同济大学高等数学(第七版)D12习题课

合集下载

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(函数与极限 下)【圣才出品】

同济大学数学系《高等数学》第7版笔记和课后习题含考研真题详解(函数与极限 下)【圣才出品】

x0
x0
1 cos x2
lim
x0
sin2 x
lim x0
1 2
x2
2
x2
0
所以当 x→0 时,(1-cosx)2 是比 sin2x 高阶的无穷小。
3.当 x→1 时,无穷小 1-x 和(1)1-x3,(2)(1-x2)/2 是否同阶,是否等价?
x0 x
x0 x
(3)
lim
x0
sin sin
2x 5x
;(4)
lim
x0
x
cot
x

(5) lim 1 cos 2x x0 x sin x
;(6) lim 2n n
sin
x 2n
(x
为不等于零的常数)。
解:(1)当ω≠0
时, lim x0
sin x x
lim
x0
sin x
x
lim
x0
sin x x
2 5
lim
x0
sin 2x 2x
lim
x0
5x sin 5x
2 5
(4)
lim
x0
x
cot
x
lim
x0
x sin
x
cos
x
lim
x0
x sin
x
lim x0
cos
x
1
(5) lim 1 cos 2x lim 2sin 2 x 2 lim sin x 2
x0 x sin x x0 x sin x
(4) lim n 1 x 1 x0
(5)
lim
x0
x
1 x
1
证:(1)因1

同济大学《高等数学》第七版上、下册问题详解(详解)

同济大学《高等数学》第七版上、下册问题详解(详解)

练习1-1
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-2
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
练习1-3
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全
文案大全。

高等数学同济第七版第十二章课后习题答案

高等数学同济第七版第十二章课后习题答案

…I I
半径为 I,收敛区间为(-1 J).
(4)lim %" = lim —= 0 ,故收敛半在为+8,收敛区间是(-8 , ♦ 8 ). …14 | …2 (门♦ I)
第十二童无穷级数
221
由此可知.对任意给定的正数£ .取正整数 A m 岫十,当〃 >投时,对一切正整数 p, 都有 S--
力 < £ ,按柯西收敛原理.该级数收敛•
(4)本题与(2)类同.因 4 =丁\ + (
故对 3/1 ♦ 1 \3n +2 3n + 3) 3〃 ♦ I An
% = + .不论/!取什么正整数.取 p = 〃时.就有 1〃.,・h1 =%八+U..2 ।…+
219
解(D 此级数为公比 g =-5 的等比级数.因|°| < 1 ,故该级数收敛.
(2)此级数的部分和
即该级数发散.
lim sA = + oc , 冬■一
(3)此级数的一股项% =*,有 要条 忖% = lim(y), = 1 ,不满足级数收敛的必
件,故该级数发散. (4)此级数为公比 4 二方的等比级数,因|q| > 1 ,故该级数发散. (5)此级数的一般项% =3.二注意到与£ 上分别是公比”;

・a
散,故各项乘;志的级数 Ej 也发放,由比较审敛法知原级数 s 二二■? 发散.
1 解法二 因=1,而 y 1 发故.故由极限形式的比较审敛法知原 … I 2 1n
级数发散 (2) u = Lt: >二而 f L 发散.由比较审敛法知原级数 ・
1 > n2 n n2 n Sf”
222
一• 《高等数学》(第七版)下册习咫全解

同济大学《高等数学》第七版上、下册答案(详解),DOC

同济大学《高等数学》第七版上、下册答案(详解),DOC
(4)2 12 (7 z)2 32 52 (2 z)2
解得 z 14
9
即所求点为 M(0,0,14 ).
9
7. 试证:以三点 A(4,1,9),B(10,-1,6),C(2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB|=|AC|=7.且有 |AC|2+|AB|2=49+49=98=|BC|2. 故△ABC 为等腰直角三角形. 8. 验证: (a b) c a (b c) .
3 i 14
1 j 14
2 k.
14
14. 三个力 F1=(1,2,3), F2=(-2,3,-4), F3=(3,-4,5)同时作用于一点. 求合力 R 的大小和方向余弦.
解:R=(1-2+3,2+3-4,3-4+5)=(2,1,4)
| R | 22 12 42 21
cos 2 , cos 1 , cos 4 .
故 A 的坐标为 A(-2, 3, 0).
13. 一向量的起点是 P1(4,0,5),终点是 P2(7,1,3),试求:
(1) P1P2 在各坐标轴上的投影; (2) P1P2 的模;
(3) P1P2 的方向余弦;
(4) P1P2 方向的单位向量.
解:(1) ax Pr jx P1P2 3,
ay Pr jy P1P2 1,
练习 5-2
练习 5-3
练习 5-4
总习题五
练习 6-2
练习 6-3
(2) s 22 (3)2 (4)2 29
(3) s (1 2)2 (0 3)2 (3 4)2 67
(4) s (2 4)2 (1 2)2 (3 3)2 3 5 .
5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离.

