七年级下数学第1章相交线与平行线浙教版新教材易错题带答案
(易错题精选)初中数学相交线与平行线经典测试题含答案解析

(易错题精选)初中数学相交线与平行线经典测试题含答案解析一、选择题1.给出下列说法,其中正确的是()A.两条直线被第三条直线所截,同位角相等;B.平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;C.相等的两个角是对顶角;D.从直线外一点到这条直线的垂线段,叫做这点到直线的距离.【答案】B【解析】【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】A选项:同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;B选项:强调了在平面内,正确;C选项:不符合对顶角的定义,错误;D选项:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.2.如图,直线AC// BD, AO、BO分别是/ BAG / ABD的平分线,那么下列结论错误的是()A. / BAO 与/ CAO相等B. / BAC与/ ABD 互补C. /BAO与/ABO互余D. /ABO与/DBO不等【答案】D【解析】【分析】【详解】解:已知AC//BD,根据平行线的的性质可得/ BAC+/ ABD=180 ,选项B正确;因AO、BO分别是/ BAC /ABD的平分线,根据角平分线的定义可得/ BAO=Z CAO, / ABO=Z DBO,选项A 正确,选项D 不正确;由/ BAC+Z ABD=180°, / BAO=/ CAO, / ABO=/DBO 即可得/ BAO+Z ABQ=90°,选项 A 正确,故选 D.3 .如图,直线all b,直线c 与直线a, b 相交,若/ 1=56 °,则/ 2等于()试题分析:根据对顶角相等可得/ 3=7 1=56。
(易错题精选)初中数学相交线与平行线易错题汇编含答案(1)

(易错题精选)初中数学相交线与平行线易错题汇编含答案(1)一、选择题1.如图所示,某同学的家在P处,他想尽快赶到附近公路边搭公交车,他选择P→C路线,用几何知识解释其道理正确的是()A.两点确定一条直线B.垂直线段最短C.两点之间线段最短D.三角形两边之和大于第三边【答案】B【解析】【分析】根据垂线段的定义判断即可.【详解】解:Q直线外一点与直线上各点连接的所有线段中,垂线段最短,选:B.【点睛】直线外任意一点到这条直线的垂线段的长度,叫做点到这条直线的距离.直线外一点与直线上各点连接的所有线段中,垂线段最短.简称“垂线段最短”.2.下列说法中,正确的是()A.过一点有且只有一条直线与已知直线垂直B.过直线外一点有且只有一条直线与已知直线平行C.垂于同一条直线的两条直线平行D.如果两个角的两边分别平行,那么这两个角一定相等【答案】B【解析】【分析】根据平行线的性质和判定,平行线公理及推论逐个判断即可.【详解】A、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项不符合题意;B、过直线外一点有且只有一条直线与已知直线平行,故本选项符合题意;C、在同一平面内,垂直于同一条直线的两直线平行,故本选项不符合题意;D、如果两个角的两边分别平行,那么这两个角相等或互补,故本选项不符合题意;故选:B.【点睛】此题考查平行线的性质和判定,平行线公理及推论,能熟记知识点的内容是解题的关键.3.如图1,将三角板的直角顶点放在直角尺的一边上,∠1=30°,∠2=50°,则∠3的度数为A.80°B.50°C.30°D.20°【答案】D【解析】【分析】【详解】试题分析:根据平行线的性质,得∠4=∠2=50°,再根据三角形的外角的性质∠3=∠4-∠1=50°-30°=20°.故答案选D.考点:平行线的性质;三角形的外角的性质.4.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED=50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.6.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD ∥OB ,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt △DOF 中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF 中,∠DEB=180°-2∠2=70°.故选B .7.如图,四边形ABCD 中,//,,AB CD AD CD E F =、分别是AB BC 、的中点,若140,∠=︒则D ∠=( )A .40︒B .100︒C .80︒D .110︒【答案】B【解析】【分析】 利用E 、F 分别是线段BC 、BA 的中点得到EF 是△BAC 的中位线,得出∠CAB 的大小,再利用CD ∥AB 得到∠DCA 的大小,最后在等腰△DCA 中推导得到∠D.