模电复习要点总结

合集下载

模电各章重点内容及总复习.

模电各章重点内容及总复习.

《模电》第一章重点掌握内容:一、概念1、半导体:导电性能介于导体和绝缘体之间的物质。

2、半导体奇妙特性:热敏性、光敏性、掺杂性。

3、本征半导体:完全纯净的、结构完整的、晶格状的半导体。

4、本征激发:环境温度变化或光照产生本征激发,形成电子和空穴,电子带负电,空穴带正电。

它们在外电场作用下均能移动而形成电流,所以称载流子。

5、P型半导体:在纯净半导体中掺入三价杂质元素,便形成P型半导体,使导电能力大大加强,此类半导体,空穴为多数载流子(称多子)而电子为少子。

6、N型半导体:在纯净半导体中掺入五价杂质元素,便形成N型半导体,使导电能力大大加强,此类半导体,电子为多子、而空穴为少子。

7、PN结具有单向导电性:P接正、N接负时(称正偏),PN结正向导通,P接负、N接正时(称反偏),PN结反向截止。

所以正向电流主要由多子的扩散运动形成的,而反向电流主要由少子的漂移运动形成的。

8、二极管按材料分有硅管(S i管)和锗管(G e管),按功能分有普通管,开关管、整流管、稳压管等。

9、二极管由一个PN结组成,所以二极管也具有单向导电性:正偏时导通,呈小电阻,大电流,反偏时截止,呈大电阻,零电流。

其死区电压:S i管约0。

5V,G e管约为0。

1 V ,其死区电压:S i管约0.5V,G e管约为0.1 V 。

其导通压降:S i管约0.7V,G e管约为0.2 V 。

这两组数也是判材料的依据。

10、稳压管是工作在反向击穿状态的:①加正向电压时,相当正向导通的二极管。

(压降为0.7V,)②加反向电压时截止,相当断开。

③加反向电压并击穿(即满足U﹥U Z)时便稳压为U Z。

11、二极管主要用途:整流、限幅、继流、检波、开关、隔离(门电路)等。

二、应用举例:(判二极管是导通或截止、并求有关图中的输出电压U0。

三极管复习完第二章再判)参考答案:a、因阳极电位比阴极高,即二极管正偏导通。

是硅管。

b 、二极管反偏截止。

f 、因V的阳极电位比阴极电位高,所以二极管正偏导通,(将二极管短路)使输出电压为U0=3V 。

模电知识点总结

模电知识点总结

模电知识点总结1. 电路基本原理电路是电子技术的基础,它是由电阻、电容和电感等元件组成的。

在模拟电子技术中,我们经常需要分析和设计各种电路。

因此,了解电路基本原理是学习模拟电子技术的第一步。

电路分析包括欧姆定律、基尔霍夫定律、节点电压法和网孔电流法等。

这些原理是分析电路的重要工具,可以帮助我们理解电路中各个元件之间的关系。

2. 放大器放大器是模拟电子技术中的重要部分,它的作用是放大电压或电流信号。

放大器包括各种类型,例如运放放大器、电子管放大器和功率放大器等。

学习放大器的原理和特性可以帮助我们设计各种类型的放大器电路。

在实际应用中,放大器经常用于音频放大、信号处理和通信系统等领域。

3. 滤波器滤波器是模拟电子技术中的重要部分,它的作用是通过滤波器电路来处理信号中的不同频率成分。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

了解滤波器的原理和特性可以帮助我们设计滤波器电路以及实现信号处理和分析等功能。

4. 模拟信号处理电路模拟信号处理电路是模拟电子技术的核心内容,它包括各种模拟信号处理和传输电路。

常见的模拟信号处理电路包括模拟加减法器、积分器、微分器、比较器和信号发生器等。

了解这些电路的原理和特性可以帮助我们设计各种模拟信号处理系统和仪器。

5. 模拟数字转换模拟数字转换(ADC和DAC)是模拟电子技术中的重要部分,它的作用是将模拟信号转换为数字信号或将数字信号转换为模拟信号。

了解ADC和DAC的原理和特性可以帮助我们设计各种模拟数字转换电路以及实现数字信号处理和传输等功能。

总之,模拟电子技术是电子工程中的一个重要分支,它在通信、音频、视频和医疗等领域都有广泛的应用。

通过学习模拟电子技术的知识点,我们可以掌握电子技术的基本原理和技能,为未来的工作和研究打下良好的基础。

希望以上总结的知识点能对学习模拟电子技术的朋友们有所帮助。

模拟电路期末重点总结

模拟电路期末重点总结

模拟电路期末重点总结一、基本概念1. 信号与信号描述的方式2. 模拟电路的基本组成部分3. 模拟电路中的基本元件:电阻、电容和电感4. 基本电路定律:欧姆定律、基尔霍夫定律5. 模拟电路的常见信号源:直流电源、交流电源、信号发生器等二、放大器及其应用1. 放大器的基本原理和分类2. 放大器的频率响应:通频带、增益带宽积、截止频率3. 常见放大器电路:共基极放大器、共射极放大器、共集电极放大器4. 放大器的非线性失真及其衡量方法5. 放大器的稳定性分析与补偿方法6. 放大器的应用:功率放大、差分放大器、运算放大器等三、滤波器1. 滤波器的基本原理和分类2. 滤波器的频率响应:通频带、截止频率、衰减特性、相位特性3. 一阶滤波器:低通滤波器、高通滤波器、带通滤波器、带阻滤波器4. 二阶及以上滤波器:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器5. 滤波器的设计:选择频率响应、元件参数计算、频率响应曲线绘制等四、反馈与稳定性1. 反馈的基本概念和分类2. 反馈电路的基本特性:增益、输入阻抗、输出阻抗3. 反馈网络的分析方法:开环增益、闭环增益、反馈系数、传输函数4. 反馈对电路性能的影响:增益稳定、频率稳定、阻抗稳定5. 反馈的设计与应用:选择反馈类型、计算反馈网络参数、稳定性分析等五、振荡器与信号发生器1. 振荡器的基本概念和分类2. 反馈振荡器的工作原理和条件3. 原型振荡器电路:震荡频率计算、电路稳定性分析4. 信号发生器的基本原理和常见电路:正弦波发生器、方波发生器、脉冲发生器等5. 信号发生器的电路设计与参数计算六、功率放大器与运算放大器1. 功率放大器的基本概念和应用领域2. A类、B类、AB类功率放大器的工作原理和特点3. 放大器的功率分配:效率和最大功率输出4. 运算放大器的基本概念和特性5. 运算放大器的基础电路:反相放大器、非反相放大器、加法器等6. 运算放大器的应用:积分器、微分器、比较器、滤波器等七、混频器与调制解调器1. 混频器的基本原理和分类2. 混频器的输入输出特性:转移函数、幅频特性、相频特性3. 调制解调器的基本原理和应用:AM调制解调、FM调制解调、PM调制解调4. 调制解调器的电路实现:调幅电路、调频电路、解调电路等八、特殊用途电路1. 比较器的基本原理和应用2. 电压源的设计与应用3. 倍压电路和反相器:电压倍增电路、反相放大电路等4. 电流源和电流镜电路:恒流源、恒流电桥等5. 电流传感器的电路设计和应用在模拟电路的学习中,我们需要掌握模拟电路的基本概念和基本组成部分,了解模拟电路中的基本元件和基本电路定律。

