同济大学高等数学考试试题pdf

合集下载

同济大学高数09-16B(下)期末考试题

同济大学高数09-16B(下)期末考试题

同济大学2009-2010学年第二学期高等数学B(下)期终试卷一. 填空题(4'832'⨯=)1. 曲面2222321x y z ++=在点(1,2,2)-处的法线方程为122146x y z --+==-.2. 函数2ln(2)z x y =+在点(1,2)处沿方向(1,2)l =-的方向导数为25.3. 设(,,)f x y z 为连续函数,则三次积分2222120(,,)x y x y dx f x y z dz --+⎰⎰的柱面坐标积分形式为221220(cos ,sin ,)d d f z dzπρρθρρρθρθ-⎰⎰⎰.4. 设函数()f x 具有一阶连续函数,且(0)1f =,若曲线积分222()(())Lxy y dx yf x y dy +++⎰在整个平面上与路径无关, 则2()21f x x x =++.5. 曲面积分(4)32xz dS π∑+=⎰⎰, 其中222:4,0x y z z ∑++=≥6. 设函数222ln()u x y z =++, 则(1,1,1)2div(gradu)3=.7. 若幂级数0nn n a x ∞=∑在点2x =处收敛, 在点2x =-处发散, 则幂级数1(1)n nn a x n∞=-∑的收敛 区间为(1,3)-8. 设()f x 是以2π为周期的周期函数,它在(,]ππ-上的表达式为2,0()210x x f x x x ππ--<≤⎧=⎨+<≤⎩则()f x 的傅里叶级数在点5x π=处收敛到12π-二. 解答题(68')9. (8')证明函数326,(,)(0,0)(,)0(,)(0,0)xy x y f x y x y x y ⎧≠⎪=+⎨⎪=⎩在点(0,0)处不连续.[30,01lim (,)0,lim (,)2x y x y f x y f x y =→=→==] 10. (10')计算二重积分sin Dydxdy y ⎰⎰, 其中D 是由直线y x =与y =. [210sin 1sin1y y yI dy dx y ==-⎰⎰] 11. (10')计算三重积分(42)x y z dV Ω++-⎰⎰⎰, 其中Ω是由平面1x y z ++=与三坐标平面所围成的闭区域.[120555(1)224I zdV z z dz Ω==-=⎰⎰⎰⎰] 12. (10')计算曲线积分22Lxdy ydxx y -+⎰, 其中L 为椭圆22142x y +=(按顺时针方向绕行). [222222222221122()x y x y Q P y x xdy ydx I dxdy x y x y x y π+=+≤∂∂--==⇒===∂∂++⎰⎰⎰] 13. (10')计算曲面积分222()()x y z dydz x y z dxdy ∑++++⎰⎰, 其中 ∑ 为曲面: 22(04)z x y z =+≤≤, 取上侧. [22224(4)4(4)(3)64,728z x y z x y I x z dV I πππΩ=+≤=+≤+=-+=-=-⇒=⎰⎰⎰⎰⎰⎰下侧下侧]14. (10')将函数21()32f x x x =++展开成(1)x -的幂级数, 并指出展开式成立的范围.[1101111()(1)()(1)(13)1224n n n n n f x x x x x ∞++==-=----<<++∑] 15. (8')求幂级数201(2)!!n n n x n ∞=+∑的收敛域及和函数, 并由此求级数201!n n n ∞=+∑的和. [22101111(,),()()()(24),(2)3(1)!2!24xn n n n n x x S x x x e S e n n ∞∞==-+Ω=-∞+∞=+=++=-∑∑]同济大学2010-2011学年第二学期高等数学B(下)期终试卷一. 填空题(4'832'⨯=) 1. 直线11211x y z -+==--与平面220x y z ++-=的夹角为6π.2. 向量函数222(,,)F x y y z z x =在点(1,2,1)-处的散度为2-.3. 质点在变力(,,)F yz xz z =-的作用下, 沿螺旋线:2cos ,2sin ,x t y t z t Γ===, 从点(2,0,0)M 运动到点(2,0,)N π-, 则变力F 所作的功为252π.4.闭区域22{}D x y =+≤, 则积分2275()2Dx y d σπ+=⎰⎰.5. 若级数0(1)n n n a x ∞=+∑在点32x =处条件收敛, 则该级数的收敛半径52.6. 函数2sin x 的麦克劳林展开式为12121(1)2(2)!n n nn x n --∞=-∑.7. 若1()sin nn S x bnx ∞==∑是函数()((0,))f x x x ππ=-∈的正弦展开式, 则()22S ππ-=-8. 设Ω是由22z x y =+与平面1Z =所围的有界闭区域,1Ω是Ω位于0,0x y ≥≥的部分, 则下列等式中正确的是C1:4A xdV xdV ΩΩ=⎰⎰⎰⎰⎰⎰; 1:4B ydV ydV ΩΩ=⎰⎰⎰⎰⎰⎰;1:4C zdV zdV ΩΩ=⎰⎰⎰⎰⎰⎰; 1:4D xydV xydV ΩΩ=⎰⎰⎰⎰⎰⎰.二. 解答题(68')9. (8')求曲线222222102x y z x y z ⎧++=⎨-+=-⎩在点(1,2,1)处的切线与法平面方程. [121,812208112x y z x y z ---==+-+=-] 10. (10')计算曲面积分2(2)x y dS ∑+-⎰⎰, 其中∑是球面2224x y z ++=被曲面.z =截下的较小部分的曲面.[2222222((1603x y I x y d ππθρ+≤=++==-⎰⎰⎰] 11. (10')将函数22()ln(1)xt f x x x e dt -=++⎰展开成x 的幂级数,并指出展开式成立的范围.[21111()(1)(),[1,1]!(21)n n n f x x x x n n n∞+==+--∈-+∑]12. (10')计算曲面积分2xzdydz ydzdx yzdxdy ∑++⎰⎰, 其中∑为曲面2221(0,0)x y z x z ++=≥≥取前侧.[2222219()(24xyD y I x yz dxdy x dxdy z π∑=++==⎰⎰⎰⎰]13. (10')计算三重积分(42)x y z dV Ω++⎰⎰⎰, 其中 Ω 是由曲面2221x y z +-=与平面 1,2z z ==所围成的有限闭区域. [222211214x y z I zdzdxdy π+≤+==⎰⎰⎰] 14. (10')()f x 是周期为4π的偶函数, 在[0,2]π上()2f x x π=-. 求该函数的傅里叶展开式, 并由此求级数的和211n n ∞=∑. [222118211()cos ,(,)(21)26n k f x x x k nπππ∞∞=-=+∈-∞+∞⇒=-∑∑] 15. (10')设()f x 为区间[,]a b 上的连续函数,且()0f x >,证明21()()()bbaaf x dx dx b a f x ≥-⎰⎰[2()1()()()()()2()()b bb b b b aaa a a a f x f x f y dxdy dxdy dxdyb a f y f y f x ==+≥=-⎰⎰⎰⎰⎰⎰]同济大学2011-2012学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 极限22(,)(1,1)sin()lim 2x y x y x y→--=+.2. 若函数 (,)f x y 具有连续的偏导数, 且 (1,2)2,(1,2)1x y f f ==-, 则极限21(,1)(1,2)l i m31t f t t f t →+-=-.3. 由32210z x xyz ee --+-=所确定的函数(,)z z x y =在(1,1,1)点的偏导数(1,1,1)11z x e∂=∂- 4. xoy 平面上曲线L 的方程为(,)0F x y =, 若将该曲线关于直线0y x +=对称得到曲线 'L , 则'L 的方程为(,)0F y x --=.5. 函数(,)f x y 在某点沿任意方向的方向导数存在是函数在该点可微分的什么条件? [ B ] :A 充分条件; :B 必要条件; :C 充分必要条件; :D 无关条件.6. 若常数项级数1nn u∞=∑收敛, 则下列各项判断中正确的判断是: [ D ]21:nn A u∞=∑一定收敛; 1:nn u B n ∞=∑一定收敛; 1:n n C nu ∞=∑一定发散; :D 对于常数p , 如果1n n u ∞=∑收敛就可判断1np n u n∞=∑收敛, 必有1p >. 7. Ω是球体2222x y z R ++≤, 1Ω是球体Ω位于第一卦限内的部分(0,0.0)x y z ≥≥≥, 则积分23()x y z dv Ω++⎰⎰⎰等于 [ B ] 123:8()A x yz dv Ω++⎰⎰⎰; 12:8B y dv Ω⎰⎰⎰; 12:8()C x y dv Ω+⎰⎰⎰; 12:24D y dv Ω⎰⎰⎰.8. ∑是空间光滑的有向曲面片, Γ是与∑正向联系∑的有向边界曲线, 则由斯托克斯公式22(2)()()xz y dx xy z dy z x dz Γ+++++⎰等于 [ D ] :2A zdydz xdzdx dxdy ∑++⎰⎰; 22:(2)()()B xz y dydz xy z dzdx z x dxdy ∑+++++⎰⎰; :(21)C z x d S ∑++⎰⎰; :2(1)D zdydz y dxdy ∑-+-⎰⎰.二. 解答题(6'212⨯=)1. 求曲线 23322030x yz x y z ⎧--=⎨+--=⎩ 在(1,1,1)-点的切线方程. [111571x y z --+==-] 2. 计算Dxydxdy ⎰⎰, 其中D是由y =y =所围成的有界闭区域. [196I =] 三(8')求函数22(,)(2)ln f x y x y y y =++的极值, 并说明是极大还是极小值.[min 11(0,)f ee=-] 四(8')已知()f x 是[0,]π上的连续函数, 若将()f x 分别展开成周期为2π的傅里叶余弦和正弦级数, 它们分别为余弦级数01cos 2n n a a nx ∞=+∑; 正弦级数1sin n n b nx ∞=∑. 试写出系数 n a 与n b 的计算公式, 并求函数()0(),10f x x F x x ππ≤≤⎧=⎨-<<⎩周期为2π的傅里叶级数.[略] 五(10')3=上的点(,,)(0)x y z xyz ≠, 使得该点处的切平面与三个坐标平面所围四面体的体积最大. [体积V =max 111(1,,)498V ⇒=] 六(10')如果曲线积分22(1)(2())Lx y y dx xy x dy ϕ+++-⎰与路径无关, 其中()x ϕ是可导函数, 并且满足(0)1ϕ=, 求函数()x ϕ, 并计算积分22'(1)(2())L x y y dx xy x dy ϕ+++-⎰,其中'L 是沿曲线2x y xe =从(0,0)到(1,)e 的弧段.[31()13x x ϕ=-+2'213L e e ⇒=+-⎰]七(10')∑是由曲面1z =223()1z x y =+-所围立体的边界曲面, 它的法向指向曲面的外侧, 计算曲面积分32221()(2)()3x yz dydz xy y z dzdx x y z dxdy ∑+++++⎰⎰. [22112220312(22)5I x x yz y dv d d dz πρρθρρρπ+-Ω=+++==⎰⎰⎰⎰⎰⎰]八(10')求幂级数3111()(1)3nn n x n ∞=+-∑的收敛域及其和函数. [333(1)[0,2);()ln[1(1)]3(1)x S x x x -Ω==----- 九(8')判别常数项级数111121n na∞+++=∑的收敛性(0)a >, 并对自己的判断给出证明.