【详解】∵点E 、F 分别是线段CB 、AB 的中点,∴EF 是△BAC 的中位线∴EF ∥AC∵∠1=40°,∴∠CAB=40°∵CD ∥BA∴∠DCA=∠CAB=40°∵CD=DA∴∠DAC=∠DCA=40°∴在△DCA 中,∠D=100°故选:B【点睛】本题考查中位线的性质和平行线的性质,解题关键是推导得出EF 是△ABC 的中位线.8.如图,在下列四组条件中,不能判断AB ∥CD 的是( )A .∠1=∠2B .∠3=∠4C .∠ABD =∠BDCD .∠ABC+∠BCD =180°【答案】A【解析】【分析】 根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB 、CD 是否平行即可.【详解】A 、∵∠1=∠2,∴AD ∥BC (内错角相等,两直线平行),故A 不能判断;B 、∵∠3=∠4,∴AB ∥CD (内错角相等,两直线平行),故B 能判断;C 、∵∠ABD =∠BDC ,∴AB ∥CD (内错角相等,两直线平行),故C 能判断; D 、∵∠ABC +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行),故D 能判断, 故选A .【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.9.如图,在ABC ∆中,90,2,4C AC BC ∠=︒==,将ABC ∆绕点A 逆时针旋转90︒,使点C 落在点E 处,点B 落在点D 处,则B E 、两点间的距离为( )A 10B .2C .3D .25【答案】B【解析】【分析】 延长BE 和CA 交于点F ,根据旋转的性质可知∠CAE=90︒,证明∠BAE=∠ABC ,即可证得AE ∥BC ,得出2142EF AF AE FB FC BC ====,即可求出BE .【详解】延长BE 和CA 交于点F∵ABC ∆绕点A 逆时针旋转90︒得到△AED∴∠CAE=90︒∴∠CAB+∠BAE=90︒又∵∠CAB+∠ABC=90︒∴∠BAE=∠ABC∴AE ∥BC ∴2142EF AF AE FB FC BC ==== ∴AF=AC=2,FC=4 ∴BF=42∴BE=EF=12BF=22故选:B【点睛】本题考查了旋转的性质,平行线的判定和性质.10.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )A .35°B .37.5°C .45°D .40° 【答案】B【解析】【分析】根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.【详解】解:∵//AD BC ,30C ∠=︒∴18030015ADC ∠=︒-︒=︒∵:1:3ADB BDC ∠∠= ∴115037.513ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒故选:B .【点睛】本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.11.在下图中,∠1,∠2是对顶角的图形是( )A .B .C .D .【答案】B【解析】略12.下列命题错误的是( )A .平行四边形的对角线互相平分B .两直线平行,内错角相等C .等腰三角形的两个底角相等D .若两实数的平方相等,则这两个实数相等【答案】D【解析】【分析】根据平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,分别进行判断,即可得到答案.【详解】解:A 、平行四边形的对角线互相平分,正确;B 、两直线平行,内错角相等,正确;C 、等腰三角形的两个底角相等,正确;D 、若两实数的平方相等,则这两个实数相等或互为相反数,故D 错误;故选:D.【点睛】本题考查了判断命题的真假,以及平行四边形的性质、平行线的性质、等腰三角形的性质、乘方的定义,解题的关键是熟练掌握所学的性质进行解题.13.如图,11,,33AB EF ABP ABC EFP EFC ∠=∠∠=∠∥,已知60FCD ∠=︒,则P ∠的度数为( )A .60︒B .80︒C .90︒D .100︒【答案】B【解析】【分析】 延长BC 、EF 交于点G ,根据平行线的性质得180ABG BGE +=︒∠∠,再根据三角形外角的性质和平角的性质得60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠,最后根据四边形内角和定理求解即可.