模电考前知识点总结

模电考前知识点总结

模电考前知识点总结模拟电子技术主要研究内容包括模拟电路的设计和分析、模拟信号的处理和传输、模拟电子系统的设计和调试等。

在模拟电子技术中,最基本的理论是基于几种基本电路元件,如二极管、三极管等,建立各种电路方程模型,进而解决各种电子电路问题。

在学习模拟电子技术的过程中,有一些知识点是必须要掌握的。

以下是一些常见的模拟电子技术知识点总结:一、基本电路分析方法1. 谈论母线电力超过220伏特进行电压升降的原理和方法。

2. 需要了解R-L,R-C 串并联电路的等效变换原理及实际应用。

3. 掌握电容电压跟踪积分电路和非积分电路的基本工作原理和参数设计方法。

4. 对于理想电感,理解它在激励下的等效原理。

5. 了解关于画感性理想电感变压器、绕组波音特性原理。

以上是一些基本电路分析方法的知识点总结。

在模拟电子技术中,学生需要通过理论学习和实践操作,熟练掌握这些方法,才能更好地理解和应用模拟电子技术。

二、线性集成电路线性集成电路是模拟电子技术中非常重要的一部分,主要包括放大器、滤波器、示波器、振荡器、计算和计算机等。

掌握了线性集成电路基本的分析与设计方法,可以更好地应用模拟电子技术。

1. 熟悉主要的线性集成电路,了解其特性和使用方法。

2. 了解基于 MOS 器件的模拟 IC 结构、工作原理和指标。

会设计基于 MOS 器件的模拟集成电路电路图。

以上是一些线性集成电路方面的知识点总结。

掌握了这些知识之后,可以更好地理解和应用模拟电子技术,从而更好地解决实际电路问题。

三、信号处理技术在模拟电子技术中,信号处理技术也是一个重要的方面。

掌握了信号处理技术相关知识后,能更好地理解和应用模拟电子技术。

1. 掌握基本信号的表示方法, 变换,系统特性的描述(零-极点,频域与时域的转换)2. 会进行系统励波,知道辨别各种非线性工作特性3. 了解控制工程与信号处理之间的联系和区别4. 实现对系统行为与性能的评估、设计,调节;5. 了解基于 DSP 的数字控制技术,了解模拟电子技术的近期发展,结合数字技术提出新的功能要求。

模电知识点识点总结

模电知识点识点总结

模电知识点识点总结一、电路分析电路分析是模拟电子技术中的基础知识点,它涉及到电路的基本元件、电路定律、戴维南定理、诺顿定理、等效电路、交流电路分析等内容。

在电路分析中,学生需要掌握电路元件的特性和参数,熟练掌握欧姆定律、基尔霍夫电压定律、基尔霍夫电流定律等基本定律,能够准确分析电路中的电压、电流和功率等参数。

二、放大电路放大电路是模拟电子技术中的重要内容之一,它是指通过放大器将输入信号放大的过程。

学生需要掌握放大器的基本分类、放大器的基本参数、放大器的频率特性等知识,理解放大器的工作原理,能够设计各种类型的放大电路。

三、模拟信号处理模拟信号处理是模拟电子技术中的核心内容之一,它涉及到模拟信号的获取、处理、传输和存储等过程。

学生需要掌握模拟信号的采样定理、量化处理、模拟信号滤波等知识,能够设计模拟信号处理系统,提高模拟信号处理的质量和效率。

四、模拟滤波器设计滤波器是模拟电子技术中的重要内容之一,它是指用于对信号进行滤波处理的电路。

学生需要掌握滤波器的分类、滤波器的性能指标、滤波器的设计方法等知识,能够设计各种类型的模拟滤波器,提高信号的质量和准确性。

五、集成电路设计集成电路设计是模拟电子技术中的核心内容之一,它涉及到集成电路的设计原理、工艺流程、器件制造等一系列内容。

学生需要掌握集成电路的基本结构、工作原理、设计方法等知识,能够设计各种类型的集成电路,提高集成电路的性能和可靠性。

总之,模拟电子技术是电子工程中非常重要的一门课程,它涉及到电路分析、放大电路、模拟信号处理、模拟滤波器设计、集成电路设计等方面的知识。

学生在学习模拟电子技术的过程中,需要注重理论与实践相结合,通过实验和项目设计来提高自己的技能水平,从而更好地应用模拟电子技术知识解决实际问题。

大学模电知识点总结

大学模电知识点总结

大学模电知识点总结1. 电路基础电路是由电路元件和互相连接在一起的导线组成的。

电路是由电路元件和互相连接在一起的导线组成的。

电路的基本元件包括电源、电阻、电容和电感等。

电源可以提供电流,电阻可以阻碍电流的流动,电容可以储存电荷,电感可以储存能量。

电路中的元件之间通过电路连接线连接在一起,共同构成了一个闭合的电路。

2. 电路分析方法电路分析方法主要包括基尔霍夫定律、欧姆定律和电容电感元件的动态特性分析等。

基尔霍夫定律是用来分析电路中的电流和电压分布的重要方法。

欧姆定律则是用来分析电路中的电流和电压的关系的基本定律。

电容电感元件的动态特性分析包括对电容电感元件的充放电过程和动态特性的分析。

3. 有源电路分析有源电路分析是分析电路中带有能源的元件的分析方法。

有源电路中的电源可以提供电流和电压,分析有源电路需要考虑电源的作用和影响。

有源电路分析主要包括对电源的特性分析、对有源电路的电流和电压分布的分析等内容。

4. 无源电路分析与有源电路不同,无源电路是指电路中不含电源的电路。

无源电路分析主要是对无源电路中的电阻、电容、电感等元件的分析。

无源电路中的元件都是 passively响应的,因此分析无源电路需要考虑元件之间的相互影响和电流、电压的分布。

5. 交流电路分析交流电路是指交流电源供电的电路,交流电路分析需要考虑交流电源的特性和电路中的电阻、电容、电感等元件的特性。

分析交流电路需要考虑交流电源的频率和幅值对电路的影响,以及交流电路中的电压、电流的相位差等因素。

6. 数字电路设计数字电路设计是指在数字逻辑门的基础上设计各种数字电路。

数字电路设计需要考虑逻辑门的特性和组合逻辑、时序逻辑的设计。

数字电路设计还需要考虑输入信号的采样和量化、数字信号的处理和输出等内容。

7. 模拟电路设计模拟电路设计是指在模拟元件的基础上设计各种模拟电路。

模拟电路设计需要考虑模拟元件的特性和模拟电路的放大、滤波、整定等功能。

模拟电路设计还需要考虑输入信号的采样和处理、模拟信号的处理和输出等内容。

模电必考知识点总结

模电必考知识点总结

模电必考知识点总结一、基本电路理论1. 电路基本定律欧姆定律、基尔霍夫定律、电路中的功率计算等基本电路定律是模拟电子技术学习的基础,了解和掌握这些定律对于学习模拟电子技术是非常重要的。

