关键.9.【答案】4【分析】根据等腰△AOB,中位线CD得出AD⊥OB,S△AOE=S△AOD=2,应用|k|的几何意义求k.【详解】解:如图:连接AD△AOB中AO=AB,OB在x轴上,C、D分别为AB,OB的中点∴AD⊥OB,AO∥CD∴S△AOE=S△AOD=2∴k=4.故答案为:4.【点睛】本题考查了反比例函数图象、等腰三角形以及中位线的性质、三角形面积,解题的关键是灵活运用等腰三角形的性质.10.【答案】254或754【分析】先根据“和谐点”的定义求出m的值,进而可求出点A的坐标,根据三角形的面积可求出△OAP的面积.【详解】解:∵点P(52-,m)是“和谐点”∴5+2|m|52=|m|,解得m=±10当m=10时,则P(52-,10)把点P的坐标代入一次函数和反比例的解析式得:k1=5,k2=﹣25∴A(0,5)∴S△OAP15255224=⨯⨯=.当m =﹣10时,则P (52-,﹣10)∴k 1=﹣15,k 2=25 ∴A (0,﹣15) ∴S △OAP 12=⨯1557524⨯=. 故答案为:254或754. 【点睛】本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k |,读懂题意,明确和谐点的定义是解题的关键. 11.【答案】12【分析】画树状图,共有12个等可能的结果,直线y kx =与反比例函数by x=的图象经过的象限相同的结果有6个,再由概率公式求解即可. 【详解】解:画树状图如图:∵从袋子中随机抽取一个小球,记标号为k ,不放回后将袋子摇匀,再随机抽取一个小球,记标号为b ,共有12个数组∴直线y kx =与反比例函数by x=的图象经过的象限相同的数组有(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),共有6组∴k ,b 直线y kx =与反比例函数b y x=的图象经过的象限相同的概率为61122=.故答案为:12【点睛】此题考查了用列表法或树状图法求概率及一次函数与反比例函数的性质,熟练掌握利用列表法或树状图列出所有等可能的结果以及一次函数与反比例函数的性质是解题的关键. 12.【答案】9【分析】先求解A 的坐标,再表示B 的坐标,再证明,ABD COD ∽利用相似三角形的性质列方程求解即可.【详解】解: 点()2,A m ,B 分别在双曲线()60y x x =>和()0ky x x=>上,AB x ∥轴 63,,3,23kmB2,3,AAC x ⊥轴2,0,CAB x ∥轴,ABD COD ∽,ABBDOC OD而2OD BD = 213,22k 解得:9,k = 故答案为:9【点睛】本题考查的是反比例函数的性质,相似三角形的判定与性质,掌握“反比例函数的图像与性质”是解本题的关键. 13.【答案】7【分析】连接OA ,OB ,利用同底等高的两三角形面积相等得到三角形AOB 面积等于三角形ACB 面积,再利用反比例函数k 的几何意义求出三角形AOP 面积与三角形BOP 面积,即可得到结果. 【详解】解:如图,连接OA ,OB∵△AOB 与△ACB 同底等高 ∴S △AOB =S △ACB ∵AB ∥x 轴∴AB ⊥y 轴∵A 、B 分别在反比例函数y =﹣6x (x <0)和y =8x (x >0)的图象上∴S △AOP =3,S △BOP =4∴S △ABC =S △AOB =S △AOP +S △BOP =3+4=7. 故答案为:7.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数y =kx的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是12|k |,且保持不变.也考查了三角形的面积. 14.【答案】10V ρ=103【分析】由函数图像信息可得反比例函数过点(5,2),根据待定系数法求解析式;将3V =代入即可求得ρ. 【详解】反比例函数过点(5,2) 设反比例函数解析式为kVρ= 则10k =∴反比例函数解析式为10Vρ=当3V =时,则103ρ= 故答案为:10V ρ=103【点睛】本题考查了反比例函数的应用,待定系数法求反比例函数的解析式,根据解析式求函数值,从图像获取信息是解题的关键.15.【答案】(1)不在,理由见解析 (2)20 (3)不变化,24【分析】对于(1),利用待定系数法求出函数关系式,再代入判断即可;对于(2),设点E 的横坐标和点F 的横坐标,再分别表示出点E ,F ,G ,H 的坐标,进而得出线段的长度,再根据平行四边形面积公式得出答案;对于(3),设点P 的横坐标为t ,分别表示点C ,点D 的坐标,再根据两点之间的距离公式得出AC 和BD 的长,进而得出答案.(1)将点()4,3M 代入m y x =得34m= 12m =∴12y x=;当2x =时,则6y = ∵68≠∴点()2,8不在函数图象上;(2)设点E 的横坐标是1,点F 的横坐标是6,点G ,H 分别对应点E ,F ,如图所示.图形扫过的面积即为平行四边形EFHG 的面积.令12y x=中1x =,则12y = 所以(112)E , -1,12G ()令12y x=中6x =,则2y = 所以(62)F ,,(4,2)H . 因为EG FH ∥,且EM FH = 所以四边形EGHF 为平行四边形所以=()2(122)20E F S EG y y ⋅-=⨯-=. 故答案为:20;(3)不变化,理由如下:因为直线l :8y x =-+与x 轴,y 轴分别交于点A ,点B 所以点A (8,0),B (0,8). 设点P 的横坐标是t 所以12(,)P t t.因为PC x ∥轴交直线l 于点C ,PD y ∥轴交直线l 于点D 所以1212(8,)C tt-+ (,8)D t t -+所以AC =BD =即24AC BD ⋅=⋅=所以AC BD ⋅为定值,为24..【点睛】本题主要考查了反比例函数图象上点的坐标特征,待定系数法求函数关系式,求平行四边形面积等,掌握数形结合思想是解题的关键.16.【答案】(1)①1;②4- (2)12y x=- 223y x =--【分析】(1)根据材料中的定义进行计算,即可求出答案; (2)由函数图像可知当20x -<<时,则2kx bx ,则min ,22k x b x b x-+=-+,结合已知可得()()2213x b x x x -+=+--,即可求出b ,得到一次函数解析式,求出点A 的坐标,再利用待定系数法求出反比例函数解析式. (1)解:根据题意∵min ,a b ,当a b ≥时,则min ,a b b =;当a b <时,则min ,a b a = ∴①()0min 3,21-=;∵4-∴②min 44-=-; 故答案为:①1;②4-;(2)解:由函数图像可知当20x -<<时,则2k x bx∴min,22kx b x b x-+=-+ 又∵()()2min,213kx b x x x x-+=+-- ∴()()2213x b x x x -+=+-- ∴3b =-∴一次函数223y x =-- 当x =-2时21y = ∴A (-2,1) 将A (-2,1)代入1ky x=得212k =-⨯=-∴反比例函数12y x=-.【点睛】本题考查了新定义的运算法则,零次幂,反比例函数与一次函数的综合问题,解题的关键是掌握题意,正确的运用数形结合的思想求解.17.【答案】(1)k =2,点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG ,证明详见解析;(3)点P 的坐标为(40)或(158,00). 【分析】(1)证明△COF ∽△AOB ,则CF OCAB OA=,求得:点F 的坐标为(1,2),即可求解; (2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG .证△OAB ∽△BFG :43AO BF = 24332AB BG ==即可求解.(3)分GF =PF 、PF =PG 、GF =PG 三种情况,分别求解即可. 【详解】解:(1)∵四边形OABC 为矩形,点B 的坐标为(4,2) ∴∠OCB =∠OAB =∠ABC =90°,OC =AB =2,OA =BC =4 ∵△ODE 是△OAB 旋转得到的,即:△ODE ≌△OAB ∴∠COF =∠AOB ,∴△COF ∽△AOB ∴CF OC AB OA =,∴2CF =24,∴CF =1∴点F 的坐标为(1,2) ∵y =kx(x >0)的图象经过点F∴2=1k ,得k =2 ∵点G 在AB 上 ∴点G 的横坐标为4对于y =2x ,当x =4,得y =12∴点G 的坐标为(4,12);(2)△COF ∽△BFG ;△AOB ∽△BFG ;△ODE ∽△BFG ;△CBO ∽△BFG . 下面对△OAB ∽△BFG 进行证明: ∵点G 的坐标为(4,12),∴AG =12 ∵BC =OA =4,CF =1,AB =2∴BF=BC﹣CF=3BG=AB﹣AG=32.∴43AOBF=24332ABBG==∴AO AB BF BG=∵∠OAB=∠FBG=90°∴△OAB∽△FBG.(3)设点P(m,0),而点F(1,2)、点G(4,12)则FG2=9+94=454,PF2=(m﹣1)2+4,PG2=(m﹣4)2+14当GF=PF时,则即454=(m﹣1)2+4,解得:m;当PF=PG时,则同理可得:m=158;当GF=PG时,则同理可得:m=4综上,点P的坐标为(40)或(158,00).【点睛】本题考查的是反比例函数综合运用,涉及到旋转的性质、三角形相似、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.18.【答案】(1)②③( 2)4 (3)t=2或t=1【分析】(1)根据定义分析判断即可;(2)作出图形,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点,由xB﹣xA=5,设CN=x,则MC=5﹣x,则B(3+x,x),A(x﹣2,5﹣x),根据轴对称的性质以及反比例函数的性质可得(3+x)x+(x﹣2)(5﹣x)=0,继而求得x的值,即可求得B的坐标,根据反比例函数的意义即可求得m的值;(3)根据题意以及二次函数的性质,待定系数求二次函数解析式,进而分类讨论,根据121 2y y-=,即可求得t的值.(1)解:根据定义,函数关于直线x n=(n为常数)对称,即该函数图象是轴对称图形①6yx=的图象是中心对称图象,不符合题意;②4y x=,③225y x x=--的图象是轴对称图形,符合题意故答案为:②③(2)∵y=|x-h|是“X(3)”函数∴h=3如图,y=x﹣3与x轴交于C点,与y轴交于D点,作AM⊥x轴交于M点,BN⊥x轴交于N点∴C(3,0),D(0,﹣3)∴∠BCN=∠OCD=45°由对称性可知,∠ACM=∠OCD=45°∴AM=CM,BN=CN∵xB﹣xA=5∴MN=5设CN=x,则MC=5﹣x∴B(3+x,x),A(x﹣2,5﹣x)∴(3+x)x+(x﹣2)(5﹣x)=0∴x=1∴B(4,1)∴m=4;(3)由题意得4112a bba-+=⎧⎪⎨-=⎪⎩解得12 ab=-⎧⎨=⎩∴此“X(n)函数”为y=﹣x2+2x+4①当t<1时x=t时,则y1=﹣t2+2t+4x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=(﹣t2+2t+4)﹣[﹣(t﹣1)2+2(t﹣1)+4]=﹣2t+3=12∴t=54(舍);②当t﹣1≥1,即t≥2时x=t﹣1时,则y1=﹣(t﹣1)2十2(t﹣1)+4x=t时,则y2=﹣t2+2t+4y1-y2=﹣(t﹣1)2+2(t﹣1)+4﹣(﹣t2+2t+4)=2t﹣3=12∴t=74(舍);③当1≤t<32时x=1时,则y1=5x=t﹣1时,则y2=﹣(t﹣1)2十2(t﹣1)+4y1﹣y2=5﹣[﹣(t﹣1)2+2(t﹣1)+4]=t2﹣4t+4=12∴t=2±,又因为1≤t<3 2∴t=2-④32≤t<2时x=1时,则y1=5x=t时,则y2=﹣t2十2t+4y1﹣y2=5﹣(﹣t2+2t+4)=t2﹣4t+4=12∴t=1,又因为32≤t<2∴t=1综上所述:t=2-t=1【点睛】本题考查了新定义,一次函数的性质,反比例函数的性质,二次函数的性质,根据新定义以及轴对称的性质求解是解题的关键.19.【答案】(1)B (-1,-3)(2)存在,(06-,或(06-,或()00,(3)6y x =-【分析】(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,证明ADF BAE ≅得出BE 与OE 的长度便可求得B 点坐标;(2)先求出AB 的值,再根据题意可得分类讨论,分为当AB =AP 时有两种情况和当AB =BP 时有一种情况进行求解即可;(3)先设向上平移了m 表示B '和D 的坐标,再根据B 、D 两点的对应点B '、D 正好落在某反比例函数的图象上得B '和D 点的横、纵坐标的积相等,列出关于m 的方程即可求解.(1)过点B 作BE ⊥y 轴于点E ,过点D 作DF ⊥y 轴于点F ,如下图则90AFD AEB ∠=∠=︒∵点A (0,-6),D (-3,-7)∴DF =3,AF =1∵四边形ABCD 是正方形∴AB =AD 90BAD ∠=︒∴90DAF BAE DAF ADF ∠+∠=∠+∠=︒∴ADF BAE =∠∠∵ADF BAE F EAD BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADF BAE ≅∴DF =AE =3,AF =BE =1∴OE=OA-AE=6-3=3∴B(-1,-3).(2)存在3种情况由(1)得ADF BAE≅且在Rt AFD中AB=AD①当AB=AP时的等腰三角形,如图则AP∵A为(0,-6)∴P点的坐标为(0,);②当AB=AP时,则如下图则AP∵A 为(0,-6)∴P 点的坐标为(0,);③当AB =BP 时,则如下图则BP ,且过B 作BE ⊥AP 于点E∵AB BP BE AP =⊥,∴3PE AE ==∴P 点在原点上则P 为(0,0).综上所述点P 的坐标为(06-,或(06-,或()00,. (3)设向上平移了m 可得B '为(-1,-3+m ),D 为(-3,-7+m ) 反比例函数关系式为k y x=()0k ≠ ∴()()1337k m m =-⨯-+=-⨯-+解得m =9∴k =()13166m -⨯-+=-⨯=- ∴反比例函数解析式为:6y x=- 【点睛】此题是反比例函数与正方形结合的综合体,主要考查了反比例函数的性质、待定系数法、全等三角形的性质和判定和等腰三角形的性质和判定,解决本题的关键是证明全等三角形和分类讨论.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
第26章反比例函数单元测试(含答案)2024-2025学年数学人教版九年级下册
第26章反比例函数一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.如图是反比例函数的图象,它的函数表达式是( ).A. y=5xB. y=2x C. y=−1xD. y=−2x2.对于反比例函数y=−5x,下列说法错误的是( )A. 图象经过点(1,−5)B. 图象位于第二、四象限C. 当x<0时,y随x的增大而减小D. 当x>0时,y随x的增大而增大3.如图,点A在双曲线y=kx上,B在y轴上,且AO=AB.若△ABO的面积为6,则k的值为 ( )A. 6B. −6C. 12D. −124.如图,直线y1=kx+1与反比例函数y2=2x的图象在第一象限交于点P(1,t),与x轴、y轴分别交于A,B 两点,则下列结论错误的是 ( )A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y15.当x<0时,函数y=(k−1)x与y=2−k的y值都随x的增大而增大,则k的取值范围是( ).3xA. k>1B. 1<k<2C. k>2D. k<16.函数y=k和y=−kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是( )xA. B.C. D.7.若点A(−3,y1),B(−1,y2),C(2,y3)都在反比例函数y=k(k<0)的图象上,则y1,y2,y3的大小关系是( )xA. y3<y1<y2B. y2<y1<y3C. y1<y2<y3D. y3<y2<y18.在大棚中栽培新品种的蘑菇,在18℃的条件下生长最快,因此用装有恒温系统的大棚栽培,如图是某天恒温系统从开启升温到保持恒温及关闭,大棚内温度y(℃)随时间x(时)变化的函数图象,其中BC段是函数(k>0)图象的一部分.若该蘑菇适宜生长的温度不低于12℃,则这y=kx天该品种蘑菇适宜生长的时间为( )A. 18小时B. 17.5小时C. 12小时D. 10小时9.设A,B,C,D是反比例函数y=k图象上的任意四点,现有以下结论:x①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是( ).A. ①②B. ①④C. ②③D. ③④10.如图,点P、Q是反比例函数y=k(k≠0)图象上的两点,PA⊥y轴于点A,QN⊥x轴于点N,作PM⊥xx轴于点M,QB⊥y轴于点B,连接PB、QM.记SΔABP=S1,SΔQMN=S2,则S1与S2的大小关系为 ( )A. S1>S2B. S1<S2C. S1=S2D. 无法判断二、填空题:本题共6小题,每小题3分,共18分。
人教版九年级下数学第二十六章反比例函数单元检测卷含答案
