第六章 简单控制系统
化工仪表及自动化第四版答案(终极版)
工仪表及自动化 (自制课后答案终极版)1.什么是化工仪表与自动化?它有什么重要意义?答: 化工自动化是化工、 炼油、 食品、 轻工等化工类型生产过程自动化的简称。
在化工设备上, 配备上一些自动化装置, 代替操作人员的部份直接劳动, 使生产在不同程度上自动地进行, 这 种用自动化装置来管理化工生产过程的方法,称为化工自动化。
它的重要意义如下加快生产速度、降低生产成本、提高产品产量和质量。
减轻劳动强度、改善劳动条件。
能够保证生产安全,防止事故发生或者扩大,达到延长设备使用寿命,提高设备利用率、保障人 身安全的目的。
生产过程自动化的实现, 能根本改变劳动方式, 提高工人文化技术水平, 以适应当代信息技术 革命和信息产业革命的需要。
2.化工自动化主要包括哪些内容?答: ①自动检测系统, 利用各种仪表对生产过程中主要工艺参数进行测量、 指示或者记录的部份 ②自动信号和联锁保护系统, 对某些关键性参数设有自动信号联锁保护装置, 是生产过程中的 一种安全装置③自动控制及自动开停车系统 自动控制系统可以根据预先规定的步骤自动地对生产设备进行 某种周期性操作。
自动开停车系统可以按照预先规定好的步骤,将生产过程自动地投入运行或者 自动停车。
④自动控制系统 对生产中某些关键性参数进行自动控制 ,使它们在受到外界干扰的影响而偏 离正常状态时,能自动地调回到规定的数值范围内。
3.闭环控制系统与开环控制系统有什么不同?答;开环控制系统不能自动地觉察被控变量的变化情况, 也不能判断控制变量的校正作用是否 适合实际需要。
也就是最本质的区别是闭环控制系统有负反馈。
开环系统中, 被控变量是不反 馈到输入端的。
闭环控制系统可以及时了解被控对象的情况, 有针对性的根据被控变量的变化 情况而改变控制作用的大小和方向,从而使系统的工作状态始终等于或者接近与所希翼的状态。
4. 自动控制系统主要由哪些环节组成? 答:主要由测量与变送器 、自动控制器、执行器、被控对象组成。
《自动控制原理》第6章_自动控制系统的校正
改善系统瞬态响应。
校正装置分类
校正装置按 控制规律分
超前校正(PD) 滞后校正(PI)
滞后超前校正(PID)
校正装置按 实现方式分
有源校正装置(网络) 无源校正装置(网络)
有源超前校正装置
R2
u r (t)
i 2 (t)
R1
i1(t)
(aTa s
1)(Tb a
s
1)
滞后--超前网络
L'()
20db / dec
20 lg K c
1 1/ T1 2 1/ T2
设相角为零时的角频率
1
()
a)
20db / dec
5
1 T1T2
90
5 校正网络具有相
5
位滞后特性。
90
b)
5 校正网络具有相位
超前特性。
G( j)
Kc
( jT1
G1 (s)
N (s) C(s)
G2 (s)
性能指标
时域:
超调量 σ%
调节时间 ts
上升时间 tr 稳态误差 ess
开环增益 K
常用频域指标:
开环频域 指标
截止频率: 相角裕度:
c
幅值裕度:
h
闭环频域 指标
峰值 : M p
峰值频率: r
带宽: B
复数域指标 是以系统的闭环极点在复平面
上的分布区域来定义的。
解:由稳态速度误差系数 k v 1应00 有
G( j)
100
j( j0.1 1)( j0.01 1)
100 A()
1 0.012 1 0.00012
第六章 控制系统的误差分析和计算.ppt
6.2 输入引起的稳态误差
6.2.1 误差传递函数与稳态误差
➢单位反馈控制系统
输入引起的系统的误差传递函数为
E(s) 1 Xi(s) 1G(s)
则
E(s) 1 1G(s)
Xi(s)
X i sE(s)源自G(s)X o s
图6-2 单位反馈系统
根据终值定理 e ss lt ie m (t) ls i0s m (E s) ls i0s m 1 G 1 (s)X i(s)
这就是求取输入引起的单位反馈系统稳态误差的方法.需要注意的 是,终值定理只有对有终值的变量有意义.如果系统本身不稳定,用 终值定理求出的值是虚假的.故在求取系统稳态误差之前,通常应 首先判断系统的稳定性.
➢ 非单位反馈控制系统
输入引起的系统的偏差传递函数为:
sXi(s)Y(s)
1
1G(s)H(s)
控制系统的方块图如图6-1所示.实线部分与实际系统有对应关系, 而虚线部分则是为了说明概念额外画出的.
控制系统的误差信号的象函数是 E ( s )s X is X o s (6-1)
而
偏差信号的象函数是 (s)X is Y s
(6-2)
考虑Xi(s)与Y(s)近似相等,且Y(s)=H(s)Xo(s),得
一般情况下,H为常值,故这时:
e ss
ss
H
例6-1 某反馈控制系统如图6-4,当xi(t)=1(t)时,求稳态误差.