[111ln ln 1ln ln 2111ln 11ln 1:2a nn a nn n a n a a a n a e na++++<+++<+⇒>=<<=⇒>收敛]同济大学2012-2013学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'8⨯)1. 经过三点(1,1,3),(2,1,4),(3,0,1)A B C -的平面方程为543180x y z -+-=;点(2,0,1)到该平面的距离为2.2. yoz 平面上的直线2z y =-+绕着z在二次曲面中, 该曲面的类型是 圆锥面 .3. Ω是上半球体 22210x y z z ⎧++≤⎨≥⎩, ∑ 是 Ω 的边界曲面外侧, 1∑ 是上半球面2221,0x y z z ++=≥ 的上侧, 则利用高斯公式计算可得24()(2)(1)3x y d y d z y z d z d x x z d x d yπ∑-+++-+=⎰⎰;积分127()(2)(1)3x y dydz y z dzdx x z dxdy π∑-+++-+=⎰⎰.4. (1,2,2),(4,5,2)A B --是空间两点, L 是以,A B 为两端点的直线段, AB L 是以A 为起点 B 为终点的有向直线段,则1;14ABLL ds dz ==⎰⎰.5. D 是由曲线22y x =与3y x =-所围的有界闭区域, 则积分(,)Df x y dxdy ⎰⎰等于 [ A ]()A 213322(,)xx dx f x y dy --⎰⎰; ()B 212332(,)x xdx f x y dy --⎰⎰;()C 9223(,)ydy f x y dx -⎰; ()D 9322(,)y dy f x y dx -⎰.6. 积分222211()x y I x y dxdy +≤=+⎰⎰, 222222,0()x y y I x y dxdy +≤≥=+⎰⎰, 224431()x y I x y dxdy +≤=+⎰⎰,223341()x y I x y dxdy +≤=+⎰⎰, 则有 [ D ]1234()A I I I I >>>; 1243()B I I I I >>>; 4321()C I I I I >>>; 2134()D I I I I >>>.7. xoy 平面上密度为(,)x y μ的薄片D 对z 轴上位于(0,0,2)-点单位质点的引力为 (,,)x y z F F F F =, G 是引力常数, 则 [ B ] 32222(,)()()z DG x y A F dxdy x y z μ=++⎰⎰; 32222(,)()(4)z DG x y B F dxdy x y μ=++⎰⎰;32222(2(,)()[(2)]z D G z x y C F dxdy x y z μ⋅-=++-⎰⎰; 32222(,)()(4)z DG x y D F dxdy x y μ-=++⎰⎰. 8. ∑是抛物面222,0z x y z =--≥的上侧, 则由两类曲面积分的联系,(,,)(,,)(,,)P x y z d y d z Q x y z d z d x R x y z d x d y ∑++⎰⎰等于 [ C ]()(22)A P x Q y R d S ∑⋅+⋅+⎰⎰;()B ∑;()C ∑;()D ∑.二. (4'3⨯)1. 试求曲线21ln(1),t x t y t z e-==+=在参数1t =所对应点的切线与法平面方程.[1ln 21,426ln 20412x y z x y z ---==++--=] 2. 试求由方程3222xz z xy +-=所确定的函数(,)z z x y =在(1,1,1)点的全微分(1,1,1)dz . [(1,1,1)1255dz dx dy =-+] 3. 占有上半圆224,0x y y +≤≥的薄片面密度为2(,)()1x y x y μ=++, 试计算该薄片的质量. [2[()1]6DM x y dxdy π=++=⎰⎰]4. 将函数21()6x f x x x -=--展开成1x +形式的幂级数.[0311131()[(1)](1),11151110510414n n nn f x x x x x ∞==⋅-⋅=--++<+++⋅-∑] 5. 将函数0,02()22x f x x πππ⎧≤≤⎪⎪=⎨⎪<≤⎪⎩展开成周期为2π的余弦级数.[141sin cos 2n n nx n ππ∞=-+∑]三. (8')求幂级数202(1)(1)n nn n x ∞=+-∑的收敛区间与和函数.[2211()2[12(1)]x s x x -<=--] 四. (10')Ω是由曲面z =以及2z =所围成的立体, 其体密度为22x y μ=+.(1)计算Ω关于z 轴的转动惯量;(2)试写出Ω关于平行于z 轴的直线0;1x x y ==转动惯量的计算公式(无需计算) [22222220128();()[()(1)]21z l I x y dv I x y x x y dv πΩΩ=+==+-+-⎰⎰⎰⎰⎰⎰] 五. (10')任意取定球面22228x y z ++=上一点并且任意给定一个方向, 都可以求出函数 2(23)u x y z =++在给定点沿给定方向的方向导数, 试求出所有这些方向导数中的最大 与最小值.[222223,(23)(28)gradu y z L x y z x y z λ=++=+++++-max min (P gradu gradu ⇒=±±==-六. (10')已知222222ax by x ydx dy x y x y +++++是某个二元函数的全微分. (1)试求出常数,a b ;(2)计算积分222222Lax by x y dx dy x y x y+++++⎰, 其中L 是逆时针方向的曲线221x y +=.[2221(1)2,1;(2)(2)()Lx y a b x y dx x y dy +===-=-++=⎰⎰]七. (8'){}n u 是斐波那契数列: 1,1,2,3,5,8,13,21,, 即12111,1,n n n u u u u u +-===+,2,3,n =, 试分析级数11n nu α∞=∑的收敛性, 其中α是实常数. [11113312,2(),()2223n n n n n n n n n n n u u u u u u u u u -++><⇒>+=>< 0α⇒≤时,级数显然发散;0α>时,级数收敛]同济大学2013-2014学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 以空间三点(2,3,1),(1,2,3),(0,1,2)A B C ----为顶点的三角形面积2A =.2. 两平面20x y z --=与223x y z ++=的夹角余弦cos 6θ=.3. 曲面2:ln(21)z x y ∑=-+在(2,2,0)的法线方程为22421x y z--==--.4. D 是以(1,1),(1,1)-以及(1,1)--为顶点的三角形闭区域, 则积分3(2)4Dxy dxdy -=-⎰⎰5. 函数(,)f x y 具有连续的偏导数, 已知//(,)0,(,)0x y f x y f x y <>, 如果(1,1)a f =,(1,1)b f =- (1,1)c f =--,(1,1)d f =-四个数中最大的数是M , 最小的数是m , 则有 【D 】 (),A M a m d ==; (),B M c m a ==; (),C M d m b ==; (),D M b m d ==.6. 将110(,)xdx f x y dy ⎰⎰化成极坐标的二次积分式时, 下列正确的是 【C 】2c o s2()(cos ,sin )A d f d πθθρθρθρρ⎰⎰c o s20()(cos ,sin )B d f d πθθρθρθρρ⎰⎰;2s i n204()(c o s ,s i n )C d f d πθπθρθρθρρ⎰⎰; sin 204()(cos ,sin )D d f d πθπθρθρθρρ⎰⎰.7. Ω是由圆锥面z =与半球面z =所围的空间立体, 则将积分22(,)I f xy z dxdydz Ω=+⎰⎰⎰化成柱面坐标计算时, 下面正确的三次积分式是 【C 】22200()(,)A d d f z dz πρθρρρ⎰⎰; 2220()(,)B d d f z dz πρθρρρ⎰⎰;22()(,)C d f z dz πρθρρρ⎰; 220()(,)D d f z dz πρθρρρ⎰.8. 已知0(1,2,3,)n u n ≤=, 则1n n u ∞=∑发散的充分必要条件是 【A 】1()l i m nk n k A u →∞==-∞∑; ()lim n n B u →∞=-∞; ()C {}n u 是无界数列; 1()limnkn k D u→∞==+∞∑.二. 计算下列各题(6'530'⨯=)1. 在经过点(1,0,2)-的平面与球面222(1)(1)12x y z +-++=相交的所有圆弧中, 求出圆 弧长度的最小值. [6π] 2. 求函数2ln (1)yz x =+的全微分(1,)e dz . [122ln 2dx e dy -+]3. 计算22()Dx y x dxdy +-⎰⎰, 其中D 是由224,x y y x +≤≥确定的扇形区域. [2π] 4. L 为平面内光滑的简单闭曲线, 并取正向, 求曲线积分2323(s i n )()y Ly y x d x e x d y -++-⎰的最大值. [2222331(133)6x y I x y dxdy π+≤≤--=⎰⎰]5. 判断级数111(cos )nn e n ∞=-∑的收敛性, 并给出判断理由. [1n u n发散] 三. (10')求由方程221z xz x y e --+=所确定函数(,)z z x y =的偏导数(1,1,1)(1,1,1),z zx y ∂∂∂∂以及 二阶偏导22(1,1,1)zy∂∂. [22(1,1,1)(1,1,1)(1,1,1)111,,39z z zx y y ∂∂∂===-∂∂∂]四. (10')Γ是曲面2z xy =与柱面1x y +=的交线, 从z 轴正向看向z 轴的负向, 曲线Γ 是顺时针方向的, 计算曲线积分23(2)(3)(23)x yz dx xy x z dy x y dz Γ-++++++⎰.[22(33)31xyD I xy dxdy x dxdy ∑=+=-=-⎰⎰⎰⎰]五. (10')求幂级数021n nn x n ∞=+∑的收敛域, 以及该幂级数在收敛域内的和函数. [111()ln(12),[,0)(0);(0)1222S x x x S x =--∈-=] 六. (8')计算222(2)(2)zxy dydz x e dzdx x z y dxdy ∑++++⎰⎰, 其中∑是曲面z =位于02z ≤≤的部分, 曲面法向与z 轴正向的夹角为钝角. [645π-] 七. (8')()[0,]f x C π∈, 已知()f x dx ππ=⎰, 求常数12,,,n c c c , 使得积分21[()c o s ]nk k f x c k x d x π=-∑⎰取得最小值, 并说明1lim cos ()nk n k c kx F x →∞==∑在[,]ππ-上的函数表达式. [0()102()cos ,(),()10k f x x c f x kxdx F x f x x ππππ-≤≤⎧==⎨---≤<⎩⎰]同济大学2014-2015学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 已知三向量:(2,1,1),(1,3,1),(1,,2)a b c y =-==-共面, 则常数2y =.2. 