数据结构基础知识大全
数据结构 知识点总结
数据结构知识点总结一、基本概念数据:所有能被输入到计算机并被处理的符号的集合。
数据元素:数据的基本单位,也称为结点、节点或记录。
数据项:构成数据元素的不可分割的最小单位。
抽象数据类型:抽象数据组织和与之相关的操作,通常采用数据对象、数据关系、基本操作集这样的三元组来表示。
二、逻辑结构数据的逻辑结构是从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
数据元素之间的关系(逻辑结构)可分为四类:集合结构:数据元素之间除了“属于同一集合”的关系外,别无其它关系。
线性结构:数据元素之间存在一对一的关系,如数组、链表、队列和栈等。
树形结构:数据元素之间存在一对多的关系,如二叉树、多叉树等。
图结构或网状结构:数据元素之间存在多对多的关系。
三、存储结构数据对象在计算机中的存储表示称为数据的存储结构,也称物理结构。
数据元素在计算机中有两种基本的储存结构:顺序存储结构:借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,通常借助程序设计语言的数组类型来描述。
链式存储结构:无需占用一整块存储空间,数据元素的存储位置不必连续,而是通过指针链接形成逻辑关系。
四、数据结构的运算数据结构中的运算包括插入、删除、查找、遍历等,这些运算的实现依赖于具体的逻辑结构和存储结构。
五、数据结构的应用数据结构在各个领域都有广泛的应用,如数据库系统、计算机网络、图形处理等。
通过合理地选择和设计数据结构,可以提高程序的运行效率,降低存储空间的占用。
六、数据结构与算法的关系数据结构和算法是相辅相成的。
数据结构是算法的基础,算法的实现依赖于特定的数据结构。
同时,算法的优化也往往需要对数据结构进行改进和调整。
总结来说,数据结构是计算机科学中的核心概念之一,它涉及数据的组织、存储和运算等多个方面。
理解和掌握数据结构的基本知识点和原理,对于提高编程能力和解决实际问题具有重要意义。
数据结构知识点总结
数据结构知识点总结数据结构是计算机科学中非常重要的一个概念,它是指一组数据的组织方式,以及对这组数据进行操作的方法。
数据结构可以分为线性结构和非线性结构两种。
下面将对常见的数据结构进行总结,希望能对读者有所帮助。
一、线性结构1. 数组:数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。
数组的访问时间复杂度为O(1),但插入和删除的时间复杂度较高,为O(n)。
2. 链表:链表是由一系列的节点组成,每个节点包含数据以及指向下一个节点的指针。
链表的访问时间复杂度为O(n),但插入和删除的时间复杂度较低,为O(1)。
3. 栈:栈是一种具有后进先出(LIFO)特点的数据结构,只能在栈顶进行插入和删除操作。
栈的访问、插入、删除的时间复杂度均为O(1)。
4. 队列:队列是一种具有先进先出(FIFO)特点的数据结构,只能在队尾插入元素,在队头删除元素。
队列的访问、插入、删除的时间复杂度均为O(1)。
5. 双向链表:双向链表是在链表的基础上发展而来的数据结构,每个节点不仅包含指向下一个节点的指针,还包含指向上一个节点的指针。
双向链表的插入和删除操作时间复杂度为O(1)。
二、非线性结构1. 树:树是一种由节点和边组成的数据结构,每个节点可以有多个子节点。
树有很多种类型,如二叉树、AVL树、红黑树等。
树的遍历可以分为前序遍历、中序遍历、后序遍历和层序遍历等。
2. 图:图是一种由顶点和边组成的数据结构,每个顶点可以与其他顶点相连。
图可以分为有向图和无向图,常用的应用场景有社交网络和地图导航等。
图的遍历可以分为深度优先搜索和广度优先搜索等算法。
3. 堆:堆是一种特殊的树结构,具有以下特点:每个节点的值都大于等于(或小于等于)其子节点的值,且左子树和右子树都是堆。
堆常用来实现优先队列,常见的堆有二叉堆和斐波那契堆。
4. 哈希表:哈希表是一种根据关键码值(Key value)而直接进行访问的数据结构,通过将关键码值映射到表中的某个位置来实现访问的。
数据结构大纲知识点
数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
数据结构基础知识
复习提纲第一章数据构造概述根本概念与术语〔P3〕1.数据构造是一门研究非数值计算程序设计问题中计算机的操作对象以及他们之间的关系和操作的学科.2.数据是用来描述现实世界的数字,字符,图像,声音,以及能够输入到计算机中并能被计算机识别的符号的集合2.数据元素是数据的根本单位3.数据对象一样性质的数据元素的集合4.数据构造三方面容:数据的逻辑构造.数据的存储构造.数据的操作.〔1〕数据的逻辑构造指数据元素之间固有的逻辑关系.〔2〕数据的存储构造指数据元素及其关系在计算机的表示( 3 ) 数据的操作指在数据逻辑构造上定义的操作算法,如插入,删除等.5.时间复杂度分析--------------------------------------------------------------------------------------------------------------------1、名词解释:数据构造、二元组2、根据数据元素之间关系的不同,数据的逻辑构造可以分为集合、线性构造、树形构造和图状构造四种类型。