第二十六章检测卷(120分钟150分)一、选择题(本大题共1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y 轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA 的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.:16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?第二十六章检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.已知反比例函数y=的图象过点A(1,-2),则k的值为A.1B.2C.-2D.-12.若反比例函数y=经过点(a,2a),a≠0,则此反比例函数的图象在A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限3.对于反比例函数y=-,下列说法不正确的是A.图象分布在第二、四象限B.当x>0时,y随x的增大而增大C.图象经过点(1,-2)D.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y24.已知一个矩形的面积为24 cm2,其长为y cm,宽为x cm,则y与x之间的函数关系的图象大致在A.第一、三象限,且y随x的增大而减小B.第一象限,且y随x的增大而减小C.第二、四象限,且y随x的增大而增大D.第二象限,且y随x的增大而增大5.在下列选项中,是反比例函数关系的为A.在直角三角形中,30°角所对的直角边y与斜边x之间的关系B.在等腰三角形中,顶角y与底角x之间的关系C.圆的面积S与它的直径d之间的关系D.面积为20的菱形,其中一条对角线y与另一条对角线x之间的关系6.若a≠0,则函数y=与y=-ax2+a在同一平面直角坐标系中的大致图象可能是7.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300 N/m2,那么为了不至于下陷,此人需要站立在木板上,则该木板的面积为(木板的重量忽略不计)A.至少2 m2B.至多2 m2C.2 m2D.无法确定8.如图,是反比例函数y1=和一次函数y2=mx+n的图象,若y1<y2,则相应的x的取值范围是A.1<x<6B.x<1C.x<6D.x>19.如图,A是反比例函数y=(x<0)的图象上的一点,过点A作平行四边形ABCD,使点B,C在x轴上,点D在y轴上,则平行四边形ABCD的面积为A.1B.3C.6D.1210.在同一平面直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为A.1B.mC.m2D.二、填空题(本大题共4小题,每小题5分,满分20分)11.若反比例函数y=k-在各自象限内y随x的增大而增大,则k的值为-.12.点A(a,b)是一次函数y=x-1与反比例函数y=的交点,则a2b-ab2=4.13.已知A,B两点分别在反比例函数y=(m≠0)和y=-的图象上,若点A与点B关于x轴对称,则m的值为1.14.设双曲线y=(k>0)与直线y=x交于A,B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P,Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”,当双曲线y=(k>0)的眸径为6时,k的值为.三、(本大题共2小题,每小题8分,满分16分)15.如果函数y=x2m-1为反比例函数,求m的值.解:∵y=x2m-1是反比例函数,∴2m-1=-1,解得m=0.16.学校食堂用1200元购买大米,写出购买的大米质量y(kg)与单价x(元)之间的函数解析式,y是x的反比例函数吗?解:∵由题意得xy=1200,∴y=,∴y是x的反比例函数.四、(本大题共2小题,每小题8分,满分16分)17.已知点A(2,-3),P,Q(-5,b)都在反比例函数的图象上.(1)求此反比例函数的解析式;(2)求a+的值.解:(1)设反比例函数解析式为y=,把A点坐标(2,-3)代入得k=2×(-3)=-6,所以反比例函数的解析式为y=-.(2)把P点坐标代入y=-,得3×=-6,解得a=-4,把Q点坐标(-5,b)代入y=-,得-5b=-6,解得b=,所以a+=-4+=-4+1=-3.18.如图,在平面直角坐标系xOy中,菱形OABC的顶点A在x轴的正半轴上,反比例函数y=的图象经过点C(3,m).(1)求菱形OABC的周长;(2)求点B的坐标.解:(1)∵反比例函数y=的图象经过点C(3,m),∴m=4.作CD⊥x轴于点D,由勾股定理,得OC==5,∴菱形OABC的周长为20.(2)作BE⊥x轴于点E,∵BC=OA=5,OD=3,∴OE=8.又∵BC∥OA,∴BE=CD=4,∴B(8,4).五、(本大题共2小题,每小题10分,满分20分)19.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(-1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,连接BE,求△BCE的面积.解:如图,过D点作GH⊥x轴,过A点作AG⊥GH,过B点作BM⊥HC于点M.设D点坐标为,∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-x-1-,x=-2,∴D点坐标为(-2,-3),CH=DG=BM=1-=4,-∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E点坐标为--,∴EH=2-,∴CE=CH-HE=4-,∴S△CEB=CE·BM=×4=7.20.已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.解:(1)将B点坐标代入函数解析式,得=2,解得k=6,∴反比例函数的解析式为y=.(2)∵B(3,2),点B与点C关于原点O对称,∴C点坐标(-3,-2).∵BA⊥x轴于点A,CD⊥x轴于点D,∴A点坐标(3,0),D点坐标(-3,0).∴S△ACD=AD·CD=×[3-(-3)]×|-2|=6.六、(本题满分12分)21.已知反比例函数的图象经过三个点A(-4,-3),B(2m,y1),C(6m,y2),其中m>0.(1)当y1-y2=4时,求m的值;(2)如图,过点B,C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标.(不需要写解答过程)解:(1)设反比例函数的解析式为y=,∵反比例函数的图象经过点A(-4,-3),∴k=-4×(-3)=12,∴反比例函数的解析式为y=,∵反比例函数的图象经过点B(2m,y1),点C(6m,y2),∴y1=,y2=,∵y1-y2=4,∴=4,∴m=1.(2)设BD与x轴交于点E.∵点B,点C,∴D点坐标为,BD=.∵三角形PBD的面积是8,∴BD·PE=8,∴·PE=8,∴PE=4m,∵E点坐标为(2m,0),点P在x轴上,∴点P的坐标为(-2m,0)或(6m,0).七、(本题满分12分)22.:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)函数解析式为y=.表格中数从左至右:300,50.(2)2104-(30+40+48+50+60+80+96+100)=1600.当x=150时,y==80.1600÷80=20(天).答:余下的这些海产品预计再用20天可以全部售出.(3)1600-80×15=400(千克).400÷2=200(千克).即如果正好用2天售完,那么每天需要售出200千克.当y=200时,x==60.答:新确定的价格最高不超过60元/千克才能完成销售任务.八、(本题满分14分)23.我们可以把一个假分数写成一个整数加上一个真分数的形式,如=3+.同样的,我们也可以把某些分式写成类似的形式,如----=3+-.这种方法我们称为“分离常数法”.(1)如果-=1+,求常数a的值;(2)利用分离常数法,解决下面的问题:当m取哪些整数时,分式--的值是整数?(3)我们知道一次函数y=x-1的图象可以看成是由正比例函数y=x的图象向下平移1个单位长度得到,函数y=的图象可以看成是由反比例函数y=的图象向左平移1个单位长度得到.那么请你分析说明函数y=--的图象是由哪个反比例函数的图象经过怎样的变换得到?解:(1)∵--=1+-,∴a=-4.(2)---------=-3--,∴当m-1=3或-3或1或-1时,分式的值为整数,解得m=4或m=-2或m=2或m=0.(3)y=------=3+-,∴将y=的图象向右移动2个单位长度得到y=-的图象,再向上移动3个单位长度得到y-3=-,即y=--.。
人教版数学九年级下册第二十六章《反比例函数》测试卷(含答案)
人教版数学九年级下册第二十六章《反比例函数》测试卷[时间:100分钟满分:120分]一、选择题(每小题3分,共30分)1. 下列函数中,y是x的反比例函数的是()A. y=-12xB. y=-29xC. y=86xD. y=1-6x2.反比例函数y=5nx的图象经过点(2,3),则n的值是()A. -2B. -1C. 0D. 13. 反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A. 第二、三象限B. 第一、三象限C. 第三、四象限D. 第二、四象限4.已知反比例函数y=3x,下列结论中不正确的是()A. 图象经过点(-1,-3)B. 图象在第一、三象限C. 当x>1时,0<y<3D. 当x<0时,y随着x的增大而增大5. 已知反比例函数y=-10x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A. y1<y2<0B. y1<0<y2C. y1>y2>0D. y1>0>y26.如图所示,直线y=x+2与双曲线y=kx相交于点A,点A的纵坐标为3,则k的值为()A. 1B. 2C. 3D. 4第6题第7题7.已知二次函数y=-(x-a)2-b的图象如图所示,则反比例函数y=abx与一次函数y=ax+b的图象可能是()A B C D8. 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图所示,当V =10 m 3时,气体的密度是( )A. 1 kg/m 3B. 2 kg/m 3C. 100 kg/m 3D. 5 kg/m 3第8题 第9题9.如图,A ,B 两点在反比例函数y =1k x 的图象上,C ,D 两点在反比例函数y =2kx的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1的值为( )A. 4B.143 C. 163D. 6 10. 某医药研究所开发一种新药,成年人按规定的剂量限用,服药后每毫升血液中的含药量y (毫克)与时间t (小时)之间的函数关系近似满足如图所示曲线,当每毫升血液中的含药量不少于0.25毫克时治疗有效,则服药一次治疗疾病有效的时间为( )A. 16小时B. 1578小时C. 151516小时 D. 17小时二、填空题(每小题3分,共24分)11.请写出一个图象在第二、四象限的反比例函数的解析式:.12. 若反比例函数y=(m-1)x|m|-2,则m的值是.13.若函数y=2mx的图象在每个象限内y的值随x值的增大而增大,则m的取值范围为.14. 如图,Rt△ABC的两个锐角顶点A,B在函数y=kx(x>0)的图象上,AC∥x轴,AC=2.若点A的坐标为(2,2),则点B的坐标为.15.已知反比例函数y=4x,当函数值y≥-2时,自变量x的取值范围是________.16.若变量y与x成反比例,且当x=3时,y=-3,则y与x之间的函数关系式是________,在每个象限内函数值y随x的增大而________.17.某闭合电路,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间的函数关系的图象,当电阻R为6 Ω时,电流I为________A.第17题第18题18. 如图,四边形OABC是矩形,ADEF是正方形,点A,D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为________.三、解答题(共66分)19. (8分)已知y与x-1成反比例,且当x=-5时,y=2.(1)求y与x的函数关系式;(2)当x=5时,求y的值.20. (8分)你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.(1)写出y与S的函数关系式;(2)当面条粗为1.6 mm2时,求面条总长度.21. (12分)已知反比例函数y=4 x .(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=4x(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移到C2处所扫过的面积.22. (12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.23. (12分)如图,在平面直角坐标系xOy中,直线y=x-2与y轴相交于点A,与反比例函数y=kx在第一象限内的图象相交于点B(m,2).(1)求该反比例函数的关系式;(2)若直线y=x-2向上平移后与反比例函数y=kx在第一象限内的图象相交于点C,且△ABC的面积为18,求平移后的直线对应的函数关系式.24. (14分)为了预防流行性感冒,某学校对教室采用药熏消毒法进行消毒.已知药物燃烧时室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物燃烧后,y与x成反比例(如图所示).请根据图中提供的信息,解答下列问题:(1)药物燃烧后y与x的函数关系式为;(2)当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过几分钟后,学生才能回到教室;(3)当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?。
(新)人教版九年级数学下册第26章《反比例函数》单元检测及答案
人教版数学九年级下学期第26章《反比例函数》单元测试卷(满分120分,限时120分钟)一、选择题(共10小题,每小题3分,共30分) 1.下列函数是反比例函数的是( )A .y=xB .y=kx ﹣1 C .y=-8x D .y=28x2.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( )A .两条直角边成正比例B .两条直角边成反比例C .一条直角边与斜边成正比例D .一条直角边与斜边成反比例3.在双曲线y=1-kx的任一支上,y 都随x 的增大而增大,则k 的值可以是( )A .2B .0C .﹣2D .14.函数y=﹣x +1与函数y= -2x在同一坐标系中的大致图象是( )C BAy yy y5.若正比例函数y=﹣2x 与反比例函数y=kx图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为( ) A .(2,﹣1) B .(1,﹣2)C .(﹣2,﹣1)D .(﹣2,1)6.如图,过反比例函数y=kx(x >0)的图象上一点A 作AB ⊥x 轴于点B ,连接AO ,若S △AOB =2,则k 的值为( )xC .4D .5 k ≠0)的图象经过点(﹣1,2),则这个函数的图象一定经过点( )A.(1,﹣1) B.(﹣12,4)C.(﹣2,﹣1) D.(12,4)8.图象经过点(2,1)的反比例函数是()A.y=﹣2xB.y=2xC.y=12xD.y=2x9.若一次函数y=mx+6的图象与反比例函数y=nx在第一象限的图象有公共点,则有()A.mn≥﹣9 B.﹣9≤mn≤0 C.mn≥﹣4 D.﹣4≤mn≤010.一个三角形的面积是12cm2,则它的底边y(单位:cm)是这个底边上的高x(单位:cm)的函数,它们的函数关系式(其中x>0)为()A.y=12xB.y=6x C.y=24xD.y=12x二、填空题(共6小题,每小题3分,共18分)11.若反比例函数y=(m+1)22mx-的图象在第二、四象限,m的值为.12.若函数y=(3+m)28mx-是反比例函数,则m=.13.已知反比例函数y=kx(k>0)的图象与经过原点的直线L相交于点A、B两点,若点A的坐标为(1,2),14.反比例函数y=kx的图象过点P(2,6),那么k的值是.15.已知:反比例函数y=kx的图象经过点A(2,﹣3),那么k=.16.如图,点A在双曲线y=4x上,点B在双曲线y=kx(k≠0)上,AB∥x轴,分别过点A、B向xD、C,若矩形ABCD的面积是8,则k的值为.x72分)取何值时,函数y=2m113x+是反比例函数?OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx(k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式;、y 2在第一象限的图象,1y =4x,过y 1上的任意一点A ,作x 轴S △AOB =1,求双曲线y 2的解析式. =4xy=kx的图象上,过点C 作CD ⊥y 轴,交y 轴负半轴于y 轴对称的点的坐标是 .(2)反比例函数y=x 关于y 轴对称的函数的解析式为 .(3)求反比例函数y=kx(k ≠0)关于x 轴对称的函数的解析式.22.(本题10分)如图,Rt △ABC 的斜边AC 的两个顶点在反比例函数y=1kx的图象上,点B 在反比例函数y=2kx的图象上,AB 与x 轴平行,BC=2,点A 的坐标为(1,3).(1)求C 点的坐标;(2)求点B 所在函数图象的解析式.y=x+b的图象与反比例函数y=kx(k为常数,k≠0)的图象交b的值;(2)若A、O两点关于直线l对称,请连接AO,并求出直线l与线段AO的交点坐标.O为坐标原点,△ABO的边AB垂直与x轴,垂足AO的中点C,且与AB相交于点D,OB=4,AD=3,(1)求反比例函数y=kx的解析式;(2)求cos∠OAB的值;(3)求经过C、D两点的一次函数解析式.第26章《反比例函数》单元测试卷解析一、选择题1. 