设(,)sin(23)f x y x y =+, 则极限0(2,)(,)lim 4cos(23)x f x x y f x y x y x∆→-∆-=-+∆.3. 已知可微函数(,)f x y 的偏导数(1,1)(1,1)1,2f fx y --∂∂==∂∂, 则函数(,)g x y =2(32,3)f x y x y --+在(,)(1,2)x y =点对变量y 的偏导数(1,2)6gy∂=∂.4. 已知连续函数22(,)(,)Lf x y x y f x y ds =+-⎰, 其中L 是上半圆周222,0x y r y +=≥,则322(,)1r f x y x y rππ=+-+.5. 设D 是由22222,4x y x x y +≥+≤所确定的平面闭域, L 是D 的正向边界, 则积分222(2)(2)6x Ly e xy dx x xy x dy π++++=⎰.6. 设D 是平面闭域: 22,x y y y x +≤≥. 则将二重积分22()DI f x y dxdy =+⎰⎰化为极坐标下的二次积分时, I 等于 【A 】s i n2204()2()A d f d πθπθρρρ⎰⎰; 32sin 244()()B d f d πθπθρρ⎰⎰;12()()C d f d πθρρρ⎰⎰; 3sin 244()2()D d f d πθπθρρρ⎰⎰.7. 已知常数项级数1nn u∞=∑收敛, 则下列收敛的级数是 【C 】21()nn A u ∞=∑; 11()n n n B u u ∞+=∑; 11()2n n n u u C ∞+=+∑; 1()(1)nn n D u ∞=-∑.8. 设1nn n a x∞=∑的收敛半径为0,1R ≠, 则231()nn n n a xx ∞=+∑的收敛半径为 【D 】(A(B ; ()C ;()D .二. 计算下列各题(6'424'⨯=)1. 求曲面2arctan 1xz y -=在(1,0,1)点的切平面与法线方程. [(1,1,2)n =-]2. 22(,)(1)yf x y x =+,当ρ=充分小时, 求(1,1)f x y +∆+∆的一阶近似值 a b x c y +∆+∆, 即(1,1)()f x y a b x c y +∆+∆-+∆+∆是ρ的高阶无穷小()o ρ. [488ln 2x y +∆+∆] 3. 计算曲面:12z xy ∑=-位于222,0x y y +≤≥部分的面积. [136π] 4. 设()f x 是(,)-∞+∞上的连续函数, 记002()a f x dx ππ=⎰, 02()cos n a f x nxdx ππ=⎰,2()s i n n b f x n x d xππ=⎰. 求出三角级数的和函数01()(cos sin )2n n n a S x a nx b nx ∞==++∑ 在(,]ππ-上的表达式. [2()0(),,(0)(0),()()00f x x S x S f S f x ππππ<<⎧===⎨-<<⎩] 三. (8')在平行六面体ABCDEFGH 中, 已知(1,1,2),(2,1,1),(1,2,0),(3,0,2)A B C H ---- 求(1),,D E G 点的坐标; (2)该平行六面体的体积. [(2,0,3),(6,1,3),(4,2,5);10V ----=] 四. (10')已知曲线积分22()()Lx ay dx x y dyx y ++++⎰在不包含x 轴负半轴的区域内与路径无关. (1)求常数a ;(2)计算上述积分,其中是上半平面从(1,0)到(0,1)的光滑曲线段331x y +=. [1;2a I π=-=]五. (10')计算曲面积分222()()(1)xy yz dydz x y z dzdx yz dxdy ∑++-++⎰⎰, 其中有向曲面 22:(1)z x y z ∑=+≤的法向与z 轴的夹角是钝角. [56π-]六. (10')求幂级数30(1)21n n n n x n ∞=-⋅+∑的收敛域与和函数.[331()ln(12),2S x x x x =+<七. (14')(1)如果直线l 与直线'l 的夹角为(0)2πθθ<<, 相距为0a >. 判别直线'l 绕直线l 旋转所得曲面∑的类型并给出判别的理由; (2)若直线l 的方程为:132212x y z ++-==, 直线'l 的方程为213431x y z ---==-, 试求由直线'l 绕直线l 旋转所得曲面∑以及相距 为2且垂直于直线l 的两平面所围立体体积的最小值. [(1)单叶双曲面;(2)''3,cos ll ll d θ==取222104:925(11),3x y z z V π∑+=+-≤≤=]同济大学2015-2016学年第二学期高等数学B(下)期终试卷一. 填空题(4'832'⨯=) 1. 设cosy xu xe =, 则(1,)2(1)2du dx dyππ=+-.2. 设曲面10xy yz zx ++-=在点(1,2,3)M --处的法向量为n , 其与z 轴正方向的夹角为 锐角, 则函数23ln()z xy y e ++在点(1,2,3)M --处沿n方向的方向导数为5.3. 交换二次积分的次序1221022112(,)(,)(,)yx dy f x y dx dy f x y dx dx f x y dy--+=⎰⎰⎰.4. 设空间立体Ω由平面0,1z z ==以及曲面22231x y z +-=所围成, 则三重积分3333()4x y z dv πΩ++=⎰⎰⎰.5.设曲线:(01)L y x ≤≤, 则曲线积分2()12Lx y ds π+=+⎰.6. 设在平面上, 曲线积分33()()4xx x xLa ee dy y e e dx π--+-+⎰与路径无关, 则常数 12a π=-.7.设无穷级数1(1)nn ∞=-∑, 则k 的最大取值范围是12a k =>.8. 设102()2,2x f x x x ππππ⎧-≤<⎪⎪=⎨⎪+≤≤⎪⎩, 将()f x 展开为正弦级数1sin n n b nx ∞=∑, 若该级数的和函数为()s x , 则53()24s π-=-.二.(10')设(,)z z x y =是方程22222880x y z yz z +++-+=确定的隐函数, 且(0,2)1z -=, 求22(0,2)(0,2)z zx x --∂∂∂∂,. 【22(0,2)(0,2)415z zx x --∂∂=∂∂=0,】三.(10')在椭圆锥面1z =xoy 面所围成的空间闭区域中放置一个长方体, 它 的各个侧面均平行于坐标面, 求该长方体的最大体积.【222max 114,2(1),33327V xyz x y z x y z V =+=-⇒===⇒=】 四.(10')计算三重积分z Ω-⎰⎰⎰, 其中Ω是由0,1z z ==所围成的闭区域.【21211()()1243I d d z dz d d z dz πρπρπππθρρρθρρρ=-+-=+=⎰⎰⎰⎰⎰⎰】五.(10')求曲线积分222(1)(12)y y Ly e dx x y e dy +++⎰, 其中L 为从(0,0)O 沿曲线x =(1,1)A 的有向弧段. 【01(1)(1)014DI d e dy e πσ=--+-=+-⎰⎰⎰】六.(10')计算曲面积分2332()(2)()y x e dydz y yz dzdx z y dxdy ∑-+-+-⎰⎰, 其中∑为曲面z =位于0z =与1z =之间的部分的下侧.【0222373()()1010I x y dv z y dxdy πππ∑+∑∑Ω∑=-=+--=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰】 七.(10')求幂级数131nn n n ∞=⋅+∑的收敛半径与和函数.【213111,()ln(13),(,)313333x R s x x x x x ==++-∈--】八.(8')设级数1[ln ln(1)ln(3)]n n a n b n ∞=++++∑收敛, 求常数,a b .【310312(1)ln 0()3012n a a b a b u a b n a b n n b ⎧=-⎪++=⎧+⎪=++++⇒⇒⎨⎨+=⎩⎪=⎪⎩】同济大学2016-2017学年第二学期高等数学B(下)期终试卷一. 填空选择题(3'824'⨯=)1. 已知直线L 过点(1,2,3)M -, 与z 轴相交, 且与直线1332:232x y z L ---==-垂直, 则直线L 的方程为123122x y z +--==--.2. 函数222ln()u x y z =++在点(1,2,2)P -处的梯度为244(,,)999-.3. 设2sin (,)1xytf x y dt t=+⎰, 则22(0,2)4f x ∂=∂.4. 设(,)f x y 连续,化二次积分1201(,)xdx f x y dy -⎰⎰为极坐标形式的二次积分:22s i n 42c o s s i n4(c o s ,s i n )(c o s ,s i n )d f d d f d ππθθθπθρθρθρρθρθρθρρ++⎰⎰⎰⎰.5. 设空间立体Ω由平面0,0,0,1x y z x y z ===++=围成, 则三重积分1(253)6x y z d v Ω+-=⎰⎰⎰.6. 无穷级数11133ln32n n n ∞-==⨯∑.7. 设级数1nn a∞=∑收敛, 则下列必收敛的级数是 [ D ]11:(1)n n n a A n ∞-=-∑; 21:n n B a ∞=∑; 2211:()n n n C a a ∞-=-∑; 11:()n n n D a a ∞+=+∑.8. 若幂级数1nn n a x∞=∑在2x =-处条件收敛, 则21(1)nn n a x ∞=-∑的收敛区间为 [ D ]:(2,2)A -;:(B ; :(1,3)C -;:(1D +.二.(8'216⨯=)9. 设函数3222222,0(,)00x yx y f x y x y x y ⎧+≠⎪=+⎨⎪+=⎩, 求(0,0)yx f . [1]10. 求曲面222x z y =+上平行于平面224x y z +-=的切平面方程. [223x y z +-=]三.(10')计算二次积分112201x xdx dy x y ++⎰⎰.[13(ln )222π+]四.(10')计算曲线积分224Lydx xdy x y-+⎰, 其中L 是正向圆周229x y +=. [π-]五.(10')求曲面22z x y =-夹在圆柱面222x y +=及226x y +=之间的曲面面积, 并求相 应的形心坐标(其中曲面的密度1ρ=). [49,(0,0,0)3A M π=]六.(10')计算曲面积分22232()()()y xy e dydz yz z dzdx zx xy dxdy -+-+-⎰⎰, 其中∑为曲面22(1)z x y z =+≤的下侧. [6π]七.(10')将函数22134x x x ++-展开成2x +的幂级数, 并指出相应的收敛范围. [2102111(1)7[](2),4034532n n n n n x x x x x ∞+=+-=-++-<<+-∑]八.(10')设函数()g x 是(,)-∞+∞上周期为1的连续函数, 且1()0g x dx =⎰, 函数()f x 在区间[0,1]上有连续的导数, 记1()()n a f x g nx dx =⎰, 证明: 级数21n n a ∞=∑收敛.[0()()xG x g t dt =⎰,110011()()()'()n a f x dG nx G nx f x dx n n ==-⎰⎰,22n M a n≤]。