2. 电路分析了解如何对电路进行简化、等效电路的转换、戴维南定理和诺依曼定理等电路分析的基本方法。

3. 电路稳定性掌握电路的稳定性分析方法,包括如何对直流放大电路和交流放大电路进行稳定性分析。

4. 传输线理论了解传输线的基本特性,包括传输线的阻抗、反射系数、传输线的匹配等知识。

二、放大电路1. 二极管放大电路了解二极管的基本特性和放大电路的设计原理,包括共射放大电路、共集放大电路和共基放大电路等基本的二极管放大电路。

2. 晶体管放大电路了解晶体管放大电路的基本原理和设计方法,包括共射放大电路、共集放大电路和共基放大电路等基本的晶体管放大电路。

3. 放大电路的频率响应了解放大电路的频率响应特性,包括截止频率、增益带宽积等相关知识。

4. 反馈电路掌握反馈电路的基本原理和分类,了解正反馈和负反馈电路的特点和应用。

三、运算放大电路1. 运算放大器的基本特性了解运算放大器的基本特性,包括输入输出阻抗、放大倍数、共模抑制比等相关知识。

2. 运算放大器的电路应用了解运算放大器在反馈电路、比较电路、滤波电路、振荡电路等方面的应用,掌握运算放大器的基本应用方法。

四、滤波器电路1. RC滤波器和RL滤波器了解RC滤波器和RL滤波器的基本原理、特性和应用,包括一阶和二阶滤波器的设计和性能分析。

2. 增益电路和阻抗转换电路掌握增益电路和阻抗转换电路的设计原理和方法,了解它们在滤波电路中的应用。

3. 模拟滤波器设计了解低通滤波器、高通滤波器、带通滤波器和带阻(陷波)滤波器的设计方法和特性,掌握模拟滤波器的设计技巧。

五、功率放大电路1. BJT功率放大电路了解晶体管功率放大电路的基本原理和设计方法,包括类A、类B、类AB和类C功率放大电路的特点和应用。

模电 知识点总结

模电 知识点总结

模电知识点总结一、基本概念1. 电路元件:模拟电子技术的基本元件包括电阻、电容、电感、二极管、晶体管等。

其中,电阻用于限制电流,电容用于储存电荷,电感用于储存能量,二极管用于整流、开关等,晶体管用于放大、开关等。

2. 信号:在模拟电子技术中,信号是指随时间或空间变化的电压或电流。

常见的信号形式有直流信号、交流信号、脉冲信号等。

3. 放大器:放大器是模拟电子技术中的重要元件,用于放大输入信号的幅度。

常见的放大器有运放放大器、晶体管放大器等。

4. 滤波器:滤波器是用于选择特定频率范围内的信号,常用于滤除噪声、提取特定频率成分等。

5. 调制解调:调制是将基带信号调制到载波上,解调是将载波信号解调还原为基带信号。

调制解调技术是模拟电子技术中的重要应用之一。

二、基本电路1. 电阻电路:电阻是最基本的电路元件之一,常用于限制电流、调节电压和波形、分压等。

常见的电阻电路包括电压分压电路、电流分压电路、电阻网络等。

2. 电容电路:电容是能存储电荷的元件,常用于滤波、积分、微分等。

常见的电容电路包括RC电路、LC电路、多级滤波器等。

3. 电感电路:电感是储存能量的元件,常用于振荡器、磁耦合放大器等。

常见的电感电路包括RLC电路、振荡电路、滤波器等。

4. 滤波器电路:滤波器是用于选择特定频率范围内的信号的电路,常用于滤除杂散信号、提取特定频率成分等。

常见的滤波器包括低通滤波器、高通滤波器、带通滤波器、陷波滤波器等。

5. 放大器电路:放大器是用于放大电压、电流信号的电路,常用于信号调理、传感器信号放大、运算放大器电路等。

常见的放大器电路包括运算放大器电路、放大器电路、多级放大器电路等。

6. 混频器电路:混频器是用于将两路信号进行混频得到中频信号的电路,常用于调频收音机、超外差接收机等。

常见的混频器电路包括倍频器电路、调频接收机电路、超外差接收机电路等。

7. 调制解调电路:调制解调电路是用于调制解调信号的电路,常用于调制解调的通信系统、调幅收音机、调频收音机等。

电路模电知识点总结

电路模电知识点总结

电路模电知识点总结电路模电是电子学科的重要组成部分,也是电子工程师应当具备的基本知识。

电路模电涵盖了很多内容,包括基本电路理论、电子元件的特性、电路分析方法、模拟信号处理、数字信号处理等等。

本文将就电路模电的相关知识点进行总结,以供学习和参考。

一、基本电路理论1. 电压、电流和电阻的基本概念电压是电流的推动力,是电子在电路中的运动状态。

电流是电子通过导体的数量,是电路中的载流子的运动情况。

电阻是电路中阻碍电流通过的物理量,是影响电路工作性能的重要因素。

2. 电路基本定律基尔霍夫定律:节点定律和回路定律,用于分析复杂电路中的电压和电流关系。

欧姆定律:描述了电压、电流和电阻之间的基本关系。

功率定律:描述了电路中功率的计算方法,包括有源元件和无源元件的功率计算。

3. 电路分析方法电路分析中常用的方法包括节点分析法、回路分析法、戴维南定理和超定方程组的求解方法。

这些方法适用于不同类型的电路,能够有效地进行电路参数求解和性能分析。

二、电子元件的特性1. 二极管二极管是最基本的电子元件之一,具有整流、放大、开关和稳压等功能。

二极管的正向导通特性和反向截止特性是其重要特点,能够用于各种电路中。

2. 晶体三极管晶体三极管是一种重要的电子管,具有放大、开关和整流等功能。

其放大系数、输入阻抗和输出阻抗是其重要特性,直接影响了其在电路中的应用。

3. 集成电路集成电路是目前电子技术发展的主要方向,包括模拟集成电路和数字集成电路。

模拟集成电路主要包括运算放大器、比较器、滤波器、振荡器等,数字集成电路主要包括逻辑门、触发器、计数器和寄存器等。

三、模拟信号处理1. 信号的采集和重构模拟信号处理中,需要对真实世界的信号进行采集和处理,其中包括采样、量化和编码等过程,最终通过数字信号处理进行重构。