【详解】延长BC 、EF 交于点G∵//AB EF∴180ABG BGE +=︒∠∠∵60FCD ∠=︒∴60180120EFC FCD BGE BGE BCF FCD =+=︒+=︒-=︒∠∠∠∠,∠∠ ∵11,33ABP ABC EFP EFC ∠=∠∠=∠ ∴360P PBC BCF PFC =︒---∠∠∠∠2236012033ABG EFC =︒---︒∠∠ ()223606012033ABG BGE =︒--︒+-︒∠∠ 223604012033ABG BGE =︒--︒--︒∠∠ ()22003ABG BGE =︒-+∠∠ 22001803=︒-⨯︒ 80=︒故答案为:B .【点睛】本题考查了平行线的角度问题,掌握平行线的性质、三角形外角的性质、平角的性质、四边形内角和定理是解题的关键.14.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角15.如图,在△ABC中,AB=AC,∠A=36°,D、E两点分别在边AC、BC上,BD平分∠ABC,DE∥AB.图中的等腰三角形共有()A .3个B .4个C .5个D .6个【答案】C【解析】【分析】 已知条件,根据三角形内角和等于180,角的平分线的性质求得各个角的度数,然后利用等腰三角形的判定进行判断即可.【详解】解:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∵BD 平分∠ABC ,∴∠ABD =∠DBC =36°,∴∠BDC =180°﹣36°﹣72°=72°,∵DE ∥AB ,∴∠EDB =∠ABD =36°,∴∠EDC =72°﹣36°=36°,∴∠DEC =180°﹣72°﹣36°=72°,∴∠A =∠ABD ,∠DBE =∠BDE ,∠DEC =∠C ,∠BDC =∠C ,∠ABC =∠C ,∴△ABC 、△ABD 、△DEB 、△BDC 、△DEC 都是等腰三角形,共5个,故选C .【点睛】本题考查了等腰三角形判定和性质、角平分线的性质、平行线的性质,由已知条件利用相关的性质求得各个角相等是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH ∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )A .40︒B .50︒C .70︒D .90︒【答案】A【解析】【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.【详解】解:∵50AOC ∠=︒,∴50BOD ∠=︒(对顶角相等),又∵OE AB ⊥,∴90EOB ∠=︒,∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关键.18.如图,直线,a b 被直线,c d 所截,1110,270,360︒︒︒∠=∠=∠=,则4∠的大小是( )A .60︒B .70︒C .110︒D .120︒【答案】A【解析】【分析】 先根据对顶角相等得到15∠=∠,再根据平行线的判定得到a ∥b ,再根据平行线的性质得到34∠=∠即可得到答案.【详解】解:5∠标记为如下图所示,∵1,5∠∠是对顶角,∴15∠=∠(对顶角相等),又∵1110,270︒︒∠=∠=,∴1251107800︒︒+∠=∠=+︒,∴a ∥b (同旁内角互补,两直线平行),∴34∠=∠(两直线平行,内错角相等),∴4360∠=∠=︒,故A 为答案.【点睛】本题主要考查了对顶角的性质(对顶角相等)、直线平行的判定(同旁内角互补,两直线平行)、直线平行的性质(两直线平行,内错角相等),能灵活运用所学知识是解题的关键..19.如图,AB ∥CD ,DE ⊥CE ,∠1=34°,则∠DCE 的度数为( )A .34°B .56°C .66°D .54°【答案】B【解析】试题分析:∵AB ∥CD ,∴∠D=∠1=34°,∵DE ⊥CE ,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故选B .考点:平行线的性质.20.如图,□ABCD 的对角线AC ,BD 相交于点O(AD>AB).下列说法:①AB=CD;②AOB AOD S S ∆∆=;③∠ABD=∠CBD;④对边AB,CD 之间的距离相等且等于BC 的长。
浙教版七年级下册数学第一章 平行线含答案

浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、在学习“用直尺和三角板画平行线”的时候,课本给出如图的画法,这种画平行线方法的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等2、如图,已知AD∥BC,∠B=32°,DB平分∠ADE,则∠DEC=()A.64°B.66°C.74°D.86°3、如图,已知AB∥CD,直线MN分别交AB、CD于点M、N,NG平分∠MND,若∠1=70°,则∠2的度数为()A.10°B.15°C.20°D.35°4、已知∠1和∠2是同旁内角,∠1=40°,∠2等于()A.160°B.140°C.40°D.无法确定5、如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1B.2C.3D.46、下列四个命题中,真命题有()两条直线被第三条直线所截,内错角相等;如果和是对顶角,那么;三角形的一个外角大于任何一个内角;若,则.A.1个B.2个C.3个D.4个7、如图,是的直径,,是上的两点,且平分,分别与,相交于点,,则下列结论不一定成立的是()A. B. C. D.8、如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A.30°B.20°C.10°D.40°9、下列四个命题中,其正确命题的个数是()①若ac>bc,则a>b;②平分弦的直径垂直于弦;③一组对角相等一组对边平行的四边形是平行四边形;④反比例函数y=.当k<0时,y随x的增大而增大A.1B.2C.3D.410、下列说法错误的是()A.经过平移,对应点所连的线段平行且相等B.经过平移,对应线段平行C.平移中,图形上每个点移动的距离可以不同D.平移不改变图形的形状和大小11、如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为()A.50°B.55°C.60°D.65°12、如图,在△ABC中,点D是线段AB的中点,DC⊥BC,作∠EAB=∠B,DE∥BC,连接CE.若,设△BCD的面积为S,则用S表示△ACE的面积正确的是()A. B.3S C.4S D.13、如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4B.∠1+∠4=180°C.∠5=∠4D.∠1=∠314、如图,已知AB∥CD,∠B=60°,则∠1的度数是()A.60°B.100°C.110°D.120°15、如图,下列不能判定DF∥AC的条件是()A.∠A=∠BDFB.∠2=∠4C.∠1=∠3D.∠A+∠ADF=180°二、填空题(共10题,共计30分)16、完成下面的证明:已知:如图,AB∥DE,求证:∠D+∠BCD-∠B=180°,证明:过点C作CF∥AB.∵AB∥CF(已知),∴∠B=________ ( 依据:________).∵AB∥DE,CF∥AB( 已知 ) ,∴CF∥DE (依据:________)∴∠2+________=180°( 依据:________)∵∠2=∠BCD -∠1,∴∠D+∠BCD-∠B=180°.17、如图,a∥b,∠2=100°,则∠1的度数为________.18、如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y= (x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=________.19、如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=50°,则∠3=________°.20、如图,直线a、b被第三条直线c所截,如果a∥b,∠1=50°,那么∠2=________。
浙教版数学七年级下册易错题整理(含答案)

第一章平行线1、如图所示,若BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°,求证AB∥CD解:∵BE平分∠ABD,DE平分∠BDC,∴∠ABD=2∠1,∠BDC=2∠2,∴∠ABD+∠BDC=2(∠1+∠2)=2×90°=180°,∴AB∥CD(同旁内角互补,两直线平行)2、如图,AB平行CD,EG,FG分别平分∠BEF,∠DFE,求∠GEF+∠EFG的度数解:∵AB∥CD∴∠BEF+∠DFE=180°(两直线平行,同旁内角互补)∵EG,FG分别平分∠BEF,∠DFE,∴∠GEF=1/2∠BEF∠EFG=1/2∠DFE∴∠GEF+∠EFG=1/2(∠BEF+∠DFE)=90°3、如图,三角形ABC中,BE平分∠ABC,∠1=∠2,∠C=50°,求∠AED 的度数.解:∵BE平分∠ABC ∴∠1=∠CBE.∵∠1=∠2,∴∠2=∠CBE.∴DE∥BC(内错角相等,两直线平行),∠AED=∠C.∵∠C=50°,∴∠AED=50°.4、如图,已知ADB 是一条直线,∠ADE=∠ABC ,且DG 、BF 分别是∠ADE 和∠ABC 的角平分线,DG 与BF 平行吗?解: 平行理由是:∵DG、BF 分别是∠ADE 和∠ABC 的平分线,∴ABC ABF ADE ADG ∠=∠∠=∠2121 ∵∠ADE=∠ABC,∴∠ADG=∠ABF,∴DG∥BF (同位角相等两直线平行)5、有一条长方形纸带,按如图所示沿AB 折叠,若∠=30°,求纸带重叠部分中∠CAB 的度数.解:∵EC ∥FA ,∠1=30°,∴∠2=30°(同位角).