解:该系统为一阶惯性系统,系统稳定.误差传递函数为:
Es 1 1 s
Xi(s) 1G(s) 110 s10 s
而
X
i
(s)
1 s
则
e ss ls i0s m s s1X 0 i(s) ls i0s m s s11 s0 0
自动控制6第六章控制系统的综合与校正
复合校正
同时采用串联校正和反馈校正的方法,对系 统进行综合校正,以获得更好的性能。
数字校正
利用数字技术对控制系统进行校正,具有灵 活性和高精度等优点。
02 控制系统性能指标及评价
控制系统性能指标概述
稳定性
准确性
系统受到扰动后,能否恢复到原来的 平衡状态或达到新的平衡状态的能力。
系统稳态误差的大小,反映了系统的 控制精度。
针对生产线上的各种工 艺要求,设计相应的控 制策略,如顺序控制、 过程控制等。
系统校正方法
根据生产效率和产品质 量要求,采用适当的校 正方法,如PID参数整定、 自适应控制等。
仿真与实验验证
通过仿真和实验手段, 验证综合与校正后的工 业自动化生产线控制系 统的稳定性和效率。
控制系统综合与校正的注
06 意事项与常见问题解决方 案
仿真与实验验证
通过仿真和实验手段,验证综合与校正后 的导弹制导控制系统的精确性和可靠性。
系统校正方法
针对导弹制导控制系统的性能要求,采用 适当的校正方法,如串联校正、反馈校正 等。
实例三
01
02
03
04
控制系统结构
分析工业自动化生产线 控制系统的组成结构, 包括传感器、执行机构、 PLC等部分。
控制策略设计
考虑多变量解耦控制
对于多变量控制系统,可以考虑采 用解耦控制策略,降低各变量之间 的相互影响,提高系统控制精度。
加强系统鲁棒性设计
考虑系统不确定性因素,加强 系统鲁棒性设计,提高系统对 各种干扰和变化的适应能力。
THANKS FOR WATCHING
感谢您的观看
控制系统综合与校正的注意事项
明确系统性能指标
自动控制原理_吴怀宇_第六章控制系统的校正与设计
扰动补偿 输入补偿
自动控制原理
按扰动补偿的复合控制系统如图6-3所示。
N(s)
+
Gn (s)
R(s) + E(s)
+
G1 (s)
G2 (s)
C(s)
-
图6-3 按扰动补偿的复合控制系统
自动控制原理
按给定补偿的复合控制系统如图6-4所示。
Gr ( s)
R( s) E( s)
+
G( s )
+
C( s)
自动控制原理
6.4.1 超前校正
基本原理:利用超前校正网络的相角超前特性去增大系 统的相角裕度,以改善系统的暂态响应。 用频率特性法设计串联超前校正装置的步骤:
(1)根据给定的系统稳态性能指标,确定系统的开环增益 ;
K)绘制在确定的 值下系统的伯德图,并计算其相角裕 (2 度 ; K 0
(3)根据给定的相角裕度 ,计算所需要的相角超前量 0
m
60º
40º
20º
1
0 4 8 12 14 20
图6-16 最大超前相角 m 与 的关系
自动控制原理
6.3.2 滞后校正装置 相位滞后校正装置可用图6-17所示的RC无源网络实现, 假设输入信号源的内阻为零,输出负载阻抗为无穷大,可 求得其传递函数为:
G c ( s) s zc s 1 1 s 1 ( ) s pc s 1 ( ) s 1
自动控制原理
与相位超前网络类似,相位滞后网络的最大滞后角位于
1 与 1 的几何中心处。
图6-21还表明相位滞后校正网络实际是一低通滤波器, 值 它对低频信号基本没有衰减作用,但能削弱高频噪声, 10 较为适宜。 愈大,抑制噪声的能力愈强。通常选择 一般可取
《自动控制原理》教学大纲
自动控制原理》教学大纲一、课程的性质、地位与任务本课程是电力系统自动化技术专业的基础课程。
通过本课程的学习,使学生掌握自动控制的基础理论,并具有对简单连续系统进行定性分析、定量估算和初步设计的能力,学生将掌握自动控制系统分析与设计等方面的基本方法,如控制系统的时域分析法、根轨迹分析法、频域分析法、状态空间分析法、采样控制系统的分析等基本方本课程系统地阐述了自动控制科学和技术领域的基本概念和基本规律,介绍了自动控制技术从建模分析到应用设计的各种思想和方法,内容十分丰富。
通过自动控制理论的教学,应使学生全面系统地掌握自动控制技术领域的基本概念、基本规律和基本分析与设计方法,以便将来胜任实际工作,具有从事相关工程和技术工作的基本素质,同时具有一定的分析和解决有关自动控制实际问题的能力。
二、教学基本要求了解自动控制的概念、基本控制方式及特点、对控制系统性能的基本要求。
理解典型环节的传递函数、结构图化简或梅森公式以及控制系统传递函数的建立和表示方法,初步掌握小偏差线性化方法和通过机理分析建立数学模型的方法,以串联校正为主的根轨迹综合法,掌握常用校正装置及其作用。