2. 运算放大器的应用运算放大器是模拟电路中的重要元件,常用于放大、滤波、积分和微分等功能。

根据其特性,可以设计不同类型的电路,满足不同的应用需求。

模电知识点复习总结

模电知识点复习总结

模电知识点复习总结模拟电子技术(模电)是电子工程中的重要基础学科之一,主要研究电路中的电压、电流以及能量的传输和转换。

下面是我对模电知识点的复习总结:一.基础知识1.电路基本定律:欧姆定律、基尔霍夫定律、电压分压定律、电流分流定律、功率定律。

2.信号描述与频域分析:时间域与频域的关系。

傅里叶级数和傅里叶变换的基本概念和应用。

3.理想放大器:增益、输入/输出电阻、输入/输出阻抗的概念和计算方法。

4.放大器基本电路:共射、共集、共基放大器的特点、电路结构和工作原理。

二.放大器设计1.放大器的参数:增益、输入/输出电阻、输入/输出阻抗。

2.放大器的稳定性:稳态稳定性和瞬态稳定性。

3.放大器的频率响应:截止频率、增益带宽积、输入/输出阻抗对频率的影响。

4.放大器的非线性失真:交趾略失真、交调失真、互调失真等。

5.放大电路的优化设计:负反馈、输入/输出阻抗匹配、增益平衡等。

三.运算放大器1.运算放大器的基本性质:增益、输入阻抗、输出阻抗、共模抑制比。

2.电压放大器:非反转放大器、反转放大器、仪表放大器、差分放大器。

3.运算放大器的应用电路:比较器、积分器、微分器、换相器、限幅器等。

4.运算放大器的非线性失真:输入失真、输出失真、交调失真等。

四.双向可调电源1.双向可调电源的基本原理:输入电压、输出电压和控制信号之间的关系。

2.双向可调电源的电路结构:移相电路、比较器、反相放大器、输出级等。

3.双向可调电源的控制方式:串行控制和并行控制。

五.滤波器设计1.常见滤波器类型:低通、高通、带通和带阻滤波器。

2.滤波器的频率响应特性:通频带、截止频率、衰减量。

3.滤波器的传输函数:频率选择特性、阶数选择。

4.滤波器的实现方法:RC、RL、LC和电子管等。

六.可控器件1.二极管:理想二极管模型、二极管的非理想特性、二极管的应用。

2.可控硅:双向可控硅、单向可控硅、可控硅的触发电路和应用。

3.功率晶体管:NPN、PNP型功率晶体管的特性参数、功率放大电路设计。

模电知识点总结笔试

模电知识点总结笔试

模电知识点总结笔试一、基础理论知识1. 电子学基础(1)电子学的基本概念:电子、电荷、电流、电压等。

(2)半导体物理学:半导体材料的性质、PN结的特性等。

2. 电路基础(1)电路分析方法:基尔霍夫定律、戴维南定理、叠加原理等。

(2)电路中的元件:电阻、电容、电感等实际应用。

二、模拟信号处理1. 信号与系统(1)信号的分类:连续信号、离散信号、周期信号、非周期信号等。

(2)系统的分类:线性系统、非线性系统、时变系统、时不变系统等。

2. 模拟滤波(1)滤波器的分类:低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

(2)滤波器的设计:巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

三、放大电路1. 放大器的基本概念(1)放大器的分类:按输入输出信号类型分为模拟放大器和数字放大器。

(2)放大器的性能参数:增益、带宽、输入阻抗、输出阻抗等。

2. 放大电路设计(1)基本放大电路:共射放大器、共集放大器、共基放大器等。

(2)放大电路稳定性分析:稳定性条件、负反馈、电容耦合等。

四、信号发生与调制1. 信号发生器(1)基本信号源:RC震荡器、LC震荡器、晶体振荡器等。

(2)信号源的稳定性分析:频率稳定度、振幅稳定度、相位噪声等。

2. 调制技术(1)调制原理:调频、调幅、调相等基本调制方式的原理和特点。

(2)调制电路设计:频率调制电路、幅度调制电路、相位调制电路等。

五、反馈电路1. 反馈的基本概念(1)反馈电路的分类:正反馈、负反馈。

(2)反馈电路的性能:增益稳定、带宽拓展、非线性失真降低等。

2. 反馈网络设计(1)反馈网络结构:电流负反馈、电压负反馈。

(2)反馈网络应用:放大电路、振荡器、滤波器等反馈电路的设计。

六、运算放大器1. 运算放大器的特性(1)运算放大器的基本原理:差分输入、单端输出、大增益、高输入阻抗等。

(2)运算放大器的理想模型:无输入偏置电流、无输入偏置电压等。

2. 运算放大器的应用(1)运算放大器在电路中的基本应用:比较器、积分器、微分器等。

模电重点总结复习必备

模电重点总结复习必备

u
+

A
+

i
f
R
i
i
f
i
i
i+
i-
i
+
+
T
-
i
+
u
R
i
i
i
b
i
f
2
虚短
3
虚断
1
串联负反馈,输入端电压求和
6
并联负反馈,输入端电流求和
5
虚断
4
虚短
判断能否自激的方法
(1)画出 的波特图
(2)找出两个特定的频率
(3)判断
(4)若不自激,则判断幅度裕度和相位裕度
方法一:
方法二:
02
01
分析方法:分频段研究法和时间常数法
直流稳压电源
工作原理
整流
计算
稳压
滤波
g
g
d
S
d
i
工作在非线性区时的特点
工作在线性区时的特点
虚断
虚短 虚断
运算放大器
波特图
画复杂电路或系统的波特图,关键在于一些基本因子
基本放大电路
01.
多级放大电路
01.
差分放大电路
01.
反馈放大电路
01.
运算放大器
01.
功率放大器
01.
频率响应
01.
直流稳压电源
01.
三、电路部分
共发射极、共集电极、共基极、 共源、共漏
特点和典型功能:
较大,Ri很大;适于小信号电压放大
共漏放大电路
+
C
g3