3、常见的数据存储构造一般有四种类型,它们分别是___顺序存储构造_____、___链式存储构造_____、___索引存储构造_____和___散列存储构造_____。
4、以下程序段的时间复杂度为___O(N2)_____。
int i,j,*;for(i=0;i<n:i++) n+1for(j=0;j<n;j++) n+1*+=i;------------------------------------------------------------------------------------------------------------------第二章线性表1.顺序表构造由n(n>=0)个具有一样性质的数据元素a1,a2,a3……,an组成的有穷序列//顺序表构造#define MA*SIZE 100typedef int DataType;Typedef struct{DataType items[MA*SIZE];Int length;}Sqlist,*LinkList;2.单链表(1)链表结点构造//链表的节点构造Typedef struct Node{int data;struct Node *ne*t;} Lnode,*Pnode,*LinkList;(2)结点遍历void TraverseList(LinkList t){LinkList p;while(t){p=t;t=t->ne*tfree(p);}}(3)链表操作算法:初始化、插入、输出、删除void InitList(LinkList *h){*h=(LinkList)malloc(sizeof(LNode));if(!h){print("初始化错误〞);return;}(*h)->ne*t=NULL;}void InsertList(LinkList h,int pos,datatype *){ LinkList p=h,q;int i=0;while(p&&i<pos-1){p=p->ne*t;i++;}if(!p||i>pos-1)print("插入位置出错!!〞);InitList(&q);q->ne*t=NULL;q->data=*;}void DeleteList(LinkList h,int pos){LinkList p=h,q;int i=0;while(p&&i<pos-1){p=p->ne*t;i++;}if(!p||i>pos-1){cout<<〞删除位置错误〞;return;}q=p->ne*t;p->ne*t=q->ne*t;free(q);}-----------------------------------------------------------------------------------------------------------------1、线性表中,第一个元素没有直接前驱,最后一个元素没有直接后驱。
(完整版)数据结构知识点总结
数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·索引存储结构:·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·数据运算。
·对数据的操作。
定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
数据结构必考知识点总结
数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。
以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。
了解这些概念有助于更好地理解数据结构的本质和作用。
2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。
顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。
了解线性表的概念和基本操作是非常重要的。
3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。
栈和队列的实现方式有多种,包括数组和链表。
掌握栈和队列的基本操作和应用是数据结构的基本内容之一。
4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。