熟悉暂态性能指标、劳思判据、稳态误差、终值定理和稳定性的概念以及利用这些概念对二阶系统性能的分析,初步了解高阶系统分析方法、主导极点的概念,能利用根轨迹对系统性能进行分析,熟悉偶极子的概念以及添加零极点对系统性能的影响。
频率特性的概念、开环系统频率特性Nyquist图和Bode图的画法和奈氏判据,了解绝对稳定系统、条件稳定系统、最小相位系统、非最小相位系统、稳定裕量、频指标的概念,以及频率特性与系统性能的关系。
基本校正方式和反馈校正的作用,掌握复合校正的概念和以串联校正为主的频率响应综合法。
三、教学学时分配表四、教学内容与学时安排第一章自动控制系统的基本知识……4学时本章教学目的和要求:掌握自动控制系统组成结构和基本要素,理解自动控制的基本控制方式和对系统的性能要求,了解一些实际自动控制系统的控制原理。
第六章控制系统的校正
(1)根据给定系统的稳态性能或其他指标求出原系 统的开环增益K
33
一、超前校正 34
一、超前校正
(7)画出超前校正后系统的Bode图,验证系统的相 角裕量是否满足要求。
35
超前校正
例6-1 已知负反馈系统开环传递函数
G0 (s)
k s(s 1)
若要求系统在 r(t ) t 时,ess 0.083, 400 ,
27
第二节频率响应法校正
1.校正作用
曲线Ⅰ: K小,稳态性能不好.暂态性能满足,稳定性好. 曲线Ⅱ: K大,稳态性能好.暂态性能不满足,稳态性能差. 曲线Ⅲ: 加校正后,稳态、暂态稳定性均满足要求。
2.频率特性法校正的指标
闭环: r,M r, B
3.频率特性的分段讨论
初频段: 反映稳态特性.
中频段: 反映暂态特性, c附近.
t 0
u1
t
dt
K pTd
du1 t
dt
Gs K p
KI d
KDs
()
L()/dB
-20dB/dec
90
20lgKp
20dB/dec
0
0
90
26
第三节 频率响应法校正
用频率响应法对系统进行校正,就是把设计的校正装置串 接到原系统中,使校正后的系统具有满意的开环频率特性和闭 环频率特性。
未校正系统的开环传递函数G(s) H(s),在K较小时,闭环系统稳定,而且 有良好的暂态性能,但稳态性能却不能 满足设计要求(如曲线I)。在K较大时。 虽然稳态性能满足要求,但闭环系统却 不稳定(如曲线II)。可见调整K还不能 使闭环系统有满足的性能,还需要加入 串联校正装置使校正后系统的性能如曲 线Ⅲ。该曲线不仅具有稳定性,而且有 良好的暂态性能。
过程控制复习题
过程控制复习题第一章绪论一、填空题1、过程控制是指生产过程的自动控制,主要被控参数有;2、传统的简单过程控制系统由和两部分组成。
3、检测控制仪表包括、和。
二、简答题1、过程控制有哪些特点?2、什么是过程控制系统?典型过程控制系统由哪几部分组成?3、什么是定值控制系统?4、按照设定值形式不同,过程控制系统分哪些类?5、过程控制阶跃响应的单项性能指标有哪些?综合性能指标有哪些三、分析计算题1、会计算性能指标,书后P12 1-10题四、综合题第二章检测仪表一、填空题1、某压力表的测量范围为0-10MPa,精度等级为1.0级。
则该压力表允许的最大绝对误差是。
若用标准压力计来校验该压力表,在校验点为5MPa时,标准压力计上读数为5.08MPa,则该点的绝对误差为,试问被校压力表在这一点(是/否)符合1级精度。
2、有两块直流电流表,他们的精度和量程分别为1)1.0级,0-250mA2)2.5级,0-75mA第一块表的最大绝对误差为;第二块表的最大绝对误差为;若要测量50mA 的直流电流,从准确性、经济性考虑应选择第块表。
3、某台测温仪表的测温范围-100—700C,检验该表时测得全量程内最大绝对误差为+5C,则该仪表的量程D为,该表的基本误差为,该仪表的精度等级为。
4、检测仪表的基本技术指标有哪些5、热电偶的基本定律有6、热电偶冷端温度补偿措施有、、、和。
7、常用弹性元件的形状有二、简答题1、热电偶测温原理是什么?2、椭圆齿轮流量计对介质有什么要求?3、热电阻测温有什么特点?为什么热电阻测温采用三线制接法?4、工业上常用的测温热电偶有哪几种?热电偶和仪表之间的接线,为什么要用补偿导线?三、分析计算题1、习题P70 2-52、习题P70 2-73、习题P70 2-11四、综合题第三章控制仪表一、填空题1、过程控制的基本控制有位式控制、P控制、、,在实际的比例控制器中,习惯上使用表示比例控制强弱。
2、用户根据控制需要,将程序模块用指令连接起来,就完成了编程,在数字控制系统中,这种利用标准功能模块组成系统的工作称为。
过程控制知识点整理
第一章1、自动化仪表:是实现工业生产过程自动化的重要工具,它被广泛地应用于石油、化工等各工业部门。