模拟电路知识点总结

模拟电路知识点总结

模拟电路知识点总结一、模拟电路的基本概念模拟电路是处理连续变化的电信号的电子电路。

与数字电路处理离散的数字信号不同,模拟电路中的信号在时间和幅度上都是连续的。

这些信号可以是电压、电流或者其他物理量,如声音、光线等。

在模拟电路中,常见的元件包括电阻、电容、电感、二极管、三极管等。

电阻用于限制电流和分压;电容用于存储电荷和滤波;电感用于储存能量和滤波;二极管具有单向导电性,常用于整流和稳压;三极管则可以作为放大器或开关使用。

二、放大器放大器是模拟电路中的重要组成部分,其作用是将输入的小信号放大到所需的幅度。

常见的放大器有共射极放大器、共集电极放大器和共基极放大器。

共射极放大器具有较大的电压增益和电流增益,但输入电阻较小,输出电阻较大。

共集电极放大器的输入电阻较大,输出电阻较小,电压增益接近于 1 但具有电流放大作用。

共基极放大器具有较高的频率响应和较小的输入电容,常用于高频放大电路。

放大器的性能指标包括增益、输入电阻、输出电阻、带宽等。

增益表示放大的倍数,输入电阻影响信号源的负载,输出电阻影响放大器对负载的驱动能力,带宽则决定了放大器能够有效放大的信号频率范围。

三、反馈反馈在模拟电路中用于改善放大器的性能。

反馈分为正反馈和负反馈。

正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会被使用。

负反馈则可以减小增益的波动、提高线性度、扩展带宽、降低噪声等。

负反馈的类型有电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈。

通过选择不同类型的负反馈,可以根据具体需求调整放大器的性能。

四、集成运算放大器集成运算放大器(简称运放)是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

它通常由差分输入级、中间放大级和输出级组成。

运放可以构成各种功能的电路,如比例放大器、加法器、减法器、积分器、微分器等。

在使用运放时,需要考虑其电源、输入输出范围、失调电压和失调电流等参数。

五、滤波器滤波器用于选择或抑制特定频率范围内的信号。

模拟电子技术总结复习资料

模拟电子技术总结复习资料

模拟电子技术复习资料一、前言模拟电子技术是电子工程师必备的技术之一,本文将模拟电子技术的相关知识点,以供复习之用。

二、基础知识1. 模拟电子技术的定义模拟电子技术是指以连续的时间和数值作为处理信号的基本方法,将原始信号转换为模拟电压或电流信号,经过放大、滤波、调制等技术处理后再转换为输出信号的一种电子技术。

2. 信号处理的分类信号处理可以分为模拟信号处理和数字信号处理两种方式。

其中,模拟信号处理是连续的,输出结果也是连续的;数字信号处理是离散的,输出结果也是离散的。

3. 电路元件常见的电路元件有电阻、电容、电感和二极管等。

在实际电路中,这些元件通常是串接或并联连接。

4. 电路分析电路分析主要包括基础电路分析、状态变量法和矩阵方法三种。

其中,基础电路分析可以用于简单电路的分析,状态变量法可用于复杂电路的分析,矩阵方法则适用于大型电路分析。

三、基本电路1. 电压分压器电压分压器是一种简单的电路,在电路中由两个电阻相连,起到将输入电压分压的作用。

分压器的输出电压等于输入电压乘以电路中两个电阻的比值,即:V_out = V_in * R2 / (R1 + R2)2. 电路共模抑制电路共模抑制是一种在电路中削弱两个信号(通常是两个交流信号)之间共同模式分量的方法。