了解树的基本定义和遍历算法是必考的知识点。
5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。
了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。
6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。
了解各种查找算法的原理和实现方式是必考的知识点之一。
8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。
9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。
了解ADT的概念和实现方式是非常重要的。
10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。
了解动态存储管理的基本原理和实现方式是必考的知识点之一。
计算机基础知识:数据结构基础知识
计算机基础知识:数据结构基础知识
1.数据结构
数据结构是指相互之间存在一定关系的数据元素的集合,即数据结构是一个二元组
Data Structure = (D, R),其中D是数据元素的集合,R是D上关系的集合。
按照视点的
不同,数据结构分为逻辑结构和存储结构。
2.数据结构的分类
(1)数据逻辑结构
数据的逻辑结构是指数据元素之间逻辑关系的整体。
根据数据元素之间逻辑关系的不同,数据结构分为四类:
1) 集合:数据元素之间就是“属于同一个集合”,除此之外,没有任何关系;
2) 线性结构:数据元素之间存在着一对一的线性关系;
3) 树结构:数据元素之间存在着一对多的层次关系;
4) 图结构:数据元素之间存在着多对多的任意关系。
注意:数据结构分为两类:线性结构和非线性结构。
(2)数据存储结构
数据的存储结构又称为物理结构,是数据及其逻辑结构在计算机中的表示。
通常有两种存储结构:顺序存储结构和链接存储结构。
顺序存储结构的基本思想是:用一组连续的存储单元依次存储数据元素,数据元素之间的逻辑关系是由元素的存储位置来表示的。
链接存储结构的基本思想是:用一组任意的存储单元存储数据元素,数据元素之间的逻辑关系是用指针来表示的。
注意:存储结构除了存储数据元素之外,必须存储数据元素之间的逻辑关系。
数据结构知识点总结归纳整理
第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。
例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型是一个值的集合和定义在此集合上一组操作的总称。
•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。
抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。
#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。
分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。
2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。
3.数据的运算:包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。
一个算法有零个或多个的输入,有一个或多个的输出。
时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。
一般指最坏情况下的时间复杂度。
空间复杂度定义为该算法所耗费的存储空间。
算法原地工作是指算法所需辅助空间是常量,即O(1)。
第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。
数据结构 知识点总结
数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。
数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。
数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。
1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。
1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。
(2)数据项:数据元素中的一个组成部分,通常是基本类型。
(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。