在自动控制系统中,自动化仪表将被控变量转换成电信号或气压信号后,除了送至显示仪表进行指示和记录外,还需送到控制仪表进行自动控制,从而实现生产过程的自动化,使被控变量达到预期的要求。
2、过程控制仪表包括:检测仪表、调节仪表(也叫控制器)、执行器,以及可编程调节器等各种新型控制仪表及装置。
3、过程控制系统的主要任务是:对生产过程中的重要参数(温度、压力、流量、物位、成分、湿度等)进行控制,使其保持恒定或按一定规律变化。
4、标准信号制度:国际电工委员会规定:过程控制系统的模拟标准信号为直流电流4-20mA ,直流电压1-5V 。
我国DDZ 型仪表采用的标准信号:DDZ- Ⅰ型和DDZ- Ⅱ型仪表:0-10mA 。
DDZ- Ⅲ型仪表:4-20mA 。
5、我国的DDZ 型仪表采用的是直流电流信号作为标准信号。
6、采用电流信号的优点:电流不受传输线及负载电阻变化的影响,适于远距离传输。
动单元组合仪表很多是采用力平衡原理构成,使用电流信号可直接与磁场作用产生正比于信号的机械力。
对于要求电压输入的受信仪表和元件,只要在回路中串联电阻便可得到电压信号。
7、采用直流信号的优点:a.直流信号传输过程中易于和交流感应干扰相区别,且不存在移相问题;b.直流信号不受传输线中电感、电容和负载性质的限制。
8、热电偶是以热电效应为原理的测温元件,能将温度信号转换成电势信号(mV )。
特点:结构简单、测温准确可靠、信号便于远传。
一般用于测量500~1600℃之间的温度。
9、热电偶的测温原理:将两种不同的导体或半导体连接成闭合回路,若两个连接点温度不同,回路中会产生电势。
此电势称为热电势,并产生电流。
10、对于确定的热电偶,热电势只与热端和冷端温度有关。
11、热电偶的基本定律:均质导体定律、中间导体定律、中间温度定律。
12、热电阻:对于500℃以下的中、低温,热电偶输出的热电势很小,容易受到干扰而测不准。
自动控制原理(第三版)第6章 控制系统的校正
在研究系统校正装置时,为了方便,将系统 中除了校正装置以外的部分,包括被控对象及控 制器的基本组成部分一起称为“固有部分”。
因此控制系统的校正,就是按给定的固有部 分和性能指标,设计校正装置。
KPLeabharlann e(t) 1 TI
t
e(t)dt
0
TD
de(t) dt
u(t为) 控制器的输出; e(为t) 系统给定量与输出量的偏差
K为P 比例系数; T为I 积分时间常数; TD 为微分时间常数
相应的传递函数为
Gc
(s)
K
P
1
1 TI s
TD
s
KP
KI s
KDs
KP 为比例系数;K I为积分系数;KD 为微分系数。
(1) 原理简单,使用方便。
(2) 适应性强,可广泛应用于各种工业生产部 门,按PID控制规律进行工作的控制器早已商品化, 即使目前最新式的过程控制计算机,其基本控制 功能也仍然是PID控制。
(3) 鲁棒性强,即其控制品质对被控对象特性 的变化不太敏感。
自动控制原理
基本PID控制规律可以描述为
u(t)
自动控制原理
2. 频域性能指标
频域性能指标,包括开环频域指标和闭环频 域指标。 (1) 开环频域指标 一般要画出开环对数频率特性,并给出开环频域 指标如下:开环剪切频率c 、相位裕量 和幅值 裕量K g 。 (2) 闭环频域指标 一般给出闭环幅频特性曲线,并给出闭环频域指 标如下:谐振频率 r 、谐振峰值 M r 和频带宽度b 。
第六章 控制系统的校正方法(二)
例6-7 已知系统的开环模型 要求: Kv ≥ 5,ts < 0.3秒, 5, 0.3秒, 试用二阶参考模型法作校正。
解: 1) 作固有特性 L0(ω) 2)作参考模型特性 L(ω) 由: Kv ≥ 5, ωc >5, 5, >5, 由: < 0.3,ωc >10 0.3, 2ωc = 20 由于固有系统的第二个转折为 ω = 30,取为校正后的转折频率 , 30,取为校正后的转折频率 则截止频率 为 ωc = 0.5ω1 =15
§6.4 参考模型法校正
一、二阶参考模型校正 1、二阶系统的最优模型
二阶参考模型的性能指标 1)开环频域指标 开环截止频率 ωc 转折频率 ω1 = 2ωc 相位裕度 γc =65.5° =65.5° 幅值裕度 Lg = ∞ 2)时域指标 超调量 Mp = 4.3 % 调节时间 速度误差系数 Kv = ωc
1、四阶参考模型 开环传递函数
各转折频率表为相对比值
四阶参考模型 特点:
(1)斜率变化为1-2-1-2-3型 斜率变化为 (2)初始段斜率为 -1,阶跃响应无差。 可以有差跟踪速度信号, (3)中频段穿越斜率为 -1, 调节ω2, ω3来调节中频 段宽度 h ,动态性能好。 (4)高频段衰减率为 -3,抑制高频噪声,转折位置 由ω4来调节。