在电路中添加一对差模信号,可以使一部分共模干扰信号被消除。

3. 交流放大器交流放大器是一种电路,用于放大输入信号的交流部分。

通常会使用共射极放大器来放大信号。

4. 滤波器滤波器是一种电路,主要功能是去除输入信号中不需要的频率或波形分量。

滤波器通常被划分为低通滤波器、高通滤波器、带通滤波器和带阻滤波器等不同类型。

四、放大器1. 放大器的分类放大器通常被分为共射极放大器、共集极放大器和共基极放大器等三种。

其中,共射极放大器最常用。

2. 放大器的增益与带宽放大器的增益和带宽是两个相互制约的指标。

在设计放大器时,需要综合考虑这两个指标来确定放大器的工作范围。

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结

电子技术模拟电路知识点总结一、模拟电路基础概念模拟电路处理的是连续变化的信号,与数字电路处理的离散信号不同。

在模拟电路中,电压和电流可以在一定范围内取任意值。

这是理解模拟电路的关键起点。

二、半导体器件1、二极管二极管是最简单的半导体器件之一,具有单向导电性。

当正向偏置时,电流容易通过;反向偏置时,电流极小。

二极管常用于整流电路,将交流转换为直流。

2、三极管三极管分为 NPN 型和 PNP 型。

它具有放大电流的作用,通过控制基极电流,可以实现对集电极电流的控制。

三极管在放大电路中应用广泛。

3、场效应管场效应管分为结型和绝缘栅型。

它是电压控制型器件,输入电阻高,噪声小,常用于集成电路中。

三、基本放大电路1、共射放大电路共射放大电路具有较大的电压放大倍数和电流放大倍数,但输入电阻较小,输出电阻较大。

2、共集放大电路共集放大电路又称射极跟随器,电压放大倍数接近 1,但输入电阻高,输出电阻小,具有良好的跟随特性。

3、共基放大电路共基放大电路具有较高的频率响应和较好的高频特性。

四、集成运算放大器集成运算放大器是一种高增益、高输入电阻、低输出电阻的直接耦合放大器。

1、理想运算放大器特性具有“虚短”和“虚断”的特点。

“虚短”指两输入端电位近似相等,“虚断”指两输入端电流近似为零。

2、运算放大器的应用包括比例运算电路、加法运算电路、减法运算电路、积分运算电路和微分运算电路等。

五、反馈电路反馈可以改善放大器的性能。

1、正反馈和负反馈正反馈会使系统不稳定,但在某些特定情况下,如正弦波振荡器中会用到。

负反馈能稳定放大倍数、改善频率特性等。

2、四种反馈组态电压串联负反馈、电压并联负反馈、电流串联负反馈和电流并联负反馈,它们对电路性能的影响各不相同。

六、功率放大电路功率放大电路的主要任务是向负载提供足够大的功率。

1、甲类、乙类和甲乙类功率放大电路甲类功放效率低,但失真小;乙类功放效率高,但存在交越失真;甲乙类功放则是介于两者之间。

模拟电路知识点总结资料

模拟电路知识点总结资料

模拟电路知识点总结资料一、基本概念1. 电路:由电阻、电容、电感等基本元件组成的系统。

根据信号类型,电路可分为模拟电路和数字电路。

2. 模拟电路:能够处理连续变化的信号的电路。

模拟电路中的信号是连续的模拟波形,可以以任意时间间隔改变其数值。

3. 数字电路:只能处理离散的信号的电路。

数字电路中的信号是由0和1组成的脉冲波形,只在规定的时间点改变其数值。

二、基本元件1. 电阻:用于限制电流的流动,常用于控制信号的幅度和输出阻抗。

2. 电容:用于存储电荷,通常用于滤波、隔直、积分等功能。

3. 电感:用于存储磁能,通常用于滤波、隔交、微分等功能。

4. 二极管:用于实现电流的单向导通,可以作为整流器、开关等。

5. 晶体管:用于放大和控制电流,可以作为放大器、开关等。

三、基本电路1. 放大器:用于放大输入信号的幅度,常见的有运放放大器、晶体管放大器等。

2. 滤波器:用于滤除不需要的频率成分,常见的有低通滤波器、高通滤波器、带通滤波器等。

3. 比较器:用于比较两个信号的大小,常见的有比较器、振荡器等。

四、基本分析方法1. 直流分析:分析电路在稳态直流条件下的性能,通常用节点法、网孔法等进行分析。

2. 交流分析:分析电路在交流条件下的性能,通常用复数分析、频域分析等进行分析。

3. 时域分析:分析电路在时间域内的性能,通常用微分方程、积分方程等进行分析。

4. 非线性分析:分析电路中的非线性元件对性能的影响,通常需要用仿真软件进行分析。

五、常用工具和软件1. 万用表:用于测量电路中的电压、电流、电阻等参数。

2. 示波器:用于观测电路中的信号波形,可以分析信号的频率、幅度、相位等。

3. 信号发生器:用于产生各种形式的信号,可以用于测试电路的响应特性。

4. 仿真软件:如Multisim、Protues等,用于构建电路模型,进行电路仿真分析。

六、常见电路应用1. 放大器:用于音频放大、射频放大等。

2. 滤波器:用于音频滤波、射频滤波等。

模电知识点总结

模电知识点总结

模电知识点总结第一篇:模电知识点总结第一章绪论1.掌握放大电路的主要性能指标:输入电阻,输出电阻,增益,频率响应,非线性失真2.根据增益,放大电路有那些分类:电压放大,电流放大,互阻放大,互导放大第二章预算放大器1.集成运放适合于放大差模信号2.判断集成运放2个输入端虚短虚断如:在运算电路中,集成运放的反相输入端是否均为虚地。

3.运放组成的运算电路一般均引入负反馈4.当集成运放工作在非线性区时,输出电压不是高电平,就是低电平。

5.根据输入输出表达式判断电路种类同相:两输入端电压大小接近相等,相位相等。

反相:虚地。

第三章二极管及其基本电路1.二极管最主要的特征:单向导电性2.半导体二极管按其结构的不同,分为面接触型和点接触型3.面接触型用于整流。

点接触型用于高频电路和数字电路4.杂质半导体中少数载流子浓度只与温度有关5.掺杂半导体中多数载流子主要来源于掺杂6.在常温下硅二极管的开启电压为0.5伏,锗二极管的开启电压为0.1伏7.硅二极管管压降0.7伏,锗二极管管压降0.2伏8.PN结的电容效应是势垒电容,扩散电容9.PN结加电压时,空间电荷区的变化情况正向电压:外电场将多数载流子推向空间电荷区,使其变窄,削弱内电场,扩散加剧反向电压:外电场使空间电荷区变宽,加强内电场,阻止扩散运动进行10.当PN结处于正向偏置时,扩散电容大.当PN结反向偏置时,势垒电容大11.稳压二极管稳压时,工作在反向击穿区.发光二极管发光时,工作在正向导通区 12.稳压管称为齐纳二极管13.光电二极管是将光信号转换为电信号的器件,它在PN结反向偏置状态下运行,反向电压下进行,反向电流随光照强度的增加而上升14.如何用万用表测量二极管的阴阳极和判断二极管的质量优劣?用万用表的欧姆档测量二极管的电阻,记录下数值,然后交换表笔在测量一次,记录下来.两个结果,应一大一小,读数小的那次,黑表笔接的是阳极,红表笔接的是阴极.这个读数相差越多,二极管的质量越好.当两个读数都趋于无穷大时,二极管断路.当两个读数都趋于零时,二极管短路第四章双极结型三极管及放大电路1.半导体三极管又称双极结型三极管,简称BJT是放大器的核心器件2.采用微变等效电路求放大电路在小信号运用时,动态特性参数3.晶体三极管可以工作在: 放大区,发射结正偏,集电极反偏饱和区,发射结集电极正偏截止区,发射结集电极反偏4.NPN,PNP,硅锗管的判断5.工作在放大区的三极管,若当Ib以12μA增大到22μA时,Ic 从1mA变为2mA,β约为1006.直流偏置电路的作用是给放大电路设置一个合适的静态工作点,若工作点选的太高——饱和失真。

(完整版)模电总结复习资料

(完整版)模电总结复习资料

(完整版)模电总结复习资料第⼀章半导体⼆极管⼀.半导体的基础知识1.半导体---导电能⼒介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流⼦----带有正、负电荷的可移动的空⽳和电⼦统称为载流⼦。

5.杂质半导体----在本征半导体中掺⼊微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺⼊微量的三价元素(多⼦是空⽳,少⼦是电⼦)。

*N型半导体: 在本征半导体中掺⼊微量的五价元素(多⼦是电⼦,少⼦是空⽳)。

6. 杂质半导体的特性*载流⼦的浓度---多⼦浓度决定于杂质浓度,少⼦浓度与温度有关。

*体电阻---通常把杂质半导体⾃⾝的电阻称为体电阻。

*转型---通过改变掺杂浓度,⼀种杂质半导体可以改型为另外⼀种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截⽌。

8. PN结的伏安特性⼆. 半导体⼆极管*单向导电性------正向导通,反向截⽌。

*⼆极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析⽅法------将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳1)图解分析法该式与伏安特性曲线的交点叫静态⼯作点Q。

2) 等效电路法直流等效电路法*总的解题⼿段----将⼆极管断开,分析⼆极管两端电位的⾼低:若 V阳 >V阴( 正偏 ),⼆极管导通(短路);若 V阳*三种模型微变等效电路法三. 稳压⼆极管及其稳压电路*稳压⼆极管的特性---正常⼯作时处在PN结的反向击穿区,所以稳压⼆极管在电路中要反向连接。

第⼆章三极管及其基本放⼤电路⼀. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。

(完整版)模电知识总结

(完整版)模电知识总结

第一部分半导体的基本知识二极管、三极管的结构、特性及主要参数;掌握饱和、放大、截止的基本概念和条件。

1、导体导电和本征半导体导电的区别:导体导电只有一种载流子:自由电子导电半导体导电有两种载流子:自由电子和空穴均参与导电自由电子和空穴成对出现,数目相等,所带电荷极性不同,故运动方向相反。