∴∠3+∠4=180°-30°=150°∵∠3与∠4是重叠部分的角∴∠3=∠4=150°/2=75°.∠CAB=∠3=75°∠CBA=180°-∠3-∠1=180°-75°-30°=75°6、AB‖CD,分别探索下面四个图形中,∠APC 与∠PAB 、∠PCD 之间有什么关系,并加以证明过点P分别作PE∥AB 然后得到结论:第一幅图∠APC+∠PAB+∠PCD=360°第二幅图:∠APC=∠PAB+∠PCD 第三幅图:∠APC+∠PAB=∠PCD7、如图所示,已知AB∥DE,∠ABC=80°,∠CDE=140°,求∠BCD的度数解:答案不唯一反向延长DE交BC于M,∵AB∥DE,∴∠BMD=∠ABC=80°,∴∠CMD=180°-∠BMD=100°;又∵∠CDE=∠CMD+∠C,∴∠BCD=∠CDE-∠CMD=140°-100°=40°.8、如图把一张长方形纸条ABCD沿EF折叠,若∠1=65°,则∠AEG=______.解:∵ABCD是长方形∴AD∥BC,∴∠DEF=∠1=65°,由折叠的性质得:∠GEF=∠DEF=65°,根据平角的定义,得:∠AEG=180°-65°×2=50°.故答案为:50°.9、如图,已知AD⊥BC于点D,EF⊥BC于点F,且AD平分∠BAC,请问(1)AD与EF平行吗?(2)∠3与∠E相等吗?请说明理由解(1)平行∵AD⊥BC,EF⊥BC∴AD∥EF(在同一平面内,垂直于同一条直线的两条直线互相平行) (2)相等由(1)得∵AD∥EF ∴∠3=∠2(内错角相等)∠1=∠E∵AD平分∠BAC ∴∠1=∠2 ∴∠3=∠E10、将两张长方形纸片按如图所示摆放,使其中一张纸片的一个顶点恰好落在另一张纸片的一条边上.求证:∠1+∠2=90°.证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.11、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.(1)如图1,AB ∥ EF,BC ∥ DE.∠1与∠2的关系是:______;(2)如图2,AB ∥ EF,BC ∥ DE.∠1与∠2的关系是:______;(3)经过上述证明,我们可以得到一个真命题:如果______,那么______.解答:如图(1)AB ∥EF,BC ∥DE.∠1与∠2的关系是:∠1=∠2.证明:如图(1)∵AB ∥EF,BC ∥DE,∴∠1=∠3,∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换);(2)如图(2),AB ∥EF,BC ∥DE.∠1与∠2的关系是:∠1+∠2=180°,证明:∵AB ∥EF,BC ∥DE,∴∠2=∠3(两直线平行,同位角相等),∠1+∠3=180°(两直线平行,同旁内角互补),∴∠1+∠2=180°(等量代换);(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.12、已知∠A的两条边和∠B的两条边分别平行,且∠A比∠B的三倍少20°,求∠B的度数。
(易错题)初中数学七年级数学下册第一单元《相交线与平行线》测试题(有答案解析)(1)

一、选择题1.下列说法中,正确的是( )A .在同一平面内,过一点有无数条直线与已知直线垂直B .两直线相交,对顶角互补C .垂线段最短D .直线外一点到这条直线的垂线段叫做点到直线的距离2.如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行3.下列语句不是命题的是( ).A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等 4.下列语句是命题的是( )A .平分一条线段B .直角都相等C .在直线AB 上取一点D .你喜欢数学吗? 5.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( )A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40° 6.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 7.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线8.下面命题中是真命题的有( )①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A .1个B .2个C .3个D .4个9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个10.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125° 11.