3)闭环频域指标 闭环频带宽度 ωb = ωn 闭环谐振频率ωr = 0 闭环谐振峰值 Mr = 1
开环传函
闭环频率特性 假设系统的闭环频带宽度无限宽
解出
对于低频频谱分量 ω << ωn 为二阶系统的最优条件 2、二阶系统的开环参考模型 ζ=0.707时,二阶系统 =0.707时,二阶系统
第六章计算机控制系统
⊥ a2
an ⊥
Uo
+
倒R-2R型
早期的D/A集成芯片
只具有从数字量 到模拟电流输出量转 换的功能。
使用时必须在外 电路中加数字输入锁 存器(I/O或扩展I/O 口、参考电压源以及 输出电压转换电路
中期的D/A集成芯片 近期的D/A集成芯片
增加了一些与 计算机接口相关的 电路及引脚,具有 数字输入所存功能 电路,能和CPU数 据总线直接相连。
脉冲个数的检测 脉冲频率与周期的检测 脉冲宽度的检测
测频法原理
(a)
(b)
(c)
被测信号fx
脉冲形 成电路
脉冲信号
闸门
(e)
T
fx
N T
门控 电路
(d)
时基信号 发生器
测周法原理
计数器 振荡器
脉冲 形成电路
闸门
被测信号fx
脉冲
形成电路
门控 电路
计数器
6.4.4 计算机测试系统的设计
主机选型
设计任务 输入通道结构
多
电信号经过处理并转换成计算机能
工 业
。 。
道 开 关
识别的数字量,输入计算机中。
对 象
计算机将采集来的数字量根据
需要进行不同的判识、预算,得出
所需要的结果。
A/D
显示
计
算
打印
机
采
样
报警
控
制
直接数字控制系统
分时地对被控对象的状态参数进行测试,根据测试的结果与给定值
的差值,按照预先制定的控制算法进行数学分析、运算后,控制量输出
企业级经营管理计算机
到其他工厂的生 产数据运输指令
工业级集中监督计算机
第六章 控制系统的校正
现:GB(S) = K/(TS + 1) 稳定
自动控制原理 蒋大明
一、利用反馈校正改变局部结构和参数
2.比例反馈包围惯性环节 比例反馈包围惯性环节
G(S) = K/(TS+1) / [ 1+ KKH/(TS+1)] = [K/(1+KKH)] / { [TS/(1+KKH)] + 1} 结果仍为惯性环节。 时间常数减小,快速性变好。
自动控制原理 蒋大明
前置校正定理
设控制系统的闭环传递函数为: b0Sm + b1Sm-1 +…+ bjSl + bj+1Sl-1 +…+ bm GB(S) = --------------------------------------Sn + a1Sn-1 +…+ aiSl + ai+1Sl-1 +…+ an 则系统被控量 C(t) 对给定输入 r(t) 为L型无差的条件为: GB(S)中分子,分母后L项构成的多项式恒等。既: bj+1Sl-1 +…+ bm = ai+1Sl-1 +…+ an 或:bj+1 = ai+1 … bm = an
自动控制原理 蒋大明
举例
校正后:GB*(S) = GC(S) GB(S) 根据前置校正定理: GB*(S) = (14S + 100) / (S2+14S + 100) 所以: GC(S) = 0.14S + 1 一阶微分环节
校正部分在回路之外,和反馈回路的稳定性毫无关系( 加前置校正后, 特征方程并不改变)。本来相互矛盾和牵连的两个问题 —— 稳定与精 度,被分开来可以单独考虑。反馈回路的设计保证系统的稳定性;前置 校正的配置着重于系统的精度。
自动控制理论第六章控制系统的校正与设计
第一节 系统校正的一般方法
幅相频率特性曲线:
Im
Gc(s)=
1+aTs 1+Ts
令
dφ(ω) dω
=0
得
ωm=
1 Ta
=
1 T
·aT1
0
φm 1ω=0 α+1
2
ω=∞
α Re
两个转折频率的几何中点。
最大超前相角:
sinφm=1+(a(a––11)/)2/2
=
a–1 a+1
φm=sin-1
a–1 a+1
滞后校正部分:
(1+ T1S) (1+αT1S)
超前校正部分:
(1+ T2S)
(1+
T2 α
S)
L(ω)/dB
1
1
0 α T1
T1
-20dB/dec
φ(ω)
0
1α
T2
T2
ω
+20dB/dec
ω
第一节 系统校正的一般方法
(2) 有源滞后—超前
R2
校正装置 传递函数为:
ur R1
GGcc(式(ss))中==K:(K1(cc1(+(1+1aK+T+TTcT01=S1S1S)SR)()()12(1R(+1+1+1+RT+TaT33T2S2S2S)S))) T1=
a=
1+sinφm 1–sinφm
第一节 系统校正的一般方法
(2) 有源超前校正装置
R2 C
R3
Gc(s)=
R3[1+(R1+R2)Cs] R1(1+R2Cs)
6-1简单控制系统概述
控制变量
