酶催化反应动力学PPT课件
合集下载
酶催化反应动力学概况.pptx
• 判断反应方向或趋势:催化可逆反应的酶对正/ 逆两向底物Km不同 —— Km较小者为主要底 物
第27页/共93页
⑶Km值与Vmax值的测定
双倒数作图法(double reciprocal plot),又 称为 林-贝氏(Lineweaver- Burk)作图法
Vmax[S] V = Km+[S]
键特异性
棉子糖
OH
O
H OH
CH2OH OH H
第7页/共93页
•键 专 一 性
• 这种酶只对底物分子中其所作用的键要求严格,而不管键两端所连基团的性质。例如,酯酶可以水 解任何酸与醇所形成的酯,它不受酯键两端基团R和Rˊ的限制。
O
+ R C O R'
H2O
O
+ R C O-
R' OH
+ H+
第8页/共93页
度等众多因素的影响,因此只有在一定条件下最适pH才有意义。
第40页/共93页
• 绝大多数酶的最适pH在5~8之间,动物体内的酶最适pH多在6.5~8.0之间, 植物及微生物中的酶最适pH多在4.5~6.5左右。但并不排除例外,如胃蛋白酶 的最适pH为1.9,肝中精氨酸酶最适pH为9.7等等。
脲酶
2NH3 + CO2
NH 2 尿素
NH CH3
OC
+ H2O
脲酶
NH 2 甲基尿素
第5页/共93页
• 这类酶具有高度的专一性。它们对底物的要求很严格,甚至有时只能催化一种底物,进行一种化学 反应。
• 例如脲酶只能作用于尿素,催化其水解产生氨及二氧化碳。而对尿素的各种衍生物,一般均不起作 用。
第6页/共93页
第27页/共93页
⑶Km值与Vmax值的测定
双倒数作图法(double reciprocal plot),又 称为 林-贝氏(Lineweaver- Burk)作图法
Vmax[S] V = Km+[S]
键特异性
棉子糖
OH
O
H OH
CH2OH OH H
第7页/共93页
•键 专 一 性
• 这种酶只对底物分子中其所作用的键要求严格,而不管键两端所连基团的性质。例如,酯酶可以水 解任何酸与醇所形成的酯,它不受酯键两端基团R和Rˊ的限制。
O
+ R C O R'
H2O
O
+ R C O-
R' OH
+ H+
第8页/共93页
度等众多因素的影响,因此只有在一定条件下最适pH才有意义。
第40页/共93页
• 绝大多数酶的最适pH在5~8之间,动物体内的酶最适pH多在6.5~8.0之间, 植物及微生物中的酶最适pH多在4.5~6.5左右。但并不排除例外,如胃蛋白酶 的最适pH为1.9,肝中精氨酸酶最适pH为9.7等等。
脲酶
2NH3 + CO2
NH 2 尿素
NH CH3
OC
+ H2O
脲酶
NH 2 甲基尿素
第5页/共93页
• 这类酶具有高度的专一性。它们对底物的要求很严格,甚至有时只能催化一种底物,进行一种化学 反应。
• 例如脲酶只能作用于尿素,催化其水解产生氨及二氧化碳。而对尿素的各种衍生物,一般均不起作 用。
第6页/共93页
酶促反应动力学ppt课件
注:反应分子数和反应级数对简单反应时一致的,但比如水解反应,应为二级,通常可 以当做一级处理。
各级反应的速率特征 一级反应:半衰期与速率常数成反比,与反应物的初浓度无关。 二级反应:半衰期与速率常数和反应物的初浓度成反比。 零级反应:半衰期与速率常数成正比,与反应物的初始浓度成正比。
底物浓度对酶促反应速率的影响
关,而与其浓度无关。一种酶有几种底物就有几个Km值 ,其中Km值最小的底物一般称为该酶的
最适底物或天然底物。