【答案】A 、y=x 是正比例函数;故本选项错误;B 、y=kx ﹣1当k=0时,它不是反比例函数;故本选项错误; C 、符合反比例函数的定义;故本选项正确;D 、y=28x的未知数的次数是﹣2;故本选项错误.故选C .2.【答案】设该直角三角形的两直角边是a 、b ,面积为S .则 S=12ab . ∵S 为定值,∴ab=2S 是定值,则a 与b 成反比例关系,即两条直角边成反比例. 故选:B .3.【答案】∵y 都随x 的增大而增大, ∴此函数的图象在二、四象限, ∴1﹣k <0, ∴k >1.故k 可以是2(答案不唯一), 故选A .4.【答案】函数y=﹣x +1经过第一、二、四象限,函数y=﹣2x分布在第二、四象限.故选A .5.【答案】∵正比例函数与反比例函数的图象均关于原点对称, ∴两函数的交点关于原点对称, ∵一个交点的坐标是(﹣1,2), ∴另一个交点的坐标是(1,﹣2). 故选B .6.【答案】∵点A 是反比例函数y=kx图象上一点,且AB ⊥x 轴于点B ,∴S △AOB =12|k |=2,解得:k=±4.∵反比例函数在第一象限有图象, ∴k=4. 故选C .7.【答案】∵反比例函数y=kx(k ≠0)的图象经过点(﹣1,2),∴k=﹣1×2=﹣2,A 、1×(﹣1)=﹣1≠﹣2,故此点不在反比例函数图象上;B 、﹣12×4=﹣2,故此点,在反比例函数图象上;C 、﹣2×(﹣1)=2≠﹣2,故此点不在反比例函数图象上;D 、12×4=2≠﹣2,故此点不在反比例函数图象上. 故选B .8.【答案】设反比例函数解析式y=kx,把(2,1)代入得k=2×1=2,所以反比例函数解析式y=2x.故选B .9.【答案】依照题意画出图形,如下图所示.x+6x ﹣n=0, 故选A .10.【答案】由题意得y=2×12÷x=24x.故选C .二、填空题11.【答案】由题意得:2﹣m 2=﹣1,且m +1≠0, 解得:m=∵图象在第二、四象限, ∴m+1<0, 解得:m <﹣1, ∴m=故答案为:12.【答案】根据题意得:8-m 2= -1,3+m ≠0,解得:m=3.故答案是:3. 13.【答案】∵点A (1,2)与B 关于原点对称, ∴B 点的坐标为(﹣1,﹣2). 故答案是:(﹣1,﹣2).14.【答案】:∵反比例函数y=kx 的图象过点P (2,6),∴k=2×6=12,故答案为:12.15.【答案】根据题意,得﹣3=k2,解得,k=﹣6.16. 【答案】过点A 作AE ⊥y 轴于点E ,∵点A 在双曲线y=4x上,∴矩形EODA 的面积为:4, ∵矩形ABCD 的面积是8,∴矩形EOCB 的面积为:4+8=12, 则k 的值为:xy=k=12.x2m 113x 是反比例函数,∴2m +1=1,解得:m=0.OABC 中,OA=3,OC=2,∴B (3,2), F (3,1),∵点F 在反比例函数y=k x (k >0)的图象上,∴k=3,∴该函数的解析式为y= 3x(x >0);19.【解答】设双曲线y 2的解析式为y 2=kx,由题意得:S △BOC ﹣S △AOC =S △AOB ,k 2﹣42=1,解得;k=6;则双曲线y 2的解析式为y 2=6x . 20.【解答】(1)设C 点坐标为(x ,y ),∵△ODC 的面积是3,∴12 OD •DC=12x •(﹣y )=3,∴x •y=﹣6,而xy=k ,∴k=﹣6,∴所求反比例函数解析式为y=﹣6x;(2)∵CD=1,即点C ( 1,y ),把x=1代入y=﹣6x,得y=﹣6.∴C 点坐标为(1,﹣6),设直线OC 的解析式为y=mx ,把C (1,﹣6)代入y=mx 得﹣6=m ,∴直线OC 的解析式为:y=﹣6x . 21.【解答】(1)由于两点关于y 轴对称,纵坐标不变,横坐标互为相反数; 则点(3,6)关于y 轴对称的点的坐标是(﹣3,6);(2)由于两反比例函数关于y 轴对称,比例系数k 互为相反数;则k=﹣3,即反比例函数y=3x 关于y 轴对称的函数的解析式为y=﹣3x;(3)由于两反比例函数关于x 轴对称,比例系数k 互为相反数;则反比例函数y=k x (k ≠0)关于x 轴对称的函数的解析式为:y=﹣kx.22.【解答】(1)把点A (1,3)代入反比例函数y=1kx 得k 1=1×3=3,所以过A 点与C 点的反比例函数解析式为y=3x,∵BC=2,AB 与x 轴平行,BC 平行y 轴,∴B 点的坐标为(3,3),C 点的横坐标为3,把x=3代入y=3x得y=1,∴C 点坐标为(3,1);(2)把B (3,3)代入反比例函数y=2kx 得k 2=3×3=9,所以点B 所在函数图象的解析式为y=9x.23.【解答】(1)∵点A (﹣1,4)在反比例函数y=kx(k 为常数,k ≠0)的图象上,∴k=﹣1×4=﹣4,∴反比例函数解析式为y=﹣4x. 把点A (﹣1,4)、B (a ,1)分别代入y=x +b 中,解得:a= -4,b=5. (2)连接AO ,设线段AO 与直线l 相交于点M ,如图所示.OA 的中点,12,2).,2).24..【解答】(1)设点D 的坐标为(4,m )(m >0),则点A 的坐标为(4,3+m ),∵点C 为线段AO 的中点,∴点C 的坐标为(2,3m2+).∵点C 、点D 均在反比例函数y=kx 的函数图象上,解得:m=1,k=4.∴反比例函数的解析式为y=4x.(2)∵m=1,∴点A 的坐标为(4,4),∴OB=4,AB=4. 在Rt △ABO 中,OB=4,AB=4,∠ABO=90°,∴cos ∠OAB=AB OA ==. (3))∵m=1,∴点C 的坐标为(2,2),点D 的坐标为(4,1). 设经过点C 、D 的一次函数的解析式为y=ax +b ,解得:a= -12,b=3.∴经过C 、D 两点的一次函数解析式为y=﹣12x +3.。
人教版九年级下数学《第26章反比例函数》单元培优检测题含答案
《反比例函数》单元培优检测题一.选择题1.已知点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,那么()A.y2<y1<y3B.y3<y1<y2C.y1<y3<y2D.y2<y3<y12.若反比例函数y=(k≠0)的图象经过点P(2,﹣3),则该函数的图象不经过的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)3.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个4.如图,点M、N都在反比例函数的图象上,则△OMN的面积为()A.1 B.C.2 D.35.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()体积x(mL)100 80 60 40 20压强y(kPa)60 75 100 150 300A.y=3 000x B.y=6 000x C.y=D.y=6.反比例函数y=和y=在第一象限内的图象如图所示,点P在y=的图象上,PC⊥x 轴,交y=的图象于点A,PD⊥y轴,交y=的图象于点B.当点P在y=的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积不会发生变化;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()A.①②③④B.①②③C.②③④D.①③④7.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y =的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:①S△ODB =S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论是()A.①②B.①③C.②③D.①②③8.如图,△ABC的顶点A在反比例函数y=(x>0)的图象上,顶点C在x轴上,AB∥x轴,若点B的坐标为(1,3),S=2,则k的值为()△ABCA.4 B.﹣4 C.7 D.﹣79.函数y=ax2﹣a与y=﹣(a≠0)在同一直坐标系中的图象可能是()A.B.C.D.10.如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个二.填空题11.如图,在△AOB中,∠AOB=90°,点A的坐标为(4,2),BO=4,反比例函数y=的图象经过点B,则k的值为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA 的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.13.请写出一个图象与直线y=x无交点的反比例函数的表达式:.14.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.15.在反比例函数y=(x<0)中,函数值y随着x的增大而减小,则m的取值范围是.16.如图,点P在反比例函数y=的图象上.若矩形PMON的面积为4,则k=.三.解答题17.如图,已知一次函数y1=k1x+b(k1≠0)与反比例函数y2=(k2≠0)的图象交于A(4,1),B(n,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)请根据图象直接写出y1<y2时x的取值范围.18.如图,在平面直角坐标系中,点A(2,4)在反比例函数y=的图象上,点C的坐标是(3,0),连接OA,过C作OA的平行线,过A作x轴的平行线,交于点B,BC与双曲线y=的图象交于D,连接AD.(1)求D点的坐标;(2)四边形AOCD的面积.19.如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,4),B(4,n)两点.(1)求反比例函数和一次函数的解析式;(2)直接写出当x>0时,kx+b<的解集.(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.20.如图,点A在反比例函数的图象在第二象限内的分支上,AB⊥x轴于点B,O是原点,且△AOB的面积为1.试解答下列问题:(1)比例系数k=;(2)在给定直角坐标系中,画出这个函数图象的另一个分支;(3)当x>1时,写出y的取值范围.21.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求m,n的值;(2)当一次函数的值大于反比例函数的值时,请写出自变量x的取值范围.22.如图,四边形ABCD放在在平面直角坐标系中,已知AB∥CD,AD=BC,A(﹣2,0)、B (6,0)、D(0,3),反比例函数的图象经过点C.(1)求点C的坐标和反比例函数的解析式;(2)将四边形ABCD向上平移2个单位后,问点B是否落在该反比例函数的图象上?23.如图,反比例函数的图象在第一象限内经过点A,过点A分别向x轴、y轴作垂线,垂足分别P、Q,若AP=3,AQ=1,求这个反比例函数的解析式.24.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.参考答案一.选择题1.解:∵点A(3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=的图象上,∴y1=2,y2=﹣3,y3=6,∴y2<y1<y3,故选:A.2.【解答】解:∵反比例函数y=(k≠0)的图象经过点P(2,﹣3),∴k=2×(﹣3)=﹣6∴解析式y=当x=3时,y=﹣2当x=1时,y=﹣6当x=﹣1时,y=6∴图象不经过点(﹣1,﹣6)故选:D.3.解:∵反比例函数y=的图象经过点T(3,8),∴k=3×8=24,将P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)分别代入反比例函数y=,可得Q(3,﹣8),M(2,﹣12)不满足反比例函数y=,∴在该函数图象上的点有2个,故选:C.4.解:过M、N分别作MA⊥x轴,NB⊥x轴,S四边形OMNB =S△OMA+S四边形MABN=S△OMN+S△ONB,∵M(1,2),N(2,1),∴MA=OB=2,OA=NB=1,则S△OMN=×1×2+×(1+2)×(2﹣1)﹣×2×1=,故选:B.5.解:由表格数据可得:此函数是反比例函数,设解析式为:y =, 则xy =k =6000,故y 与x 之间的关系的式子是y =,故选:D .6.解:①∵点A 、B 均在反比例函数y =的图象上,且BD ⊥y 轴,AC ⊥x 轴, ∴S △ODB =,S △OCA =,∴S △ODB =S △OCA ,结论①正确;②设点P 的坐标为(m ,),则点B 的坐标(,),点A (m ,), ∴PA =﹣=,PB =m ﹣=, ∴PA 与PB 的关系无法确定,结论②错误;③∵点P 在反比例函数y =的图象上,且PC ⊥x 轴,PD ⊥y 轴,∴S 矩形OCPD =k ,∴S 四边形PAOB =S 矩形OCPD ﹣S △ODB ﹣S △OCA =k ﹣1,结论③正确;④设点P 的坐标为(m ,),则点B 的坐标(,),点A (m ,), ∵点A 是PC 的中点,∴k =2,∴P (m ,),B (,),∴点B 是PD 的中点,结论④正确.故选:D .7.解:①由于A、B在同一反比例函数y=图象上,则△ODB与△OCA的面积相等,都为×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,则四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,则△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;故选:D.8.解:∵AB∥x轴,若点B的坐标为(1,3),∴设点A(a,3)=(a﹣1)×3=2∵S△ABC∴a=∴点A(,3)∵点A在反比例函数y=(x>0)的图象上,∴k=7故选:C.9.解:A、二次y=ax2﹣a的图象开口方向向上,与y轴交于负半轴,则a>0,则反比例函数y=﹣的图象应该经过第二、四象限,故本选项正确.B、二次y=ax2﹣a的图象开口方向向上,与y轴交于负半轴,则a>0,则反比例函数y=﹣的图象应该经过第二、四象限,故本选项错误.C、二次y=ax2﹣a的图象开口方向向下,则a<0.与y轴交于负半轴,则﹣a<0,即a>0,相矛盾,故本选项错误.D、二次y=ax2﹣a的图象开口方向向下,与y轴交于正半轴,则a<0,则反比例函数y=﹣的图象应该经过第一、三象限,故本选项错误.故选:A.10.解:①y=的图象在一、三象限,故在每个象限内,y随x的增大而减小,故①正确;②点B的横坐标为﹣3,则B(﹣3,1),由4BD=3CD,可得CD=,故C(﹣3,﹣),故②错误;③设点B的横坐标为a,则B(a,﹣),由4BD=3CD,可得CD=﹣,故C(a,),由C(a,)可得:k=a×=4,故③正确;==﹣×(﹣a)×=,故④错误;④BC=﹣﹣=﹣,S△ABC所以本题正确的有两个:①③;故选:B.二.填空题(共6小题)11.解:过点A作AC⊥x轴,过点B作BD⊥x轴,垂足分别为C、D,则∠OCA=∠BDO=90°,∴∠DBO+∠BOD=90°,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∴∠DBO=∠AOC,∴△DBO∽△COA,∴==,∵点A的坐标为(4,2),∴AC=2,OC=4,∴AO==2,∴==即BD=8,DO=4,∴B(﹣4,8),∵反比例函数y=的图象经过点B,∴k的值为﹣4×8=﹣32.故答案为﹣3212.解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;13.解:∵直线y=x经过第一、三象限,∴与直线y=x无交点的反比例函数的图象在第二、四象限,∴与直线y=x无交点的反比例函数表达式为:y=﹣故答案为:y=﹣(答案不唯一).14.解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.15.解:∵反比例函数y =(x <0)中,函数值y 随着x 的增大而减小,∴m ﹣1>0,∴m >1,故答案为m >1.16.解:设PN =a ,PM =b ,则ab =6,∵P 点在第二象限,∴P (﹣a ,b ),代入y =中,得 k =﹣ab =﹣4,故答案为:﹣4.三.解答题(共8小题)17.解:(1)∵反比例函数y 2=(k 2≠0)的图象过点A (4,1),∴k 2=4×1=4,∴反比例函数的解析式为y 2=.∵点B (n ,﹣2)在反比例函数y 2=的图象上,∴n =4÷(﹣2)=﹣2,∴点B 的坐标为(﹣2,﹣2).将A (4,1)、B (﹣2,﹣2)代入y 1=k 1x +b , ,解得:, ∴一次函数的解析式为y =x ﹣1.(2)观察函数图象,可知:当x <﹣2和0<x <4时,一次函数图象在反比例函数图象下方, ∴y 1<y 2时x 的取值范围为x <﹣2或0<x <4.18.解:(1)∵点A (2,4)在反比例函数y =的图象上,∴k =2×4=8,∴反比例函数解析式为y =;设OA 解析式为y =k 'x ,则4=k '×2,∴k '=2,∵BC ∥AO ,∴可设BC 的解析式为y =2x +b ,把(3,0)代入,可得0=2×3+b ,解得b =﹣6,∴BC 的解析式为y =2x ﹣6,令2x ﹣6=,可得x =4或﹣1,∵点D 在第一象限,∴D (4,2);(2)∵AB ∥OC ,AO ∥BC ,∴四边形ABCO 是平行四边形,∴AB =OC =3,∴S 四边形AOCD =S 四边形ABCO ﹣S △ABD=3×4﹣×3×(4﹣2)=12﹣3=9.19.解:(1)把A (1,4)代入y =,得:m =4,∴反比例函数的解析式为y =;把B (4,n )代入y =,得:n =1,∴B (4,1),把A(1,4)、(4,1)代入y=kx+b,得:,解得:,∴一次函数的解析式为y=﹣x+5;(2)根据图象得当0<x<1或x>4,一次函数y=﹣x+5的图象在反比例函数y=的下方;∴当x>0时,kx+b<的解集为0<x<1或x>4;(3)如图,作B关于x轴的对称点B′,连接AB′,交x轴于P,此时PA+PB=AB′最小,∵B(4,1),∴B′(4,﹣1),设直线AB′的解析式为y=px+q,∴,解得,∴直线AB′的解析式为y=﹣x+,令y=0,得﹣x+=0,解得x=,∴点P的坐标为(,0).20.(1)解:由于△AOB的面积为1,则|k|=2,又函数图象位于第一象限,k>0,则k=2,反比例函数关系式为y=﹣.故答案为:﹣2;(2)如图所示:;(3)利用图象可得出:当x>1时:﹣2<y<0.21.解:(1)把A(﹣2,1)代入反比例函数y=得,m=﹣2×1=﹣2,∴反比例函数解析式为y=﹣;把B(1,n)代入得,1×n=﹣2,解得n=﹣2;(2)由图象可知:x<﹣2或0<x<1.22.解:(1)过C作CE⊥AB,∵DC∥AB,AD=BC,∴四边形ABCD为等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=2,∵AB=8,∴OE=AB﹣OA﹣BE=8﹣4=4,∴C(4,3),把C(4,3)代入反比例解析式得:k=12,则反比例解析式为y=;(2)由平移得:平移后B的坐标为(6,2),把x=6代入反比例得:y=2,则平移后点B落在该反比例函数的图象上.23.解:由题意得:S=|k|=3×1=3;四边形APOQ又由于函数图象位于第一象限,k>0,则k=3.所以这个反比例函数的解析式为y=.24.解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB =S△AOC+S△BOC=.。