冷物料
热交换器
热物料
广西大学电气工程学院
简单控制系统示例 ──水泵压力控制系统
被控参数 水泵出口压力 控制变量 回流量
设定值 PC PT
广西大学电气工程学院
简单控制系统示例 ──贮罐液位控制系统
被控参数 贮罐液位 控制变量 出口流量
广西大学电气工程学院
简单控制系统示例
广西大学电气工程学院
一个简单 控制系统 开发设计 的全过程 如右图所 示
广西大学电气工程学院
设计中需要注意的有关问题
1.认真熟悉过程特性
深入了解被控过程的工艺特点及其要求是控制方案确 定的基本依据之一 。
2.明确各生产环节之间的约束关系
生产过程是由各个生产环节和工艺设备构成的,各个 生产环节和工艺设备之间通常都存在相互制约、相互 影响的关系。 在控制系统设计中,测量信号的正确与否直接影响系 统的控制质量。尽量减少由不可避免的随即干扰而产 生的系统误差。
广西大学电气工程学院
六、控制系统正常运行的重要准则
控制系统正常运行的重要准则有负反馈 准则和稳定运行准则。 负反馈准则
控制系统成为负反馈的条件是该控制系统 各开环增益之积为正。 在扰动或设定变化时,控制系统静态稳定 运行条件是控制系统各环节增益之积基本 不变;控制系统动态稳定运行条件是控制 系统总开环传递函数的模基本不变。
广西大学电气工程学院
广西大学电气工程学院
二、对过程控制系统设计的一般要求
要分析、设计和应用好一个过程控制系 统,首先应对被控过程做全面了解,对 工艺过程、设备等做深入的分析,然后 应用自动控制原理与技术,拟定一个合 理正确的控制方案,选择合适的检测变 送器、控制器、执行器(调节阀),从 而达到保证产品质量、提高产品产量、 降耗节能、保护环境和提高管理水平等 目的。
第六章化工仪表及自动化-
目录
➢ 简单控制系统的结构与组成 ➢ 被控变量的选择 ➢ 操纵变量的选择 ➢ 测量元件特性对控制系统的影响 ➢ 控制器控制规律的选择 ➢ 控制器参数的工程整定
第一节 简单控制系统的结构与组成
•又称单回路反馈控制系统; •由一个被控对象、一个测量变送器、一个控制器 和一个执行器组成; •利用反馈闭环进行控制的系统; •其组成方框图为:
测量滞后包括测量环节的容量滞后和信号测 量过程的纯滞后。 1.测量环节容量滞后(时间常数)
测量元件,特别是测温元件,存在热阻和热 容,自身具有一定的时间常数,因而造成测量 滞后。
测量元件时间常数的影响
• 测量元件时间常数越大,上述现象越显著。 导致控制系统不能发挥正确的校正作用, 控制质量达不要求。
别组成控制系统时,则很容易产生系统间的相互关 联现象。
➢ 在精馏操作中,塔顶和塔底的产品纯度存 在关联。 ➢若以两个简单控制系统分别控制塔顶、塔 底温度,势必造成相互干扰,使两个系统都 不能正常工作。 ➢ 采用简单控制系统时,通常只能保证塔顶 或塔底一端的产品质量。 ➢ 如果工艺要求塔顶和塔底产品纯度都要保 正,则通常需要组成复杂控制系统,增加解 耦装置、解决相互关联问题。
要求:T0适当小些,使反应灵敏,控制及时、 减小稳定过渡时间,提高控制质量。
例如,对于提馏段温度的控制。
不同时间常数的影响
y
A
T1
T2
C
D
E
A、B是被控制变量在单位
阶跃干扰作用下系统无
B
校正作用时的响应曲线。
E表示控制器的校正作用
C、D分别表示被控变量
t
在干扰与校正作用同时
作用下的变化曲线。
假设控制与干扰通道时间常数相同
化工仪表第6章简单控制系统
第二节 简单控制系统的设计
影响提馏段灵敏板温度T灵的
因素主要有:
进料流量Q入 进料成分X入 进料温度T入 回流流量Q回 回流温度T回 不可控 不可控 不可控 可控 (不可控)
图6-8 影响提馏段温度各种 因素示意图
加热蒸汽流量QZ
冷凝器冷却温度 塔压P
可控
(不可控) 不可控
通过工艺分析,选择蒸汽流量作为操纵变量。 控制更及时,更显著。
燃料气
3. 变送器是随炉温升高,输出增大, 也是“正”方向。 4. 所以控制器必须为“反方向”, 才能当炉温升高时,使阀门关小, 炉温下降。
加热炉出口温度控制
第五节 控制系统的投运及操作中的常见问题
举例
液位控制系统
控制阀采用了气开阀 1. 当控制阀打开时,液位是下 降的,所以对象的作用方向 是“反”的。
A: 无纯滞后时的校正作用
B: 有纯滞后时的校正作用
C: 不受控下的输出曲线 D: 无纯滞后时的输出曲线 E: 有纯滞后时的输出曲线
在选择控制变量构成控制回路时,应尽量避免控制通道纯滞 后τ0的存在,无法避免时应使之尽可能小。
干扰通道时间常数 Tf
Tf越大越好,干扰对被控变量 的影响越缓慢,越有利于改善 控制质量。
概述
选择被控变量 选择控制变量
处理测量信号
选择调节阀 选择控制规律 系统投运 参数整定