(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。
1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。
(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。
(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。
(4)计算性:数据结构是为了使计算机程序更加高效而存在的。
二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。
常见的线性结构包括数组、链表、栈和队列等。
2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。
(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。
(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。
2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。
栈的操作遵循后进先出(LIFO)的原则。
2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。
数据结构基本知识点
第一章1、什么是数据结构①数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和操作等的学科。
②数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
③4类基本结构:⑴集合;⑵线性(一个前驱,一个后继)结构;⑶树形结构;⑷图状结构或网状结构。
2、数据结构的二元组表示:Data_Structure=(D,S)//D是数据元素的有限集,S是D上关系的有限集。
3、算法的5大特性:⑴有穷性;4、衡量算法的标准:时间复杂度和空间复杂度5、数据的逻辑结构分四类6、数据结构写出逻辑结构,反之。
第二章0、线性表的基本概念。
1、线性表的顺序存储的基本操作:Insert, E Is=n/2 Delete. E dl=(n-1)/22、线性表的顺序存储的特点:连续地址,随机查找。
3、线性表的链式存储的特点:地址不保证连续,顺序查找。
(1)重点1:结构类型P28Typedef struct LNode{ElemType data;Struct LNode *next;}LNode,*LinkList;(2)重点2:基本方法Status GetElem_L(LinkList L,int i,ElemType &e); Status ListInsert_L(LinkList &L,int i,ElemType e); Status ListDelete_L(LinkList &L,int i,ElemType &e); void CreateList_L(LinkList &L,int n);void Print(LinkList L){ LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ printf(“%d,”,p->data);while(p->next){p=p->next; printf(“%d,”,p->data); } printf(“\n”);}}void CountNodes(LinkList L,int &nd){ nd=0;//LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ nd++;//while(p->next){p=p->next; nd++;}//}}voidCountAve(LinkList L,int &av){ int n=0,s=0//av=0;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ s=s+p->data; n++;//while(p->next){p=p->next;s=s+p->data; n++;}// av=s/n;}return av;//}void PrintMax(LinkList L,){ int max;LinkList p=L->next;(有头结点)if(!p) printf(“this link is empty!\n”);else{ max=p->data;while(p->next){p=p->next; if(p->data>max) max=p->data;}//printf(“max=%d\n”,max);}}void DeletaMaxNode(LinkList L,){ int max;LinkList q,t;//q---记录p的前驱结点指针,t-----保存最大结点的前驱指针。