高等数学同济第七版下课后习题及解答

高等数学同济第七版下课后习题及解答

高等数学同济第七版下课后习题及解答高等数学作为大学理工科专业的重要基础课程,对于学生的逻辑思维和数学素养的培养起着至关重要的作用。

而《高等数学同济第七版》更是众多高校广泛采用的教材,其课后习题是巩固知识、提升能力的重要途径。

接下来,我们就来详细探讨一下这本教材下册的课后习题及解答。

下册的内容主要包括多元函数微积分学、向量代数与空间解析几何、无穷级数等重要章节。

这些章节的知识点相互关联,构成了一个较为完整的高等数学知识体系。

在多元函数微积分学这一部分,课后习题涵盖了多元函数的概念、偏导数、全微分、多元函数的极值与条件极值等重要知识点。

例如,有这样一道习题:求函数\(z = x^2 + 2y^2 4x + 8y\)的极值。

解答这道题,首先需要求出函数的偏导数\(z_x\)和\(z_y\),分别为\(2x 4\)和\(4y + 8\)。

令偏导数等于零,得到方程组\(2x 4 = 0\),\(4y + 8 = 0\),解得\(x = 2\),\(y =-2\)。

然后,计算二阶偏导数\(z_{xx} = 2\),\(z_{yy} =4\),\(z_{xy} = 0\)。

由于\(z_{xx} > 0\),且\(z_{xx}z_{yy} z_{xy}^2 = 8 > 0\),所以函数在点\((2, -2) \)处取得极小值,极小值为\( 12\)。

向量代数与空间解析几何这一章节的习题则注重考查学生对向量运算、空间直线和平面方程的理解和掌握。

比如,给定两个向量\(\vec{a} =(1, 2, -1) \)和\(\vec{b} =(3, 1, 2) \),求它们的叉积\(\vec{a} \times \vec{b} \)。

首先,根据叉积的计算公式,得到\(\vec{a} \times \vec{b} =\begin{vmatrix} \vec{i} &\vec{j} &\vec{k} \\ 1 & 2 &-1 \\ 3 & 1 & 2 \end{vmatrix} = 5\vec{i} 5\vec{j} 5\vec{k} =(5, -5, -5) \)。