2019-2020学年人教版数学九年级下册第26章反比例函数检测题(含答案)
第26章检测题(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.下列函数中,y 与x 成反比例的是BA .y =x 2B .y =14xC .y =3x 2D .y =1x +12.点A(-1,1)是反比例函数y =m +1x的图象上一点,则m 的值为B A .-1 B .-2 C .0 D .13.一司机驾驶汽车从甲地去乙地,他以平均80千米/时的速度用了4个小时到达乙地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(时)的函数关系是BA .v =320tB .v =320tC .v =20tD .v =20t4.(2019·枣庄)从-1,2,3,-6这四个数中任取两数,分别记为m ,n ,那么点(m ,n)在函数y =6x图象上的概率是BA .12B .13C .14D .185.(2019·广州)若点A(-1,y 1),B(2,y 2),C(3,y 3)在反比例函数y =6x 的图象上,则y 1,y 2,y 3的大小关系是CA .y 3<y 2<y 1B .y 2<y 1<y 3C .y 1<y 3<y 2D .y 1<y 2<y 36.(2019·宁夏)函数y =kx和y =kx +2(k ≠0)在同一直角坐标系中的大致图象是B7.如图,正比例函数y =x 与反比例函数y =1x 的图象相交于A ,B 两点,BC ⊥x 轴于点C ,则△ABC 的面积为AA .1B .2C .32D .528.某数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形长y(cm )与宽x(cm )之间的函数关系的图象大致是A9.反比例函数y 1=mx (x >0)的图象与一次函数y 2=-x +b 的图象交于A ,B 两点,其中A(1,2),当y 2>y 1时,x 的取值范围是BA .x <1B .1<x <2C .x >2D .x <1或x >210.(2019·德州)在下列函数图象上任取不同两点P 1(x 1,y 1),P 2(x 2,y 2),一定能使y 2-y 1x 2-x 1<0成立的是DA .y =3x -1(x <0)B .y =-x 2+2x -1(x >0)C .y =-3x(x >0) D .y =x 2-4x +1(x <0) 二、填空题(每小题3分,共15分)11.(淮安中考)若点A(-2,3),B(m ,-6)都在反比例函数y =kx (k ≠0)的图象上,则m的值是1.12.(2019·镇江)已知点A(-2,y 1),B(-1,y 2)都在反比例函数y =-2x 的图象上,则y 1<y 2.(填“>”或“<”)错误! 错误!,第14题图) 错误!,第15题图)13.如图,点A 在反比例函数y =k2x(x >0)的图象上,过点A 作AD ⊥y 轴于点D ,延长AD 至点C ,使CD =AD ,过点A 作AB ⊥x 轴于点B ,连接BC 交y 轴于点E.若△ABC 的面积为6,则k 的值为12.14.(2019·桂林)如图,在平面直角坐标系中,反比例函数y =kx (k >0)的图象和△ABC都在第一象限内,AB =AC =52,BC ∥x 轴,且BC =4,点A 的坐标为(3,5).若将△ABC向下平移m 个单位长度,A ,C 两点同时落在反比例函数图象上,则m 的值为54.15.(2019·新疆)如图,在平面直角坐标系xOy 中,已知正比例函数y =-2x 与反比例函数y =k x 的图象交于A(a ,-4),B 两点,过原点O 的另一条直线l 与双曲线y =kx 交于P ,Q 两点(P 点在第二象限),若以点A ,B ,P ,Q 为顶点的四边形面积为24,则点P 的坐标是(-4,2)或(-1,8).三、解答题(共75分)16.(8分)已知y =y 1+y 2,其中y 1与3x 成反比例,y 2与-x 2成正比例,且当x =1时,y =5;当x =-1时,y =-2.求当x =3时,y 的值.解:设y =k 13x +k 2(-x 2),由题意可求得y =72x +32x 2,当x =3时,y =44317.(9分)(2019·吉林)已知y 是x 的反比例函数,并且当x =2时,y =6. (1)求y 关于x 的函数解析式; (2)当x =4时,求y 的值.解:(1)y 是x 的反比例函数,所以,设y =kx (k ≠0),当x =2时,y =6.所以,k =xy =12,所以y =12x(2)当x =4时,y =318.(9分)(2019·泸州)一次函数y =kx +b 的图象经过点A(1,4),B(-4,-6). (1)求该一次函数的解析式;(2)若该一次函数的图象与反比例函数y =mx 的图象相交于C(x 1,y 1),D(x 2,y 2)两点,且3x 1=-2x 2,求m 的值.解:(1)由题意得:⎩⎨⎧k +b =4,-4k +b =-6,解得:⎩⎨⎧k =2,b =2,∴一次函数解析式为:y =2x +2 (2)联立⎩⎪⎨⎪⎧y =2x +2,y =m x ,消去y 得:2x 2+2x -m =0,则x 1+x 2=-1,因为3x 1=-2x 2,解得⎩⎨⎧x 1=2,x 2=-3,∴C(2,6),∵反比例函数y =mx 的图象经过C 点,∴m =2×6=1219.(9分)(2019·贵港)如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为(1,0),点D(4,4)在反比例函数y =k x (x >0)的图象上,直线y =23x +b 经过点C ,与y 轴交于点E ,连接AC ,AE.(1)求k ,b 的值;(2)求△ACE 的面积.解:(1)由已知可得AD =5,∵四边形ABCD 是菱形,∴B(6,0),C(9,4),∵点D(4,4)在反比例函数y =k x (x >0)的图象上,∴k =16,将点C(9,4)代入y =23x +b ,∴b =-2(2)E(0,-2),直线y =23x -2与x 轴交点为(3,0),∴S △AEC =12×2×(2+4)=620.(9分)(2019·铜仁)如图,一次函数y =kx +b(k ,b 为常数,k ≠0)的图象与反比例函数y =-12x的图象交于A ,B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3.(1)求一次函数的表达式; (2)求△AOB 的面积;(3)写出不等式kx +b >-12x的解集.解:(1)∵一次函数y =kx +b(k ,b 为常数,k ≠0)的图象与反比例函数y =-12x 的图象交于A ,B 两点,且与x 轴交于点C ,与y 轴交于点D ,A 点的横坐标与B 点的纵坐标都是3,∴3=-12x ,解得:x =-4,y =-123=-4,故B(-4,3),A(3,-4),把A ,B 两点代入y =kx +b 得:⎩⎨⎧-4k +b =3,3k +b =-4,解得:⎩⎨⎧k =-1,b =-1,故直线解析式为:y =-x -1 (2)y =-x-1,当y =0时,x =-1,故C 点坐标为:(-1,0),则△AOB 的面积为:12×1×3+12×1×4=72 (3)不等式kx +b >-12x的解集为:x <-4或0<x <321.(10分)(2019·金华)如图,在平面直角坐标系中,正六边形ABCDEF 的对称中心P 在反比例函数y =kx(k >0,x >0)的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =2.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE 交于点Q ,求点Q 的横坐标;(3)平移正六边形ABCDEF ,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.解:(1)如图,过点P 作x 轴垂线PG ,连接BP ,∵P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴PG =3,∴P(2,3),∵P 在反比例函数y =kx 上,∴k =23,∴y =23x,由正六边形的性质,A(1,23),∴点A 在反比例函数图象上(2)D(3,0),E(4,3),设DE 的解析式为y =mx +b ,∴⎩⎨⎧3m +b =0,4m +b =3,∴⎩⎨⎧m =3,b =-33,∴y =3x -33,联立方程⎩⎪⎨⎪⎧y =23x ,y =3x -33,解得x =3+172,∴Q 点横坐标为3+172(3)A(1,23),B(0,3),C(1,0),D(3,0),E(4,3),F(3,23),设正六边形向左平移m 个单位,向上平移n 个单位,则平移后点的坐标分别为:A(1-m ,23+n),B(-m ,3+n),C(1-m ,n),D(3-m ,n),E(4-m ,3+n),F(3-m ,23+n),①将正六边形向左平移两个单位后,E(2,3),F(1,23),则点E 与F 都在反比例函数图象上;②将正六边形向右平移一个单位,再向上平移3个单位后,C(2,3),B(1,23),则点B 与C 都在反比例函数图象上22.(10分)(2019·河南)模具厂计划生产面积为4,周长为m 的矩形模具.对于m 的取值范围,小亮已经能用“代数”的方法解决,现在他又尝试从“图形”的角度进行探究,过程如下:(1)建立函数模型设矩形相邻两边的长分别为x ,y ,由矩形的面积为4,得xy =4,即y =4x;由周长为m ,得2(x +y)=m ,即y =-x +m2.满足要求的(x ,y)应是两个函数图象在第一象限内交点的坐标.(2)画出函数图象函数y =4x (x >0)的图象如图所示,而函数y =-x +m2的图象可由直线y =-x 平移得到.请在同一直角坐标系中直接画出直线y =-x.(3)平移直线y =-x ,观察函数图象①当直线平移到与函数y =4x (x >0)的图象有唯一交点(2,2)时,周长m 的值为8;②在直线平移过程中,交点个数还有哪些情况?请写出交点个数及对应的周长m 的取值范围.(4)得出结论若能生产出面积为4的矩形模具,则周长m 的取值范围为m ≥8.解:(1)x ,y 都是边长,因此,都是正数,故点(x ,y)在第一象限,答案为:一 (2)图象如图(3)①把点(2,2)代入y =-x +m 2得:2=-2+m2,解得:m =8,即0个交点时,m <8;1个交点时,m =8; 2个交点时,m >8;②在直线平移过程中,交点个数有:0个,1个,2个三种情况,联立y =4x 和y =-x +m 2并整理得:x 2-12mx +4=0,Δ=14m 2-4×4≥0时,两个函数有交点,解得:m ≥8 (4)由(3)得:m ≥823.(11分)在平面直角坐标系内,反比例函数和二次函数y =k(x 2+x -1)的图象交于点A(1,k)和点B(-1,-k).(1)当k =-2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y 随着x 的增大而增大,求k 应满足的条件以及x 的取值范围;(3)设二次函数的图象的顶点为Q ,当△ABQ 是以AB 为斜边的直角三角形时,求k 的值.解:(1)y =-2x (2)∵要使反比例函数和二次函数都是y 随着x 的增大而增大,∴k <0,∵二次函数y =k(x 2+x -1)=k(x +12)2-54k ,对称轴为直线x =-12,要使二次函数y =k(x 2+x -1)满足上述条件,在k <0的情况下,x 必须在对称轴的左边,即x <-12时,才能使得y 随着x 的增大而增大,∴综上所述,k <0且x <-12(3)由(2)可得Q(-12,-54k),∵△ABQ 是以AB 为斜边的直角三角形,A 点与B 点关于原点对称(如图是其中的一种情况),∴原点O 平分AB ,∴OQ =OA =OB ,作AD ⊥x 轴,QC ⊥x 轴,∴OQ =CQ 2+OC 2=14+2516k 2,∵OA =AD 2+OD 2=1+k 2,∴14+2516k 2=1+k 2,解得k =±233。
人教版数学九年级下册第二十六章 反比例函数 章末专题训练含答案
人教版数学九年级下册第二十六章反比例函数章末专题训练含答案人教版数学九年级下册第二十六章反比例函数章末专题训练一、选择题1.某反比例函数的图象过点,则此反比例函数解析式为 CA. B. C. D.2.下列式子中,y是x的反比例函数的是 DA. B. C. D.3.已知某种品牌电脑的显示器的寿命大约为2×104小时,这种显示器工作的天数为d(天),平均每天工作的时间为t(小时),那么能正确表示d与t之间的函数关系的图象是( C )A. B.C. D.4.若点A(﹣2,3)在反比例函数y=的图象上,则k的值是( A )A.﹣6 B.﹣2 C.2 D.65.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图26-2-2所示,则下列说法正确的是( D )图26-2-2A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷6.如图,已知点A在反比例函数上,轴,垂足为点C,且的面积为4,则此反比例函数的表达式为 CA.B.C.D.7.下列关系中,两个量之间为反比例函数关系的是 DA. 正方形的面积S与边长a的关系B. 正方形的周长l与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,长a与宽b之间的关系8. 函数y=与y=2x的图象没有交点,则k的取值范围是( D )A. k<0B. k<1C. k>0D. k>19.在对物体做功一定的情况下,力F(牛)与此物体在力的方向上移动的距离s(米)成反比例函数关系,其图象如图所示.P(5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是( A )A.0.5米 B.5米 C.1米 D.0.2米10.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)之间满足函数解析式ρ=kV(k为常数,k≠0),其图象如图26-2-4所示,则k的值为( A )图26-2-4A.9 B.-9 C.4 D.-4二、填空题11.若函数的图象经过点,点,写出一个符合条件的函数表达式______ .【答案】12.函数是y关于x的反比例函数,则______.【答案】313.如图,点A,B是双曲线y=上的点,分别经过A,B两点向x轴、y轴作垂线段,若S阴影=1,则S1+S2=.【答案】414.已知反比例函数y=K/X的图象经过点(﹣3,﹣1),则k= .【答案】315.如图,在中,,,点C在OA上,,的圆心P在线段BC上,且与边AB,AO都相切若反比例函数的图象经过圆心P,则 ______ .【答案】三、解答题16.如图,在四边形OABC中,,,点A,B的坐标分别为,,点D为AB上一点,且,双曲线经过点D,交BC于点E 求双曲线的解析式;求四边形ODBE的面积.解:作轴于M,作轴于N,如图,点A,B的坐标分别为,,,,,,∽,,即,,,,点坐标为,把代入得,反比例函数解析式为;.17.已知y是x的反比例函数,且当时,,请你确定该反比例函数的解析式,并求当时,自变量x的值.解:设反比例函数,当时,,,与x之间的函数关系式.把代入,则.18.某气球内充满一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的表达式;(2)当气体体积为1 m3时,气压是多少?(3)当气球内的气压大于140 kPa时,气球将爆炸,为了安全起见,气体的体积应不大于多少?(1) 【答案】设p与V的函数关系式为p=,将V=0.8,p=120代入,得k=0.8×120=96,所以p与V的函数关系式为p=.(2) 【答案】当V=1时,p=96,即气压是96 kPa.(3) 【答案】由p=≤140,得V≥0.69,所以气球的体积应大于等于0.69 m3.19.(2018•杭州)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?(1)由题意可得:100=vt,则v=;(2)∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥=20,答:平均每小时至少要卸货20吨.20.