数据结构知识点全面总结_精华版
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构知识点总结
数据结构知识点总结数据结构知识点总结:一、线性表:⒈数组:定义、初始化、访问元素、插入和删除元素、扩容和缩容、数组的应用⒉链表:定义、单链表、双链表、循环链表、链表的插入和删除操作、链表的反转、链表的应用⒊栈:定义、基本操作(入栈、出栈、获取栈顶元素、判断栈是否为空)、应用场景(递归、表达式求值、括号匹配)⒋队列:定义、基本操作(入队、出队、获取队首元素、判断队列是否为空)、队列的分类(普通队列、双端队列、优先级队列)、队列的应用二、树结构:⒈二叉树:定义、遍历方式(前序遍历、中序遍历、后序遍历)、二叉树的应用(表达式求值、二叉搜索树)⒉堆:定义、堆的插入操作、堆的删除操作、堆的应用(优先级队列、Top K 问题)⒊平衡二叉树:定义、AVL 树、红黑树、平衡二叉树的应用⒋ B 树:定义、B+ 树、B 树、B 树的应用三、图结构:⒈图的存储方式(邻接矩阵、邻接表、十字链表、邻接多重表)⒉图的遍历方式(深度优先搜索、广度优先搜索)⒊最短路径算法(Dijkstra 算法、Bellman-Ford 算法、Floyd-Warshall 算法)⒋最小树算法(Prim 算法、Kruskal 算法)四、查找算法:⒈顺序查找⒉二分查找⒊散列查找(哈希表)⒋平衡查找树(红黑树)五、排序算法:⒈冒泡排序⒉插入排序⒊选择排序⒋快速排序⒌归并排序⒍堆排序⒎希尔排序⒏计数排序⒐桶排序⒑基数排序六、高级数据结构:⒈ Trie 树⒉哈夫曼树⒊并查集⒋线段树⒌ AVL 树附件:⒈相关实例代码⒉数据结构相关的练习题法律名词及注释:⒈版权:指作品的著作权人依照一定的法定条件所享有的权利。
⒉知识产权:指人们创作、发明的智力成果所享有的财产权或相关权益。
⒊法律保护:通过法律手段对知识产权进行保护和维护的行为。
数据结构
数据结构知识整理(部分)第一章:绪论1.数据:数据是外部信息的载体,他能够被计算机识别、存储和加工处理,是计算机程序加工的原料;2.数据元素:数据元素是数据的基本单位,在计算机中通常被作为一个整体进行考虑和处理;3.一个数据元素可由若干个数据项组成。
数据项是不可分割的、含有独立意义的最小数据单位,数据项有时也称为字段或域;4.数据结构是相互之间存在的一种或多种特定关系的数据元素的集合。
在任何问题中,数据元素之间都不是孤立的,而是存在着一定的关系,这种关系称为结构;5.4种基本数据结构:集合:只有“同属一个集合”的关系;线性结构:存在着一对一的关系;树形结构:存在着一对多的关系;图状结构:存在着多对多的关系;6.数据结构包括数据的逻辑结构和物理结构。
逻辑结构:从具体问题抽象出来的数学模型,与数据在计算机中的具体储存没有关系。
从逻辑上可以把数据结构分为线性结构和非线性结构,其中集合、树、图形结构属于非线性结构;7.数据的物理结构又叫存储结构,是数据在计算机中的表示和存储,包括数据元素的表示和存储以及数据元素之间关系的表示和存储,存储结构必须依赖于计算机。
数据元素之间的关系在计算机中的表示有两种:顺序映像和非顺序映像。
分别对应两和数据的存储结构:顺序存储结构和链式存储结构;顺序存储结构是指把逻辑上相邻的数据元素存储在物理位置相邻的存储单元中;链式存储结构不要求必须相邻。
链式存储结构中的数据元素叫做结点,在结点中附近设地址域来存储与该结点相邻的结点的地址来实现结点之间逻辑关系;8.在软件设计中,抽象数据类型通常包括定义、表示和实现三部分9.算法:是指在有限的时间范围之内为解决某一问题而采取的方法和步骤的准确完整的描述,他是一个有穷的规则序列,这些规则决定了解决某一特定问题的一系列运算;10算法的特征:有穷性,确定性,可行性,输入,输出;算法+数据结构=程序;11.评价一个算法的主要标准:正确性,可读性,健壮性,运行时间,占用空间;健壮性要求算法要全面细致的考虑所有可能出现的边界情况和异常情况;实际上,算法的时间效率和空间效率经常是一对矛盾,相互抵触,我们要根据实际问题进行处理,有时要牺牲空间换取时间,有时要牺牲时间换取空间。
数据结构基础知识总结详细带图
数据结构【基础知识点总结】一、数据数据(Data)是信息的载体,它能够被计算机识别、存储和加工处理。
它是计算机程序加工的原料,应用程序处理各种各样的数据。
计算机科学中,所谓数据就是计算机加工处理的对象,它可以是数值数据,也可以是非数值数据。
数值数据是一些整数、实数或复数,主要用于工程计算、科学计算和商务处理等;非数值数据包括字符、文字、图形、图像、语音等。
二、数据元素复制代码数据元素(Data Element)是数据的基本单位。