高等数学同济第七版7版下册习题全解

高等数学同济第七版7版下册习题全解

数,故/, = Jj( x2 + y1)3d(j = 2jj(x2+ y1) 3dcr.fh i)i又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2+j2)3dcr=2j(x2+y2)3da=2/2.Dy 1):从而得/, = 4/2.(2)利用对称性来计算二重积分还有以下两个结论值得注意:如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y)= -f(x,y) ,P Jjf/(x,y)da =0;D如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则=0.D«3.利用二重积分定义证明:(1)jj da=(其中(7为的面积);IJ(2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数);o n(3 ) JJ/( x,y)clcr = JJ/( x,y)drr + jJ/( x ,y) dcr ,其中 /) = /)! U /)2,,A 为两个I) b\ lh尤公共内点的W K域.证(丨)由于被枳函数./U,y)=1,故山二t积分定义得n"jj'ltr = Hm y^/( ,rji) A<r, = lim ^ Ac,=l i m cr= a.A—0n(1)Ji/(x,j)(Ic7=lim^i)1n=A lim y/(^(,i7,)A(7-,=k \\f{x,y)Aa.A-°台•{!(2)因为函数/U,y)在闭区域/)上可积,故不论把£»怎样分割,积分和的极限总是不变的.因此在分割D时,可以使和/)2的公共边界永远是一条分割线.这样fix.y)在A U D2上的积分和就等于&上的积分和加D2上的积分和,记为^/(^, ,17,) A CT, = ^/( ^, , 17,) A CT, + ^/(^, ,17,) A CT,./)(U0, ", l):令所有的直径的最大值A-0,上式两端同时取极限,即得Jf(x,y)i\a=j j f(x,y)d a+J J/(x f y)d a.p,un} V, n;Sa4.试确定积分区域/),使二重积分][(1-2x2-y2)d«l y达到最大值.I)解由二重积分的性质可知,当积分区域/>包含了所有使被积函数1 -2.v2 -V2 大于等于零的点,而不包含使被积函数1 -2/ -y2小于零的点,即当£»是椭圆2/ +y2 = l 所围的平面闭区域时,此二重积分的值达到最大.& 5.根据二重积分的性质,比较下列积分的大小:(1)Ju+y)2山7与J[U,其中积分区域D是由x轴、^轴与直线A+.、=D I)1所围成;(2)J(x+7)2如与■,其中积分区域0是由圆周(.r-2)2+(.v-l)2=t) n2所围成;(3)I'm A;+y)(l o r与!"[I n(X+y)]2(1(7,其中Z>是三角形闭K域,三顶点分别为l)"(1,0),(1,1),(2,0);(3)J p n(:r+y)d c r与I n(:t+y)]2f W,其中/)=|(.r,.v)|3,0彡、彡1 .i) i)解(1)在积分K域0上,故有(x + j) 3 ^ (x + y) 2.根据二重积分的性质4,可得J(.r + y) \lrx ^ J (.\ + v)0D由于积分区域0位于半平面| (A:,V) | .V+ •、彡1 1内,故在/)|:&(.f + y) 2彡(A + y) 3•从『("• J( v + > ):drr ^ jj ( x + y) \l f r.(1)由于积分区域D位于条形区域1U,y)|1彡1+7彡2丨内,故知区域/)上的点满足0彡InU+y)彡1,从而有[lnU+y)]2彡lnU+.y).因此j j[l n(a:+y)]2(J o-^+y)d(2)由于积分区域/)位于半平面丨(x,y) | .v+y彡e|内,故在Z)上有l n(x+y)彡1,从而:I n(-v+)')]2彡I n(:c+)').因此Jj^ 1 n(.r + y) ] 2dcr ^ Jln( x + y) da.i) a3 6.利用二重积分的性质估计下列积分的值:(1) / = |^7(文+7)心,其中/)= \ (x ,y) 1,0 1|;n(2)/=j^sin^sin^do■,其中/)=j(A:,y)|0^^^TT,0^y^TT1;i)(3)/= J*(A:+y + l)d(7,其中/>= { {x,y) |0^x^l,0^j^2[;it(4)/=J(x2 +4y2 +9)do•,其中D= \{x,y) \x2 +y2 ^ 4|.I)解(1)在积分区域D上,0矣;<:矣1,0英y矣1,从而0矣巧•(*+y)矣2•又£»的面积等于1,因此(2)在积分区域/)上,0矣sin J:矣1,0^sin1,从而0彡sin2A:sin2y彡1,又0的面积等于TT2,W此(3)在积分K域"上有\^x+y +\«4,/)的而积等于2,因此(4)W为在积分K域/>»上有0矣;t2+y2苳4,所以有9^+4r2+9^4( x2+y2)+9矣25.34I)的酣枳等于4TT,W此36TT^[[(x2+4/+9)(Ur^lOO-ir.二重积分的计算法.^1.计算下列二甩积分:可编辑l<3x 十2) ;dcr ,其中"是由两坐标轴及直线-X - + v = 2听围成的闭区域; b ( 3 J jj( x J + 3x 2 \ + v 3 ) da ,其中 D = ( x , v ) 0 ^ A : ^ 1 .0 ^ v ^ 1 ; u ( 4 ) jjxcas( X + Y j do ■,其中Z >是顶点分别为( 0 .0 j < 77 ,0 )和( 77 , 77 )的三角形闭区域. m (1 x 2 4- V 2 )d(T = f dxf (X 2 -h V 2 ) d V dx j fh 2 D 不等式表示为 2 r 2 -x 3xy +y 2]l~x dx =| (4+ 2x - 2x 2 ) dx 20 3(+ 3x 2y + y 3 )da = d > (文3 + 3.r 2 v +、、)ch . + x y + v " JC di (4) l )可用不等式表示为 0 ^ V ^ A : , 0 ^ .t ^ 7T . 于是 |A :COS (JC + y ) da = I cos(.v + v )d I [ sin (.t + y ) ] Q ()^ = J V ( sin 2.v - sin .v ) <1 x x(\( cos .v —丄(.<,s 2.v ) 卜( 1X (-TT r T X cos .v - —rus TT. & 2. _出枳分ix:域,斤i 卜r): v 列m 分:x2^y^J^,0矣x矣1(图10-2).0«^^/4-y2,-2矣7矣2(图10-3),(2)J^^do■,其中/)是由两条抛物线7=v^,y=*2所围成的闭区域;D(3)jfxy2dcr,其中D是由圆周x2+J2=4及y轴所围成的右半闭区域;I)(3)JV+'dcr,其中/)=I(%,)•)||A;|+|J|^1!;D(4)|"U2+/-x)<lo•,其中D是由直线y:l、y二xh :2*所围成的闭区域.D解(1)0可用不等式表示为于是(4)D可用不等式表示为(3)如阁I()-4,W=/\U"2,其中/>1= \(x,y)\-x-\ ^y^Jc + 1,-1 ^a;^0|,I)2=\(x,y) |*-1 +因此Ea3.