在K2 K-1 时, Km = Ks,此时Km 代表ES的真实解离常,即 Km值表示酶与底物之间的亲 和程度:Km值大表示亲和程度小,酶的催化活性低; Km值小表示亲和程度大,酶的催化活性高。
中间络合物学说
( Henri的蔗糖酶水解蔗糖试验)
酶促反应: ①当底物浓度低时, 大部分酶没有与底物 结合,即酶未被饱和,这时反应速度取决
于底物浓度,即与底物浓度成正比,表现
为一级反应特征;
②随着底物浓度的增高,ES生成逐渐增
多,这时反应速度取决于【ES】,反应
速度也随之增高,但反应不再成正比例
酶浓度固定,反应速率与底物 浓度的关系
活酶原)。
激活剂对酶的作用具有选择性,有时离子之间可以相互替代,但有些离子之间就具有拮抗作用,
另外,激活剂的浓度也对其效应有影响,一定浓度时起激活作用,超过这个浓度又起抑制作用。
在机体内有许多调节酶活力的方式,其中抑制剂和激活剂的调节属于最快速的方式。
影响机制:1)酸、碱可使酶变性或改变构象失活;2)影响酶活性基团的解离;3)影响底物的
解离,4)影响ES的解离。
注:虽然大部分酶的pH—酶活曲线是钟形,但也有半钟形甚至直线形。
激活剂对酶反应的影响
各级反应的速率特征 一级反应:半衰期与速率常数成反比,与反应物的初浓度无关。 二级反应:半衰期与速率常数和反应物的初浓度成反比。 零级反应:半衰期与速率常数成正比,与反应物的初始浓度成正比。
底物浓度对酶促反应速率的影响
关,而与其浓度无关。一种酶有几种底物就有几个Km值 ,其中Km值最小的底物一般称为该酶的
最适底物或天然底物。
在K2 K-1 时, Km = Ks,此时Km 代表ES的真实解离常,即 Km值表示酶与底物之间的亲 和程度:Km值大表示亲和程度小,酶的催化活性低; Km值小表示亲和程度大,酶的催化活性高。
中间络合物学说
( Henri的蔗糖酶水解蔗糖试验)
酶促反应: ①当底物浓度低时, 大部分酶没有与底物 结合,即酶未被饱和,这时反应速度取决
于底物浓度,即与底物浓度成正比,表现
为一级反应特征;
②随着底物浓度的增高,ES生成逐渐增
多,这时反应速度取决于【ES】,反应
速度也随之增高,但反应不再成正比例
酶浓度固定,反应速率与底物 浓度的关系
活酶原)。
激活剂对酶的作用具有选择性,有时离子之间可以相互替代,但有些离子之间就具有拮抗作用,
另外,激活剂的浓度也对其效应有影响,一定浓度时起激活作用,超过这个浓度又起抑制作用。
在机体内有许多调节酶活力的方式,其中抑制剂和激活剂的调节属于最快速的方式。
影响机制:1)酸、碱可使酶变性或改变构象失活;2)影响酶活性基团的解离;3)影响底物的
解离,4)影响ES的解离。
注:虽然大部分酶的pH—酶活曲线是钟形,但也有半钟形甚至直线形。
激活剂对酶反应的影响
酶催化反应动力学概况课件
酶催化反应动力学概 况课件
目 录
• 酶催化反应动力学概述 • 酶催化反应的速率方程 • 酶促反应的速率常数与酶活性 • 酶促反应的抑制剂与激活剂 • 酶催化反应的动力学应用
01
酶催化反应动力学概述
酶的定义与特性
总结词
酶是一种生物催化剂,具有高度专一性和高效性的特性,能够加速生物体内的 化学反应。
03
利用酶的催化作用可以构建生物传感器,用于检测生物分子或
小分子物质,用于医学诊断和环境监测。
酶催化反应在农业领域的应用
有机肥料生产
利用酶催化反应可以将农业废弃物转化为有机肥料,提高土壤肥 力。
生物农药
通过酶的催化作用可以合成具有杀虫、杀菌或除草功能的生物农药 ,减少化学农药的使用。