能说明命题“若a >b ,则3a >2b “为假命题的反例为( ) A .a =3,b =2 B .a =﹣2,b =﹣3 C .a =2,b =3 D .a =﹣3,b =﹣2 12.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°二、填空题13.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.14.阅读下面材料:在数学课上,老师提出如下问题:如图,需要在A 、B 两地和公路l 之间修地下管道.请你设计一种最节省材料的修路方案:小丽设计的方案如下:如图,(1)连接AB ;(2)过点A 画线段AC ⊥直线l 于点C ,所以线段BA 和线段AC 即为所求.老师说:“小丽的画法正确”请回答:小丽的画图依据是___.15.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.16.如图,直线//m n ,点A B 、在直线n 上,点C F 、在直线m 上,连接,CA CB CD 、平分ACB ∠交AB 于点D ,平面内有点E ,连接,2180EC ECB BCF ︒∠+∠=,过点F 作//FG CE 交CD 于点,9,4G FGC ADC CAB ABC ︒∠-∠=∠=∠,则ACB =∠____________.17.用反证法证明“三角形中至少有一个内角不大于60°,应先假设这个三角形中____________________.18.地铁某换乘站设有编号为A ,B ,C ,D ,E 的五个安全出口.若同时开放其中的两个安全出口, 疏散1000名乘客所需的时间如下:安全出口编号A ,B B ,C C ,D D ,E A ,E 疏散乘客时间()s120 220 160 140 200 19.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l 格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.22.已知如图,直线AB 、CD 相交于点O ,∠COE=90°.(1)若∠AOC=36°,求∠BOE 的度数;(2)若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3)在(2)的条件下,过点O 作OF ⊥AB ,请直接写出∠EOF 的度数.23.已知:直线GH 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,并且//EM FN .(1)如图1,求证://AB CD ;(2)如图2,2AEF CFN ∠=∠,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135︒.24.直线AB 、CD 相交于点O ,OE 平分AOD ∠,90FOC ,50BOF ∠=︒,求AOC ∠与AOE ∠的度数.25.如图,已知O 为直线AD 上一点,OB 是AOC ∠内部一条射线且满足AOB ∠与AOC ∠互补,OM ,ON 分别为AOC ∠,AOB ∠的平分线.(1)COD ∠与AOB ∠相等吗?请说明理由;(2)若30AOB ∠=︒,试求MON ∠的度数;(3)若MON α∠=,请直接写出AOC ∠的度数.(用含α的式子表示)26.如图,已知∠1=∠2,∠A =29°,求∠C 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】依据垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,即可得出结论.【详解】解:A .在同一平面内,过一点有且仅有一条直线与已知直线垂直,故本选项错误; B .两直线相交,对顶角相等,故本选项错误;C .垂线段最短,故本选项正确;D .直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故本选项错误; 故选:C .【点睛】本题主要考查了垂线的性质、对顶角的性质、垂线段的性质以及点到直线的距离的概念,熟练掌握概念是解题的关键.2.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C .【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.3.B解析:B【分析】根据“判断一件事情的语句叫做命题”进行判断即可得到答案.【详解】解:A、两直线平行,同位角相等,是命题,不符合题意;B、作直线AB垂直于直线CD是描述了一种作图的过程,故不是命题,符合题意;C、正确,是判断语句,不符合题意;D、正确,是判断语句,不符合题意.故选:B.【点睛】主要考查了命题的概念.判断一件事情的语句叫做命题.4.B解析:B【分析】根据命题的定义分别进行判断.【详解】A.