在不同的条件下,数据元素又可称为元素、结点、顶点、记录等。
例如,学生信息检索系统中学生信息表中的一个记录、八皇后问题中状态树的一个状态、教学计划编排问题中的一个顶点等,都被称为一个数据元素。
有时,一个数据元素可由若干个数据项(Data Item)组成,例如,学籍管理系统中学生信息表的每一个数据元素就是一个学生记录。
它包括学生的学号、姓名、性别、籍贯、出生年月、成绩等数据项。
这些数据项可以分为两种:一种叫做初等项,如学生的性别、籍贯等,这些数据项是在数据处理时不能再分割的最小单位;另一种叫做组合项,如学生的成绩,它可以再划分为数学、物理、化学等更小的项。
通常,在解决实际应用问题时是把每个学生记录当作一个基本单位进行访问和处理的。
复制代码三、数据对象数据对象(Data Object)或数据元素类(Data Element Class)是具有相同性质的数据元素的集合。
在某个具体问题中,数据元素都具有相同的性质(元素值不一定相等),属于同一数据对象(数据元素类),数据元素是数据元素类的一个实例。
例如,在交通咨询系统的交通网中,所有的顶点是一个数据元素类,顶点A 和顶点B 各自代表一个城市,是该数据元素类中的两个实例,其数据元素的值分别为A 和B。
四、数据结构复制代码数据结构研究的三个方面:(1)数据集合中各数据元素之间所固有的逻辑关系,即数据的逻辑结构;(2)在对数据进行处理时,各数据元素在计算机中的存储关系,即数据的存储结构;(3)对各种数据结构进行的运算。
数据机构知识点总结
数据机构知识点总结数据结构是计算机科学中的重要概念,它涉及数据的组织、存储和管理。
正确的数据结构设计对于解决各种计算机科学问题至关重要。
本文将介绍数据结构的基本知识点,包括数据结构的类型、常见的数据结构及其应用,以及数据结构的性能分析。
一、数据结构的类型数据结构可以分为线性结构和非线性结构两种类型。
1.线性结构线性结构是指数据元素之间存在一对一的关系,每个数据元素最多只有一个直接前驱和一个直接后继。
常见的线性结构包括数组、链表、栈和队列。
- 数组:数组是最基本的数据结构,它使用连续的存储空间存储相同类型的数据元素。
数组具有随机访问的特点,但插入和删除操作的效率较低。
- 链表:链表使用指针将数据元素连接起来,它可以分为单向链表、双向链表和循环链表。
链表具有插入和删除操作效率较高的特点,但访问数据元素的效率较低。
- 栈:栈是一种具有后进先出(LIFO)特性的线性结构,它只允许在栈顶进行插入和删除操作。
- 队列:队列是一种具有先进先出(FIFO)特性的线性结构,它只允许在队首进行删除操作,在队尾进行插入操作。
2.非线性结构非线性结构是指数据元素之间存在一对多或多对多的关系。
常见的非线性结构包括树、图和集合。
- 树:树是一种层级关系的数据结构,它包括根节点、子节点和叶子节点。
树可以分为二叉树、平衡树、红黑树等。
- 图:图是由节点和边组成的数据结构,它可以分为有向图和无向图。
图可以用来表示各种实际问题中的关系。
- 集合:集合是一种数据元素的无序集合,其中每个元素都是独一无二的。
常见的集合操作包括并集、交集、补集等。
二、常见的数据结构及其应用1. 数组数组是最基本的数据结构之一,它可以用来存储一组相同类型的数据元素。
数组的应用包括:- 在排序算法中使用数组存储需要排序的数据。
- 在搜索算法中使用数组存储需要搜索的数据。
- 在图像处理中使用数组存储像素数据。
2. 链表链表是一种用指针连接的数据结构,它可以用来存储数据集合。
数据结构知识点归纳
数据结构知识点归纳数据结构知识点归纳1.线性数据结构1.1 数组①基本操作②时间复杂度③动态数组④多维数组1.2 链表①单向链表②双向链表③循环链表④基本操作⑤时间复杂度1.3 栈①基本操作1.4 队列①基本操作②队列的实现方式③阻塞队列④并发队列2.树形数据结构2.1 二叉树①基本概念②二叉树的遍历③二叉树的构建方式2.2 堆①最大堆和最小堆②堆的实现方式③堆的应用场景2.3 平衡二叉树① AVL树2.4 B树和B+树①基本概念② B树的插入和删除操作③ B+树的优势和应用场景3.图形数据结构3.1 无向图和有向图3.2 图的遍历①深度优先搜索(DFS)②广度优先搜索(BFS)3.3 最短路径算法① Dijkstra算法② Floyd-Warshall算法3.4 最小树算法① Prim算法② Kruskal算法4.散列数据结构4.1 散列表①基本概念②散列函数的设计与应用③碰撞解决方法4.2 布隆过滤器①基本原理②应用场景4.3 哈希算法①基本概念②常见的哈希算法5.高级数据结构5.1 树状数组(BIT)①基本原理②树状数组的应用5.2 线段树①基本原理②线段树的构建和查询操作5.3 Trie树①基本概念② Trie树的构建与查询5.4 并查集①基本操作②应用场景6.本文档涉及附件。