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为.求反比例函数的表达式;求点F的坐标.解:反比例函数的图象经过点A,A点的坐标为,,反比例函数的解析式为;过点A作轴于点M,过点C作轴于点N,由题意可知,,,点C的坐标为,设,则,,在中,,解得:,点B的坐标为,设直线BC的函数表达式为,直线BC过点,,,解得:,直线BC的解析式为,根据题意得方程组,解此方程组得:或点F在第一象限,点F的坐标为21.已知函数.若它是正比例函数,则 ______ ;若它是反比例函数,则 ______ .解:是正比例函数,,,是反比例函数,,,,故答案为:3,.根据是常数,是正比例函数,可得m的值;根据是常数,是反比例函数,可得m的值.人教版数学九年级下册 第二十六章 反比例函数 单元训练题 含答案人教版数学九年级下册 第二十六章 反比例函数 单元训练题1. 函数y =m (m -1)x是反比例函数,则m 必须满足( )A .m ≠1B .m ≠0或m ≠1C .m ≠0D .m ≠0且m ≠12. 若反比例函数y =m +1x的图象在第一、三象限,则m 的取值范围是( )A .m >-1B .m ≥-1C .m <-1D .m ≤-1 3. 如图所示,直线y =x 与双曲线y =kx (k>0)的一个交点为A ,且OA=2,则k 的值为( )A .1B .2 C. 2 D .2 24.对于反比例函数y =2x ,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第一、三象限D .当x>0时,y 随x 的增大而增大5.已知两点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y =3x 的图象上,当x 1>x 2>0时,下列正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<0 6.若双曲线y =kx 与直线y =2x +1的一个交点的横坐标为-1,则k的值为( )A .-1B .1C .-2D .27.已知过原点的一条直线与反比例函数y =kx (k ≠0)的图象交于A ,B两点,若A 点坐标为(a ,b),则B 点坐标为( )A .(a ,b)B .(b ,a)C .(-b ,-a)D .(-a ,-b) 8.反比例函数y =kx 在第一象限的图象如图所示,则k 的值可能是( )A .1B .2C .3D .49. 如图,已知反比例函数y =kx(x>0),则k 的范围是( )A .1<k<2B .2<k<3C .2<k<4D .2≤k ≤4 10.如图所示是三个反比例函数y =k 1x ,y =k 2x ,y =k 3x 在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系是( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 11. 反比例函数y =13x的比例系数为_________.12.已知一个函数的图象与y =6x的图象关于y 轴对称,则该函数的表达式为____.13.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系为 ___________.(不考虑x 的取值范围) 14.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图,当V =2 m 3时,气体的密度是____kg/m 3.15.如图,P 是反比例函数y =k x 的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为6,则这个反比例函数的比例系数是____.16.反比例函数y =8x的图象与一次函数y =kx +k 的图象在第一象限交于点B (4,n ),则k =_____,n =_______.17.直线y =ax +b (a >0)与双曲线y =3x相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 1+x 2y 2的值为____.18.如图,在反比例函数y =2x(x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=___________.19. 已知反比例函数y =(2k -3)xk 2-5的图象在所在的象限内,y 随x 的增大而增大,则k =______.20. 直线y =kx +b 过第一、三、四象限,则双曲线y =kbx的图象在第__________象限.21. 下列各式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)x =-25y ;(2)-xy -2=0.22. 在下列函数中,m 为何值时,y 是x 的反比例函数? (1)y =m 2-4x ;(2)y =(m +1)xm 2-2.23. 已知点A(x 1,y 1)和点B(x 2,y 2)都在y =6x 的图象上,若x 1·x 2=4,求y 1·y 2的值.24. 如图,一次函数y =kx +b 与反比例函数y =6x (x>0)的图象交于A(m ,6),B(3,n)两点. (1) 求一次函数的表达式;(2) 根据图象写出kx +b -6x <0的x 的取值范围.25. 如图,直线y =k 1x +b 与双曲线y =k 2x 只有一个交点A (1,2),且与x 轴、y 轴分别交于B ,C 两点,AD 垂直平分OB ,垂足为D ,求直线、双曲线的表达式.26. 如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.(1)求y与x之间的函数关系式;(2)若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC的长都是整米数,求出满足条件的所有围建方案.26. 制作一种产品,需先将材料加热达到60 ℃,再进行操作,该材料温度为y(℃),从加热开始计算的时间为x(分钟),据了解,该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例函数关系(如图所示).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1) 分别求出将材料加热和停止加热进行操作时,y与x的函数表达式;(2) 根据工艺要求,当材料的温度低于15 ℃时,须停止操作,那么从开始加热到停止操作,共经历了多长时间?参考答案:1---10 DABCA BDCCC 11. 1312. -6x13. y =90x14. 4 15. -6 16. 25 217. 6 18. 3219. 2 20. 二、四21. 解:(1)是,k =-25(2)是,k =-222. 解:(1)根据题意有m 2-4≠0,即:m≠±2 (2)根据题意有m 2-2=-1,且m +1≠0,解得m =123. 解:根据题意x 1·y 1=6,x 2·y 2=6,所以x 1·x 2·y 1·y 2=36,因为x 1·x 2=4,所以y 1·y 2=924. 解:(1)根据题意知A(1,6),B(3,2),∴⎩⎪⎨⎪⎧2=3k +b 6=k +b ,∴⎩⎪⎨⎪⎧k =-2b =8,∴一次函数表达式为y =-2x +8 (2)0<x<1或x>325. 解:根据题意知D(1,0),B(2,0),∵A(1,2)在y =k 2x 上,∴k 2=2,又A(1,2),B(2,0)在y =k 1x +b 上,∴⎩⎪⎨⎪⎧2=k 1+b 0=2k 1+b ,∴⎩⎪⎨⎪⎧k 1=-2b =4∴y =2x,y =-2x +426. 解:(1)y =9x +15(0≤x<5),y =300x (x ≥5) (2)由y =300x =15得x =20,∴共经历了20分钟人教版九年级下册数学《第26章反比例函数》单元测试题(解析版)一.选择题(共10小题)1.若函数y=(m﹣1)是反比例函数,则m的值是()A.±1B.﹣1C.0D.12.反比例函数y=的图象如图,则函数y=﹣kx+2的图象可能是()A.B.C.D.3.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小5.如图,点A在反比例函数y=的图象上,AM⊥y轴于点M,P是x轴上一动点,当△APM的面积是4时,k的值是()A.8B.﹣8C.4D.﹣46.若点A(a,b)在双曲线上,则代数式2ab﹣4的值为()A.﹣1B.1C.6D.97.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=8.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>29.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=10.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A.2B.2C.D.2二.填空题(共8小题)11.请写出一个过点(﹣1,1),且函数值y随自变量x的增大而增大的函数表达式.12.如图,点A在双曲线y=上,AB⊥x轴于B,且△AOB的面积S=1,则k=.△AOB13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.如图,直线y1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是.16.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.17.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.18.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为.三.解答题(共8小题)19.画出函数y=(x>0)的图象.20.已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4.求y的取值范围.21.已知反比例函数y=,分别根据下列条件求出字母k的取值范围.(1)函数的图象位于一、三象限;(2)在第二象限内,y随x的增大而增大.22.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S.△AOB23.已知:点P(m,4)在反比例函数y=﹣的图象上,正比例函数的图象经过点P和点Q(6,n).(1)求正比例函数的解析式;(2)求P、Q两点之间的距离.24.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.25.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X 轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).26.一次函数y=kx+b的图象是直线l,点A(,)在反比例函数y=的图象上.(1)求m的值;(2)如图,若直线l与反比例函数的图象相交于M、N两点,不等式kx+b>的解集为1<x<2,求一次函数的表达式;(3)当b=4时,一次函数与反比例函数的图象有两个交点,求k的取值范围.2019年春人教版九年级下册数学《第26章 反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题)1.若函数y =(m ﹣1)是反比例函数,则m 的值是( ) A .±1B .﹣1C .0D .1【分析】根据反比例函数的定义.即y =(k ≠0),只需令m 2﹣2=﹣1,m ﹣1≠0即可.【解答】解:∵y =(m ﹣1)是反比例函数,∴.解之得m =﹣1. 故选:B .【点评】本题考查了反比例函数的定义,特别要注意不要忽略k ≠0这个条件.2.反比例函数y =的图象如图,则函数y =﹣kx +2的图象可能是( )A .B .C .D .【分析】直接利用反比例函数的性质得出k 的符号,再利用一次函数的性质得出答案.【解答】解:∵反比例函数y =的图象分布在第二、四象限,则﹣k>0,∴函数y=﹣kx+2的图象可能是:.故选:B.【点评】此题主要考查了一次函数以及反比例函数的性质,正确掌握函数图形与系数之间的关系是解题关键.3.正比例函数y=2x和反比例函数的一个交点为(1,2),则另一个交点为()A.(﹣1,﹣2)B.(﹣2,﹣1)C.(1,2)D.(2,1)【分析】根据反比例函数的关于原点对称的性质知,正比例函数y=2x和反比例函数的另一个交点与点(1,2)关于原点对称.【解答】解:∵正比例函数y=2x和反比例函数的一个交点为(1,2),∴另一个交点与点(1,2)关于原点对称,∴另一个交点是(﹣1,﹣2).故选:A.【点评】本题考查了反比例函数图象的对称性.关于原点对称的两点的横纵坐标互为相反数.4.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.5.如图,点A在反比例函数y=的图象上,AM⊥y轴于点M,P是x轴上一动点,当△APM的面积是4时,k的值是()A.8B.﹣8C.4D.﹣4【分析】设点A的坐标为:(x,),根据三角形的面积公式计算即可.【解答】解:设点A的坐标为:(x,),由题意得,×|x|×||=4,解得,|k|=8,∵反比例函数y=的图象在第四象限,∴k=﹣8,故选:B.【点评】本题考查的是反比例函数系数k的几何意义,反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.6.若点A(a,b)在双曲线上,则代数式2ab﹣4的值为()A.﹣1B.1C.6D.9【分析】由点A(a,b)在双曲线上,可得ab=5,则可求2ab﹣4的值.【解答】解:∵点A(a,b)在双曲线上,∴ab=5∴2ab﹣4=10﹣4=6故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,关键是掌握图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y=(k≠0),把(1,﹣2)代入得:k=﹣2,则反比例函数解析式为y=﹣,故选:D.【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.8.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.9.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.10.如图所示,反比例函数y=(k≠0,x>0)的图象经过矩形OABC的对角线AC的中点D.若矩形OABC的面积为8,则k的值为()A.2B.2C.D.2【分析】过D作DE⊥OA于E,设D(a,),于是得到OA=2a,OC=,根据矩形的面积列方程即可得到结论.【解答】解:如图,过D作DE⊥OA于E,设D(a,),∴OE=a.DE=,∵点D是矩形OABC的对角线AC的中点,∴OA=2a,OC=,∵矩形OABC的面积为8,∴OA•OC=2a•=8,∴k=2,故选:A.【点评】本题考查了反比例函数系数k的几何意义,矩形的性质,根据矩形的面积列出方程是解题的关键.二.填空题(共8小题)11.请写出一个过点(﹣1,1),且函数值y随自变量x的增大而增大的函数表达式y=x+2.【分析】设此函数为一次函数,其解析式为y=kx+b,根据该函数的增减性确定其比例系数的取值,然后代入已知点后即可求得其解析式.【解答】解:如果此函数为一次函数,∵函数值y随自变量x的增大而增大,∴可设解析式为:y=x+b,∵图象经过点(﹣1,1),∴1=﹣1+b,解得:b=2;∴解析式为:y=x+2(答案不唯一).故答案为y=x+2.【点评】本题考查了函数的性质,也可以举反比例函数或二次函数的例子.12.如图,点A在双曲线y=上,AB⊥x轴于B,且△AOB的面积S=1,则k=2.△AOB【分析】由S的面积利用反比例函数系数k的几何意义可求出k值,结合反比例函数在△AOB第一象限有图象,即可确定k的值,此题得解.【解答】解:∵点A在双曲线y=上,AB⊥x轴于B,=|k|=1,∴S△AOB∴k=±2.∵反比例函数y=在第一象限有图象,∴k=2.故答案为:2.【点评】反比例函数系数k的几何意义,牢记反比例函数系数k的几何意义是解题的关键.13.若点A(1,2)、B(﹣2,n)在同一个反比例函数的图象上,则n的值为﹣1.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=1×2=﹣2n,然后解关于n的方程即可.【解答】解:设反比例函数解析式为:y=,根据题意得:k=1×2=﹣2n,解得n=﹣1.故答案为:﹣1.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.如图,直线y1=x+2与双曲线y2=交于A(2,m)、B(﹣6,n)两点.则当y1≤y2时,x的取值范围是x≤﹣6或0<x≤2.【分析】当y1≤y2时,x的取值范围就是当y1的图象与y2重合以及y1的图象落在y2图象的下方时对应的x的取值范围.【解答】解:根据图象可得当y1≤y2时,x的取值范围是:x≤﹣6或0<x≤2.故答案为x≤﹣6或0<x≤2.【点评】本题考查了反比例函数与一次函数图象的交点问题,理解当y1≤y2时,求x的取值范围就是求当y1的图象与y2重合以及y1的图象落在y2图象的下方时对应的x的取值范围,解答此题时,采用了“数形结合”的数学思想.16.把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【分析】利用长方体的体积=圆柱体的体积,进而得出等式求出即可.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.