材料力学-梁的挠度教学内容

合集下载

第9章__梁的挠度和刚度计算

第9章__梁的挠度和刚度计算

第9章__梁的挠度和刚度计算在结构分析中,梁的挠度和刚度是非常重要的参数,它们能够帮助我们了解和评估梁的性能和稳定性。

本章主要介绍了梁的挠度和刚度的计算方法。

首先,我们需要了解梁的挠度是什么。

简单来说,梁的挠度指的是梁在承受荷载时的弯曲和垂直变形程度。

挠度大小反映了梁的柔软性和变形能力,对于结构工程来说,挠度必须在允许范围内,以保证结构的安全和稳定。

梁的挠度计算可以通过简化的工程解析方法或者数值计算方法来进行。

这里主要介绍两种常用的方法。

第一种方法是基于简化的工程解析方法,即梁的挠度计算公式。

根据梁的几何形状和受力情况,可以得到不同类型梁的挠度计算公式。

例如,对于简支梁,其挠度可以用以下公式计算:δ=(5*q*L^4)/(384*E*I)其中,δ是梁的最大挠度,q是梁的单位长度荷载,L是梁的长度,E是梁的弹性模量,I是梁的截面惯性矩。

对于其他类型的梁,如悬臂梁、连续梁等,也有相应的挠度计算公式。

通过这些公式可以得到梁的最大挠度。

第二种方法是使用数值计算方法,主要是有限元法。

有限元法是一种通过将结构分割成若干小单元,然后进行位移解和力学分析的方法。

通过有限元软件,可以模拟梁在荷载作用下的变形情况,并得到挠度的数值解。

此外,在梁的挠度计算中,还需要考虑梁的边界条件。

梁的边界条件决定了梁的约束程度,也会影响梁的挠度大小。

常见的边界条件包括简支、悬臂、固支等。

在梁的刚度计算中,主要考虑的是梁的弯曲刚度和剪切刚度。

弯曲刚度指的是梁在弯曲过程中对外力的抵抗能力,可以用弯矩-曲率关系来表示。

剪切刚度指的是梁在受剪力作用下的变形能力,可以用剪力-变形关系来表示。

梁的弯曲刚度和剪切刚度分别可以通过以下公式计算:弯曲刚度:EI=M/θ剪切刚度:GA=T/ϕ其中,E是梁的弹性模量,I是梁的截面惯性矩,G是梁的剪切模量,A是梁的横截面积,M是梁的弯矩,θ是梁的曲率,T是梁的剪力,ϕ是梁的剪应变。

通过计算弯曲刚度和剪切刚度,我们可以评估梁在荷载作用下的响应和变形情况,进一步判断结构的性能和稳定性。

材料力学梁的挠度和刚度计算课件

材料力学梁的挠度和刚度计算课件
桥梁刚度
桥梁刚度反映了桥梁结构抵抗变形的能力。刚度计算可以帮助工程师了解桥梁在不同载荷作用下的变形情况,从 而优化结构设计,提高桥梁的承载能力和稳定性。
梁的挠度和刚度在房屋建筑中的应用
房屋挠度
在房屋建筑中,挠度对建筑物的安全 性和稳定性具有重要影响。通过计算 和分析挠度,可以确保建筑物在使用 过程中不会发生过大的弯曲和变形, 从而保证居住者的安全。
泊松比与挠度
泊松比是衡量材料横向变形能力的 参数。泊松比越大,梁在受到压力 时横向变形越大,导致挠度增加。
剪切模量与刚度
剪切模量反映了材料抵抗剪切应力 的能力。剪切模量大的材料具有较 大的刚度,能够更好地抵抗变形。
材料的弹性模量对挠度和刚度的影响
01
弹性模量与挠度
弹性模量是衡量材料抵抗弹性变形能力的参数。弹性模量越大,梁在受
03
梁的挠度计算方法
挠度的计算公式
挠度计算公式:$y = frac{Fl^4}{48EI}$
$I$:梁的惯性矩 $E$:材料的弹性模量
$F$:施加在梁上的力 $l$:梁的长度
挠度的计算步骤
确定施加在梁上的力 $F$和梁的长度$l$。
将已知数值代入挠度 计算公式进行计算。
确定材料的弹性模量 $E$和梁的惯性矩$I$ 。
材料的泊松比对挠度和刚度的影响
泊松比与横向变形
泊松比描述了材料在受到压力时横向变形的程度。泊松比 越大,横向变形越明显,这可能对梁的挠度和刚度产生影 响。
泊松比与交叉应力
在分析梁的挠度和刚度时,需要考虑由于泊松比引起的交 叉应力效应。这种效应会影响梁的剪切力和弯矩分布,从 而影响挠度和刚度。
泊松比与材料非线性的考虑
梁的刚度定义
刚度