7.本文所涉及的法律名词及注释:7.1 数据结构:指在计算机科学中,用于存储和组织数据的方式和方式的方法。
7.2 数组:是一个线性数据结构,由一组相同类型的元素组成。
7.3 链表:是一个线性数据结构,由一组节点组成,每个节点包含数据和指向下一个节点的指针。
7.4 栈:是一种线性数据结构,具有后进先出(Last-In-First-Out)的特性。
7.5 队列:是一种线性数据结构,具有先进先出(First-In-First-Out)的特性。
7.6 二叉树:是一种树形数据结构,每个节点最多有两个子节点。
7.7 图:是由一组节点和一组边构成的数据结构。
数据结构必考知识点归纳
数据结构必考知识点归纳数据结构是计算机科学中的核心概念之一,它涉及到数据的组织、存储、管理和访问方式。
以下是数据结构必考知识点的归纳:1. 基本概念:- 数据结构的定义:数据结构是数据元素的集合,这些数据元素之间的关系,以及在这个集合上定义的操作。
- 数据类型:基本数据类型和抽象数据类型(ADT)。
2. 线性结构:- 数组:固定大小的元素集合,支持随机访问。
- 链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
- 单链表:每个节点指向下一个节点。
- 双链表:每个节点同时指向前一个和下一个节点。
- 循环链表:最后一个节点指向第一个节点或第一个节点指向最后一个节点。
3. 栈(Stack):- 后进先出(LIFO)的数据结构。
- 主要操作:push(入栈)、pop(出栈)、peek(查看栈顶元素)。
4. 队列(Queue):- 先进先出(FIFO)的数据结构。
- 主要操作:enqueue(入队)、dequeue(出队)、peek(查看队首元素)。
- 特殊类型:循环队列、优先队列。
5. 递归:- 递归函数:一个函数直接或间接地调用自身。
- 递归的三要素:递归终止条件、递归工作量、递归调用。
6. 树(Tree):- 树是节点的集合,其中有一个特定的节点称为根,其余节点称为子节点。
- 二叉树:每个节点最多有两个子节点的树。
- 二叉搜索树(BST):左子树的所有节点的值小于或等于节点的值,右子树的所有节点的值大于或等于节点的值。
7. 图(Graph):- 图是由顶点(节点)和边(连接顶点的线)组成的。
- 图的表示:邻接矩阵、邻接表。
- 图的遍历:深度优先搜索(DFS)、广度优先搜索(BFS)。
8. 排序算法:- 基本排序:选择排序、冒泡排序、插入排序。
- 效率较高的排序:快速排序、归并排序、堆排序。
9. 查找算法:- 线性查找:在数据结构中顺序查找。
- 二分查找:在有序数组中查找,时间复杂度为O(log n)。
数据结构基础知识总结
数据结构基础知识总结数据结构是计算机科学中的一门重要课程,它研究如何组织和存储数据,以及如何在数据上进行操作和处理。
数据结构是计算机程序设计的基础,它能够帮助我们更好地理解计算机程序的本质,并提高程序的效率和可靠性。
本文将对数据结构的基础知识进行总结。
一、线性结构线性结构是指所有元素按照线性顺序排列,每个元素最多只有一个前驱和一个后继。
常见的线性结构有数组、链表、栈和队列。
1. 数组数组是一种线性结构,它由相同类型的元素组成,每个元素占用相同大小的内存空间,并按照一定顺序存储在连续的内存单元中。
数组可以通过下标来访问其中的元素,时间复杂度为O(1)。
2. 链表链表也是一种线性结构,它由节点组成,每个节点包含一个数据域和一个指针域。
指针域指向下一个节点或者上一个节点。
链表可以分为单向链表、双向链表和循环链表等多种形式。
3. 栈栈是一种特殊的线性结构,它只允许在栈顶进行插入和删除操作。
栈的特点是先进后出,后进先出。
栈可以用数组或链表来实现。
4. 队列队列也是一种特殊的线性结构,它只允许在队尾进行插入操作,在队头进行删除操作。
队列的特点是先进先出,后进后出。
队列可以用数组或链表来实现。
二、树形结构树形结构是一种非线性结构,它由节点和边组成,每个节点最多有一个父节点和多个子节点。
常见的树形结构有二叉树、堆、AVL树和红黑树等。
1. 二叉树二叉树是一种特殊的树形结构,每个节点最多有两个子节点。
二叉树可以分为满二叉树、完全二叉树、平衡二叉树等多种形式。
2. 堆堆是一种特殊的完全二叉树,它满足父节点的值总是大于或小于子节点的值。
堆可以分为大顶堆和小顶堆两种形式。
3. AVL树AVL树是一种自平衡二叉搜索树,它保证任何一个节点左右子树高度差不超过1,并且左右子树也是一棵AVL树。
4. 红黑树红黑树是一种自平衡二叉搜索树,它满足以下性质:每个节点要么是红色,要么是黑色;根节点是黑色;每个叶子节点都是黑色的空节点;如果一个节点是红色的,则它的两个子节点都是黑色的;任意一条从根到叶子的路径上不能出现连续的两个红色节点。
数据结构重点知识点
数据结构重点知识点第一章概论1. 数据是信息的载体。