如果二重积分|/( .r,y)心办的被积函数/(x,v)是两个函数/](O及)的乘n积,即/(X,y) =f\(x)./“y),积分区域/)={(.V,y)I(1^V^/>,r^,证叫这个二重积分等于两个单积分的乘枳,即|*/|U) -/2(r) fl atl y = [ J/, (.v)(l.v] - [ [/:( > )^v]-证Jj./1(x)•.,2(/)dvd V~J[f J \(v)■ ./:t^]l^x*在上式右端的第一次单枳分f/,(.V)•/2(.V)d v中,./,(A.)1J fut变招:、无关,nn见为常数提到积分5外,W此上式“端笏T可编辑fix/ = j [ dy ^/(*,y )tk .而在这个积分中,由于f/2 (y ) d y 为常数,故又可提到积分号外,从而得到• f 2<,y)^xAy= [| /2(y )dj ] - [ J n /, (x )dx ]证毕. ^4.化二重积分/ = Jf(x ,y )daI)为二次积分(分别列出对两个变量先后次序不同的两个二次积分),其中积分区域£>是:(1) 由直线及抛物线y 2 =4x 所围成的闭区域; (2) 由x 轴及半圆周/ +y 2 =r 2(y 英0)所围成的闭区域;(3) 由直线y =x ,;c = 2及双曲线:K = ^-(*>0)所围成的闭区域;X(4) 环形闭区域 IU ,y ) | 1+y 2^4(.解(1)直线y =x 及抛物线y 2 =4;c 的交点为(0,0)和(4,4)(图10-6).于是f(x,y)dy,(1)将/)用不等式表示'fyO^y^r 2 -x 2,- r ^ W /•,于是可将/化为如下的先 对y 、后对*的二次积分:r/ = J (1文Jf(x ,y)(\y ;如将0叫不等式表示为~Vr 2 -y 2^x^Vr 2 - y 2 ,0各/•,则可将/化为如卜的 先对*、后对y 的二次枳分:可编辑dr x,y) dx. (3)如图 10-7. :条边界曲线两两相交,先求得3个交点为(1 ,1 ),2,y 和(2,2).于是dy (i_/(^,y)+ tlj /( x ,y)dx.dx• \/4J\x y y)dy + d.vl(1%/T/(A :,y)clr + d.vl ■ y A -x 2/(.r ,v )d > -f/(.v V v ) dv ./(.v ,v )d.v -f.\/4-、 /( \ , > ) d.v-f厂、/4 -、•'•I-v^ W"/( v , y) (l .\.| dxj[f(x,y)dy.注本题说明,将二重积分化为二次积分时,需注意根据积分区域的边界曲线 的情况,选取恰当的积分次序.本题中的积分区域/)的上、下边界曲线均分别由—个 方程给出,而左边界曲线却分为两段,由两个不同的方程给出,在这种情况下采取先 对y 、后对^的积分次序比较有利,这样只需做一个二次积分,而如果采用相反的枳 分次序则需计算两个二次积分.需要指出,选择积分次序时,还需考虑被积函数/U , y )的特点.具体例子n ]'见教 材下册第144页上的例2.(4)将D 按图10 - 8( a )和图10 - 8( 1>)的两种不同方式則分为4块,分別得x ,r) d.t.(5) (lx\ f{x,y)Ay\广2 f yix -x2(4)|叫2f{x,y)dy-,fix /-sin x(6)I Ax\J(x,y)Ay.JO J - siny图10-8,5.设/U,Y)在D上连续,其中/)是由直线;==所围成的闭区域,证明dx| f(x,y)Ay证等式两端的二次积分均等于二重积分J/U,y)d o•,因而它们相等.I)^6.改换下列二次积分的积分次序:(2) J) dj|:f(x,y)dx;解(丨)所给二次积分等于二重积分J[/U,;K)(^,其中o =丨h,y)1° ^ ^ ^r-"0 ^ j ^ I(. /> n|■改写为 | Uj) | * 矣y矣 1,0 ^ ^ I | (罔 10 - 9),于是原式=丄<ixj/(x,y)dy.(3)所给一.次枳分等于二'Ti积分|/U,y)山,.K:中/)=I|.y2^^<2y,0 ^21. M I) njm为{u’y) I 音矣 j ^ 7^,0 ^ x 在4)( 1冬 1 1(> - I0),W此原式=J,i\xjy/(x,y)i\y.-y 2^.V ^1$、飞 V 彡1(4) 所给二次积分等于二重积分.其中D = : (.v .v ) | - V 1UX ^ J 1 - y 2 ,0彡 >•彡 1 ; •又 D 可表示为:(JC ,)*)丨0彡 y 彡 V 1 - .r 2 , - 1 = (图10 -11),因此f 1f V 1 -X~原式=J ^ dxj/(x , v )dy .(5) 所给二次积分等于二重积分其中D = : (.v .v ) ' 2 -hs/lx - x 1 %\ 彡.r 彡2 :.又 D 可表示为:(A :,V ) | 2 - 1彡.t •彡 1 + Y 1 — v 2,0 : (图 10 -12),故原式=丄 d)j f(x %y)dx.(6)所给二次积分等于二重积分]|/(.10 )(1^,)1:中/)= 1(.v .v ) | 0 ^ v ^I)x 彡e | •又/)可表示为| ( A :,>•) | e 、彡A •彡e ,0彡、彡1 i ( |劄10 - 1,故原式=L (I .、| ,./X .、,.、) (l .v .m1()-14,将积分|><:域/)丧示为/),U/)2,其中A),=j U,、)|arcsin>^可编辑/(x,y)dx. y广 1 r ir - arcsin > 原式=Idyf(x yy)c\xJO Jarcsin )T T - arcsin y ,0彡 y 彡 1 |1,D 2 = | (.r,y)一 2arcsi n , 一 1 彡)'彡0|.于是rt-x + xydrAy~d\ c\) ''i x E | o»•Y = s i n A的反闲数足A = i i r r s»My- -1 x足ih y - H in x = sin ( T T - x) "n!J TT - x ^ ar cKin y,从ifii 得反闲数 ^(子•中,TTT T - iin-Hiny.^7.设平面薄片所占的闭区域D 由直线;t = 2,y = 和;r 轴所围成,它的面密度/x (.t ,v ) = x 2 +y 2,求该薄片的质量.解 D 如图10-15所示.所求薄片的质M = jJ/Lt( x 9y) dcr = ^ dyj ( x 2 + y 2 ) dxr[+(2”)3+2,12| 冬| 10 - 158. i |灯|l |四个平而A : = 0,y = 0,;t = I ,v = I 所闲成的柱休被平面z = 0及2.r +3y + z 6藏得的立休的体积.V - (I 6 - ^ x 2 + y 2) dx(\y6 ( 1 - x ) - x 2+——f 1\1_6"*10-17m 10 - 18解 江力一 E J .它??芪是;c 0:. S 二苎泛7:省•。