材料力学第9章--梁的挠度和刚度计算

材料力学第9章--梁的挠度和刚度计算

3
9.4 叠加法求梁的变形
在小变形条件下,材料服从虎克定律
内力
Fs , M 与外力 q, P, M 0 成线性关系
几个载荷共同作用的变形 === 各个载荷单独作用的变形之和
叠加原理
例9.4
简支梁的EI已知,用叠加法
q
ql
求梁跨中截面的位移和支座B的转角。 A
B
载荷分解如图 均布载荷单独作用时
6 最大挠度
when
0 w1
Fb 2 Fb 2 2 x l b 0 2l 6l
a l b a a 2b l 2 b2 x 3 3 3 if a b then x a Fb wmax w1 ( x ) 9 3EIl if a b then x a wmax Fl 3 48EI
5ql 4 ql 3 wC1 , q B1 384 EI 24 EI ql 4 ql 3 wC 2 , qB2 16EI 3EI 叠加 19ql 4 wC wC1 wC 2 384 EI 7 ql 3 q B q B1 q B 2 24 EI
wmax
挠曲线
P
x
挠曲线方程
挠曲线:梁弯曲后,梁轴线所成的曲线 挠度:梁截面形心在垂直于梁的初始轴线方向的位移
w w( x ) dw x 转角:梁截面相对于变形前的位置转过的角度 q tan q
dx
符号给定:
正值的挠度向下,负值的向上;正值的 转角为顺时针转相,负值的位逆时针转向
2,意义
4
3
7 梁两端的转角
ql 3 EIq A EIq |x 0 24 1 3 ql 2 ql 3 ql 3 EIq B EIq |x l ql l 6 4 24 24

第四章(弯曲挠度3-Lu)

第四章(弯曲挠度3-Lu)
§4-9 用积分法计算梁旳挠度与转角
对于等截面梁,EI = 常数。
E I w "= - M (x)
EIw EI M ( x )dx C
EIw [ M (x)dx]dx Cx D
式中C, D 由梁支座处旳已知位移条件即位 移边界条件拟定。
HOHAI UNIVERSITY
EIw EI M ( x )dx C
C wc2(q)
c 2 (q)
HOHAI UNIVERSITY
3o 求 c、wc
A
c c (F ) c1(q) c2 (q)
F
C (F)
C (F )
B
C
qa 3 qa 3 qa 3
4 EI 6 EI 3EI
qa 3 4 EI
(b)
q
B
(d)
C
wc1(q) c1 (q )
wc wc (F ) wc1(q) wc2 (q)
EI 2
Fb 2l
x2
F 2
(
x
a
)2
C2
EIw2
Fb 6l
x3
F 6
(x
a)3
C2 x
D2
HOHAI UNIVERSITY
F
边界条件:x = 0 ,w1= 0。 x = l ,w2= 0。
a
b
A
CD
Bx
x
y
l
连续条件:x = a ,w1′= w2′, w1= w2
由连续条件,得:C1= C2, D1= D2
EIw [ M ( x)dx]dx Cx D
如:
p
A
B
p A
边界条件: wA=0 wB=0
边界条件: wA=0 θA=0

材料力学-梁的挠度ppt课件

材料力学-梁的挠度ppt课件

(1)
dx
6
§7-2 梁的挠曲线近似微分方程
一、挠曲线近似微分方程
x M>0 f (x) 0 f
1 M z (x)
(1)
EI z
1



f (1
(x) f 2)
3 2
小变形

f (x)
M<0
f
f (x) 0
x
f ( x) M z ( x) EI z
EIf (x) ( (M (x))dx)dx C1x C2
2.位移边界条件
P
A
C
B
D
P
8
支点位移条件:
fA 0 fB 0
连续条件: fC fC
fD 0 D 0
或写成 fC 左 fC 右
光滑条件: 讨论:
C C
或写成 C 左 C 右
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。
②可应用于求解承受各种载荷的等截面或变截面梁的位移。
③积分常数由挠曲线变形的几何相容条件(边界条件、连续条
件)确定。
④优点:使用范围广,直接求出较精确;缺点:计算较繁。 9
[例1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解: 建立坐标系并写出弯矩方程
连续光滑条件:
当x x l时,y y ,
1
2
1
2
1
2
代入以上积分公式中,解得:
C1