【点评】此题主要考查了根据实际问题列反比例函数解析式,得出长方体体积是解题关键.17.已知A(m,3)、B(﹣2,n)在同一个反比例函数图象上,则=.【分析】设反比例函数解析式为y=(k为常数,k≠0),根据反比例函数图象上点的坐标特征得到k=3m=﹣2n,即可得的值.【解答】解:设反比例函数解析式为y=,根据题意得:k=3m=﹣2n∴=﹣故答案为:﹣.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.18.如图,在平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,则k的值为12.【分析】根据题意和旋转的性质,可以得到点C的坐标,由点C在反比例函数y=的图象上,从而可以得到k的值,本题得以解决.【解答】解:∵OB在x轴上,∠ABO=90°,点A的坐标为(2,4),将△AOB绕点A逆时针旋转90°,点O的对应点C恰好落在反比例函数y=的图象上,∴点C的坐标为(6,2),∴2=,解得,k=12,故答案为:12.【点评】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化﹣旋转,解答本题的关键是明确题意,利用数形结合的思想解答.三.解答题(共8小题)19.画出函数y=(x>0)的图象.【分析】找出部分反比例函数图象上点的坐标,列表、描点、连线即可画出反比例函数图象.【解答】解:列表如下:描点,连线,画出函数图象,如图所示.【点评】本题考查了反比例函数的图象,熟练掌握反比例函数图象的画法是解题的关键.20.已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4.求y的取值范围.【分析】(1)根据反比例函数的定义设出表达式,再利用待定系数法解出系数则可;(2)分别代入x 的值求得y 值后即可求得y 的取值范围;【解答】解:(1)设反比例函数是y =(k ≠0), 当x =3时,y =8,代入可解得k =24.所以y =.(2)当x =3时,y =8,当x =4时,y =6,∴自变量x 的取值范围为3≤x ≤4.y 的取值范围为6≤y ≤8.【点评】本题考查了反比例函数的性质及反比例函数的定义,能够利用待定系数法确定反比例函数的解析式是解答本题的关键,难度不大.21.已知反比例函数y =,分别根据下列条件求出字母k 的取值范围.(1)函数的图象位于一、三象限; (2)在第二象限内,y 随x 的增大而增大.【分析】根据反比例函数的性质,k >0时,函数图象位于一三象限,y 随x 的增大而减小;k <0时,函数图象位于二四象限,y 随x 的增大而增大.【解答】解:(1)函数图象位于第一、三象限;根据反比例函数的性质,4﹣k >0,k <4; (2)在每一象限内,y 随x 的增大而增大;根据反比例函数的性质,4﹣k <0,k >4.【点评】本题考查了反比例函数的性质,应注意y =中k 的取值.22.已知双曲线y =如图所示,点A (﹣1,m ),B (n ,2).求S △AOB .【分析】根据点A 、B 两点在反比例函数图象上得其坐标,再根据S △AOB =S 矩形ODEC ﹣S △AOC﹣S △BOD ﹣S △ABE 可得答案.【解答】解:将点A (﹣1,m )、B (n ,2)代入y =,得:m =6、n =﹣3,如图,过点A 作x 轴的平行线,交y 轴于点C ,过点B 作y 轴的平行线,交x 轴于点D ,交CA 于点E ,则DE =OC =6、BD =2、BE =4、OD =3,AC =1、AE =2, ∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×6﹣×1×6﹣×3×2﹣×2×4 =8.【点评】本题主要考查反比例函数系数k 的几何意义,熟练掌握割补法求三角形的面积是解题的关键.23.已知:点P (m ,4)在反比例函数y =﹣的图象上,正比例函数的图象经过点P 和点Q (6,n ).(1)求正比例函数的解析式; (2)求P 、Q 两点之间的距离.【分析】(1)设正比例函数解析式为y =kx (k ≠0),把点P 的坐标代入反比例函数解析式求出m 的值,从而得到点P 的坐标,然后代入正比例函数解析式求解即可; (2)把点Q 的坐标代入正比例函数解析式求出n ,根据两点间的距离公式即可得到结论. 【解答】解:(1)设正比例函数解析式为y =kx (k ≠0),∵点P (m ,4)在反比例函数y =﹣的图象上,∴﹣=4,解得m =﹣3,∴P 的坐标为(﹣3,4), ∵正比例函数图象经过点P , ∴﹣3k =4,解得k =﹣,∴正比例函数的解析式为y =﹣x ;(2)∵正比例函数图象经过点Q(6,n),∴n=﹣×6=﹣8,∴点Q(6,﹣8),∴P、Q两点之间的距离==15.【点评】本题考查了反比例函数与一次函数的交点问题,三角形的面积,(2)利用两个三角形的差表示出△MPQ的面积是解题的关键,也是本题的难点,注意要分情况讨论.24.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.。
人教版数学九年级下册第26章测试题含答案
人教版数学九年级下册第26章测试题含答案26.1角反比例函数一、单选题1.函数 y =m x 与y=-mx 2+m (m≠0)在同一直角坐标系中的大致图像可能是( ) A. B. C.D.2.若反比例函数 y =1−k x 的图像分布在第二、四象限,则k 的取值范围是( ) A. k < 12 B. k > 12 C. k >1 D. k <1 3.已知反比例函数 y =−6x ,下列说法中正确的是( )A. 该函数的图像分布在第一、三象限B. 点(-4,-3)在函数图像上C. y 随x 的增大而增大D. 若点(-2,y 1)和(-1,y 2)在该函数图像上,则y 1<y 24.关于反比例函数y =﹣ 12x ,下列说法不正确的是( )A. 函数图象分别位于第二、四象限B. 函数图象关于原点成中心对称C. 函数图象经过点(﹣6,﹣2)D. 当x <0时,y 随x 的增大而增大 5.函数y =kx ﹣3与y = (k≠0)在同一坐标系内的图象可能是( )A. B. C. D.6.已知反比例函数的图象经过点(1,3),则这个反比例函数的表达式为( )A. y= -3xB. y= 3xC. y= 13xD. y=- 13x7.若点 A(−3,y 1) , B(−2,y 2) , C(3,y 3) 在反比例函数 y =−1x 的图象上,则 y 1,y 2,y 3 大小关系是( )A. y 1<y 2<y 3B. y 1<y 3<y 2C. y 2<y 1<y 3D. y 3<y 1<y 28.下列关系式中,表示y 是x 的反比例函数的是( )A. y =3x 2B. y =x 2C. y =1x +2D. y =1x 9.若反比例函数y=2m−1x 的图象在第二,四象限,则m 的值是( ) A. m> 12 B. m< 12 C. m>2 D. m<210.下列关系式中,y 是x 的反比例函数的是( )A. y=5xB. y x =3C. y= −1x D. y=x 2-3 11.当压力F(N)一定时,物体所受的压强P(Pa)与受力面积S(m 2)的函数关系式为P= F S (S≠0),这个反比例函数的图象大致是( ) A. B. C.D.二、填空题12.若点 A(−2,4) 在反比例函数 y =k x 的图象上,则 k 的值为________. 13.如果反比例函数 y =2−k x ( k 为常数)的图象在二、四象限,那么 k 的取值范围是________14.已知反比例函数 的图象在第二、四象限内,那么k 的取值范围是________.15.如图,经过原点的直线与反比例函数y= k x (k>0)相交于A ,B 两点,BC ⊥x 轴。
人教版九年级下册数学 第26章 反比例函数 单元测试卷(含答案解析)
人教版九年级下册数学第26章反比例函数单元测试卷一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=23.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.45.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y17.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y18.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣1010.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x 成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:日销售单价x3456(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个【分析】利用反比例函数定义可得答案.【解答】解:①y=﹣2x是正比例函数;②y=是反比例函数;③y=x﹣1是反比例函数;④y=2x2+1是二次函数,反比例函数共6个,故选:C.2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=2【分析】利用反比例函数的性质以及反比例函数图象上点的坐标特点可得答案.【解答】解:A、图象关于原点对称;B、在每一象限内y随x的增大而减小;C、图象分别位于第一,故原题说法正确;D、若点M(a,则ab=2;故选:B.3.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)【分析】根据反比例函数图象上点的坐标特征对各选项进行逐一判断即可.【解答】解:A、∵2×4=3≠﹣8;B、∵2×(﹣5)=﹣8;C、∵﹣4×(﹣4)=8≠﹣8;D、∵2×2=8≠﹣7.故选:B.4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.4【分析】根据反比例函数k的几何意义可得|k|=2,再根据图象所在的象限,得出k的值.【解答】解:由反比例函数k的几何意义可得,|k|=3,∴k=±4,又∵图象在第二象限,即k<0,∴k=﹣2,故选:A.5.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.【分析】直接利用反比例函数以及一次函数图象分析得出答案.【解答】解:∵一次函数y=x+a(a≠0),∴一次函数图象y随x增大而增大,故A,D不符合题意;在B中,反比例函数过一,故a>0、三、四象限,不合题意;在C中,反比例函数过一,故a>7、二、四象限,符合题意;故选:C.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y1【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【解答】解:∵在反比例函数y=中,k=1>6,∴此函数图象在一、三象限,∵﹣2<﹣1<6,∴点A(﹣1,y1),B(﹣2,y2)在第三象限,∴y1<y4<0,∵3>7,∴C(3,y3)点在第一象限,∴y5>0,∴y1,y7,y3的大小关系为y3>y7>y1.故选:D.7.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】依据反比例函数,可得函数图象在第一、三象限,在每个象限内,y随着x 的增大而减小,进而得到y1,y2,y3的大小关系.【解答】解:∵反比例函数,∴函数图象在第一、三象限,y随着x的增大而减小,又∵x1<x7<0<x3,∴y7<0,y2<8,y3>0,且y3>y2,∴y2<y8<y3,故选:B.8.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.【分析】根据A、B的坐标分别是(0,3)、(3、0)可知OA=OB=3,进而可求出AB2,通过作垂线构造等腰直角三角形,求得BC2=2CD2,设CD=BD=m,则C(3+m,m),代入y=,求得m的值,即可求得BC2,根据勾股定理即可求出AC的长.【解答】解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0、(3,∴OA=OB=4,在Rt△AOB中,AB2=OA2+OB6=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,设CD=BD=m,∴C(3+m,m),∵函数y=(x>4)的图象经过点C,∴m(3+m)=4,解得m=3或﹣4(负数舍去),∴CD=BD=1,∴BC5=2,在Rt△ABC中,AB2+BC5=AC2,∴AC==4故选:B.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣10【分析】根据题意m=,n=,然后根据勾股定理得到32+()2=22+()2,解得k=﹣6.【解答】解:∵点E、F都在反比例函数y=,E(﹣3、F(﹣2,∴m=,n=,∵OE=OF,∴38+()2=82+()8,整理得k2=36,∵k<0,∴k=﹣7,故选:B.10.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8【分析】作DM⊥x轴于M,BN⊥x轴于N,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN得到DM=AN=2,AM=BN=2,则D(﹣3,2),根据待定系数法即可求得m 的值.【解答】解:作DM⊥x轴于M,BN⊥x轴于N,∵点A的坐标为(﹣1,0),∴OA=3,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为2,把x=1代入y=,得y=4,∴B(1,2),∴BN=4,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=8+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×6=﹣6,故选:C.二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.【分析】首先设y=,然后求出反比例函数解析式,再代入x的值,进而可得y的值.【解答】解:设y=,∵当x=3时,y=﹣4,∴﹣7=,解得:k=﹣12,∴反比例函数关系式为:y=﹣,∵x=﹣2,∴y=﹣=6,故答案为:6.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是k1>k2>k3.【分析】根据题意和反比例函数的图象,可以得到k1,k2,k3的大小关系,从而可以解答本题.【解答】解:由图象可得,k1>0,k6<0,k3<8,∵点(﹣1,﹣)在y2=的图象上,)在y3=的图象上,∴﹣<,∴k6>k3,由上可得,k1>k5>k3,故答案为:k1>k5>k3.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.【分析】利用反比例函数的性质可得m﹣2>0,再解即可.【解答】解:∵当x>0时,y随x的增大而减小,∴m﹣2>6,解得:m>2,∴m可以是4,故答案为:7.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式y=﹣.【分析】根据反比例函数y=中k=xy,得到n=3(n+6),解方程求得n的值,即可求得反比例函数的解析式.【解答】解:设反比例函数解析式为y=,由题意得,k=n=3(n+6),解得n=﹣6,k=﹣9,∴反比例函数的解析式为y=﹣,故答案为y=﹣.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.【分析】证明△BOC的面积=△AOC的面积,而△AOC的面积=|k|=×6=3,即可求解.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积,又∵A是反比例函数y=图象上的点,∴△AOC的面积=|k|=,则△ABC的面积为7,故答案为6.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.【分析】根据反比例函数k的几何意义得,S△OAE=S△OCD=|k|,根据OABC是矩形,求出S△OEB=S△ODB=S四边形ODBE=2,再根据BD=2CD,进而S△OAE=S△OEB=1=|k|,求出k的值即可.【解答】解:连接OB,由反比例函数k的几何意义得,S△OAE=S△OCD=|k|,∵OABC是矩形,∴S△OAB=S△OBC,∴S△OEB=S△ODB=S四边形ODBE=2,∵BD=6CD,∴S△OAE=S△OEB=7=|k|,∴k=2或k=﹣2(舍去),故答案为2.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.【分析】(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率;(2)用列表法表示所有可能出现的结果情况,得出点(x,y)在反比例函数图象上的情况,进而求出概率.【解答】解:(1)共有四个数,其中两个负数=;故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x图象上的有4种,因此点(x,y)在反比例函数y==.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.【分析】(1)将点A坐标代入直线解析式可求m的值,再将点A坐标代入反比例函数解析式可求k的值;(2)解析式联立成方程组,解方程组求得B的坐标,然后根据函数的图象即可求得不等式2x+2>的解集.(3)由直线解析式求得直线与x轴的交点坐标,然后设出Q的坐标,根据三角形面积公式得到•|a+1|•(2+1)=6,解得a的值,即可求得点Q的坐标.