同济大学大一公共课高等数学期末试卷及答案9

同济大学大一公共课高等数学期末试卷及答案9

同济大学高等数学(下册)期末考试试卷考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(每小题3分,共计24分) 1、设⎰=yz xzt dt e u 2, 则=∂∂zu。

2、函数)2sin(),(y x xy y x f ++=在点(0,0)处沿)2,1(=l 的方向导数)0,0(lf ∂∂= 。

3、设Ω为曲面0,122=--=z y x z 所围成的立体,如果将三重积分⎰⎰⎰Ω=dv z y x f I ),,(化为先对z 再对y 最后对x 三次积分,则I= 。

4、设),(y x f 为连续函数,则=I ⎰⎰=+→Dt d y x f t σπ),(1lim 2,其中222:t y x D ≤+。

5、⎰=+Lds y x )(22 ,其中222:a y x L =+。

6、设Ω是一空间有界区域,其边界曲面Ω∂是由有限块分片光滑的曲面所组成,如果函数),,(z y x P ,),,(z y x Q ,),,(z y x R 在Ω上具有一阶连续偏导数,则三重积分与第二型曲面积分之间有关系式: , 该关系式称为 公式。

7、微分方程96962+-=+'-''x x y y y 的特解可设为=*y 。

8、若级数∑∞=--11)1(n pn n 发散,则p 。

二、选择题(每小题2分,共计16分)1、设),(b a f x '存在,则xb x a f b a x f x ),(),(lim0--+→=( )(A )),(b a f x ';(B )0;(C )2),(b a f x ';(D )21),(b a f x'。

2、设2y x z =,结论正确的是( )(A )022>∂∂∂-∂∂∂x y z y x z ; (B )022=∂∂∂-∂∂∂x y z y x z ;(C )022<∂∂∂-∂∂∂x y z y x z ; (D )022≠∂∂∂-∂∂∂xy z y x z 。

同济大学高数考试试卷一

同济大学高数考试试卷一

1 1 是不对的. n
五.求原点到曲面 z ln x 2 y 2 在 M 1,1, ln 2 处的法线的距离.
2x 2y 解. n 2 , 2 , 1 1,1, 1 ,于是 2 2 x y x y 1,1,ln 2
Dxy

0
1 1 x 1 xdz 3 x 1 x y dxdy 3 dx x 1 x y dy , 8 0 0 Dxy
1
1
或者, I 3 zdv 3 dz zdxdy 3 z
0 Dz 0
1 1 2 1 z dz . 2 8

围成四面体的外侧边界.
P Q R 解. I Pdydz Qdzdx Rdxdy dv y z x dv , x x x
故 I 3 xdv

2
1 x y
3 dxdy
2R 2 Ry y 2
6.二次积分
dy
0 0
f x, y dx 化为极坐标下的二次积分为 ______ .
1
2R
2 Ry y 2
2
2sin
解.

0
dy

0
f x, y dx d
0
f cos ,n x ,求
同济大学高数考试试卷(一) 一.填空题 1.幂级数
xn 的收敛半径为 ______ . n n 1 3

解. lim
n
an 1 1 R 3. an 3
2.曲面 z 2 x 2 y 2 在 1, 2, 6 处的切平面方程为 ______ .