Fl 2 12EI
,C2

5Fl 2 6EI
,D1

0,D2

Fl 3 4EI

知识资料材料力学(八)(新版)

知识资料材料力学(八)(新版)

弯曲变形粱的挠度与转角(一)挠曲线在外力作用下,梁的轴线由直线变为光洁的弹性曲线,梁弯曲后的轴线称为挠曲线。

在平面弯曲下,挠曲线为梁形心主惯性平面内的一条平面曲线v=f(x)(见图5-8-1)。

(二)挠度与转角梁弯曲变形后,梁的每一个横截面都要产生位移,它包括三部分:1. 挠度梁横截面形心在垂直于轴线方向的线位移,称为挠度,记作v。

沿梁轴各横截面挠度的变化规律,即为梁的挠曲线方程。

v=f(x)2.转角横截面相对本来位置绕中性轴所转过的角度,称为转角,记作θ。

小变形情况下,3.此外,横截面形心沿梁轴线方向的位移,小变形条件下可忽略不计。

(三)挠曲线近似微分方程在线弹性范围、小变形条件下,挠曲线近似微分方程为上式是在图5—8—l所示坐标系下建立的。

挠度w向下为正,转角θ顺时针转为正。

积分法计算梁的位移按照挠曲线近似微分方程(5—8—1),积分两次,即得梁的转角方程和挠度方程,即由第1 页/共6 页式中积分常数C、D,可由梁的边界条件来决定。

当梁的弯矩方程需分段列出时,挠曲线微分方程也需分段建立,分段积分。

于是全梁的积分常数数目将为分段数目的两倍。

为了决定所有积分常数,除利用边界条件外,还需利用分段处挠曲线的延续条件(在分界点处左、右两段梁的转角和挠度均应相等)。

用叠加法求梁的位移(一)叠加原理几个荷载同时作用下梁的任一截面的挠度或转角等于各个荷载单独作用下同一截面挠度或转角的总和。

(二)叠加原理的适用条件叠加原理仅适用于线性函数。

要求挠度、转角为梁上荷载的线性函数,必须满意: 1.材料为线弹性材料;2.梁的变形为小变形;3.结构几何线性。

(三)叠加法的特征1.各荷载同时作用下挠度、转角等于单独作用下挠度、转角的总和,应该是几何和,同一方向的几何和即为代数和。

2.梁在容易荷载作用下的挠度、转角应为已知或可查手册。

3.叠加法相宜于求梁某一指定截面的挠度和转角。

[例 5—8—1] 用积分法求图5—8—3所示各梁的挠曲线方程时,试问应分为几段?将浮上几个积分常数? 并写出各梁的边界条件和延续条件。

《梁的挠度及转角 》课件

《梁的挠度及转角 》课件
长度、弯曲刚度等因素。
有限元分析
在现代工程分析中,有限元分析 是一种常用的方法来计算挠度和 转角。通过将梁离散化为有限个 小的单元,可以更精确地模拟梁
的变形和应力分布。
02
梁的挠度分析
静力挠度分析
静力挠度分析是指在静力载荷作 用下,对梁的挠度进行计算和分
析的过程。
静力挠度分析主要考虑梁的自重 、外部施加的均布载荷和集中载 荷等因素,通过计算得到梁的挠
温度转角分析
温度转角的大小取决于梁的材料、尺寸和温度变化等 因素。
单击此处添加正文,文字是您思想的提一一二三四五 六七八九一二三四五六七八九一二三四五六七八九文 ,单击此处添加正文,文字是您思想的提炼,为了最 终呈现发布的良好效果单击此4*25}
温度转角分析的目的是确定梁在温度变化下的变形程 度和转角大小,从而评估梁的耐热性能和稳定性。
5. 总结分析结果,提 出改进建议。
4. 将实测数据与理论 计算结果进行对比分 析;
案例分析结果与结论
结果
实测数据与理论计算结果基本一致, 证明了理论的正确性和实用性;
结论
梁的挠度和转角是结构安全的重要指 标,应加强监测和理论研究,以提高 结构的安全性和稳定性。
05
梁的挠度及转角优化设 计
优化设计方法与步骤案例二高层建筑中源自梁结构挠度及转角变 化案例三
大跨度钢结构的梁在风载作用下的 挠度及转角表现
案例分析方法与步骤
• 方法:理论计算与实测数据相结合
案例分析方法与步骤
步骤
1. 收集相关资料,了解工程概况和梁的结构特点 ; 2. 进行理论计算,预测梁的挠度和转角;
案例分析方法与步骤
3. 实地监测,获取梁 的实际挠度和转角数 据;