转基因作物
通过基因工程技术将酶编码基因导入作物中,以提高作物的抗逆性 、产量和品质。
蛋白质工程
通过酶催化反应对蛋白质进行定向进化或改造,以优化蛋白质的性 能,应用于生物医学、工业和农业等领域。
酶催化反应在医药领域的应用
药物研发
01
酶催化反应可用于合成新药或优化现有药物的合成路线,降低
药物的生产成本。
疾病诊断
02
某些酶的活性与某些疾病相关,通过检测酶的活性可以用于疾
病的诊断。
生物传感器
金属离子
如Mg^2+、Zn^2+等, 能够通过提供催化活性所 需的电子或稳定酶的结构 来促进酶促反应。
蛋白质
如蛋白激酶等,能够通过 磷酸化等方式激活酶的活 性。
抑制剂与激活剂的应用
药物研发
通过抑制或激活特定的酶来治疗疾病。
生物工程
在发酵工程、酶工程等领域中,利用抑制剂与激 活剂来调控酶促反应过程。
目 录
• 酶催化反应动力学概述 • 酶催化反应的速率方程 • 酶促反应的速率常数与酶活性 • 酶促反应的抑制剂与激活剂 • 酶催化反应的动力学应用
01
酶催化反应动力学概述
酶的定义与特性
总结词
酶是一种生物催化剂,具有高度专一性和高效性的特性,能够加速生物体内的 化学反应。
03
利用酶的催化作用可以构建生物传感器,用于检测生物分子或
小分子物质,用于医学诊断和环境监测。
酶催化反应在农业领域的应用
有机肥料生产
利用酶催化反应可以将农业废弃物转化为有机肥料,提高土壤肥 力。
生物农药
通过酶的催化作用可以合成具有杀虫、杀菌或除草功能的生物农药 ,减少化学农药的使用。
转基因作物
通过基因工程技术将酶编码基因导入作物中,以提高作物的抗逆性 、产量和品质。
蛋白质工程
通过酶催化反应对蛋白质进行定向进化或改造,以优化蛋白质的性 能,应用于生物医学、工业和农业等领域。
酶催化反应在医药领域的应用
药物研发
01
酶催化反应可用于合成新药或优化现有药物的合成路线,降低
药物的生产成本。
疾病诊断
02
某些酶的活性与某些疾病相关,通过检测酶的活性可以用于疾
病的诊断。
生物传感器
金属离子
如Mg^2+、Zn^2+等, 能够通过提供催化活性所 需的电子或稳定酶的结构 来促进酶促反应。
蛋白质
如蛋白激酶等,能够通过 磷酸化等方式激活酶的活 性。
抑制剂与激活剂的应用
药物研发
通过抑制或激活特定的酶来治疗疾病。
生物工程
在发酵工程、酶工程等领域中,利用抑制剂与激 活剂来调控酶促反应过程。
酶促反应动力学ppt课件.ppt
五、Km和Vmax值的测定
(2) 双倒数 作图法
将米氏方 程式两侧 取双倒数, 以1/v1/[s]作图, 得出一直 线.
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
五、Km和Vmax值的测定
(3) Hanes— Woolf作图法
- d[ES] / dt = k2[ES] + k3[ES]
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、酶促反应的动力学方程式
当酶体系处于动态平衡时,ES的形成速 度和分解速度相等
k1([E] — [ES]) * [S] = k2[ES] + k3[ES]
因为当底物浓度很高时,酶反应速率(v)与 [ES]成正比,即
v = k3[ES] ,代入(1)式得:
V = k3[E][S] / (Km+[S])
(2)
当底物浓度很高时所有的酶都被底物饱和而转 变为ES复合物,即[E]=[ES],酶促反应达到最 大速度Vmax,所以