2、本征半导体的导电性很差,但与环境温度密切相关。

3、杂质半导体(1)N型半导体——掺入五价元素(2)P型半导体——掺入三价元素4、PN结——P型半导体和N型半导体的交界面在交界面处两种载流子的浓度差很大;空间电荷区又称为耗尽层反向电压超过一定值时,就会反向击穿,称之为反向击穿电压5、PN结的单向导电性——外加电压正向偏置反向偏置6、二极管的结构、特性及主要参数(1)P区引出的电极——阳极;N区引出的电极——阴极温度升高时,二极管的正向特性曲线将左移,反向特性曲线下移。

二极管的特性对温度很敏感。

其中,Is为反向电流,Uon为开启电压,硅的开启电压——0.5V,导通电压为0.6~0.8V,反向饱和电流<0.1μA,锗的开启电压——0.1V,导通电压为0.1~0.3V,反向饱和电流几十μA。

(2)主要参数1)最大整流电流I:最大正向平均电流2)最高反向工作电流U:允许外加的最大反向电流,通常为击穿电压U的一半3)反向电流I:二极管未击穿时的反向电流,其值越小,二极管的单向导电性越好,对温度越敏感4)最高工作频率f:二极管工作的上限频率,超过此值二极管不能很好的体现单向导电性7、稳压二极管在反向击穿时在一定的电流范围内(或在一定的功率耗损范围内),端电压几乎不变,表现出稳压特性,广泛应用于稳压电源和限幅电路中。

(1)稳压管的伏安特性(2)主要参数1)稳定电压U:规定电流下稳压管的反向击穿电压2)稳定电流I:稳压管工作在稳定状态时的参考电流。

电流低于此值时稳压效果变坏,甚至根本不稳压,只要不超过稳压管的额定功率,电流越大稳压效果越好。

模电常见知识点总结

模电常见知识点总结

模电常见知识点总结一、基本概念1. 电压、电流、功率:电压是电势差,单位是伏特;电流是电荷在单位时间内通过导体的数量,单位是安培;功率是单位时间内能量的转化率,单位是瓦特。

2. 电路元件:电路元件主要包括电阻、电容和电感。

电阻是电流对电压的阻碍作用,单位是欧姆;电容是储存电荷的能力,单位是法拉;电感是存储磁场能量的元件,单位是亨利。

3. 信号处理:模拟信号是连续的信号,可以采用模拟电子技术进行处理。

模拟信号的处理包括滤波、放大、混频等操作。

4. 放大器:放大器是一种能够增加信号幅度的电路,通常包括运放放大器、功率放大器等类型。

5. 混频器:混频器是一种能够将两个不同频率的信号进行混合的电路,主要用于调频、调相和倍频等应用。

6. 滤波器:滤波器可以根据频率特性对输入信号进行滤波,主要包括低通滤波器、带通滤波器和高通滤波器等。

7. 稳压器:稳压器是一种能够在负载变化时保持输出电压稳定的电路,主要包括线性稳压器和开关稳压器。

8. 模拟信号的采样与保持、量化与编码:在数字信号处理中,要将模拟信号转换为数字信号,需要进行模拟信号的采样与保持、量化与编码等操作。

二、基本电路分析方法1. 基尔霍夫定律:基尔霍夫定律是电路分析中的重要方法之一,包括基尔霍夫电流定律和基尔霍夫电压定律。

2. 节点分析法和支路分析法:节点分析法和支路分析法是电路分析中常用的两种方法,用于求解电路中的电压和电流。

3. 物理尺解法:物理尺解法是一种将电路问题转化为几何问题进行求解的方法,通常用于分析长线搭接、三角形回路等特殊电路。

4. 电压源法和电流源法:电压源法和电流源法是一种简化复杂电路的方法,适用于求解电路中的等效电阻和电流分布。

5. 理想变压器:理想变压器是一个重要的电路模型,可以通过它来求解电路中的电压和电流。

6. 交流电路分析:交流电路分析是模拟电子技术中的重要内容,包括交流电路中的阻抗、功率、相位等内容。

7. 电路的频率响应:电路的频率响应是指电路对不同频率信号的响应情况,可以通过传递函数或频率特性曲线来描述。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。

2.特性---光敏、热敏和掺杂特性。

3.本征半导体----纯净的具有单晶体结构的半导体。

4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。

5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。

体现的是半导体的掺杂特性。

*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。

*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。

6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。

*体电阻---通常把杂质半导体自身的电阻称为体电阻。

*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。

7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。

* PN结的单向导电性---正偏导通,反偏截止。

8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。

*二极管伏安特性----同PN结。

*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。

*死区电压------硅管0.5V,锗管0.1V。

3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。

2) 等效电路法➢直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。

*三种模型➢微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。

第二章三极管及其基本放大电路一. 三极管的结构、类型及特点1.类型---分为NPN和PNP两种。

2.特点---基区很薄,且掺杂浓度最低;发射区掺杂浓度很高,与基区接触面积较小;集电区掺杂浓度较高,与基区接触面积较大。

二. 三极管的工作原理1. 三极管的三种基本组态2. 三极管内各极电流的分配* 共发射极电流放大系数 (表明三极管是电流控制器件式子称为穿透电流。

3. 共射电路的特性曲线*输入特性曲线---同二极管。

* 输出特性曲线(饱和管压降,用U CES表示放大区---发射结正偏,集电结反偏。

截止区---发射结反偏,集电结反偏。

4. 温度影响温度升高,输入特性曲线向左移动。

温度升高I CBO、I CEO、I C以及β均增加。

三. 低频小信号等效模型(简化)h ie---输出端交流短路时的输入电阻,常用r be表示;h fe---输出端交流短路时的正向电流传输比,常用β表示;四. 基本放大电路组成及其原则1. VT、V CC、R b、R c 、C1、C2的作用。