河海大学-材料力学-课件-力学-第六章-挠度

河海大学-材料力学-课件-力学-第六章-挠度

2、转角:梁的截面绕中性轴转过的角度θ。
小变形时,θ≈tgθ=w’(x)——转角方程。顺时针 为正。
§6-2 梁的挠曲线近似微分方程
1
w

( x )
1 w2
3 2
1 M(x)
<<1
( x) EI z
w M x
EI z
O
x
O
x
M
M
w
M<0
w” > 0
当F作 用 于 梁 中 点C时 ,wmax wc。
当F右移至B点时,b 0,x0 0.577l。
wmax的 位 置 距 梁 中 点 仅 0.077l。

b2 0,
wmax

Fbl 2 9 3 EI
0.0642 Fbl 2 。 EI
wc

Fbl 2 16 EI
0.0625 Fbl 2 。 EI
ql
qx 2
θA
M(x) x
wmax θB
Bx
l
2
2w
2o 梁的挠曲线微分方程为
EIw ql x qx2
2
2
积 分 EIw ql x2 qx3 C 2 2 23
ql x3 qx4
EIw
Cx D
2 23 234
边界条件Βιβλιοθήκη qx0: w0 xl: w0

w
xl
Fl 2 2 EI
Fl 3 wmax w xl 3EI
F
Bx
θmax
wmax
l
例2:一简支梁受均布荷载作用,求梁的转角方程 和挠度方程,并确定最大挠度和A、B截面的转角。

材料力学-梁的挠度 PPT

材料力学-梁的挠度 PPT

最大挠度及最大转角
max(a)
Pa2 2EI
a
P
L
x
fmax f(L)6PE2aI3La
f
[例3] 试用积分法求图示梁的挠曲线方程和转角方程,并
求C截面挠度和A截面转角。设梁的抗弯刚度EI为常数。
解:1.外力分析:求支座约束反力。 研究梁ABC,受力分析如图,列平衡方程:
m F yA R R A B R l B FF 1 .5 0 l0 R R B A 1 .0 5.F 5F
二、结构形式叠加(逐段刚化法)
2.位移边界条件
P
A
C
B
D
P
支点位移条件:
fA 0 fB 0
连续条件: fC fC
光滑条件: 讨论:
C
C
fD 0 D 0
或写 fC 左成 fC 右
或 写 C 左 成C 右
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。
②可应用于求解承受各种载荷的等截面或变截面梁的位移。
③积分常数由挠曲线变形的几何相容条件(边界条件、连续条
件)确定。
④优点:使用范围广,直接求出较精确;缺点:计算较繁。
[例1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解:
P L
建立坐标系并写出弯矩方程
x
x
M (x)P(xL)
f
写出微分方程并积分
应用位移边界条件求积分常数
E f I M (x ) P (L x ) EfI1 2P(Lx)2C1
大家有疑问的,可以询问和交
对于等截面直梁,挠曲线近似微分方程可写成如下形式:
EfI (x) M (x)
§7-3 积分法计算梁的位移

第9章梁的挠度和刚度计算

第9章梁的挠度和刚度计算

第9章梁的挠度和刚度计算梁的挠度和刚度是结构力学中的重要概念,它们能够帮助我们分析和设计梁结构的性能。

在这一章中,我们将讨论如何计算梁的挠度和刚度。

在梁的分析中,挠度是一个重要参数,用来描述梁在受力后产生的变形。

挠度的大小可以反映梁的刚度,即梁的抵抗变形的能力。

计算梁的挠度可以通过解析方法、数值方法和实验方法来进行。

在解析方法中,梁的挠度可以通过弯曲方程来计算。

对于简支梁的弯曲问题,我们可以使用梁的弯矩方程和挠度方程来计算梁的挠度。

对于集中载荷作用下的梁,挠度方程可以表示为:δ(x)=(F*x^2)/(6*E*I)其中,δ(x)表示距离梁端点x处的挠度,F表示施加在梁上的力,E表示梁的杨氏模量,I表示梁的截面惯性矩。