Vmax = k3[ES] = k3[E]
i =1-a (4) 抑制百分数; i %=(1-a) x 100% 通常所谓抑制率是指抑制分数或抑制百分数。
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
二、抑制作用的类型
v 根据抑制作用是否可逆:
认识到了贫困户贫困的根本原因,才 能开始 对症下 药,然 后药到 病除。 近年来 国家对 扶贫工 作高度 重视, 已经展 开了“ 精准扶 贫”项 目
酶催化反应动力学(共49张PPT)
❖ 中间络合物学说最早是由 Henri和Wurtz两位科学家 提出的。
❖ 在1903年,Henri在用蔗 糖酶水解蔗糖实验研究化 学反响中底物浓度与反响 速度的关系时发现,当酶 浓度不变时,可以测出一 系列不同底物浓度下的化 学反响速度,以该反响速 度对底物浓度作图,可得 到如图3-2所示的曲线。
酶底物中间络合物学说
本质上来说就是酶的修饰抑制
竞争性抑制剂。 ⑴ Vm值降低,Km值不变;
3酶活力测定时需注意:
测定酶活力常用的方法:
❖ 有某些重金属离子如Ag 、Cu 、Hg 、Pb 等 K+、Na+、Ca2+、Mg2+、Zn2+及Fe2+
图3-1 酶促反响的速度曲线 测定酶活力常用的方法:
+
2+
2+
2+
对酶的抑制作用也属于这一类。 3激活剂对酶促反响速度的影响
1 竞争性抑制 2 非竞争性抑制 3 反竞争性抑制
①竞争性抑制(competitive inhibition) :
❖ 是最常见的一种可逆抑制作用。
❖ 大多数竞争性抑制剂与底物的结构相似,能与底
物竞争酶的活性中心,从而阻碍酶底物复合物的形 成,使酶的活性降低。这种抑制作用称为竞争性抑 制作用。 ❖ 其抑制程度取决于底物和抑制剂的相对浓度,可以 通过增加底物浓度的方法来解除这种抑制作用。
竞争性抑制反响模式
❖ 在竞争性抑制中,底物(S)或抑制剂(I)与酶(E)的结合
都是可逆的,因此存在着如下的化学平衡式:
[S]>>[I]:高浓度的底物可解除抑制
图3-5 竞争性抑制曲线
特点:
⑴ Vm值不变,(表观)Km值增大; ⑵ Km随抑制剂浓度[I]的增加而增加; ⑶双倒数作图所得直线相交于纵轴; ⑷抑制作用可以被高浓度的底物减低以致消除。
酶促动力学.ppt
加入非竞争性抑制剂后,Km 不变,而Vmax减小。
非竞争性抑制作用的Lineweaver–Burk图 :
加入非竞争性抑制剂后,Km 不变,而Vmax减小。
非竞争性抑制剂与酶活性中心以外的基团结合。这类抑制作用不会因提高底物浓度而减弱
(3)反竞争性抑制
酶只有与底物结合后才与抑制剂结合,形成的三元中间产物不能进一步分解为产物。
中间产物学说的关键在于中间产物的形成。酶和底物可以通过共价键、氢键、离子键和和配位键等结合形成中间产物。中间产物的稳定性较低,易于分解成产物并使酶重新游离出来。
二、底物浓度对酶反应速度的影响
2 中间络合物学说
※1913年Michaelis和Menten提出反应速度与底物浓度关系的数学方程式,即米-曼氏方程式,简称米氏方程式(Michaelis equation)。后来又有人进行了修正.
三、酶的抑制作用
(一)抑制作用与抑制剂
什么是酶的抑制作用和失活作用? 失活作用:酶变性;酶活性丧失(无选择性)。 抑制作用:酶的必需基团的化学性质改变,但并不引起酶蛋白变性的作用,而降低酶活性甚至使酶完全丧失活性的作用 引起作用的物质称为抑制剂(I)(选择性)。 研究抑制作用的意义?