高等数学同济第七版上册课后习题答案

高等数学同济第七版上册课后习题答案

习题1-11.求下列函数的自然定义域:(1)1(3)(5)sin (7)arcsin(3);(9)ln(1);y y x y y x y x ====-=+211(2);1(4);(6)tan(1);1(8)arctan ;(10).xe y xy y x y xy e =-==+=+=解:2(1)3203x x +≥⇒≥-,即定义域为2,3⎡⎫-+∞⎪⎢⎣⎭2(2)101,x x -≠⇒≠±即定义域为(,1)(1,1)(1,)-∞-⋃-⋃+∞(3)0x ≠且2100x x -≥⇒≠且1x ≤即定义域为[)(]1,00,1-⋃2(4)402x x ->⇒<即定义域为(2,2)-(5)0,x ≥即定义域为[)0,+∞(6)1(),2x k k Z ππ+≠+∈即定义域为1(1,2x x R x k k Z π⎧⎫∈≠+-∈⎨⎬⎩⎭且(7)3124,x x -≤⇒≤≤即定义域为[]2,4(8)30x -≥且0x ≠,即定义域为(](,0)0,3-∞⋃(9)101x x +>⇒>-即定义域为(1,)-+∞(10)0,x ≠即定义域为(,0)(0,)-∞⋃+∞2.下列各题中,函数()f x 和()g x是否相同?为什么?222(1)()lg ,()2lg (2)(),()(3)()()(4)()1,()sec tan f x x g x x f x x g x f x g x f x g x x x========-解:(1)不同,因为定义域不同(2)不同,因为对应法则不同,,0(),0x x g x x x ≥⎧==⎨-<⎩(3)相同,因为定义域,对应法则均相同(4)不同,因为定义域不同3.设sin ,3()0,3x x x x πϕπ⎧<⎪⎪=⎨⎪≥⎪⎩求(),((),(2),644πππϕϕϕϕ--并指出函数()y x ϕ=的图形解:1()sin ,()sin 66244()sin(),(2)0,44ππππϕϕππϕϕ====-=-=-=()y x ϕ=的图形如图11-所示4.试证下列函数在指定区间内的单调性:(1);1(2)ln ,(0,)xy xy x x =-=++∞证明:1(1)()1,(,1)11x y f x x x===-+-∞--设121x x <<,因为212112()()0(1)(1)x x f x f x x x --=>--所以21()(),f x f x >即()f x 在(,1)-∞内单调增加(2)()ln ,(0,)y f x x x ==++∞设120x x <<,因为221211()()ln 0x f x f x x x x -=-+>所以21()()f x f x >即()f x 在(0,)+∞内单调增加5.设()f x 为定义在(,)l l -内的奇函数,若()f x 在(0,)l 内单调增加,证明()f x 在(,0)l -内也单调增加证明:设120l x x -<<<,则210x x l<-<-<由()f x 是奇函数,得2121()()()()f x f x f x f x -=-+-因为()f x 在(0,)l 内单调增加,所以12()()0f x f x --->即()f x 在(,0)l -内也单调增加6.设下面所考虑的函数都是定义在区间(,)l l -上的。

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版

高等数学同济第七版下册习题与答案完整版引言在学习高等数学课程中,习题是提高理解和掌握知识的重要方式。

然而,有时候我们在学习的过程中可能会遇到一些难题,不知道如何解答。

为了帮助同学们更好地学习和掌握高等数学知识,我们整理了高等数学同济第七版下册的习题与答案完整版,供大家参考。

第一章无穷级数习题1.11.讨论级数 $\\sum_{n=1}^{\\infty} \\frac{n^3 +2n}{(2n^2 + 3n - 4)^2}$ 的敛散性。

2.求级数 $\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的和。

答案1.首先,我们将这个级数进行比较审敛法。

考虑到n3+2n的最高次项为n3,而(2n2+3n−4)2的最高次项为(2n2)2=4n4,因此我们可以得到 $\\frac{n^3 +2n}{(2n^2 + 3n - 4)^2} < \\frac{n^3 + 2n}{4n^4}$。

根据比较审敛法的基本原理,只需讨论 $\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{4n^4}$ 的敛散性。

根据级数的性质,我们可以分别求前两项、前三项的和,并观察和的变化规律。

经过计算,可得前两项的和为 $\\frac{1}{16}$,前三项的和为 $\\frac{5}{96}$。

观察可以发现,当 n 的值逐渐增大时,和逐渐减小,并且趋于一个有限值。

因此,根据比较审敛法,原级数$\\sum_{n=1}^{\\infty} \\frac{n^3 + 2n}{(2n^2 + 3n - 4)^2}$ 也收敛。

2.我们可以使用交错级数的性质求解这个问题。

根据交错级数的性质,交错级数 $\\sum_{n=1}^{\\infty}\\frac{(-1)^n}{n^p}$ 的和为 $S = \\ln 2$,其中n=1。

对于这个问题,我们可以发现,级数$\\sum_{n=1}^{\\infty} \\frac{(-1)^n}{n^2}$ 的形式和交错级数一样,只是n=2。

高等数学同济第七版下课后习题及解答

高等数学同济第七版下课后习题及解答

高等数学同济第七版下课后习题及解答高等数学作为大学理工科专业的重要基础课程,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。