通过这个方程,我们可以计算任意位置处的梁挠度。

对于均布载荷作用下的梁,挠度方程可以表示为:δ(x)=(w*x^4)/(8*E*I)其中,w表示单位长度上施加的均布载荷。

通过这个方程,我们可以计算任意位置处的梁挠度。

数值方法是另一种计算梁挠度的常用方法,它基于数值近似和积分方法。

其中最常见的方法是有限元法。

有限元法将梁结构划分为许多小单元,并基于这些小单元的形状函数和位移函数来计算梁的挠度。

通过这种方法,我们可以得到梁在各个位置的近似挠度值。

实验方法是第三种计算梁挠度的方法。

这种方法需要在实验室使用悬臂梁等设备对梁结构进行实验。

通过施加不同的载荷并测量梁的变形,我们可以计算出梁在各个位置的挠度。

梁的刚度是另一个重要的参数,它描述了梁结构对于外部载荷的抵抗能力。

刚度通常用弹性系数表示,在梁结构中即为弹性模量。

弹性模量是梁材料的一个物理特性,它越大,则说明梁越硬,更难发生变形。

梁的刚度可以通过弯矩方程和挠度方程来计算。

对于简支梁的弯曲问题,弯矩方程可以表示为:M(x)=(F*x)/L其中,M(x)表示距离梁端点x处的弯矩,F表示施加在梁上的力,L 表示梁的长度。

通过这个方程,我们可以计算任意位置处的梁弯矩。

材料力学第9章 梁的挠度和刚度计算

材料力学第9章  梁的挠度和刚度计算

材料力学第9章梁的挠度和刚度计算梁的挠度和刚度计算材料力学第9章引言梁是一种常见的结构元素,在各个工程领域都有广泛的应用。

了解梁的挠度和刚度计算方法对于设计和分析梁的性能至关重要。

本文将介绍材料力学第9章中梁的挠度和刚度计算的相关内容。

1. 梁的挠度计算方法1.1 单点弯曲当梁受到单点弯曲时,可以使用梁的弯曲方程来计算梁的挠度。

梁的弯曲方程可以表达为:δ = (M * L^2) / (2 * E * I)其中,δ为梁的挠度,M为梁的弯矩,L为梁的长度,E为梁的弹性模量,I为梁的截面惯性矩。

1.2 均匀分布荷载当梁受到均匀分布荷载时,梁的挠度计算稍有不同。

可以使用梁的基本方程来计算梁的挠度。

梁的基本方程可以表达为:δ = (q * L^4) / (8 * E * I)其中,δ为梁的挠度,q为梁的均匀分布荷载,L为梁的长度,E为梁的弹性模量,I为梁的截面惯性矩。

2. 梁的刚度计算方法梁的刚度是指梁对外界荷载的抵抗能力。

梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。

2.1 弯曲刚度梁的弯曲刚度可以通过梁的截面惯性矩来计算。

弯曲刚度可以表示为:EI = ∫(y^2 * dA)其中,EI为梁的弯曲刚度,y为离梁中性轴的距离,dA为微元面积。

2.2 剪切刚度梁的剪切刚度可以通过梁的截面两点间的剪力和相对位移关系来计算。

剪切刚度可以表示为:GJ = ∫(θ * dA)其中,GJ为梁的剪切刚度,θ为梁的剪切角,dA为微元面积。

3. 示例为了加深对梁的挠度和刚度计算的理解,下面以一根长度为L的梁为例进行计算。

假设梁受到均匀分布荷载q作用,并且梁的截面为矩形截面,梁的宽度为b,高度为h。

根据梁的挠度计算方法,可以得到梁的挠度公式为:δ = (q * L^4) / (8 * E * b * h^3)根据梁的刚度计算方法,可以得到梁的弯曲刚度和剪切刚度公式为: EI = (b * h^3) / 12GJ = (b * h * h^3) / 12通过计算梁的挠度和刚度,可以得到梁的性能参数,进而进行工程设计和分析。

《梁的挠度及转角 》课件

《梁的挠度及转角 》课件
静载荷
载荷大小和方向不随时间变化,转角计算相对简 单。
动载荷
载荷大小和方向随时间变化,需要考虑时间因素 对转角的影响,计算较为复杂。
冲击载荷
载荷突然施加或卸载,可能导致梁发生大变形和 瞬时转角,需要特别考虑安全系数。
04
梁的挠度及转角实例分析
实际工程中的挠度及转角问题
总结词:实际应用
详细描述:梁的挠度和转角是实际工程中常见的问题,特别是在桥梁、建筑和机 械工程中。了解和掌握梁的挠度及转角对确保结构安全和性能至关重要。
设计思路
通过调整梁的截面尺寸、材料、支撑条件等,使挠度和转角在一个 合理的范围内,以保证梁的安全性和稳定性。
优化设计实例分析
1 2 3
案例一
某桥梁的横梁设计,通过优化截面尺寸和材料分 布,显著降低了挠度,提高了承载能力。
案二
某高层建筑的楼板设计,通过合理布置支撑和优 化梁的尺寸,有效控制了转角,增强了结构的稳 定性。
案例三
某机械设备的框架设计,综合考虑挠度和转角的 影响,优化了整体结构,实现了轻量化和高性能 。
THANKS
感谢观看
进行计算。
动载荷下的挠度
在动载荷作用下,梁的挠度值可能 较大,需要考虑动载荷对挠度的影 响,可以采用动力学模型进行计算 。
复合载荷下的挠度
在实际工程中,梁可能同时受到静 载荷和动载荷的作用,需要采用更 为复杂的模型进行计算。
03
梁的转角计算
转角的计算方法
公式法
根据梁的物理方程和边界条件, 通过数学公式计算转角。
实例分析一:简支梁的挠度及转角
总结词
简支梁分析
详细描述
简支梁是一种常见的梁类型,其挠度和转角可以通过理论公式进行计算。该实 例将介绍简支梁在不同载荷下的挠度和转角,以及如何通过优化设计来减小挠 度和转角。