同济大学2020年第1学期高等数学期末考试试卷

同济大学2020年第1学期高等数学期末考试试卷

2020-2021学年第一学期 高等数学期末考试同济大学2020年第1学期高等数学期末考试试卷2020-2021学年第1 学期 考试科目:高等数学A Ⅰ考试类型:(闭卷)考试 考试时间: 120 分钟学号 姓名 年级专业一、填空题(本大题共5小题,每小题3分,共15分)1.0sin 5lim 2x xx →= 。

2.曲线2x xe e y -+=在点(0,1)处的曲率是 。

3.设()f x 可导,[]ln ()y f x =,则dy = 。

4.不定积分⎰=。

5.反常积分60x e dx +∞-⎰= 。

二、单项选择题(本大题共5小题,每小题3分,共15分)1.设函数,则A.B.C.D.2.设曲线如图示,则函数在区间内( ).A.有一个极大值点和一个极小值点B.没有极大值点,也没有极小值点C.有两个极小值点D.有两个极大值点3.极限().A.B.C.D.4.函数的图形如图示,则().A.是该函数的一个极小值点,且为最小值点B.是该函数的一个极小值点,但不是为最小值点C.是该函数的一个极大值点2020-2021学年第一学期 高等数学期末考试D.不是该函数的一个极值点5.若定积分( ). A. B.C. D. 三、计算题(本大题共7小题,每小题7分,共49分) 1. 求极限 ()011lim x x x e x x e →---。

2. 设函数1sin 2 ,0(), ,0 x x f x a bx x +≤⎧=⎨+>⎩在点 0x =处可导,求,a b 的值。

3. 设参数方程()1sin cos x t t y t t =-⎧⎪⎨=⎪⎩确定y 是x 的函数,求dydx 。

4.设方程2290y xy -+=确定隐函数()y y x =,求d d yx 。

5.求函数321x y x =-的单调区间,极值和拐点。

6.计算定积分1ln ex xdx ⎰。

7.求不定积分3。

四、解答题(本大题共 3 小题,每小题 7 分,共 21 分)1.设函数f (x )在[0, 1]上连续,在(0, 1)内可导,且,证明:方程在(0, 1)内至少有一个实根。

高等数学同济(下册)期末考试题与答案5套

高等数学同济(下册)期末考试题与答案5套

高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分⎰⎰≤++1||||22)ln(y x dxdy y x 的符号为 。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(βαψϕ≤≤⎩⎨⎧==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++⎰⎰∑ds y x )122( 。

6、微分方程xyx y dx dy tan +=的通解为 。

7、方程04)4(=-y y 的通解为 。

8、级数∑∞=+1)1(1n n n 的和为 。

二、选择题(每小题2分,共计16分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;(B )),(y x f x ',),(y x f y '在),(00y x 的某邻域内存在;(C ) y y x f x y x f z y x ∆'-∆'-∆),(),(0000当0)()(22→∆+∆y x 时,是无穷小;(D )0)()(),(),(lim2200000=∆+∆∆'-∆'-∆→∆→∆y x yy x f x y x f z y x y x 。

2、设),()(x y xf y x yf u +=其中f 具有二阶连续导数,则2222yuy x u x ∂∂+∂∂等于( )(A )y x +; (B )x ; (C)y ; (D)0 。

3、设Ω:,0,1222≥≤++z z y x 则三重积分⎰⎰⎰Ω=zdV I 等于( )(A )4⎰⎰⎰22013cos sin ππϕϕϕθdr r d d ;(B )⎰⎰⎰2012sin ππϕϕθdr r d d ;(C )⎰⎰⎰ππϕϕϕθ2020103cos sin dr r d d ;(D )⎰⎰⎰ππϕϕϕθ2013cos sin dr r d d 。

同济大学版高等数学期末考试试卷

同济大学版高等数学期末考试试卷

《高数》试卷1 (上)(A) y =x —1 (B ) y=_(x 1) (C ) y = I n X -1x -1 ( D ) y = x4•设函数f x =|x|,则函数在点x=0处( )5 .点x = 0是函数y = x 4的( )16.曲线y的渐近线情况是( ).|x|(A )只有水平渐近线(B )只有垂直渐近线(C )既有水平渐近线又有垂直渐近线(D )既无水平渐近线又无垂直渐近线 7.f — _2dx 的结果是().l x /Xf 1 Lf 1 L CLf 1 L (A ) f 一丄 C(B ) —f -丄 C (C ) f 1 C (D ) 一 f - CI X 丿 I X 丿 l x 丿J x 丿dx& 匚出的结果是().e e(A ) arctane x C (B ) arctane" C (C ) e xC (D ) ln(e x e^) C9.下列定积分为零的是().1.下列各组函数中 ,是相同的函数的是 ( ).(A ) f (x ) = lnx 2 和 g (x ) = 2lnX(B )f( x ) =| x|和g (x )=J?(C ) f (X )=X和 g (x ) = (T X )(D )f (X )=|x|和Xg (x )“Jsinx+4 -2x 式02.函数 f (X )= *In (1 +x )在X = 0处连续,则 a =( )ax = 0(A ) 0( B 1 - (C ) 1(D ) 243•曲线y = xln x 的平行于直线x - y T = 0的切线方程为()(A )连续且可导 (B )连续且可微(C )连续不可导(D )不连续不可微(A )驻点但非极值点(B )拐点 (C )驻点且是拐点(D )驻点且是极值点「•选择题(将答案代号填入括号内,每题 3分,共30分)10.设f x 为连续函数,则 o f ' 2x dx 等于(1 _ 1(A )f 2-f 0(B )^-f 11 -f 0 (C )p 二•填空题(每题 4分,共20 分)dx②.罟予a 0JI(A )]学買弘(B ) txarcsinxdx (C )1 x 21e x■ e■_1_xdx 2x sin x dx1.设函数f x 二 x^0在x =0处连续, x = 02. 已知曲线y = f x 在x =2处的切线的倾斜角为3.4.Xy =— 的垂直渐近线有x -1 dx 5.x 1 In 2xi ,ix sin x cosx dx =~2"三.计算(每小题 5分,共30分) 求极限 (1+x ¥x迎CT 丿1.2. 3. ②lim x )0x -sin xx 2x e -1求曲线y =ln x y 所确定的隐函数的导数 y x .求不定积分 四.应用题(每题 10分,共20分) 1.作出函数y =x 3 -3x 2的图像._f 2 - f 0(D )dxxe^dx《高数》试卷1参考答案一•选择题1. B2. B3. A 4• C 5. D 6. C 7• D 8. A 9• A 10. C二.填空题1. -22.3.24. arcta nln x c5.23三.计算题2 I 11①e ②一2. y x 二 --------------6 x + y_13.①丄ln| 口| C ② In | x2- a2x| C ③-e」x 1 C2 x+3四.应用题1.略2. S =18x - a。

同济大学高等数学期末考试题

同济大学高等数学期末考试题

《高数》试卷7(上)一、 选择题(每小题3分)1、函数 2)1ln(++-=x x y 的定义域是( ). A []1,2- B [)1,2- C (]1,2- D ()1,2-2、极限x x e ∞→lim 的值是( ).A 、 ∞+B 、 0C 、∞-D 、 不存在 3、=--→211)1sin(limx x x ( ).A 、1B 、 0C 、 21- D 、214、曲线 23-+=x x y 在点)0,1(处的切线方程是( ) A 、 )1(2-=x y B 、)1(4-=x y C 、14-=x y D 、)1(3-=x y5、下列各微分式正确的是( ).A 、)(2x d xdx =B 、)2(sin 2cos x d xdx =C 、)5(x d dx --=D 、22)()(dx x d = 6、设 ⎰+=C x dx x f 2cos 2)( ,则 =)(x f ( ).A 、2sin xB 、 2sin x -C 、 C x +2sinD 、2sin 2x -7、⎰=+dx x x ln 2( ).A 、C x x++-22ln 212 B 、 C x ++2)ln 2(21C 、 C x ++ln 2lnD 、 C xx++-2ln 1 8、曲线2x y = ,1=x ,0=y 所围成的图形绕y 轴旋转所得旋转体体积=V ( ).A 、⎰104dx x πB 、⎰10ydy π C 、⎰-10)1(dy y π D 、⎰-104)1(dx x π9、⎰=+101dx e e xx( ). A 、21lne + B 、22ln e + C 、31ln e + D 、221ln e+ 10、微分方程 x e y y y 22=+'+'' 的一个特解为( ).A 、x e y 273=*B 、x e y 73=*C 、x xe y 272=*D 、x e y 272=* 二、 填空题(每小题4分)1、设函数x xe y =,则 =''y ;2、如果322sin 3lim0=→x mx x , 则 =m .3、=⎰-113cos xdx x ;4、微分方程 044=+'+''y y y 的通解是 .5、函数x x x f 2)(+= 在区间 []4,0 上的最大值是 ,最小值是 ;三、计算题(每小题5分) 1、求极限 x x x x --+→11lim 0; 2、求x x y sin ln cot 212+= 的导数;3、求函数 1133+-=x x y 的微分;4、求不定积分⎰++11x dx;5、求定积分 ⎰eedx x 1ln ; 6、解方程21x y xdx dy -=; 四、应用题(每小题10分)1、 求抛物线2x y = 与 22x y -=所围成的平面图形的面积.2、 利用导数作出函数323x x y -= 的图象.参考答案一、1、C ; 2、D ; 3、C ; 4、B ; 5、C ; 6、B ; 7、B ; 8、A ; 9、A ; 10、D ;二、1、x e x )2(+; 2、94 ; 3、0 ; 4、x e x C C y 221)(-+= ; 5、8,0三、1、 1; 2、x 3cot - ; 3、dx x x 232)1(6+ ; 4、C x x +++-+)11ln(212; 5、)12(2e- ; 6、C x y =-+2212 ;四、 1、38;2、图略。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