而《高等数学》同济第七版更是被广泛使用的经典教材之一。

在学习过程中,课后习题是巩固知识、深化理解的重要环节。

下面,我们就来详细探讨一下这本教材下册的课后习题及解答。

首先,我们来了解一下这本教材下册所涵盖的主要内容。

下册主要包括多元函数微积分学、无穷级数、常微分方程等重要章节。

每个章节都配有丰富的习题,旨在帮助学生掌握相关的概念、定理和方法。

在多元函数微积分学部分,习题的类型多种多样。

有关于偏导数、全微分的计算,也有涉及多元函数极值和条件极值的问题。

例如,在计算偏导数时,学生需要熟练掌握对各个变量的求导法则,并且要注意函数的复合结构。

对于全微分的习题,需要理解全微分的定义以及其与偏导数的关系,通过练习能够准确地求出给定函数的全微分。

而在极值问题中,学生要学会运用拉格朗日乘数法,通过建立方程组来求解极值点。

无穷级数这一章节的习题则主要集中在级数的收敛性判别、函数展开成幂级数等方面。

对于级数的收敛性判别,需要掌握各种判别法,如比较判别法、比值判别法、根值判别法等。

在函数展开成幂级数的习题中,学生要熟悉常见函数的幂级数展开式,并能够运用相应的方法将给定的函数展开成幂级数。

常微分方程部分的习题包括一阶和二阶常微分方程的求解,以及线性微分方程解的结构等内容。

在求解一阶常微分方程时,要掌握分离变量法、一阶线性方程的求解公式等方法。

对于二阶常微分方程,要能够根据方程的特征根来确定通解的形式,并通过给定的初始条件求出特解。

接下来,我们谈谈如何有效地解答这些课后习题。

第一步,认真审题。

仔细阅读题目,理解题目所考查的知识点和要求。

明确题目中的已知条件和未知量,以及它们之间的关系。

第二步,回顾相关知识。

根据题目所涉及的知识点,迅速在脑海中回顾所学的概念、定理和方法。

如果对某些知识点感到模糊,应及时查阅教材进行复习。

同济大学高等数学第七版上下册答案详解

同济大学高等数学第七版上下册答案详解
同济大学高等数学第七版上下册答案详解
练习1-1
练习1-2
练习1-3
练习1-4
练习1-5
练习1-6
练习1-7
练习1-8
练习1-9
练习1-10
总习题一
练习2-1
练习2-2
练习2-3
练习2-4
练习2-5
总习题二
练习3-1
练习3-2
练习3-3
练习3-4
练习3-5
练习3-6
x
( 2)
2
(2 1)
1
(1 1)
1
(1 )
y
0
+
+
+
0
+
y
+
+
+
0
0
+
yf(x)

17/5
极小值

6/5
拐点

2
拐点

x
0
(0 1)
1
y
+
+
0
-
-
-
y
0
-
-
-
0
+
yf(x)
0
拐点

极大值

拐点

x
1
y
+
+
+
0
-
-
-
y
+
0
-
-
-
0
+
yf(x)

拐点

1
极大值

拐点

x
( 1)
-1

同济大学数学系《高等数学》(第7版)(下册)配套题库【考研真题精选+章..

同济大学数学系《高等数学》(第7版)(下册)配套题库【考研真题精选+章..

目 录第一部分 考研真题精选第8章 向量代数与空间解析几何第9章 多元函数微分法及其应用第10章 重积分第11章 曲线积分与曲面积分第12章 无穷级数第二部分 章节题库第8章 向量代数与空间解析几何第9章 多元函数微分法及应用第10章 重积分第11章 曲线积分与曲面积分第12章 无穷级数第一部分 考研真题精选第8章 向量代数与空间解析几何填空题(把答案填在题中横线上)点(2,1,0)到平面3x+4y+5z=0的距离d=______。

[数一2006研]【答案】【解析】由点到平面的距离公式第9章 多元函数微分法及其应用一、选择题1设函数f(x,y)在点(0,0)处可微,f(0,0)=0,,且非零向量→d与→n垂直,则( )。

[数一2020研]A.存在B.存在C.存在D.存在A【答案】【解析】∵f(x,y)在(0,0)处可微,f(0,0)=0,∴;即。

∵,∴存在。

∴选A项。

2关于函数给出下列结论①∂f/∂x|(0,0)=1②∂2f/∂x∂y|(0,0)=1③④正确的个数为( )。

[数二2020研]A.4B.3C.2D.1【答案】B【解析】①因,故①正确。

②因,先求f x′(0,y),而当y≠0时,不存在;当y=0时,;综上可知,f x′(0,y)不存在。

故∂2f/∂x∂y|(0,0)不存在,因此②错误。

③当xy≠0时,,当(x,y)沿着y轴趋近于(0,0)点时,;当(x,y)沿着x轴趋近于(0,0)点时,;综上可知,,故③正确。

④当y=0时,;当y≠0时,,故,则,故④正确。

综上,正确个数为3。

故应选B。

3函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量→u=(1,2,2)的方向导数为( )。

[数一2017研]A.12B.6C.4D.2D【答案】计算方向余弦得:cosα=1/3,cosβ=cosγ=2/3。

偏导数f x′=2xy,f y′=x2,f z′=2z。

得∂f/∂u=f x′cosα+f y′cosβ+f z′cosγ=4·(1/3)+1·(2/3)+0·(2/3)=2。

高等数学(同济第七版)课后答案解析

高等数学(同济第七版)课后答案解析
解当0i时.s(t)二!F.
当I V,w2时,s(!)=I - y(2-/)2=一£f2+ 2/-1 ,
当/>2HhS(f) =1.

/>2.
Q 16.求联系华氏温度(用F表示)和扱氏温度(用C表示)的转换公式.并求
(1)90叩的等价摄氏温度和-5 °C的等价华氏温度:
(2)是否存在一个温度值.使华氏温度汁和摄氏温度汁的读数是样的?如果存在,那么该温度值是多少?
xi
所以/(存)>/(%),即/(W在(0, + ao)内单调增加.
公5・设/U)为定义在(-/./)内的荷函数.若/(X)在(01)内单调増加,证明/(#)在(-L0)内也单凋増加.
证设-/<X, <X2<0,则0< “2 <-A,</,由/(、)是哉函数,從/g)V(X|)=-/(-知)+f(-旳)■因为/Xx)在(OJ)内单调増加.所以y(-X!)-/(-x2)>0.从而/(旳)>/(旳),即/(X〉在《・"0)内也単调增加.
解设尸.其中叽/,均为常数.
因为〃=32。相当于。=。。/ =212。相当于C= 100°.所以
7 "*=槌
故〃=1.80+32或C=扌(F-32).
(1)F=90°. C =刑90-32)52.2。.
C=-5。,F= 1.Xx(-5)+32= 23°.
(2)设温度値,符合题意.则有
/ = 1.8/ +32,I =-40.
尸銘EC
> =
y=•<>«< w
y=cotZ;
y=arcfiin lx I C1;
G2.卜列各题中,函数/(x)和g(x)是否相同?为什么”⑴/U) =lg/,g⑴=21gx;