材料力学第9章 梁的挠度和刚度计算

材料力学第9章 梁的挠度和刚度计算

材料力学第9章梁的挠度和刚度计算在工程结构中,梁是一种常见的构件,其在承受载荷时会发生弯曲变形。

而梁的挠度和刚度计算是材料力学中的重要内容,对于确保梁的正常工作和结构的安全性具有至关重要的意义。

首先,我们来理解一下什么是梁的挠度。

简单来说,梁的挠度就是梁在受力作用下,横截面形心沿垂直于轴线方向的位移。

想象一下一根水平放置的梁,在受到垂直向下的力时,它会向下弯曲,这个弯曲的程度就是挠度。

那么为什么要计算梁的挠度呢?这是因为过大的挠度可能会影响梁的正常使用功能。

比如,在桥梁结构中,如果梁的挠度过大,可能会导致桥面不平整,影响车辆行驶的舒适性和安全性;在机械零件中,过大的挠度可能会导致零件之间的配合出现问题,影响机器的正常运转。

接下来,我们谈谈梁的刚度。

梁的刚度是指梁抵抗变形的能力。

刚度越大,梁在相同载荷作用下产生的挠度就越小。

刚度与梁的材料特性(如弹性模量)、截面形状和尺寸以及梁的支撑方式等因素有关。

在计算梁的挠度时,通常需要运用一些基本的力学原理和公式。

比如,对于简单的静定梁,可以使用积分法或叠加法来求解挠度和转角方程。

积分法的基本思路是根据梁的弯曲微分方程,通过两次积分得到挠度和转角的表达式。

这个过程需要对梁的受力情况进行详细的分析,确定弯矩方程,然后进行积分运算。

叠加法则是基于线性叠加原理。

如果梁同时受到多个载荷的作用,可以先分别计算每个载荷单独作用时梁的挠度和转角,然后将这些结果进行叠加,得到最终的挠度和转角。

然而,实际工程中的梁往往比较复杂,可能是超静定梁,或者具有变截面、非均布载荷等情况。

对于这些复杂的梁,我们可能需要借助更高级的力学方法,如力法、位移法或者有限元法来进行分析。

在进行梁的挠度和刚度计算时,还需要考虑一些实际因素。

例如,材料的非线性特性在某些情况下不能忽略。

当梁所承受的载荷较大时,材料可能会进入塑性阶段,此时弹性模量不再是一个常数,需要采用相应的塑性力学理论进行分析。

另外,温度变化也可能会对梁的挠度产生影响。

(方案)梁的挠度和转角.ppt

(方案)梁的挠度和转角.ppt

答案 D
演示课件
2、挠曲线的特征:光滑连续曲线(2)
FA=0
A
C
D
FB=0
MCD=const
B 答案 D
演示课件
2、挠曲线的特征:光滑连续曲线(3)
FA=0
FB=P
A
MBD=const
M
B
M
B
pl
p
pl
C
B
D
p
pl
p
答案C
pl
p
p
pl
pl
演示课件
3、挠曲线的近似微分方程
(1)曲率与弯矩、抗弯刚度的关系
支座反力,分段列弯矩方程; 分段的原则:
①凡载荷有突变处(包括中间支座),应作为分段点;
②凡截面有变化处,或材料有变化处,应作为分段点;
③中间铰视为两个梁段间的联系,此种联系体现为两部分之间 的相互作用力,故应作为分段点;
演示课件
第八章 弯曲变形 /三、计算弯曲变形的两种方法
(2)分段列出梁的挠曲线近似微分方程,并对其积分 两次
y
p
c
c
w
x
x
1、度量弯曲变形的两个量:
(1)挠度:梁轴线上的点在垂直于梁轴线方向的所发生的线 位移ω称为挠度。(工程上的一般忽略水平线位移)
(2)转角:梁变形后的横截面相对于原来横截面绕中性轴所 转过的角位移θ称为转角。ห้องสมุดไป่ตู้演示课件
第八章 弯曲变形 /一、弯曲变形的量度及符号规定
梁的挠度和转角 2、符号规定:
演示课件
(3)选用不同坐标系下的挠曲线近似微分方程
2 2
d2 dx2