高等数学(下册)考试试卷(一)之巴公井开创作一、填空题(每小题3分, 共计24分) 1、D=. 2.3为, 其值为.4、设曲线L5、设曲面∑为介于及间的部份的外侧, 则.7. 8.二、选择题(每小题2分, 共计16分)1) (A(B(C是无穷小;(D2、有二阶连续导数,是( )(AB(D)0 .3)(A )B(CD4、球面与柱面所围成的立体体积V=( ) (A(B(C(D5、设有界闭区域D 由分段光滑曲线L 所围成, L 取正向, 函数D 上具有一阶连续偏导数,(A(B(C(D 6、下列说法中毛病的是()(A )(B ) (C )(D).7,,)(A(B(C(D8)(A)收敛;(B)发散;(C)纷歧定;(D)绝对收敛.三、求解下列问题(共计15分)1、(72、(8四、求解下列问题(共计15分).17分)2闭区域(8分)五、(13其中L.六、(9在,七、(8.高等数学(下册)考试试卷(二)123交换积分次第后 4,5、设L 则曲线积分67. 8则它的Fourier二、选择题(每小题2分, 共计16分). 1则在点(0, 0)处( )(A )连续且偏导数存在; (B )连续但偏导数不存在; (C )不连续但偏导数存在; (D )不连续且偏导数不存在. 2D 上具有二阶连续偏导数, 且满足及 则( )(A )最年夜值点和最小值点肯建都在D 的内部; (B )最年夜值点和最小值点肯建都在D 的鸿沟上;(C )最年夜值点在D 的内部, 最小值点在D 的鸿沟上; (D )最小值点在D 的内部, 最年夜值点在D 的鸿沟上.3、设平面区域D 则有( )(A (B ) (C (D )不能比力. 4、设是由曲面及 所围成的空间区域, 则( )(B (C ; (D 5、设在曲线弧L 上有界说且连续, L 的参数方程为, 其上具有一阶连续导数, 且);6则曲面积分( )(A) 0 ;;;7、下列方程中, , ( )8, 则( )(A)该级数必收敛; (B)该级数必发散;(C)该级数可能收敛也可能发散; (D)则必收敛.三、求解下列问题(共计15分)1、(8A(0, 1, 0)沿A指向点B (3, -2, 2)的方向的方向导数.2、(7成的闭区域D上的最年夜值和最小值.四、求解下列问题(共计15分)1、(7分)计所围成的立体域.,2、(8五、求解下列问题(15分)1、(8其中L是从A(a,0O(0, 0)的弧., 其中是2、(7分)计算的外侧., 并使曲线积分六、(15,一、填空题(每小题3分, 共计24分)120, 03、曲围成的立体, 如果将三重积分, 则I=.4,56,面所组成,导数, 则三重积分与第二型曲面积分之间有关系式:, 该关系式称为公式.78,二、选择题(每小题2分, 共计16分) 1,( )(AB )0;(C )D2结论正确的是( )(A(B(C(D3, 积分域D , 对称部份记为D上连续,)(A)0;(B)C)4)(A(B(D5L,则曲线弧L)(B(C(D M为曲线弧L的质量., 则)(A)0;(D)(A(B(C(D8、则它的Fourier展开()(A(B)0;(C(D,,,离最短.的面积A.六、(12分)计其球面的的外侧.七、(10八、(10.高等数学(下册)考试试卷(一)参考谜底一、12、负号; 345、678、1;二、1、D; 2、D; 3、C; 4、B; 5、D; 6、B; 7、A; 8、C;三、122于是①当L 所围成的区域D 中不含O (0, 0)时D 内连续.所以由Green 公式得:I=0;②当L 所围成的区域D 中含O (0, 0)时,D 内除O (0, 0)外都连续,逆时针方向,, 则 六、由所给条件易得:即又,, 原级数发散;,, R=1, 收敛区间为[1, 3].高等数学(下册)考试试卷(二)参考谜底一、1、1; 2、-1/6; 3; 4、5678、0;二、1、C ; 2、B ; 3、A ; 4、D ; 5、C ; 6、D ; 7、B ; 8、C ;三、1A (1, 0, 1)处可微, 且故在A2DD 四、12、在柱面坐标系中 所以五、12上侧, 则由Gauss 公式得:.即高等数学(下册)考试试卷(三)参考谜底一、123467二、1、C ;2、B ;3、A ;4、C ;5、A ;6、D ;7、B ;8、B即得:,离为于是由:依题意, 椭圆到直线一定有最短距离存在, 其中.由图形的对称性,于是:。

高等数学(同济)下册期末考试题及答案(5套)

高等数学(同济)下册期末考试题及答案(5套)

大学高等数学(下册)考试试卷(一)一、填空题(每小题3分,共计24分)分)1、 z =)0()(log 22>+a y x a 的定义域为D= 。

2、二重积分òò£++1||||22)ln(y x dxdy y x的符号为的符号为。

3、由曲线x y ln =及直线1+=+e y x ,1=y 所围图形的面积用二重积分表示为 ,其值为 。

4、设曲线L 的参数方程表示为),()()(b a y j ££îíì==x t y t x 则弧长元素=ds 。

5、设曲面∑为922=+y x 介于0=z 及3=z 间的部分的外侧,则=++òòåds y x )122( 。

6、微分方程xyx ydx dytan+=的通解为的通解为 。

7、方程04)4(=-y y的通解为的通解为。

8、级数å¥=+1)1(1n n n 的和为的和为 。

二、选择题(每小题2分,共计16分)分)1、二元函数),(y x f z =在),(00y x 处可微的充分条件是(处可微的充分条件是( ) (A )),(y x f 在),(00y x 处连续;处连续;(B )),(y x f x¢,),(y x f y¢在),(00y x 的某邻域内存在;的某邻域内存在;(C ) yy x f x y x f z yxD ¢-D ¢-D ),(),(0当0)()(22®D +D y x 时,是无穷小;时,是无穷小;(D )0)()(),(),(lim22000000=D +D D¢-D ¢-D ®D ®D y x yy x f x y x f z y x y x 。

2、设),()(x y xf y xyf u +=其中f 具有二阶连续导数,则2222yu y x u x ¶¶+¶¶等于(等于( ) (A )y x +; (B )x ; (C)y ; (D)0 。

同济大学·高等数学B(上)期终考试试卷

同济大学·高等数学B(上)期终考试试卷
加速 度用 g表示 )
r g 1 4


I 、
‘Leabharlann \ / \ 六 、 析几 何 解
1( 分 直 z 过 2一,,的 向 、 正 的 角 是 ,z 正 的 6 1 )线 点 ( 3) 方 与 轴) 向 夹 都 手与 轴 向 夹 ・0 经 , 5它 , 轴
角 为锐 角. 1 ( )写 出直线 l 的对 称式 方程 ;2 ( )设另 一条直 线 l 的方 程为 =Y =z求 直线 l与 l ,
之的离 间距 .
( 接 2 页) 上 8
…字 = 牛
变换 简单 有效. 另外 由上 面几例 还可 以看 出 , 自变量 U取偶 数 次幂 时积 分 结果 仍 属 于 “ U 当 R( ,
/ 一 ) , ( √ -a ) ( a ”兄 , 1 型” 不含反三角函数及反双曲函数) 当 自变量 取奇数次幂时积分 - ,
维普资讯
6 2
高等数学研究
S UDI N T ES I COL E THEMA C L GE MA TI S
V 11 N . o.0, o6
No ., 0 7 v 20
同济 大 学 ・高等 数 学 ( )期 终 考试 试 卷 上
20 0 7年 1月
A.1 B. 2 C. 3
D. 4
6 限∞ ++{。… + 于 . 凡 l 。Z +{ 极 H ‘ n + n 等 — + n
A. 1" 7 B

【】 A


C予 -
C R >P >Q .
D ・ 仃
7 P ≥ , ≥ , . = = = 设 Q R
[ ]归行 茂 , 1 李重华 , 柴常智 , 数学 手册[ . M] 上海 : 上海科学普及 出版社 ,9 3年 1月 19

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案

高等数学同济版下册期末考四套试题及答案高等数学同济版(下册)期末考试试卷(一)一、填空题(每小题3分,共计24分)1、$z=\log_a(x+y)$ $(a>0)$的定义域为$D=\{(x,y)|x+y>0\}$。