平分一条线段,为描述性语言,不是命题;B.直角都相等,是命题;C.在直线AB上取一点,为描述性语言,不是命题;D.你喜欢数学吗?是疑问句,不是命题.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.5.C解析:C【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【详解】A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.【点睛】此题考查了命题与定理的知识,理解能说明它是假命题的反例的含义是解决本题的关键.6.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.7.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 8.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C .【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.9.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质11.B解析:B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a=﹣2,b=﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a>b时,3a=2b,∴命题“若a>b,则3a>2b”为假命题,故选:B.【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C .【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.二、填空题13.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.14.两点之间线段最短;直线外一点到这条直线上所有点连结的线段中垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解【详解】由垂线段最短可知点A 到直线l 的最短距离为AC 由两点之间线段最短可 解析:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短)【分析】根据线段的概念和垂线的性质即可求解.【详解】由垂线段最短可知,点A 到直线l 的最短距离为AC ,由两点之间线段最短可知,点B 到点A 的最短距离为AB .故答案为:两点之间线段最短;直线外一点到这条直线上所有点连结的线段中,垂线段最短(或垂线段最短);【点睛】本题考察线段的概念和垂线的性质,熟练掌握其概念和性质是解题的关键.15.30°或45°【分析】分2种情况进行讨论:当CB ∥AD 时当EB ∥AC 时根据平行线的性质和角的和差关系分别求得∠ACE 角度即可【详解】解:当时;当时故答案为:30°或45°【点睛】本题主要考查了平行线解析:30°或45°【分析】分2种情况进行讨论:当CB ∥AD 时,当EB ∥AC 时,根据平行线的性质和角的和差关系分别求得∠ACE 角度即可.【详解】解:当//CB AD 时,18060120,1209030ACB ACE ︒︒︒︒︒︒∠=-=∠=-=;当//EB AC 时,45ACE E ︒∠=∠=.故答案为:30°或45°.【点睛】本题主要考查了平行线的性质,解题时注意分类讨论思想的运用,分类时不能重复,也不能遗漏.16.【分析】根据条件找到等量关系计算即可;【详解】设∵∴∴∵∴∵ABD 在同一直线上∴∴在△ABC 中∴联立方程组:解得:度度度故答案是:【点睛】本题主要考查了平行线的综合应用结合三元一次方程组求解是解题的 解析:2707【分析】根据条件2180︒∠+∠=ECB BCF ,9︒∠-∠=FGC ADC ,4∠=∠CAB ABC 找到等量关系计算即可;【详解】设2ABC x ∠=∠,1ACE ∠=∠,∵//m n ,∴BCF ABC ∠=∠,12ECB ECA ACB x ∠=∠+∠=∠+∠,∴()212180x ABC ∠+∠+∠=︒,∵//FG CE ,∴1FGC ECD x ∠=∠=∠+∠,∵A ,B ,D 在同一直线上,∴ADC ABC DCB ABC x ∠=∠+∠=∠+∠,∴()1119x ABC x x ABC x ABC ∠+∠-∠+∠=∠+∠-∠-∠=∠-∠=︒, 在△ABC 中,1802CAB x ABC ∠=︒-∠-∠,∴18024x ABC ABC ︒-∠-∠=∠,联立方程组:()2121801918024x ABC ABC x ABC ABC ⎧∠+∠+∠=︒⎪∠-∠=︒⎨⎪︒-∠-∠=∠⎩, 解得:1987ABC ∠=度,26117∠=度,2707x ∠=度. 