特点
⑴ 竞争性抑制剂往往是酶的底物结构类似物; ⑵ 抑制剂与酶的结合部位与底物与酶的结合部位相同—— 酶的活性中心 ⑶ 抑制作用可以被高浓度的底物减低以致消除; ⑷ (表观)Km值增大,Vm值不变
竞争性抑制作用的Lineweaver–Burk图 :
1/Vmax
(表观)Km值增大,Vm值不变
363
(Eisenthal和Cornish-Bowden法)
(5)直接线性作图法
363
《酶促反应动力学》课件
底物浓度对反应速率的影响
总结词
随着底物浓度的增加,反应速率通常会加快,但当底 物浓度达到一定值后,反应速率将不再增加。
详细描述
底物是酶催化反应的对象,底物的浓度也会影响反应速 率。通常情况下,随着底物浓度的增加,反应速率会加 快。然而,当底物浓度达到一定值后,反应速率将趋于 稳定,不再增加。这是因为酶的活性位点有限,只能与 一定量的底物结合。
详细描述
酶促反应的活化能是酶促反应所需的最小能量,只有当底物获得足够的能量时,才能够 被酶催化发生反应。活化能的大小反映了酶促反应发生的难易程度,活化能越高,反应 越难以进行。通过实验测定活化能的大小,可以帮助我们了解酶促反应的动力学特征和
机制。
03
米氏方程与双倒数图
米氏方程的推导
总结词
米氏方程是描述酶促反应速度与底物浓 度关系的数学模型,通过实验数据和推 导,可以得出该方程的具体形式。
酶促反应动力学在药物代谢领域的应用,如研究药物在体内的代 谢过程和代谢产物的生成,有助于了解药物的作用机制和药效。
药物合成
在药物合成过程中,酶促反应动力学可用于优化药物合成 的反应条件和提高产物的纯度,降低副反应和废物产生。
在Hale Waihona Puke 境科学中的应用污染物降解酶促反应动力学可用于污染物降解领域,如有机污染物的 生物降解和重金属离子的转化,通过研究酶促反应动力学 参数,实现污染物的有效降解和转化。
温度对反应速率的影响
总结词
温度的升高通常会加快反应速率,但过高的温度可能导致酶失活。
详细描述
温度可以影响酶促反应的速率。一般来说,温度越高,分子间的运动越快,从而促进酶与底物的结合和反应的进 行。然而,过高的温度可能导致酶失活,从而降低反应速率。因此,选择合适的温度对于维持酶的活性和促进反 应的进行非常重要。
第十章 酶催化反应动力学 ppt课件
[ES]
[ E ][ S ] [ ES ]
KM
反应体系的总酶量为:Et [E]S[E]
[E]SEt [E]Et KM [S [E ] ]S
经整理得: ES
Et S KM S
(1)
由于酶促反应速度由[ES]决定,即 vk2ES
将(2)代入(1)得:
v k2
Et S KM S
,所以 ES v
❖ 竞争性抑制 ❖ 非竞争性抑制 ❖ 反竞争性抑制 ❖ 混合性抑制
1.竞争性抑制(competitive inhibition)
(1)含义和反应式
抑制剂I和底物S结构相似,抑制剂I和底物S对游离酶E的结合有 竞争作用,互相排斥,已结合底物的ES复合体,不能再结合I。
(2)特点:
① 抑制剂I与底物S在化学结构上相似,能与底物S 竞争酶E分子活性中心的结合基团.
很强的专一性
绝对专一性 :一种酶只能催化一种化合物进行一种反应
相对专一性:一种酶能够催化一类具有相同化学键或基团的 物质进行某种类型的反应
反应专一性:一种酶只能催化某化合物在热力学上可能进行 的许多反应中的一种反应
底物专一性 :一种酶只能催化一种底物 立体专一性:一种酶只能作用于所有立体异构体中的一种
具有温和的反应条件
一般在生理温度25~37℃的范围,仅有少数酶 反应可在较高温度下进行。
在接近中性的pH值条件下进行
易变性与失活
蛋白酶的化学本质是蛋白质,因而具有蛋白质 的所有性质。
常因变性而使活力下降,甚至完全失活。 酶的变性多数为不可逆。
激活剂和抑制剂
激活剂:能提高酶活性的物质
1)无机离子:酶的辅因子;桥梁作用 2)中等大小的有机分子:还原剂;EDTA 3)蛋白质性质的大分子:激活酶原
[ E ][ S ] [ ES ]
KM
反应体系的总酶量为:Et [E]S[E]
[E]SEt [E]Et KM [S [E ] ]S
经整理得: ES
Et S KM S
(1)
由于酶促反应速度由[ES]决定,即 vk2ES
将(2)代入(1)得:
v k2
Et S KM S
,所以 ES v
❖ 竞争性抑制 ❖ 非竞争性抑制 ❖ 反竞争性抑制 ❖ 混合性抑制
1.竞争性抑制(competitive inhibition)
(1)含义和反应式
抑制剂I和底物S结构相似,抑制剂I和底物S对游离酶E的结合有 竞争作用,互相排斥,已结合底物的ES复合体,不能再结合I。
(2)特点:
① 抑制剂I与底物S在化学结构上相似,能与底物S 竞争酶E分子活性中心的结合基团.