2、二重积分$\iint_{|x|+|y|\leq1}2\ln(x+y)dxdy$的符号为正。

3、由曲线$y=\ln x$及直线$x+y=e+1$,$y=1$所围图形的面积用二重积分表示为$\iint_D dxdy$,其值为$e-2$。

4、设曲线$L$的参数方程表示为$\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}$$(\alpha\leqx\leq\beta)$,则弧长元素$ds=\sqrt{\left(\dfrac{dx}{dt}\right)^2+\left(\dfrac{dy}{dt}\right)^2}dt$。

5、设曲面$\Sigma$为$x+y=9$介于$z=0$及$z=3$间的部分的外侧,则$(x+y+1)ds=\iint_{\Sigma}(x+y+1)dS=27$。

6、微分方程$\dfrac{dy}{dx}=f(x,y)$的通解为$y=\varphi(x,c)$,其中$c$为任意常数,$\varphi(x,c)$是微分方程的一族特解。

7、方程$y^{(4)}+y'''-4y=0$的通解为$y=c_1e^x+c_2e^{-x}+c_3\cos x+c_4\sin x-\dfrac{1}{2}x\cos x$。

8、级数$\sum\limits_{n=1}^{\infty}\dfrac{n(n+1)}{2}$的和为$\dfrac{1}{6}\sum\limits_{n=1}^{\infty}n(n+1)(n+2)$,再利用$\sum\limits_{n=1}^{\infty}n(n+1)(n+2)=\dfrac{1}{4}\sum\limits _{n=1}^{\infty}n(n+1)(2n+1)$,最终得到$\dfrac{1}{12}\sum\limits_{n=1}^{\infty}n(2n+1)(n+1)=\dfrac{1}{12}\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot 4=\dfrac{1}{3}$。

(完整版)高等数学(同济)下册期末考试题及答案(5套).doc

(完整版)高等数学(同济)下册期末考试题及答案(5套).doc

高等数学(下册)考试试卷(一)一、填空题(每小题3 分,共计 24 分)1 、 log a ( x2 y 2 ) (a 0) 的定义域为 D= 。

z =2、二重积分ln( x 2y 2 ) dxdy 的符号为 。

|x| |y| 13、由曲线 y ln x 及直线 x y e 1, y 1 所围图形的面积用二重积分表示为,其值为。

4 、设曲线 L 的参数方程表示为 x (t ) x),则弧长元素 ds。

y ((t )5 、 设 曲 面 ∑ 为 x 2y 29 介 于 z 0 及 z3间的部分的外侧,则(x 2 y 2 1)ds。

6、微分方程dyytan y的通解为 。

dxxx7、方程 y (4 ) 4 y 0 的通解为 。

8、级数1的和为。

n 1 n(n 1)二、选择题(每小题2 分,共计 16 分)1、二元函数 z f (x, y) 在 ( x 0 , y 0 ) 处可微的充分条件是()(A ) f (x, y) 在 ( x 0 , y 0 ) 处连续;( B ) f x ( x, y) , f y ( x, y) 在 (x 0 , y 0 ) 的某邻域内存在;( C ) z f x ( x 0 , y 0 ) xf y ( x 0 , y 0 ) y 当 () 2 ( y ) 2 0 时,是无穷小;x( D ) limz f x ( x 0 , y 0 ) x f y ( x 0 , y 0 ) y0 。

x ( x)2( y)2y 02、设 u yf ( x ) xf ( y), 其中 f 具有二阶连续导数,则 x2uy2u 等于()yxx 2 y 2( A ) x y ; ( B ) x ;(C) y ;(D)0 。

3、设 : x 2 y 2 z 2 1, z 0, 则三重积分 IzdV 等于()(A )4221 3;( )21 2;ddr sin cos drddr sin dr0 0 0 B( C ) 22 d13sin cos dr ;(D )2d d13 sin cos dr 。

(完整版)同济大学第六版高等数学第一章综合测试题

(完整版)同济大学第六版高等数学第一章综合测试题

第一章综合测试题一、填空题1、函数1()arccos(1)f x x =-的定义域为 . 2、设()2ln f x x =,[()]ln(1ln )fg x x =-, 则()g x = .3、已知1tan ,0,()ln(1), 0ax x e e x f x x a x +⎧+-≠⎪=+⎨⎪=⎩在0x =连续,则a = . 4、若lim 25nn n c n c →∞+⎛⎫= ⎪-⎝⎭,则c = . 5、函数y =的连续区间为 .二、选择题1、 设()f x 是奇函数,()g x 是偶函数, 则( )为奇函数.(A )[()]g g x (B )[()]g f x (C )[()]f f x (D )[()]f g x2、 设)(x f 在(,)-∞+∞内单调有界, {}n x 为数列,则下列命题正确的是( ).(A )若{}n x 收敛,则{()}n f x 收敛 (B )若{}n x 单调,则{()}n f x 收敛(C )若{()}n f x 收敛,则{}n x 收敛 (D )若{()}n f x 单调,则{}n x 收敛 3、 设21(2)cos ,2,()4 0, 2,x x f x x x ⎧+≠±⎪=-⎨⎪=±⎩ 则()f x ( ). (A )在点2x =,2x =-都连续 (B )在点2x =,2x =-都间断(C )在点2x =连续,在点2x =-间断 (D )在点2x =间断,在点2x =-连续4、 设lim 0n n n x y →∞=,则下列断言正确的是( ). (A )若{}n x 发散,则{}n y 必发散 (B )若{}n x 无界,则{}n y 必有界(C )若{}n x 有界,则{}n y 必为无穷小 (D )若1n x ⎧⎫⎨⎬⎩⎭收敛 ,则{}n y 必为无穷小 5、当0x x →时,()x α与()x β都是关于0x x -的m 阶无穷小,()()x x αβ+是关于0x x -的n 阶无穷小,则( ).(A )必有m n = (B )必有m n > (C )必有m n ≤ (D )以上情况皆有可能 三、设2,0,1()(||),(),0.2x x f x x x x x x ϕ<⎧=+=⎨≥⎩ 求[()]f x ϕ,[()]f x ϕ. 四、求极限1、22lim(4)tan 4x x x π→-2、3113lim 11x x x →⎛⎫- ⎪--⎝⎭ 3、11lim 3x x x x →+∞⎛⎫+ ⎪⎝⎭4、22212lim 12n n n n n n →∞⎛⎫+++ ⎪+++⎝⎭L 5、1/1/011lim arctan 1x x x e e x→+- 五、讨论函数22(4),0,sin ()(1),01x x x x f x x x x x π⎧-<⎪⎪=⎨+⎪≥⎪-⎩的连续性,如有间断点,判别其类型.六、设kA x αβ==,求A 及k ,使得当x →+∞时,αβ:. 七、已知()f x连续,05x →=,求20()lim x f x x →. 八、设函数)(x f 在(,)-∞+∞内有定义,且在点0x =处连续,对任意1x 与2x 有1212()()()f x x f x f x +=+. 证明:)(x f 在(,)-∞+∞内连续.九、证明:函数()[]f x x x =-在(,)-∞+∞上是有界的周期函数.十、设)(x f 在]1,0[上非负连续,且(0)(1)0f f ==. 证明:对任意实数(01)a a <<必存在实数0[0,1]x ∈,使得0[0,1]x a +∈,且00()()f x a f x +=.。