2. 数据元素是数据的基本单位。
3. 一个数据元素可以由若干个数据项组成。
4. 数据结构指的是数据之间的相互关系,即数据的组织形式。
5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。
②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。
数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。
③数据的运算,即对数据施加的操作。
最常用的检索、插入、删除、更新、排序等。
6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。
线性表是一个典型的线性结构。
栈、队列、串等都是线性结构。
②非线性结构:一个结点可能有多个直接前趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
通常借助程序语言的数组描述。
(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。
通常借助于程序语言的指针类型描述。
(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。
索引表由若干索引项组成。
若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。
若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。
索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构基础知识大全
数据结构是计算机科学中的重要基础知识,它涉及到如何以及如何
组织和存储数据,以便能够高效地进行操作和管理。
在本文中,我们
将介绍一些常见的数据结构及其相关算法,帮助读者全面了解数据结
构的基础知识。
一、数组(Array)
数组是最简单也是最常见的数据结构之一,它是一系列相同类型的
数据元素按照一定顺序排列而成的结构。
数组的特点是能够随机访问,即可以根据索引以常量时间访问任意位置上的元素。
通过数组,我们
可以用较少的时间复杂度完成大部分常见的操作,例如插入、删除、
查找等。
二、链表(Linked List)
链表是另一种常见的数据结构,它由一系列结点组成,每个结点包
含数据和指向下一个结点的指针。
链表的特点是可以动态地插入和删
除元素,不需要事先申请固定大小的空间。
然而,链表的缺点是不能
像数组那样随机访问,访问某个特定位置上的元素需要从头结点开始
按照顺序遍历。
三、栈(Stack)
栈是一种具有特殊插入和删除操作规则的数据结构,它采用“后进
先出(LIFO)”的原则。
栈的常用操作有压栈(push)和弹栈(pop)。
压栈将元素插入栈顶,弹栈从栈顶删除元素。
栈可以用于解决许多问题,例如表达式求值、函数调用等。
四、队列(Queue)
队列是一种采用“先进先出(FIFO)”原则的数据结构,它与栈相反。
队列的常用操作有入队(enqueue)和出队(dequeue)。
入队操作将元
素插入队尾,出队操作从队头删除元素。
队列的典型应用包括广度优
先搜索算法等。
五、树(Tree)
树是一种非线性的数据结构,它由一组结点连通而成,具有分层的
结构。
树的一个结点称为根结点,每个结点可以有零个或多个子结点,子结点之间可以相互连通。
树的特点是可以表示具有层次关系的数据,例如文件目录结构、组织架构等。
常见的树包括二叉树、平衡二叉树、红黑树等。
六、图(Graph)
图是一种复杂的非线性数据结构,它由一组节点和一组边组成,节
点表示图中的对象,边表示节点之间的关系。
图可以表示各种复杂的
关系网络,例如社交网络、路线图等。
图的常用算法包括深度优先搜
索算法、广度优先搜索算法等。
七、哈希表(Hash Table)
哈希表是一种通过哈希函数将键映射到值的数据结构,它可以实现
高效的插入、删除和查找操作。
通过使用哈希函数,我们可以将数据
分散存储在一个数组中,以便能够更快地访问。
哈希表在实际应用中非常广泛,例如关系数据库、哈希查找等。
八、堆(Heap)
堆是一种特殊的树状数据结构,它满足堆属性,即对于任意节点,其值大于(或小于)其子节点的值。
堆常用于实现优先队列,其中具有最高(或最低)优先级的元素位于堆的根部。
堆的常用算法包括堆排序、优先队列等。
总结:
本文简要介绍了一些常见的数据结构及其相关算法,包括数组、链表、栈、队列、树、图、哈希表和堆。
通过理解和掌握这些数据结构的基础知识,读者可以更好地理解和设计算法,提高程序的效率和性能。
在实际应用中,我们根据问题的需求选择合适的数据结构,以便更好地解决问题。
希望本文对读者在学习和应用数据结构方面有所帮助。