【解答】解:(1)∵点A(1,m)在直线y=2x+8上,∴m=2×1+2=4,∴点A的坐标为(1,7),代入函数y=(k≠0)中,∴k=4.(2)解得或,∴B(﹣2,﹣3),∴关于x的不等式2x+2>的解集是﹣5<x<0或x>1.(3)在y=7x+2中令y=0,解得x=﹣4,0).设点Q的坐标是(a,0).∵△ABQ的面积是6,∴•|a+5|•(2+4)=8,则|a+1|=2,解得a=8或﹣3.则点Q的坐标是(﹣3,3)或(1.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?【分析】(1)先把点A的坐标代入y=,求出m的值得到反比例函数解析式,再求点B 的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积﹣三角形BOC的面积即可求解;(3)观察函数图象即可求得.【解答】解:(1)把A(2,﹣4)的坐标代入y=,∴反比例函数的解析式是y=﹣;把B(a,﹣1)的坐标代入y=﹣,解得:a=8,∴B点坐标为(8,﹣6),把A(2,﹣4),﹣4)的坐标代入y=kx+b,解得:,∴一次函数解析式为y=x﹣5;(2)设直线AB交x轴于C.∵y=x﹣5,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积﹣三角形BOC的面积=×10×4﹣=15;(3)由图象知,当0<x<7或x>8时.20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.【分析】由正方形OABC的边长是4,得到点M的横坐标和点N的纵坐标为4,求得M(4,),N(,4),根据三角形的面积列方程得到M,N的坐标,然后利用待定系数法确定函数关系式.【解答】解:∵正方形OABC的边长是4,∴点M的横坐标和点N的纵坐标为4,∴M(2,),N(,∴BN=4﹣,BM=4﹣,∵△OMN的面积为6,∴4×4﹣×4×﹣﹣(4﹣)4=6,解得k=8.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)把y=3分别代入正比例函数和反比例函数解析式求出自变量的值,进而得出答案.【解答】解:(1)有图象知,a=3;又由题意可知:当3≤x≤4时,y与x成反比,设.由图象可知,当x=3时,∴m=3×5=18;∴y=(3≤x≤8);(2)把y=7分别代入y=2x和y =得,x=1.5和x=6,∵6﹣2.5=4.6>4,∴抗菌新药可以作为有效药物投入生产.22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:3456日销售单价x(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?【分析】(1)由表知xy=60,据此可得y =(x>0),画出函数图象可得;(2)根据总利润=每个口罩的利润×口罩的日销售数量可得函数解析式;(3)根据反比例函数的性质求解可得.【解答】解:(1)由表可知,xy=6000,∴y = (x>0);(2)根据题意,得:W=(x﹣2)•y=(x﹣5)•=6000﹣;(3)∵x≤10,∴6000﹣≤4800,即当x=10时,W取得最大值,答:当日销售单价x定为10元/个时,才能获得最大日销售利润.。
【初三数学】济南市九年级数学下(人教版)第二十六章《反比例函数》单元检测试卷(含答案)
人教版九年级数学下册 第26章 反比例函数 单元测试 A 卷一、单选题1.下列函数中,图象经过点(1,-1)的反比例函数解析式是( ) A. 1y x =B. 2y x =C. 1y x =-D. 2y x=- 2.反比例函数y=2x -1的大致图象为( )A. B. C. D.3.如图,在平面直角坐标系中,□ABCD 的顶点B 、C 在x 轴上,A 、D 两点分别在反比例函数k x y =(k <0,x <0)与1xy =(x >0)的图像上,若□ABCD 的面积为4,则k 的值为( )A. -1B. -2C. -3D. -54.一次函数y=kx —1 与 反比例函数()0ky k x=≠的图像的形状大致是( ) A. B. C. D.5.如图,直线y =x 与双曲线y =kx(k >0)的一个交点为A ,且OA =2,则k 的值为( )A. 1B. 2C.6.二次函数y=ax 2+bx+c 的图象如图所示,则反比例函数 与一次函数y=bx+c 在同一坐标系中的大致图象是( )A. B. C. D.7.若11,2M y ⎛⎫-⎪⎝⎭, 21,4N y ⎛⎫- ⎪⎝⎭, 31,2P y ⎛⎫ ⎪⎝⎭ 三点都在函数(0)k y k x =<的图象上,则123,y y y 的大小关系为( )A. 231y y y >>B. 213y y y >>C. 312y y y >> D . 321y y y >> 8.如图,已知直线y =12x 与双曲线y =kx(k>0)交于A ,B 两点,且点A 的横坐标为4.点C 是双曲线上一点,且纵坐标为8,则△AOC 的面积为( )A. 8B. 32C. 10D. 159.如图,在平面直角坐标系中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,∠BOC=60°,顶点C 的坐标为(m,33),反比例函数ky x=的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是( )B. - D. -10.若,两点均在函数的图像上,且<,则-的值为()A. 正数 B. 负数 C. 零 D. 非负数二、填空题11.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m3)是体积V(m3)的反比例函数,它的图象如图所示.当V=5m3时,气体的密度是__________kg/m3 .12.正比例函数y1=mx(m>0)的图象与反比例函数y2=kx-1(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AM B面积为8,则满足y1>y2的实数x取值范围是__________.13.(2016·宁波中考)如图,点A为函数y=9x(x>0)图象上一点,连接OA,交函数y=1x(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.14.如图,点A在双曲线y=上,点B在双曲线y=(k≠0)上,AB∥x轴,过点A作AD⊥x轴于D.连接OB,与AD相交于点C,若AC=2CD,则k=__.15.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为_____.三、解答题16.如图,一次函数y=x+1与反比例函数y=kx的图象交于A ,B 两点,已知点A 的坐标为(1,a ),点B 的坐标为(b ,﹣1). (1)求此反比例函数的解析式;(2)当一次函数y=x+1的值大于反比例函数y=kx的值时,求自变量x 的取值范围.17.如图,一次函数1y kx b =+的图象与反比例函数2(0)my x x=>的图象交于A (1,6),B (a ,2)两点.(1)求一次函数与反比例函数人教版数学九年级下册 第二十六章 反比例函数 单元训练题 含答案人教版数学九年级下册 第二十六章 反比例函数 单元训练题1. 函数y =m (m -1)x是反比例函数,则m 必须满足( )A .m ≠1B .m ≠0或m ≠1C .m ≠0D .m ≠0且m ≠1 2. 若反比例函数y =m +1x的图象在第一、三象限,则m 的取值范围是( )A .m >-1B .m ≥-1C .m <-1D .m ≤-1 3. 如图所示,直线y =x 与双曲线y =kx (k>0)的一个交点为A ,且OA=2,则k 的值为( )A .1B .2 C. 2 D .2 24.对于反比例函数y =2x ,下列说法正确的是( )A .点(-2,1)在它的图象上B .它的图象经过原点C .它的图象在第一、三象限D .当x>0时,y 随x 的增大而增大5.已知两点P 1(x 1,y 1),P 2(x 2,y 2)在反比例函数y =3x 的图象上,当x 1>x 2>0时,下列正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<0 6.若双曲线y =kx 与直线y =2x +1的一个交点的横坐标为-1,则k的值为( )A .-1B .1C .-2D .27.已知过原点的一条直线与反比例函数y =kx (k ≠0)的图象交于A ,B两点,若A 点坐标为(a ,b),则B 点坐标为( )A .(a ,b)B .(b ,a)C .(-b ,-a)D .(-a ,-b) 8.反比例函数y =kx 在第一象限的图象如图所示,则k 的值可能是( )A .1B .2C .3D .49. 如图,已知反比例函数y =kx(x>0),则k 的范围是( )A .1<k<2B .2<k<3C .2<k<4D .2≤k ≤4 10.如图所示是三个反比例函数y =k 1x ,y =k 2x ,y =k 3x 在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系是( )A .k 1>k 2>k 3B .k 3>k 2>k 1C .k 2>k 3>k 1D .k 3>k 1>k 2 11. 反比例函数y =13x的比例系数为_________.12.已知一个函数的图象与y =6x的图象关于y 轴对称,则该函数的表达式为____.13.若梯形的下底长为x ,上底长为下底长的13,高为y ,面积为60,则y 与x 的函数关系为 ___________.(不考虑x 的取值范围) 14.有一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(kg/m 3)是体积V (m 3)的反比例函数,它的图象如图,当V =2 m 3时,气体的密度是____kg/m 3.15.如图,P 是反比例函数y =k x 的图象上的一点,过点P 分别作x 轴、y 轴的垂线,得图中阴影部分的面积为6,则这个反比例函数的比例系数是____.16.反比例函数y =8x的图象与一次函数y =kx +k 的图象在第一象限交于点B (4,n ),则k =_____,n =_______.17.直线y =ax +b (a >0)与双曲线y =3x相交于A (x 1,y 1),B (x 2,y 2)两点,则x 1y 1+x 2y 2的值为____.18.如图,在反比例函数y =2x(x >0)的图象上,有点P 1,P 2,P 3,P 4,它们的横坐标依次为1,2,3,4.分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为S 1,S 2,S 3,则S 1+S 2+S 3=___________.19. 已知反比例函数y =(2k -3)xk 2-5的图象在所在的象限内,y 随x 的增大而增大,则k =______.20. 直线y =kx +b 过第一、三、四象限,则双曲线y =kbx的图象在第__________象限.21. 下列各式中的y 是x 的反比例函数吗?如果是,比例系数k 是多少?(1)x =-25y ;(2)-xy -2=0.22. 在下列函数中,m 为何值时,y 是x 的反比例函数?(1)y =m 2-4x ;(2)y =(m +1)xm 2-2.23. 已知点A(x 1,y 1)和点B(x 2,y 2)都在y =6x 的图象上,若x 1·x 2=4,求y 1·y 2的值.24. 如图,一次函数y =kx +b 与反比例函数y =6x (x>0)的图象交于A(m ,6),B(3,n)两点. (1) 求一次函数的表达式; (人教版九年级下册第二十六章《反比例函数》单元测试一、选择题1、如果反比例函数y=的图象经过点(3,﹣2),则k 的值是( )A .﹣6B .6C .﹣3D .32、若反比例函数的图象过点(2,1),则这个函数的图象一定过点 ( )A.(2,—1) B.(1,—2) C.(—2,1) D.(—2,—1)3、如图:反比例函数的图像如下,在图像上任取一点P,过P点作x轴的垂线交x轴于M,则三角形OMP的面积为A. 2B. 3C. 6D. 不确定4、如图,直线l是经过点(1,0)且与y轴平行的直线.Rt△ABC中直角边AC=4,BC=3.将BC 边在直线l上滑动,使A,B在函数y=的图象上.那么k的值是()A.3 B.6 C.12 D.5、函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A. B. C. D.6、如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2 B.3 C.4 D.57、如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<168、如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,2BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣ B.y=﹣ C.y=﹣ D.y=﹣9、如图所示,一张正方形的纸片,•剪去两个一样的小矩形得到一个“E”字形图案,设小矩形的长,宽分别为x,y,剪去部分的面积为20,若2≤x≤10,则y与x的函数关系的图象是下图中的()A B C D二、填空题10、若一个正比例函数的图象与一个反比例函数图象的一个交点坐标是(2,3),则另一个交点的坐标是.11、、已知反比例函数,当时,的取值范围是.12、如图,A,B是反比例函数y=图象上的两点,过点A作AC⊥y轴,垂足为C,AC交OB于点D.若D为OB的中点,△AOD的面积为3,则k的值为.13、如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为5面积单位,△EOF的面积为S,则S是面积单位。
人教版九年级数学下册《第26章反比例函数》单元测试卷(有答案)
人教版九年级数学下册第26章反比例函数单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 在下列函数中表示y是x的反比例函数的是()A.y=−2xB.y=2008xC.y=8x+1D.y=2x22. 已知点(1, 1)在反比例函数y=kx(k为常数,k≠0)的图象上,则这个反比例函数的大致图象是()A. B.C. D.3. 对于反比例函数y=−3x,下列说法正确的是()A.它的图象在第一、三象限B.点(1, 3)在它的图象上C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大4. 若反比例函数y=1x的图象上有两点P1(1, y1)和P2(2, y2),那么()A.y2<y1<0B.y1<y2<0C.y2>y1>0D.y1>y2>05. 在同一平面直角坐标系中,函数y=−x+k(−2<k<2)与y=1x的图象的公共点的个数是()A.0个B.1个C.2个D.3个6. 购买x斤水果需24元,购买一斤水果的单价y与x的关系式是()A.y=24x(x>0) B.y=24x(x为自然数)C.y=24x(x为整数) D.y=24x(x为正整数)7. 下列四个点中,有三个点在同一反比例函数y=kx的图象上,则不在这个函数图象上的点是()A.(5, 1) B.(−1, 5)C.(53, 3) D.(−3, −53)8. 已知反比例函数y=kx(k<0)的图象上有两点A(x1, y1),B(x2, y2),且0<x1<x2,设y1−y2=a,则()A.a>0B.a<0C.a≥0D.a≤09. 下列四个关系式中,y是x的反比例函数的是()A.y=4xB.y=13xC.y=1x2D.y=1x+1精品 Word 可修改欢迎下载10. 已知反比例函数y=m2x 的图象过点(−3, −12),且y=mx的图象位于二、四象限,则m的值为()A.36B.±6C.6D.−6二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 已知点(a, −1)在反比例函数y=2x的图象上,则a=________.12. 已知反比例函数y=kx(k≠0)的图象与正比例函数y=mx(m≠0)的图象交于点(2, 1),则其另一个交点坐标为________.13. 反比例函数y=(2k+1)x k2−2在每个象限内y随x的增大而增大,则k=________.14. 若点(√3,−√3)在反比例函数y=kx(k≠0)的图象上,则k=________.15. 已知反比例函数y=k−1x的图象在第二、四象限内,那么k的取值范围是________.16. 设函数y=x−3与y=2x 的图象的两个交点的横坐标为a、b,则1a+1b=________.17. 有一块长方形试验田面积为3×106m2,试验田长y(单位:m)与宽x(单位:m)之间的函数关系式是________.18. 已知反比例函数y=2x的图象经过点A(m, 1),则m的值为________.19. 已知函数y=(m2+2m−3)x|m|−2.(1)若它是正比例函数,则m=________;(2)若它是反比例函数,则m=________.20. 双曲线y=kx 的部分图象如图所示,那么k=________.三、解答题(本题共计 6 小题,每题 10 分,共计60分,)21. 已知函数y=2m+1x m2−24的图象是双曲线.(1)求m的值;(2)若该函数的图象经过第二、四象限,求函数的表达式.22. 已知反比例函数y=kx(k为常数,且k≠0)的图象经过点A(2, 3)(1)画出这个反比例函数的图象并观察,这个函数的图象位于哪些象限?y随x怎样变化?(2)判断点B(−1, 6),C(3, 2)是否在这个函数的图象上,并说明理由.精品 Word 可修改欢迎下载23. 在平面直角坐标系xOy中,已知:直线y=−x反比例函数y=kx的图象的一个交点为A(a, 3).