高等数学-第七版-课件-12-9-傅里叶级数习题课ppt.ppt

高等数学-第七版-课件-12-9-傅里叶级数习题课ppt.ppt

奇函数
bn
傅12 里π f叶(x)系sin数nx
π 0π
dx
正弦级数
(n 1,2)
➢傅里叶级数
以2π为周期的
三角级数
定义在 [
,
]
a0 2

(an
n1
cos nx
bn
sin nx)
周期延拓
f(x) 以2 为周期
an
12
f (x)cosnx dx
0
(n 0,1,2)
傅里叶级数
奇函数(偶函数)
bn
1
f ( x0) sinnx dx
(n 1,2)
正弦级数 (余弦级数)
➢傅里叶级数
以2π为周期的
三角级数
定义在
[π,
π]
a0 2

n1
(an
cos
nx
bn
sin nx)
周期延拓
f(x) 以2π 为周期
an
1 π
π
f ( x)cos nx dx
π
(n 0,1,2 )
傅里叶级数
周期延拓
傅里叶级数,并由此求级数
1 的和.
补2

f
(x)
π
x
0
x
n2
n1
2π展开为以2π 为周期的
2
傅里叶级数,并由此求级数 (1)n1
1
的和.
n1
2n 1
例6 将 f ( x) x2 在 [π, π]上展开成傅里叶级数,
1
并由此求级数
n1
(2n 1)2
的和.
例7 将f ( x) sinax (a 0)在(π, π)上展开成傅里叶级数.

高等数学课件微分方程D12习题课2

高等数学课件微分方程D12习题课2
习题课 (二)
第十二章
二阶微分方程的
解法及应用
一、两类二阶微分方程的解法 二、微分方程的应用
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
一、两类二阶微分方程的解法
1. 可降阶微分方程的解法 — 降阶法

d2 y dx2

f
(x)
逐次积分求解

d2y dx2

f
(x,dy) dx
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
P327 题4(2) 求解
yay20

yx00,
y x01
提示: 令 yp(x),则方程变为 d p a p 2
dx
积分得

1 p

ax C1,
利用
px 0 yx 0 1得C11
再解
(x)ex(x)
(x)(x)ex
解初值问题: (0)0, (0)1
答案: (x)1ex(2x1)1ex
4
4
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
例3. 设函数 yy(x)在 (, ) 内具有连续二阶导
数, 且 y 0 ,xx(y)是 yy(x)的,函数
x 2 y pxy qy f(x)
令xet ,D d dt
D (D 1 ) p D q y f (et)
练习题: P327 题 2 ;
3 (6) , (7) ;
4(2); 8
2019/11/19
高等数学课件
机动 目录 上页 下页 返回 结束
解答提示
P327 题2 求以 yC 1exC 2e2x为通解的微分方程 . 提示: 由通解式可知特征方程的根为 r11,r22,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机动 目录 上页 下页 返回 结束
作业
P257 6 (2);
9(1) ;
7 (3);
10 (1) ;
8 (2),(3) ;
12
机动
目录
上页
下页
返回
结束
求收敛域;
级数展开.
机动
目录
上页
下页
返回
结束
一、数项级数的审敛法
1. 利用部分和数列的极限判别级数的敛散性 2. 正项级数审敛法 必要条件 lim u n 0
n
不满足
发 散
满足
un 1 比值审敛法 lim u n n 1
根值审敛法 lim n un
n
部分和极限 不定 比较审敛法
所以原级数绝对收敛 .
机动
目录
上页
下页
返回
结束
二、求幂级数收敛域的方法
• 标准形式幂级数: 先求收敛半径 R , 再讨论 x R 处的敛散性 . 通过换元转化为标准形式 • 非标准形式幂级数 直接用比值法或根值法
练习:
P257 题7. 求下列级数的敛散区间:
机动
目录
上页
下页
返回
结束
1 n 解: lim an lim (1 ) e n n n 1 1 1 R , 即 x 时原级数收敛 . e e e
机动
极限不存在
目录
上页
下页
返回
结束
三、幂级数和函数的求法
• 求部分和式极限 • 初等变换法: 分解、套用公式 (在收敛区间内) • 映射变换法
n 0
an x
S ( x)

n
逐项求导或求积分
n 0
n a nx


求和
对和式积分或求导
S * ( x)
• 数项级数 求和
直接求和: 直接变换, 求部分和等 间接求和: 转化成幂级数求和, 再代值
n n
又因
2( un 2 vn 2 )
利用收敛级数的性质及比较判敛法易知结论正确.
机动
目录
上页
下页
返回
结束
P257 题4. 设级数
收敛 , 且
问级数
是否也收敛?说明理由.
提示: 对正项级数,由比较判别法可知
但对任意项级数却不一定收敛 . 例如, 取
收敛,
(1) n 1 vn n n vn (1) n lim 1 lim 1 n u n n n
第十二章 习题课 级数的收敛、求和与展开
一、数项级数的审敛法
二、求幂级数收敛域的方法
三、幂级数和函数的求法 四、函数的幂级数和付式级数 展开法
机动 目录 上页 下页 返回 结束
求和 展开
(在收敛域内进行)
时为数项级数;
时为幂级数;
(an , bn 为傅氏系数) 时, 为傅立叶级数.
基本问题:判别敛散; 求和函数;
级数 收敛 , 级数 发散 .
机动 目录 上页 下页 返回 结束
P257 题5.讨论下列级数的绝对收敛性与条件收敛性:
(2)
n 1
(1)