很强的专一性
绝对专一性 :一种酶只能催化一种化合物进行一种反应
相对专一性:一种酶能够催化一类具有相同化学键或基团的 物质进行某种类型的反应
反应专一性:一种酶只能催化某化合物在热力学上可能进行 的许多反应中的一种反应
底物专一性 :一种酶只能催化一种底物 立体专一性:一种酶只能作用于所有立体异构体中的一种
具有温和的反应条件
一般在生理温度25~37℃的范围,仅有少数酶 反应可在较高温度下进行。
在接近中性的pH值条件下进行
易变性与失活
蛋白酶的化学本质是蛋白质,因而具有蛋白质 的所有性质。
常因变性而使活力下降,甚至完全失活。 酶的变性多数为不可逆。
激活剂和抑制剂
激活剂:能提高酶活性的物质
1)无机离子:酶的辅因子;桥梁作用 2)中等大小的有机分子:还原剂;EDTA 3)蛋白质性质的大分子:激活酶原
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
快速平衡学S说:米E氏方程 k1 ES k2 P E
k
S Et ES
反应快速建立平衡:
1
k1
k1
KM
ES [E][S]
[ES ]
[ E ][ S ] [ES ]
KM
反应体系的总酶量为:Et [ES ] [E]
[ES ]
Et
[E]
Et
KM [ES ] [S]
经整理得: ES
Et S KM S
(3)
当[Et]=[ES]时, v Vm
所以 Vm k2 Et
(4)
将(4)代入(3),则:
v Vmax S Km S
米氏常数的意义
(1)物理意义:Km值等于酶反应速度为最大速度一半时的底物 浓度。
(2)Km 值愈大,酶与底物的亲和力愈小;Km值愈小,酶与底 物亲和力愈大。酶与底物亲和力大,表示不需要很高的底物 浓度,便可容易地达到最大反应速度。
〔ES〕
ki EI
①
Ki=
〔E〕〔I〕 〔EI〕
②
〔E〕=〔E〕t-〔ES〕-〔EI〕 ③
解方程①②③得:
〔ES〕=
〔E〕t
〔KSm〕(1 + 〔KI〕i )+1
又因vi=k3〔ES〕,代入上式得:
Vi=
Vmax〔S〕
Km(1
〔I〕 + Ki
)+〔S〕
竞争性抑制剂双倒数曲线,如下图所示:
(1)
由于酶促反应速度由[ES]决定,即 v k2 ES
,所以 ES v (2)
k2
将(2)代入(1)得:
v k2
Et S KM S
v
k2Et S KM S
(3)
当[Et]=[ES]时, v Vm
所以 Vm k2 Et
(4)
将(4)代入(3),则:
v Vmax S Km S
底物专一性 :一种酶只能催化一种底物 立体专一性:一种酶只能作用于所有立体异构体中的一种
具有温和的反应条件
一般在生理温度25~37℃的范围,仅有少数酶 反应可在较高温度下进行。
在接近中性的pH值条件下进行
易变性与失活
蛋白酶的化学本质是蛋白质,因而具有蛋白质 的所有性质。
常因变性而使活力下降,甚至完全失活。 酶的变性多数为不可逆。
稳态学说:Brigges-Haldane方程
S E k1 ES k2 P E
S Et ES
[ES]生成速度:v1
k1
k1Et
ES
ES S
,[ES]分解速度:v2 k1ES k2ES
当酶反应体系处于恒态时: v1 v2
即: k1Et ESS k1ES k2ES
Et
可逆抑制 可用诸如透析等物理方法把抑制剂去掉而恢复酶的
活性,酶与抑制剂的结合存在着解离平衡的关系。
不可逆抑制