(1)试确定反比例函数的解析式;(2)写出该反比例函数与已知直线l的另一个交点坐标.24. 已知反比例函数y=1−2mx的图象经过点(−1, 4).(1)试确定m的值;(2)图象经过哪些象限?(3)若A(−1, y1),B(−4, y2),C(1, y3)是该函数图象上的点,试比较y1,y2,y3的大小;(4)直接回答点D(2, −2),E(−14, 16)是否在这个函数的图象上.25. 已知A(x1, y1),B(x2, y2)是反比例函数y=−2x图象上的两点,且x2−x1=−2,x1⋅x2=3.(1)在图中用“描点”的方法作出此反比例函数的图象;(2)求y1−y2的值及点A的坐标;(3)若−4<y≤−1,依据图象写出x的取值范围.26. 某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)精品 Word 可修改欢迎下载答案1. B2. C3. D4. D5. A6. A7. B8. B9. B10. D11. −212. (−2, −1)13. −114. −315. k<116. −1.517. y=3×106x18. 219. 3;(2)若它是反比例函数,则|m|−2=−1,解得:m1=1,m2=−1,∴m=−1.故答案为:−1.20. 221. 解:(1)根据题意得:m2−24=1,解得:m=±5.(2)∵函数的图象经过第二、四象限,∴2m+1<0,解得m<−12,∴m=−5,∴函数的表达式y=−9x.22. 解:(1)∵反比例函数的图象经过点A(2, 3),如图,∴k=2×3=6>0,∴这个函数的图象分布在一三象限,且在每一象限内y随x的增大而减小;(2)∵(−1)×6=−6,2×3=6,∴点B(−1, 6)不在这个函数的图象上,点C(3, 2)在这个函数的图象上.23. 解:(1)因为A(a, 3)在直线y=−x上,则a=−3,即A(−3, 3),又因为A(−3, 3)在y=kx的图象上,可求得k=−9,所以反比例函数的解析式为y=−9x;(2)另一个交点坐标是(3, −3).24. 解:(1)∵反比例函数y=1−2mx的图象经过点(−1, 4),∴4=1−2m−1,∴m=52;(2)∵1−2m=−4<0,精品 Word 可修改欢迎下载精品 Word 可修改 欢迎下载∴图象经过二、四象限;(3)∵反比例函数为:y =−4x , ∵A(−1, y 1),B(−4, y 2),C(1, y 3)是该函数图象上的点, ∴y 1=4,y 2=1,y 3=−4,∴y 1,y 2,y 3的大小是y 1>y 2>y 3;(4)当x =2时,y =−2,当x =−14时,y =16, ∴D(2, −2),E(−14, 16)在这个函数的图象上. 25. 解(1),(2)∵x 2−x 1=−2,x 1⋅x 2=3, ∴y 1−y 2=−2x 1−(−2x 2)=2(x 1−x 2)x 1x 2=2×23=43;由x 1−x 2=2得x 2=x 1−2,代入x 1⋅x 2=3得:x 12−2x 1−3=0,解得x 1=−1或x 1=3,当x 1=−1时,y 1=−2−1=2; 当x 1=3时,y 2=−23,∴点A 的坐标(−1, 2)或(3, −23);(3)如图,当−4<y ≤−1时,x 的取值范围为12<x ≤2. 26. 解:(1)设p =kv , 由题意知120=k 0.8, 所以k =96, 故p =96v;(2)当v =1m 3时,p =961=96(kPa);(3)当p =140kPa 时,v =96140≈0.69(m 3).所以为了安全起见,气体的体积应不少于0.69m 3.。
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。
第二十六章 反比例函数数学九年级下册-单元测试卷-人教版(含答案)
第二十六章反比例函数数学九年级下册-单元测试卷-人教版(含答案)一、单选题(共15题,共计45分)1、下列语句.①横坐标与纵坐标互为相反数的点在直线y=-x上;②直线y=-x+2不经过第三象限;③除了用有序实数对,我们也可以用方向和距离来确定物体的位置;④若点P的坐标为(a,b),且ab=0,则P点是坐标原点;⑤函数中y的值随x的增大而减小.其中叙述正确的有()A.2个B.3个C.4个D.5个2、反比例函数的图象如图所示,则K的值可能是()A. B.1 C.2 D.-13、如图,反比例函数的图象与矩形ABCO的边AB、BC相交于E、F两点,点A、C 在坐标轴上.若,则四边形OEBF的面积为()A.1B.2C.3D.44、设P是函数在第一象限的图象上的任意一点,点P关于原点的对称点为P′,过P作PA平行于y轴,过P′作P′A平行于x轴,PA与P′A交于A点,则△PAP′的面积()A.随P点的变化而变化B.等于1C.等于2D.等于45、若反比例函数y=﹣的图象上有3个点A(x1, y1),B(x2, y2),C(x3,y3),且满足x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y3<y2<y1B.y3<y1<y2C.y1<y2<y3D.y2<y1<y36、已知点A(1,2)在反比例函数y=的图象上,则该反比例函数的解析式是( )A.y=B.y=C.y=D.y=2x7、关于函数,下列说法中错误的是()A.函数的图象在第二、四象限B. 的值随值的增大而增大C.函数的图象与坐标轴没有交点D.函数的图象关于原点对称8、已知反比例函数y=﹣,下列各点中,在其图象上的有()A.(﹣2,﹣3)B.(2,3)C.(2,﹣3)D.(1,6)9、已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.若此蓄电池为某用电器的电源,限制电流不能超过12A,那么用电器的可变电阻R应控制在什么范围?()A.R≥3ΩB.R≤3ΩC.R≥12ΩD.R≥24Ω10、已知双曲线y=过点A(1,1),那么过点A的直线y=kx+b经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限11、如图,一块含有30°的直角三角板的直角顶点和坐标原点重合,30°角的顶点在反比例函数的图象上,顶点B在反比例函数的图象上,则k的值为()A.-4B.4C.-6D.612、反比例函数是y= 的图象在()A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限13、在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度(单位:)与体积(单位:)满足函数关系式(为常数,),其图象如图所示,则的值为()A. B. C. D.14、如图,A、B两点在双曲线上,分别经过点A、B两点向x、y轴作垂线段,已知,则( )A.6B.5C.4D.315、已知y=2x,z=,那么z与x之间的关系是()A.成正比例B.成反比例C.有可能成正比例有可能成反比例D.无法确定二、填空题(共10题,共计30分)16、如图,点A是反比例函数(x>0)图象上一点,过点A作x轴的平行线,交反比例函数(x>0)的图象于点B,连接OA、OB,若△OAB的面积为2,则k的值为________.17、如图,已知点A的坐标为(,3),AB⊥x轴,垂足为B,连接OA,反比例函数y= (k>O,x>O)的图象与线段OA、OB分别交于点C、D,过点C作CE⊥x轴于E.若AB=3BD,则△COE的面积为________.18、某公司有500吨煤,这些煤所用天数y(天)与平均每天用煤量x(吨)的函数解析式为________ ,自变量x的取值范围是________ .19、如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y =的图象交于A,B两点,则四边形MAOB的面积为________.20、为预防传染病,某校定期对教室进行“药熏消毒”,已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例(如图所示).现测得药物10分钟燃烧完,此时教室内每立方米空气含药量为6mg.研究表明当每立方米空气中含药量低于1.2mg时,对人体方能无毒害作用,那么从消毒开始,至少需要经过________分钟后,学生才能回到教室.21、如图,直线与轴、轴分别相交于点A,B,四边形ABCD是正方形,曲线在第一象限经过点D,则=________.22、若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________23、司机老王驾驶汽车从甲地去乙地,他以80km/h的平均速度用6h达到目的地.当他按原路匀速返回时,汽车的速度v与时间t之间的函数关系式为________ .24、已知y与 2x成反比例,且当x=3时,y=,那么当x=2时,y=________,当y=2时,x=________ 。
人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案
人教版九年级数学下册《第二十六章 反比例函数》测试卷-含参考答案一、选择题1.下列关系式中,y 是x 反比例函数的是( ) A .y= 13 xB .y=- 3xC .y=3x 2D .y=6x+12.函数 y =(m +1)x m 2+m−1是反比例函数,则m 的值为( )A .0B .﹣1C .0或﹣1D .0或13.若点A(x 1,−5),B(x 2,2),C(x 3,5)都在反比例函数y =m 2+1x的图象上,则x 1,x 2,x 3的大小关系是( ) A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 3<x 1<x 24.函数y =x −a 与y =ax (a ≠0)在同一坐标系内的图象可以是( )A .B .C .D .5.反比例函数y =2−3k x的图象经过点(−2,5),则k 的值为( )A .10B .-10C .4D .-43⎛⎫2⎛⎫2⎛⎫7.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )A.y=100x B.y=x100C.y=400xD.y=x4008.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数y=kx(x>0)的图象经过顶点B,则k的值为()A.12 B.16 C.20 D.32二、填空题9.反比例函数y=m−5x,其图象分别位于第一、第三象限,则m的取值范围是.10.已知点P位于第三象限内,且点P到两坐标轴的距离分别为3和4,若反比例函数图象经过点P,则该反比例函数的解析式为.11.在平面直角坐标系xOy中,直线y=−2x与双曲线y=mx交于A,B两点,若点A,B的纵坐标分别为y1,y2,则−3y1−3y2的值为.12.如图,一次函数y1=k1x+b与反比例函数y2=k2x的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为−1,则不等式k1x+b<k2x的解集是.13.如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点P,点P在x轴上,若△ABP的面积是2,则k=.三、解答题14.已知道y=y 1+y 2,y 1与x 2成正比例,y 2与x+3成反比例.并且x=0时,y=2,x=1时,y=0.试求函数y 的解析式,并指出自变量的取值范围.15.如图,双曲线y 1=kx (k 为常数,且k ≠0)与直线y 2=﹣13x+b 交于点A (﹣2,a )和B (3c ,2﹣c ).(1)求k ,b 的值;(2)求直线与x 轴的交点坐标.17.某单位为响应政府发出的全民健身的号召,打算在长和宽分别为20m 和11m 的矩形大厅内修建一个60m2的矩形健身房ABCD. 该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为20元/m 2,新建(含装修)墙壁的费用为80元/m 2.设健身房的高为3m,一面旧墙壁AB 的长为xm,修建健身房墙壁的总投入为y 元. (1)求y 与x 的函数关系式;(2)为了合理利用大厅,要求自变量x 必须满足条件:8≤x ≤12, 当投入的资金为4800元时,问利用旧墙壁的总长度为多少?18.如图,已知一次函数y =ax +b(a,b 为常数,a ≠0)的图象与x 轴,y 轴分别交于点A ,B ,且与反比例函数y =kx (k 为常数,k ≠0)的图象在第二象限内交于点C ,作CD ⊥x 轴于D ,若OA =OD =34OB =3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax +b ≤kx的解集;(3)在y 轴上是否存在点P ,使得△PBC 是以BC 为一腰的等腰三角形?如果存在,请直接写出P 点的坐标;如果不存在,请简要说明理由.11m20mDCB A参考答案 1.B 2.A 3.C 4.D 5.C 6.A 7.A 8.D 9.m >5 10.y =12x11.012.-1<x <0或x >2 13.-414.解:∵y 1与x 2成正比例,y 2与x+3成反比例.∴y 1=k 1x 2,y 2= k2x+3∵y=y 1+y 2 ∴y=k 1x 2+k 2x+3∵x=0时,y=2,x=1时,y=0. ∴{k 23=2k 1+k 24=0解得k 1=﹣ 32 ,k 2=6∴y=﹣ 32 x 2+ 6x+3 (x ≠﹣3)15.(1)解:∵点B (3c ,2﹣c )在直线y 2=﹣13x+b 的图象上 ∴−13×3c +b =2−c 解得:b =2∴直线解析式为y 2=﹣13x+2∵点A (﹣2,a )在直线y 2=﹣13x+2的图象上∴a =−13×(−2)+2=83 ∴点A 坐标为(-2,83) ∵点A (-2,83)在y 1=k x 图象上 ∴83=k −2解得:k =−163.(2)解:∵直线解析式为y 2=﹣13x+2 ∴当y 2=0时,x=6∴直线与x 轴的交点坐标为(6,0). 16.(1)∵点A 、B 是反比例函数ky x=的图象上一点,AC x ⊥轴,BC y ⊥轴()3,4C - ∴3,3k A ⎛⎫ ⎪⎝⎭(),44kB --∵AB 经过原点∴A 、B 两点关于原点对称 ∴34k =∴12k =∴()3,4A ()3,4B -- ∴8AC = 6BC = ∴Rt ACB △的面积11862422AC BC =⋅=⨯⨯=; (2)∵()3,4A∴将()3,4A 代入y k x '=得43k '= 解得43k '=∴经过AB 两点的直线43y x =; 由图象可得当30x -<<或3x >时k k x x'>. 17.解:(1)根据题意,AB=x,AB ·BC=60,所以BC=60x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章《反比例函数》单元检测题
一、选择题
1.已知函数其中的图象如图所示,则函数的
大致图象是
A、A
B、B
C、C
D、D
2.函数的单调减区间是
A、B、C、D、
3.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P kPa是气体
体积V m的反比例函数,其图象如图所示当气球内的气压大于120kPa时,气球将爆炸为了安全起见,气球的体积应
A、不小于m
B、小于m
C、不小于m
D、小于m
A、A
B、B
C、C
D、D
4.下列关系式中,表示y是x的反比例函数的是
A、B、C、D、
5.已知变量x、y满足下面的关系:则之间用关系式表示为
x123
y13
A、B、C、D、
6.在反比例函数的图象的任一支上,y都随x的增大而增大,则k的值可以是
A、B、0C、1D、2
7.对于反比例函数,当自变量x的值从3增加到6时,函数值减少了1,则函数
的解析式为
A、B、C、D、
8.如果x与y满足,则y是x的
A、正比例函数
B、反比例函数
C、一次函数
D、二次函数
9.若反比例函数的图象经过点,则这个反比例函数的图象还经过点
A、B、C、D、
10.在平面直角坐标系中,有反比例函数与的图象和正方形ABCD,原点O
与对角线的交点重合,且如图所示的阴影部分面积为8,则AB的长是
A、2
B、4
C、6
D、8
二、填空题
11.如图,在平面直角坐标系中,M为y轴正半轴上一点,过点M的直线轴,l分别
与反比例函数和的图象交于A、B两点,若,则k的值为______ .
12.若反比例函数的图象过点,则其函数关系式为______ 。
13.若函数是反比例函数,则m的值等于______ 。
14.已知函数的图象经过点,如果点也在这个函数图象上,则
______ .
15.已知点A是函数的图象上的一点,过A点作轴,垂足为M,连接OA,
则的面积为______ .
三、解答题
16.已知函数。
Ⅰ若,求x的值;
Ⅱ判断时,函数的单调性;
若对于恒成立,求m的取值范围.
17.已知极坐标系的极点在平面直角坐标系的原点处,极轴与x轴的正半轴重合直线l
的参数方程为为参数,曲线C的极坐标方程为.
Ⅰ写出曲线C的直角坐标方程,并指明C是什么曲线;
Ⅱ设直线l与曲线C相交于两点,求的值.
18.如图,已知反比例函数和一次函数的图象相交于点A和点D,且
点A的横坐标为1,点D的纵坐标为过点A作AB轴于点B,AOB的面积为1。
(1)求反比例函数和一次函数的解析式.
(2)若一次函数的图象与x轴相交于点C,求ACO的度数。
(3)结合图象直接写出:当时,x的取值范围。
19.在双曲线的任一支上,y都随x的增大而增大,则k的取值范围。
20.已知与成正比,与成反比,当时,;当
时,;
求y与x之间的函数关系式;
当时,求y的值.
【答案】
1、B
2、B
3、C
4、C
5、C
6、D
7、A
8、B
9、A10、B
11、
12、
13、
14、
15、2
16、略
17、略
18、略
19、解:都随x的增大而增大,
此函数的图象在二、四象限,
,
.
20、解:根据题意,,
又,则,
又当时,;当时,;。
得,
解得.
关于x的函数解析式为:。
当时,;。