第一节 简单控制系统的结构与组成
简单控制系统通常是指由一个测量元件、变送器、一个 控制器、一个控制阀和一个对象所构成的单闭环控制系统。
图6-1 液位控制系统
图6-2 温度控制系统
第一节 简单控制系统的结构与组成
1—精馏塔;2—蒸汽加热器
图6-5 苯-甲苯溶液 的T-x图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
测量信号传送滞后是指由现场测量变送装置的 信号传送到控制室的控制器所引起的滞后。
控制信号传送滞后是指由控制室内控制器的输 出控制信号传送到现场执行器所引起的滞后。
四、 控制器控制规律的选择
在选择控制器时,不仅要确定控制器的控制规 律,而且要确定控制器的正、反作用。
1、控制规律的确定
位式控制(双位控制) 比例控制(P) 积分控制(I) 微分控制(D) P、I和D的组合形式:PI、PD和PID
简单控制系统结构
图6-3
简单控制系统方框图
在工业生产实践中,简单控制系统得到广泛应用,有超 过70%的控制系统采用简单控制系统,同时它也是设计复杂 控制系统的基础。
第二节
简单控制系统的设计
一、被控变量的选择
工艺过程的重要参数; 在工艺系统中易受干扰变化,需要经常调节的参数; 尽可能选用直接指标作为被控参数,必要时可用与直 接指标有单值对应关系的间接指标作为被控变量。 被控变量应方便检测,并有足够的灵敏度; 适当考虑系统测控代价; 被控变量应是独立可控的。
第六章
简 单 控 制 系 统
基本要求
1.了解简单控制系统的结构、组成及作用。 2.掌握简单控制系统中被控变量、操纵变量选择 的一般原则。 3.了解各种基本控制规律的特点及应用场合。 4.掌握控制器正、反作用确定的方法。 5.掌握控制器参数工程整定的方法。
第一节 简单控制系统的结构与组成
简单控制系统(单回路控制系统)是指由一个被控对象、一个测量 变送器、一个调节器和一个执行器(控制阀)所组成的闭环控制系统。
被控变量选择举例
选择被控变量的原则:
① 被控变量应能代表一定的工艺操作指标或能反映工艺操作 状态,一般都是工艺过程中比较重要的变量。 ② 被控变量在工艺操作过程中经常要受到一些干扰影响而变 化。为维持被控变量的恒定,需要较频繁的调节。 ③ 尽量采用直接指标作为被控变量。当无法获得直接指标信 号,或其测量和变送信号滞后很大时,可选择与直接指标 有单值对应关系的间接指标作为被控变量。 ④ 被控变量应能被测量出来,并具有足够大的灵敏度。 ⑤ 选择被控变量时,必须考虑工艺合理性和国内仪表产品现 状。 ⑥ 被控变量是独立可控的。
一、临界比例度法
具体方法:
1. 在纯比例控制( Ti = , TD = 0 ) 条件下通过试验获得临界比例度K 和临界震荡周期Tk ; 2. 再根据经验公式计算实际参数值、 Ti 、 TD 。
使用条件:
临界比例法广泛应用于放大倍数较小, 即控制器输出范围较小的系统; 使用临界比例法必须是工艺系统允许 短时间震荡的情形。
2、控制器正、反作用的确定
控制器的正反作用是关系到控制系统能否正 常运行与安全操作的重要问题。
作用方向:指输入变化后,输出的变化方向。
测量元件及变送器,其作用方向一般都是 “正”的。 执行器,它的作用方向取决于是气开阀(正) 还是气关阀(负)。
控制对象的作用方向随具体过程而不同。
1、测量元件的时间பைடு நூலகம்数
测量元件,特别是测温元件,由于存在热阻和 热容,它本身具有一定的时间常数,因而造成 测量滞后。
2、测量元件的纯滞后
当测量存在纯滞后,也和对象控制通道存在纯 滞后一样,会严重地影响控制质量。
3、信号的传送滞后
信号传送滞后通常包括测量信号传送滞后和控 制信号传送滞后两部分。
二、衰减曲线法
具体方法:
1. 在纯比例控制( Ti = , TD = 0 )条件下通过试验选择适宜的 比例度s使系统呈现4:1的衰减比; 2. 再根据所得的比例度和衰减周期 通过经验公式计算实际参数值、 Ti 、 TD 。
使用条件:
干扰作用不太频繁; 干扰作用的规律性较强。
一看二调多分析,调节质量不会低。
下节课:复习和答疑。
经验凑试法的关键是“看曲线,调参数”。
2) 经验凑试法还可以按下列步骤进行:先按表74中给出的范围把TI定下来,如果引入微分作 用,可取TD=(1/3~1/4) TI,然后对δ进行凑 试,凑试步骤与前一种方法相同。
在实际调试中,只能先大致设定一个经验值,然后根据调 节效果修改。 对于温度系统:P(%) 20-60, I(分) 3-10, D(分)0.5-3. 对于温度系统:P(%) 40-100,I(分) 0.1-1. 对于压力系统:P(%) 30-70, I(分) 0.4-3.