抑制剂与酶的基因成共价结合,不能用物理方法去 掉抑制剂。此类抑制可使酶永久性地失活。例如重 金属离子Hg2+”、Pb2+”等对木瓜蛋白酶、菠萝 蛋白酶的抑制都是不可逆抑制。
根据产生抑制的机理不同,可逆抑制分为:
k2
k-2 E P
①与底物浓度[S]相比,酶的浓度[E]是很小的,因 而可忽略由于生成中间复合物[ES]而消耗的底物。
②不考虑这个逆反应的存在(只适应于反应初期)
③认为基元反应的反应速率最慢,为该反应速率的 控制步骤, k-1>>k2,也就是说ES分解生成P的速率不足 以破坏E和ES之间的快速平衡
激活剂和抑制剂
激活剂:能提高酶活性的物质
1)无机离子:酶的辅因子;桥梁作用 2)中等大小的有机分子:还原剂;EDTA 3)蛋白质性质的大分子:激活酶原
抑制剂:降低酶的催化活性甚至完全失活的 物质(区别于变性剂)
7.2.1 Michaelis-Menten 方程:快速平衡学说
ES
k1
ES k-1
❖ 竞争性抑制 ❖ 非竞争性抑制 ❖ 反竞争性抑制 ❖ 混合性抑制
1.竞争性抑制(competitive inhibition)
(1)含义和反应式
抑制剂I和底物S结构相似,抑制剂I和底物S对游离酶E的结合有 竞争作用,互相排斥,已结合底物的ES复合体,不能再结合I。
(2)特点:
① 抑制剂I与底物S在化学结构上相似,能与底物S 竞争酶E分子活性中心的结合基团.
7.2.1 Briggs-Haldane 方程:拟稳态学说
1925年Briggs G. E.和Haldane J. B. S.对该模型提出了修正
ES
k1 ES
k-1
k2
k-2 E P
1、与底物浓度[S]相比,酶的浓度[E]是很小的,因
而可忽略由于生成中间复合物[ES]而消耗的底物。
2、不考虑这个逆反应的存在 3、认为基元反应的反应速率最慢,为该反应速率的 控制步骤。 4、在一定时间内虽然[S]和[P生成速率 与分解速率接近相等,[ES]基本保持不变
例如,丙二酸、苹果酸及草酰乙酸皆和琥珀酸的结构相 似,是琥珀酸脱氢酶的竞争性抑制剂。
②抑制程度取决于抑制剂与底物的浓度比、 〔ES〕和〔EI〕的相对稳定性;
③加大底物浓度,可使抑制作用减弱甚至消除。
(3)竞争性抑制剂的动力学方程
k1 E+S ES
k3 E+P
E+I
k2
〔E〕〔S〕
由米氏方程得:Km=
酶催化反应动力学
7.1 酶的催化特性
(1)较高的催化效率 (2)很强的专一性 (3)具有温和的反应条件 (4)易变性与失活
很强的专一性
绝对专一性 :一种酶只能催化一种化合物进行一种反应
相对专一性:一种酶能够催化一类具有相同化学键或基团的 物质进行某种类型的反应
反应专一性:一种酶只能催化某化合物在热力学上可能进行 的许多反应中的一种反应
S ES ES
S
k1 k1
k2
令: k1 k2 Km k1
则:KmES ESS Et S
经整理得: ES
Et S Km S
(1)
由于酶促反应速度由[ES]决定,即 v k2 ES
,所以 ES v (2)
k2
将(2)代入(1)得:
v k2
Et S Km S
v
k2Et S Km S
(3)Km 值是酶的特征性常数,只与酶的性质,酶所催化的底 物和酶促反应条件(如温度、pH、有无抑制剂等)有关,与酶 的浓度无关。酶的种类不同,Km值不同,同一种酶与不同底 物作用时,Km 值也不同。
7.3 有抑制的酶催化反应动力学
在酶催化反应中,由于某些外源化合物的存在而使 反应速率下降,这种物质称为抑制剂。