M(x) EI
d2 dx2

第5章(梁的挠度和转角及挠曲线近似微分方程)

第5章(梁的挠度和转角及挠曲线近似微分方程)
6
材 料 力 学 Ⅰ 电 子 教 案
三、梁的挠曲线近似微分方程
在§4-4中曾得到等直梁在线弹性范围内纯弯曲情况 下中性层的曲率为
M EI 1
这也就是位于中性层内的挠曲线的曲率的表达式。
7
材 料 力 学 Ⅰ 电 子 教 案
在横力弯曲下,梁的横截面上除弯矩M=M(x)外,还 有剪力FS=FS(x),剪力产生的剪切变形对梁的变形也会产
第五章 梁弯曲时的位移
知识点:梁的挠度和转角及挠曲线近似微分方程
一、梁的位移——挠度和转角 二、梁的挠曲线的概念
三、梁的挠曲线近似微分方程
1
材 料 力 学 Ⅰ 电 子 教 案
一、梁的位移——挠度和转角
直梁在对称平面xy内弯曲时其原来的轴线AB将弯曲成 平面曲线AC1B。梁的横截面形心(即轴线AB上的点)在垂直
生影响。但工程上常用的梁其跨长l 往往大于横截面高度h
的10倍,此时剪力FS对梁的变形的影响可略去不计,而有
1 M x x x EI
注意:对于有些l/h>10的梁,例如工字形截面等直梁,如同
在核电站中会遇到的那样,梁的翼缘由不锈钢制作,而主 要承受剪力的腹板则由价廉但切变模量较小的复合材料制 作,此时剪切变形对梁的变形的影响是不可忽略的。
材料力学电子教案再注意到在图示坐标系中负弯矩对应于正值w正弯矩对10应于负值的w故从上列两式应有由于梁的挠曲线为一平坦的曲线上式中的w?2与1相比可略去于是得挠曲线近似微分方程????eixmww??????2321??eixmw??????xmwei????一般记为
材 料 力 学 Ⅰ 电 子 教 案
再注意到在图示坐标系中,负弯矩对应于正值w" ,正弯矩对
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.内力分析:分区段列出梁的弯矩方程:
M
M
1 2
1 2
F
Fx1 (3l 2
x2
)
x1 (0, l )
x
2
( l ,3 2
l
)
3.变形分析:
AB段:
由于
y1ME1(xI1)
F1x 2EI
积分后得:
1(x1)y2 E FIx1d1xC14 E FxI12C1 y1(x1)4 E FIx12d1xC1x1D 11E 2 FxI13C1x1D 1
M (x) 0 P(xa)
(0xa) (axL)
a
P
L
x
写出微分方程并积分
f
EfI 0 P(ax)
(0xa) (axL)
EIf
1 2
P(ax)2
C1
D1
EIf16P(ax)3 C1xC2 D1xD2
应用位移边界条件求积分常数
EI(f0)1 6P3 aC20
EI(0)1 2P2aC10
a
P
L
x
1.挠度:横截面形心沿垂直于轴线方向的线位移。用v表示。
与 f 同向为正,反之为负。
C
P x 2.转角:横截面绕其中性轴转
v
动的角度。用 表示,顺时
f
C1
针转动为正,反之为负。
二、挠曲线:变形后,轴线变为光滑曲线,该曲线称为挠曲线。
其方程为:v =f (x)
小变形
三、转角与挠曲线的关系: tg df f
BC段:由于 y2 M E 2(x2I)E F(I2 3lx2) ,积分后得:
2(x2)y E FI(2 3lx2)d2 xC 2 E F (2 3 Il2 xx 2 2 2)C 2 y2(x2) E FI(2 3l2 x1 2x2 2)d2 xC 2x2D 2 E F (4 3 Il2 2 x1 6x2 3)C 2x2D 2
光滑条件: 讨论:
C
C
fD 0 D 0
或写 fC 左成 fC 右
或 写 C 左 成C 右
①适用于小变形情况下、线弹性材料、细长构件的平面弯曲。
②可应用于求解承受各种载荷的等截面或变截面梁的位移。
③积分常数由挠曲线变形的几何相容条件(边界条件、连续条
件)确定。
④优点:使用范围广,直接求出较精确;缺点:计算较繁。
[例1] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解:
P L
建立坐标系并写出弯矩方程
x
x
M (x)P(xL)
f
写出微分方程并积分
应用位移边界条件求积分常数
E f I M (x ) P (L x ) EfI1 2P(Lx)2C1
EI(f0)1 6P3LC20
E(I0)Ef(I0)1 2P2L C 10
二、结构形式叠加(逐段刚化法)
P
q [例4] 按叠加原理求A点转角
A
C
B 和C点挠度。
a
a
P
y1E2FEFI(I43x13lx221F216El2xI23x)156FEl2Ix2
Fl3
4EI
12((xx12))4EEFFIIx(1232 lx12F2El212Ix22)3FEl2I
由此可知:
A
1(x1
0)
Fl2 (逆时针方); 向 12EI
yC
y2(x2
3l) 2
Fl3 8EI
(向下)
§7-4 叠加法计算梁的位移
一、载荷叠加 多个载荷同时作用于结构而引起的变形等于每个载荷单独
作用于结构而引起的变形的代数和。
( P 1 、 P 2 、 P n ) 1 ( P 1 ) 2 ( P 2 ) n ( P n )
f ( P 1 、 P 2 、 P n ) f 1 ( P 1 ) f 2 ( P 2 ) f n ( P n )
f
[例3] 试用积分法求图示梁的挠曲线方程和转角方程,并
求C截面挠度和A截面转角。设梁的抗弯刚度EI为常数。
解:1.外力分析:求支座约束反力。 研究梁ABC,受力分析如图,列平衡方程:
m F yA R R A B R l B FF 1 .5 0 l0 R R B A 1 .0 5.F 5F
f
(a)(a) C1 D1
f(a)f(a)
C 1aC 2D 1aD 2
C 1D 11 2P2a ;C 2D 21 6P3a
写出弹性曲线方程并画出曲线
f(x)66P P E EII3(aa2xx)3a33a2xa3
(0xa) (axL)
最大挠度及最大转角
max(a)
Pa2 2EI
a
P
L
x
fmax f(L)6PE2aI3La
dx
(1
§7-2 梁的挠曲线近似微分方程
一、挠曲线近似微分方程
1 M z (x)
(1)
x
EI z
M>0
f(x)0 f
1(1ff(x2))32小变形 f(x)
M<0
f
f(x)0
x
f (x) Mz(x) EIz
f(x)M (x) … … ( 2 )
E I
式(2)就是挠曲线近似微分方程。
对于等截面直梁,挠曲线近似微分方程可写成如下形式:
边界条件:
当 x 1 0 时 y 1 , 0 ; x 2 l时 y 2 , 0
连续光滑条件:
当 x x l时 y y , ,
12
1 21 2
代入以上积分公式中,解得:
C 1 1 F E 2 2 , lI C 25 6 F E 2, lID 1 0 , D 2 4 F E 3 lI
故挠曲线方程和转角方程分别为:
EIf1 6P(Lx)3C1xC2
C11 2P2L;C21 6P3L
P L
x
f
写出弹性曲线方程并画出曲线
f(x)P(Lx)33L 2xL 3 6EI
最大挠度及最大转角
max(L)
பைடு நூலகம்
PL2 2EI
fmax
f
(L)
PL3 3EI
[例2] 求下列各等截面直梁的弹性曲线、最大挠度及最大转角。
解:建立坐标系并写出弯矩方程
EfI (x) M (x)
§7-3 积分法计算梁的位移
1.微分方程的积分
EfI(x)M (x)
Ef(Ix)( M (x)d )x C 1
E ( x ) I f( ( M ( x )d x ) ) d x C 1 x C 2
2.位移边界条件
P
A
C
B
D
P
支点位移条件:
fA 0 fB 0
连续条件: fC fC
材料力学-梁的挠度
目录
§7–1 概述 §7–2 梁的挠曲线近似微分方程 §7–3 积分法计算梁的位移 §7–4 叠加法计算梁的位移 §7–5 梁的刚度校核
§7-1 概 述
研究范围:等直梁在对称弯曲时位移的计算。 研究目的:①对梁作刚度校核;
②解超静定梁(为变形几何条件提供补充方程)。
一、度量梁变形的两个基本位移量
相关文档
最新文档