sin n 1 n 1

n 1
;
n 1 (3) (1) ln ; n n 1
n

提示: (1) P >1 时, 绝对收敛 ; 0 < p ≤1 时, 条件收敛 ;
n
1 当 x 时, e
1 n (1 ) n n un


e 1

1 n 1 (1 ) e n
1 0 ( n ) e
1 1 因此级数在端点发散 , 故收敛区间为 ( , ) . e e
机动 目录 上页 下页 返回 结束
u n 1 ( x) 解: 因 lim lim n u n ( x) n
1 [cos 1 sin 1] 2
机动 目录 上页 下页 返回 结束
四、函数的幂级数和付式级数展开法
1. 函数的幂级数展开法 • 直接展开法 — 利用泰勒公式 • 间接展开法 — 利用已知展式的函数及幂级数性质
练习:
1. 将函数 展开成 x 的幂级数.
1 1 1 1 1 x 解: 2 2 1 2 2 x (2 x) 2
x2 2
x2 当 1 , 即 2 x 2 时, 级数收敛; 2
当 x 2 时 , 一般项 u n n 不趋于0, 级数发散;
故收敛区间为 ( 2 , 2 ) .
机动
目录
上页
下页
返回
结束
例2.
解: 分别考虑偶次幂与奇次幂组成的级数
注意:
∵ 原级数 = ∴ 其收敛半径 R min{R1 , R 2 } 1 4
x2 1 2 x 1 x2 2

x2 (0 1) 2
显然 x = 0 时上式也正确, 而在 x 2 级数发散, 故和函数为
机动 目录 上页 下页 返回 结束
1 1 n (4) 原式 x n 1 n n 1


1 n t d t n 1 x 0
p≤0 时, 发散 .
(2) 因各项取绝对值后所得强级数
原级数绝对收敛 .
n 1
n 1 收敛 , 故
机动 目录 上页 下页 返回 结束

1
n 1 (3) (1) ln n n 1
n


单调递减, 且
由Leibniz判别法知级数收敛 ; n 1 但 ln n n 1

1 1 2n 1 (1) x 2n 1 2n 1 n 1
(1) n 2 n 1 2 x , 2 n 11 4n

机动
目录
上页
下页
返回
结束
2. 函数的付式级数展开法
系数公式及计算技巧; 收敛定理; 延拓方法 练习: P258 题11. 设 f (x)是周期为2的函数, 它在 [ , ) 上的表达式为 将其展为傅氏级数 .
用它法判别
积分判别法
1
收 敛
1
发 散
机动 目录 上页 下页 返回 结束
3. 任意项级数审敛法
概念: 为收敛级数 若 收敛 , 称 发散 , 称 且 绝对收敛 条件收敛
若 Leibniz判别法: 若 则交错级数
收敛 , 且余项
机动
目录
上页
下页
返回
结束
例1. 若级数 证明级数

均收敛 , 且 收敛 .
n 1 n 1
练习题: P257
1; 2; 3; 4; 5
机动 目录 上页 下页 返回 结束
解答提示:
P257 题2. 判别下列级数的敛散性:
提示: (1) lim n n 1 , 0 , N ,
n
1 n n 1
因调和级数发散, 据比较判别法, 原级数发散 .
y
解答提示 1
an
1 e (1) n 1 1 n2

0
o x 1 e x (n sin nx cos nx) x e cos nx d x 0 2 1 n
( n 0 , 1, 2 , )
e 1 1 f ( x) 2 n 1 ( x k , k 0 , 1 , 2 , )
x
x0
1 t (0 x 1) dt x 01 t 1 1 ln (1 x) x 1 1 ( 1) ln (1 x) x
机动 目录 上页 下页 返回 结束
x
即得
1 1 ( 1) ln (1 x) , 0 x 1 x
显然 x = 0 时, 和为 0 ; x = 1 时, 级数也收敛 .
根据和函数的连续性 , 有机动Fra bibliotek目录上页
下页
返回
结束
练习:
P258 题9(2). 求级数 的和 .
1 (1) n (2n 1) 1 解: 原式= ( 2 n 1) ! 2 n 0
n n 1 (1) (1) 2 n 0 ( 2 n) ! n 0 ( 2 n 1) !

1 1 因 n 充分大时 10 , n ln n ∴原级数发散 .
发散,
s 1 时收敛; a 1 时, 与 p 级数比较可知 s 1 时发散.
机动 目录 上页 下页 返回 结束
P257 题3. 设正项级数

都收敛, 证明级数
也收敛 .
提示: 因 lim u n lim vn 0 , 存在 N > 0, 当n >N 时
机动 目录 上页 下页 返回 结束

(1) n 2 n (1) n 2 n 2 f ( x) 1 x x n 1 2n 1 n 0 2n 1 (1) 2 n 1 x n 1 2n 1
n
n

(1) n 1 2 n x n 1 2n 1
机动 目录 上页 下页 返回 结束
利用比值判别法, 可知原级数发散.
(3)

n
n 1
2 n cos 3 n
用比值法, 可判断级数
收敛,
2
:
再由比较法可知原级数收敛 .
an (5) s (a 0 , s 0) : 用比值判别法可知: n 1 n a 1 时收敛 ; a 1 时发散.
1 n x n 1 n , 2 n 1 2
相关文档
最新文档