2.组成原则----能放大、不失真、能传输。

五. 放大电路的图解分析法1. 直流通路与静态分析*概念---直流电流通的回路。

*画法---电容视为开路。

*作用---确定静态工作点*直流负载线---由V CC=I C R C+U CE确定的直线。

*电路参数对静态工作点的影响1)改变R b:Q点将沿直流负载线上下移动。

2)改变R c:Q点在I BQ所在的那条输出特性曲线上移动。

3)改变V CC:直流负载线平移,Q点发生移动。

2. 交流通路与动态分析*概念---交流电流流通的回路*画法---电容视为短路,理想直流电压源视为短路。

*作用---分析信号被放大的过程。

*交流负载线--- 连接Q点和V CC’点V CC’= U CEQ+I CQ R L’的直线。

3. 静态工作点与非线性失真(1)截止失真*产生原因---Q点设置过低*失真现象---NPN管削顶,PNP管削底。

*消除方法---减小R b,提高Q。

(2)饱和失真*产生原因---Q点设置过高*失真现象---NPN管削底,PNP管削顶。

*消除方法---增大R b、减小R c、增大V CC 。

4. 放大器的动态范围(1)U opp---是指放大器最大不失真输出电压的峰峰值。

(2)范围*当(U CEQ-U CES)>(V CC’ - U CEQ)时,受截止失真限制,U OPP=2U OMAX=2I CQ R L’。

*当(U CEQ-U CES)<(V CC’ - U CEQ)时,受饱和失真限制,U OPP=2U OMAX=2 (U CEQ-U CES)。

*当(U CEQ-U CES)=(V CC’ - U CEQ),放大器将有最大的不失真输出电压。

六. 放大电路的等效电路法1.静态分析(1)静态工作点的近似估算(2)Q点在放大区的条件欲使Q点不进入饱和区,应满足R B>βRc。

2.放大电路的动态分析* 放大倍数* 输入电阻* 输出电阻七.分压式稳定工作点共射放大电路的等效电路法1.静态分析2.动态分析*电压放大倍数在R e两端并一电解电容C e后输入电阻在R e两端并一电解电容C e后* 输出电阻八. 共集电极基本放大电路1.静态分析2.动态分析* 电压放大倍数* 输入电阻* 输出电阻3. 电路特点* 电压放大倍数为正,且略小于1,称为射极跟随器,简称射随器。

* 输入电阻高,输出电阻低。

第三章场效应管及其基本放大电路一. 结型场效应管( JFET)1.结构示意图和电路符号2. 输出特性曲线(可变电阻区、放大区、截止区、击穿区)转移特性曲线U P ----- 截止电压二. 绝缘栅型场效应管(MOSFET)分为增强型(EMOS)和耗尽型(DMOS)两种。

结构示意图和电路符号2. 特性曲线*N-EMOS的输出特性曲线* N-EMOS的转移特性曲线式中,I DO是U GS=2U T时所对应的i D值。

* N-DMOS的输出特性曲线注意:u GS可正、可零、可负。

转移特性曲线上i D=0处的值是夹断电压U P,此曲线表示式与结型场效应管一致。

三. 场效应管的主要参数1.漏极饱和电流I DSS2.夹断电压U p3.开启电压U T4.直流输入电阻R GS5.低频跨导g m (表明场效应管是电压控制器件)四. 场效应管的小信号等效模型E-MOS 的跨导g m ---五. 共源极基本放大电路1.自偏压式偏置放大电路* 静态分析动态分析若带有C s,则2.分压式偏置放大电路* 静态分析* 动态分析若源极带有C s,则六.共漏极基本放大电路* 静态分析或* 动态分析第四章多级放大电路一.级间耦合方式1. 阻容耦合----各级静态工作点彼此独立;能有效地传输交流信号;体积小,成本低。

但不便于集成,低频特性差。

2. 变压器耦合 ---各级静态工作点彼此独立,可以实现阻抗变换。

体积大,成本高,无法采用集成工艺;不利于传输低频和高频信号。

3. 直接耦合----低频特性好,便于集成。

各级静态工作点不独立,互相有影响。

存在“零点漂移”现象。

*零点漂移----当温度变化或电源电压改变时,静态工作点也随之变化,致使u o偏离初始值“零点”而作随机变动。

二. 单级放大电路的频率响应1.中频段(f L≤f≤f H)波特图---幅频曲线是20lg A usm=常数,相频曲线是φ=-180o。

2.低频段(f ≤f L)‘3.高频段(f ≥f H)4.完整的基本共射放大电路的频率特性三. 分压式稳定工作点电路的频率响应1.下限频率的估算2.上限频率的估算四. 多级放大电路的频率响应1. 频响表达式2. 波特图第五章功率放大电路一. 功率放大电路的三种工作状态1.甲类工作状态导通角为360o,I CQ大,管耗大,效率低。

2.乙类工作状态I CQ≈0,导通角为180o,效率高,失真大。

3.甲乙类工作状态导通角为180o~360o,效率较高,失真较大。

二. 乙类功放电路的指标估算1. 工作状态➢任意状态:U om≈U im➢尽限状态:U om=V CC-U CES➢理想状态:U om≈V CC2. 输出功率3. 直流电源提供的平均功率4. 管耗P c1m=0.2P om5.效率理想时为78.5%三. 甲乙类互补对称功率放大电路1.问题的提出在两管交替时出现波形失真——交越失真(本质上是截止失真)。

2. 解决办法➢甲乙类双电源互补对称功率放大器OCL----利用二极管、三极管和电阻上的压降产生偏置电压。

动态指标按乙类状态估算。

➢甲乙类单电源互补对称功率放大器OTL----电容C2上静态电压为V CC/2,并且取代了OCL 功放中的负电源-V CC。

动态指标按乙类状态估算,只是用V CC/2代替。

四. 复合管的组成及特点1.前一个管子c-e极跨接在后一个管子的b-c极间。

2.类型取决于第一只管子的类型。

3.β=β1·β 2第六章集成运算放大电路一. 集成运放电路的基本组成1.输入级----采用差放电路,以减小零漂。

2.中间级----多采用共射(或共源)放大电路,以提高放大倍数。

3.输出级----多采用互补对称电路以提高带负载能力。

4.偏置电路----多采用电流源电路,为各级提供合适的静态电流。

二. 长尾差放电路的原理与特点1. 抑制零点漂移的过程----当T↑→ i C1、i C2↑→ i E1、i E2 ↑→ u E↑→ u BE1、u BE2↓→ i B1、i B2↓→ i C1、i C2↓。

R e对温度漂移及各种共模信号有强烈的抑制作用,被称为“共模反馈电阻”。

2静态分析1) 计算差放电路I C设U B≈0,则U E=-0.7V,得2) 计算差放电路U CE•双端输出时••单端输出时(设VT1集电极接R L)对于VT1:对于VT2:3. 动态分析1)差模电压放大倍数•双端输出••单端输出时从VT1单端输出:从VT2单端输出:2)差模输入电阻3)差模输出电阻•双端输出:•单端输出:三. 集成运放的电压传输特性当u I在+U im与-U im之间,运放工作在线性区域:四. 理想集成运放的参数及分析方法1. 理想集成运放的参数特征* 开环电压放大倍数A od→∞;* 差模输入电阻R id→∞;* 输出电阻R o→0;* 共模抑制比K CMR→∞;2. 理想集成运放的分析方法1) 运放工作在线性区:* 电路特征——引入负反馈* 电路特点——“虚短”和“虚断”:“虚短”---“虚断” ---2) 运放工作在非线性区* 电路特征——开环或引入正反馈* 电路特点——输出电压的两种饱和状态:当u+>u-时,u o=+U om当u+<u-时,u o=-U om两输入端的输入电流为零:i+=i-=0第七章放大电路中的反馈一.反馈概念的建立*开环放大倍数---A*闭环放大倍数---Af*反馈深度---1+AF*环路增益---AF:1.当AF>0时,Af下降,这种反馈称为负反馈。

相关文档
最新文档