三、经验凑试法
具体方法:
1. 根据一般经验选择适宜的控制参数、 Ti 、 TD ; 2. 在实际运行过程中对参数进行适当的调整。
使用条件:
干扰作用频繁; 干扰作用的规律性较差。
整定的步骤有两种:
1) 先用纯比例作用进行凑试,待过渡过程已基本 稳定并符合要求后,再加积分作用消除余差, 最后加入微分作用是为了提高控制质量。按此 顺序观察过渡过程曲线进行整定工作。
简单控制系统实例
液位控制系统
压力控制系统
温度控制系统
共同特点,它们都包含有一个被控对象(由工业设备及相关的管道 组成)、一个测量变送器、一个执行装置、一个调节器,采用负反馈控 制原理,克服扰动因素对被控变量的影响,实现被控变量的定值或随动 跟踪控制。由于其结构简单、目标单一被称为简单控制系统。
举例
控制器的“正作用”和“反作用”
第三节
控制器参数的工程整定
控制器参数的工程整定就是选择适宜的比例度 (放大倍数Kp)、积分时间Ti和微分时间TD。 控制器的整定可以采用两种方法:
理论计算法:通过理论计算,寻找最佳参数; 工程整定法:通过实际试验或经验规律选择控 制参数。
单回路简单控制系统,一般希望过渡过程呈4: 1或10:1的衰减震荡过程。
对象特性对选择操纵变量的影响
操纵变量与干扰变量作用在 对象上,对会引起被控变量 变化的。 如右图所示,干扰变量由干 扰通道施加在对象上,起着 破坏作用,使被控变量偏离 给定值;操纵变量由控制通 道施加到对象上,使被控变 量回复到给定值,起着校正 作用。
对象静态和动态特性的影响
1)对象静态特性的影响 控制通道的放大系数 K o 大些,控 制作用强些。干扰通道的放大系数 K f 越小越好,减小干扰变量的影响, 使过渡过程的超调量变小。 2)对象动态特性的影响 ①控制通道时间常数的影响; ②控制通道纯滞后 o 的影响; ③干扰通道时间常数的影响; ④干扰通道纯滞后 f 的影响。
对于液位系统:P(%) 20-80, I(分) 1-5.
参数整定找最佳,从小到大顺序查。 先是比例后积分,最后再把微分加。 曲线振荡很频繁,比例度盘要放大。 曲线漂浮绕大湾,比例度盘往小扳。 曲线偏离回复慢,积分时间往下降。 曲线波动周期长,积分时间再加长。 曲线振荡频率快,先把微分降下来。 动差大来波动慢,微分时间应加长。 理想曲线两个波,前高后低4比1。
二、 操纵变量的选择
操纵变量:
在自动控制系统中,用于调节被控变量的参数, 称为操纵变量。
操纵变量的选择原则:
操纵变量必须是工艺上允许调节的变量; 操纵变量应具有较高的调节灵敏度:
控制通道较大的放大倍数K0; 控制通道较短的滞后时间。
符合工艺的合理性和生产的经济性。
怎样选择操纵变量?
直接指标控制和间接指标控制
根据被控变量与生产过程的关系,可分为两种类型的 控制形式:直接指标控制和间接指标控制。 如果被控变量本身就是需要控制的工艺指标(温度、 压力、流量、液位、成分等),则称为直接指标控制。 如果工艺是按质量指标进行操作的,照理应以产品质 量作为被控变量进行控制,但有时缺乏各种合适的获 取质量信号的监测手段,或虽能检测,但信号很微弱 或滞后很大,这时可选取与直接质量指标有单值对应 关系而反应又快的另一变量,如温度、压力等作为间 接控制指标,进行间接指标控制。
操纵变量的选择原则:
① 操纵变量应是可控的,即工艺上允许调节 的变量。 ② 操纵变量一般应比其他干扰对被控变量的 影响更加灵敏。 ③ 在选择操纵变量时,除了从自动化角度考 虑外,还要考虑工艺的合理性与生产的经 济性。
三、 测量元件特性的影响
测量、变送装置是控制系统中获取信息得装置, 也是系统进行控制的依据。 所以,要求它能正确地、及时地反映被控变量 的状况。 测量不准确或不及时,会产生失调或无调,影 响之大不容忽视。