同济大学高等数学(下)期中考试试卷

同济大学高等数学(下)期中考试试卷

同济大学高等数学(下)期中考试试卷1一.填空题(每小题6分)1.有关多元函数的各性质:(A )连续;(B )可微分;(C )可偏导;(D )各偏导数连续,它们的关系是怎样的?若用记号“X ⇒Y ”表示由X 可推得Y ,则( )⇒( )⇒⎩⎨⎧)()(. 2.函数),(y x f 22y xy x +-=在点)1,1(处的梯度为 ,该点处各方向导数中的最大值是 .3.设函数),(y x F 可微,则柱面0),(=y x F 在点),,(z y x 处的法向为 ,平面曲线⎩⎨⎧==00),(z y x F 在点),(y x 处的切向量为 .4.设函数),(y x f 连续,则二次积分=⎰⎰1sin 2),(x dy y x f dx ππ . (A)⎰⎰+ππy dx y x f dy arcsin 10),(; (B) ⎰⎰-ππy dx y x f dy arcsin 10),(; (C)⎰⎰+y dx y x f dy arcsin 10),(ππ; (D) ⎰⎰-y dx y x f dy arcsin 10),(ππ.二.(6分)试就方程0),,(=z y x F 可确定有连续偏导的函数),(x z y y =,正确叙述隐函数存在定理.三.计算题(每小题8分)1.设),(y x z z =是由方程0),(=--z y z x f 所确定的隐函数,其中),(v u f 具有连续的偏导数且0≠∂∂+∂∂v f u f ,求y z x z ∂∂+∂∂的值.2.设二元函数),(v u f 有连续的偏导数,且1)0,1()0,1(==v u f f . 又函数),(y x u u =与),(y x v v =由方程组⎩⎨⎧-=+=bv au y bv au x (022≠+b a )确定,求复合函数)],(),,([y x v y x u f z =的偏导数),(),(a a y x x z=∂∂,),(),(a a y x y z =∂∂.3.已知曲面221y x z --=上的点P 处的切平面平行于平面122=++z y x ,求点P 处的切平面方程.4计算二重积分:⎰⎰D d y x σsin ,其中D 是以直线x y =,2=y 和曲线3x y =为边界的曲边三角形区域.5.求曲线积分⎰-++Ldy y x dx y x )()(2222,L 为曲线|1|1x y --=沿x 从0增大到2的方向. 五.(10分)球面被一平面分割为两部分,面积小的那部分称为“球冠”;同时,垂直于平面的直径被该平面分割为两段,短的一段之长度称为球冠的高. 证明:球半径为R 高为h 的球冠的面积与整个球面面积之比为R h 2:.六.(10分)设线材L 的形状为锥面曲线,其方程为:t t x cos =,t t y sin =,t z =(π20≤≤t ),其线密度z z y x =),,(ρ,试求L 的质量.七.(10分)求密度为μ的均匀柱体122≤+y x ,10≤≤z ,对位于点)2,0,0(M 的单位质点的引力.同济大学高等数学(下)期中考试试卷2一.简答题(每小题8分)1.求曲线⎪⎩⎪⎨⎧+=+=-=t z t y t t x 3cos 12sin 3cos 在点⎪⎭⎫ ⎝⎛1,3,2π处的切线方程.2.方程1ln =+-xz e y z xy 在点)1,1,0(的某邻域内可否确定导数连续的隐函数),(y x z z =或),(x z y y =或),(z y x x =?为什么?3.不需要具体求解,指出解决下列问题的两条不同的解题思路:设椭球面1222222=++c z b y a x 与平面0=+++D Cz By Ax 没有交点,求椭球面与平面之间的最小距离.4.设函数),(y x f z =具有二阶连续的偏导数,3x y =是f 的一条等高线,若1)1,1(-=y f ,求)1,1(x f .二.(8分)设函数f 具有二阶连续的偏导数,),(y x xy f u +=求y x u∂∂∂2.三.(8分)设变量z y x ,,满足方程),(y x f z =及0),,(=z y x g ,其中f 与g 均具有连续的偏导数,求dx dy.四.(8分)求曲线⎩⎨⎧=--=01,02y x xyz 在点)110(,,处的切线与法平面的方程. 五.(8分)计算积分)⎰⎰D y dxdy e 2,其中D 是顶点分别为)0,0(.)1,1(.)1,0(的三角形区域. 六.(8分)求函数22y x z +=在圆9)2()2(22≤-+-y x 上的最大值和最小值. 七.(14分)设一座山的方程为2221000y x z --=,),(y x M 是山脚0=z 即等量线1000222=+y x 上的点.(1)问:z 在点),(y x M 处沿什么方向的增长率最大,并求出此增长率;(2)攀岩活动要山脚处找一最陡的位置作为攀岩的起点,即在该等量线上找一点M 使得上述增长率最大,请写出该点的坐标.八.(14分) 设曲面∑是双曲线2422=-y z (0>z 的一支)绕z 轴旋转而成,曲面上一点M 处的切平面∏与平面0=++z y x 平行.(1)写出曲面∑的方程并求出点M 的坐标;(2)若Ω是∑.∏和柱面122=+y x 围成的立体,求Ω的体积.下面是古文鉴赏,不需要的朋友可以下载后编辑删除!!谢谢!!九歌·湘君屈原朗诵:路英君不行兮夷犹,蹇谁留兮中洲。

(NEW)同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题+课后习题+章节题库+模拟试题】

(NEW)同济大学数学系《高等数学》(第7版)(上册)配套题库【考研真题+课后习题+章节题库+模拟试题】

图1
【答案】C
【解析】函数 在
内连续,观察知,函数 在除去点
外处处二阶可导.如图1所示,虽然 不存在,但在点 两侧
异号,因此

的拐点.
A点处二阶导数为0,且A点两侧 异号,根据拐点的定义知,A 点为曲线的拐点.B点处虽然二阶导数也为0,但是B点两侧 都是大 于0,因此,B点不是拐点.
2.设函数 具有二阶导数, ( ).[数一 2014研]
A.
,则当 充分大时,下列正确的有( ).[数三
B.
C.
D.
【答案】A
【解析】因为
,即

,所以
, ,当 时,有
,取 ,则知

6.设
,则当 时,若
是比 高阶
的无穷小,则下列选项中错误的是( ). [数三 2014研]
A. B.
C. D.
目 录
第一部分 考研真题 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 第七章 微分方程
第二部分 课后习题 第一章 函数与极限 习题1-1 映射与函数 习题1-2 数列的极限 习题1-3 函数的极限 习题1-4 无穷小与无穷大 习题1-5 极限运算法则
【答案】1
【解析】在方程
两端关于x求导,得
将x=0代入方程

代入
,得
. ,得

【答案】 【解析】因为

,所以
所以
7.曲线
上对应于t=1的点处的法线方程为 ______.
[数二2013研]
【答案】
【解析】由题中函数表达式得,曲线上对应于t=1的点处的切线斜 率为
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. ( f (b) − f (a))( g(b) − g(a)) < 0
B.
f '(x) g '(x) < 0
C. ∫ f (x)dx∫ g(x)dx < 0
b
b
D. ∫a f (x)dx∫a g(x)dx < 0
9) If F (x) is an antiderivative of f (x) , C is any constant, then ____ is correct.
A. F (x) = C∫ f (x)dx
C. F '(x) = f (x) +C
x
∫ B. F (x) = f (x)dx C
D. F (x) = lim f (x + h) − f (x)
h→∞
h
10) a and b are in the domains of f (x) and g(x) , then ___ is correct.
7) If l= im f (x) li= m f '(x) 0, lim f ''(x) ≠ 0 but exists, then ________.
x→a
x→a
x→a
A. lim f (x) = 0, x→a f '(x)
B. lim f (x) ≠ 0 but exists, x→a f '(x)
C. lim f (x) = ∞, x→a f '(x)
D. lim f (x) ≠ ∞ but does not exist. x→a f '(x)
8) If f (x) is a continuous on interval [a,b], then in [a,b], f (x) at least have_ __
A. lim ( f (x)g(x)) = lim f (x) lim g(x)
x→a
x→a
x→a
B. ( f (x)g(x)) ' = f '(x)g '(x)
b
b
b
C. ∫ f (x)g(x)dx = ∫ f (x)dx∫ g(x)dx
∫D. a
f (x)g(x)dx = ∫a
f (x)dx∫a
3) The inverse function of =y 2x −1 + 5 is ______________________________. 4) Suppose f (x) is differentiable, then the value of f (x) at x = a is______, and
( ) 4) d ex tan x = dx
of this function is _________________. sin x
2) The discontinuous point of ex −1 is _________________________.
5)
d x −1 dx x2 +1 x=0 =
g ( x)dx
2008-2009 学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷)--2
2. Fill in the blanks (10 marks)
1)
The domain of the function
log 3
2x x −1
is ________________ and the region
1. Choose a right answer of four to the following questions (10 marks) 1) For the following concepts of a function, _____ is not relative to a limitation
4) lim f (x) exists, then ___________ x→a+
A. lim f (x) = f (a) (a+ ) x→a+
C. lim f (x) = lim f (a)
x→a+
x→a
D. none is A. B. C..
5) If f (x), g(x) are differentiable in [a,b], where f (x)g(x) < 0 , then _______
A. a critical point. C. an absolute maximum point.
B. a stationary point. D. an inflection point.
3) If f (x) is a bounded function defined on [a,b], then f (x) must be ___ A. continuous B. differentiable C. integrable D. increasing
A. f (c)= b − a
B. f '(c)= b − a
C. lim f (x)= b − a x→c
∫ D.
1
b
f (x)dx= b − a
f (c) a
此卷选为:期中考试( )、期终考试( √ )、重考( )试卷
年级 专业 题号 一
学号


姓名


任课教师 总分
得分
(注意:本试卷共 5 大题,3 大张,满分 100 分.考试时间为 120 分钟。要求写出解题过程,否则不予计分)
2008-2009 学年第一学期《高等数学 D(英语)》期末考试试卷(A 卷)--1
同济大学课程考核试卷(A 卷)
2010—2011 学年第一学期
命题教师签名:梁进
审核教师签名:
课号:122008
课名:高等数学 D(英语) 考试考查:考试
6) If f (x) is an integrable function, then there exists c ∈ (a,b) , such that__
A. continuity B. derivative C. integration D. variable
2) If a,b are in the domain of a decreasing function f (x) , and a < b , then ___
A. f (a) ≤ f (b) B. f (a) ≥ f (b) C. f (a) = f (b) D. f (a) ≈ f (b)
相关文档
最新文档