故答案是:2707. 【点睛】本题主要考查了平行线的综合应用,结合三元一次方程组求解是解题的关键. 17.三角形的三个内角都大于60°【分析】根据反证法的步骤先假设结论不成立即否定命题即可【详解】根据反证法的步骤第一步应假设结论的反面成立即三角形的三个内角都大于60°故答案为:三角形的三个内角都大于60解析:三角形的三个内角都大于60°【分析】根据反证法的步骤,先假设结论不成立,即否定命题即可.【详解】根据反证法的步骤,第一步应假设结论的反面成立,即三角形的三个内角都大于60°.故答案为:三角形的三个内角都大于60°.【点睛】本题考查了反证法的知识,掌握反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立是解题的关键.18.D【分析】利用同时开放其中的两个安全出口疏散1000名乘客所需的时间分析对比能求出结果【详解】同时开放AE两个安全出口疏散1000名乘客所需的时间为200s同时开放DE两个安全出口疏散1000名乘客解析:D【分析】利用同时开放其中的两个安全出口,疏散1000名乘客所需的时间分析对比,能求出结果.【详解】同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放D、E两个安全出口,疏散1000名乘客所需的时间为140s,得到D疏散乘客比A快;同时开放A、E两个安全出口,疏散1000名乘客所需的时间为200s,同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,得到A疏散乘客比E快;同时开放A、B两个安全出口,疏散1000名乘客所需的时间为120s,同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,得到A疏散乘客比C快;同时开放B、C两个安全出口,疏散1000名乘客所需的时间为220s,同时开放C、D两个安全出口,疏散1000名乘客所需的时间为160s,得到D疏散乘客比B快.综上,疏散乘客最快的一个安全出口的编号是D.故答案为:D.【点睛】本题考查推理能力,进行简单的合情推理为解题关键.19.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF=30°解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.20.8【分析】理解已知条件是解答此题的关键跳格总共有6格第一次只能跳1格后面的可以跳2格或者1格当全部都是1格或者部分1格部分2格整理出所有的情况即可求出答案【详解】当全部都只跳1格时1种方法;当有1次解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)DE∥BC;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC,故AD∥EF,由平行线的性质得∠DEF=∠ADE,再由∠DEF=∠B,可知∠B=∠ADE,故可得出结论.(2)依据DE平分∠ADC,∠BDC=3∠B,即可得到∠ADC的度数,再根据平行线的性质,即可得出∠EFC的度数.【详解】解:(1)DE∥BC.理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC,∴AD∥EF,∴∠DEF=∠ADE,又∵∠DEF=∠B,∴∠B=∠ADE,∴DE∥BC.(2)∵DE平分∠ADC,∴∠ADE=∠CDE,又∵DE∥BC,∴∠ADE=∠B,∵∠BDC=3∠B,∴∠BDC=3∠ADE=3∠CDE,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD∥EF,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键.22.(1)∠BOE=54°;(2)∠AOE=120°;(3)∠EOF=30°或150°【分析】(1)根据平角的定义求解即可;(2)根据平角的定义可求∠BOD,根据对顶角的定义可求∠AOC,根据角的和差关系可求∠AOE的度数;(3)先过点O作OF⊥AB,再分两种情况根据角的和差关系可求∠EOF的度数.【详解】解:(1)∵∠AOC=36°,∠COE=90°,∴∠BOE=180°-∠AOC-∠COE=54°;(2)∵∠BOD:∠BOC=1:5,∴∠BOD=180°×1=30°,1+5∴∠AOC=30°,又∵∠COE=90°,∴∠AOE=∠COE+∠AOC=90°+30°=120°;(3)由(2)∠AOE=120°如图1,OF ⊥AB∴∠AOF=90°∴∠EOF=∠AOE-∠AOF=120°-90°=30°,如图2,OF ⊥AB∴∠AOF=90°∴∠EOF=360°-∠AOE-∠AOF=360°-120°-90°=150°.故∠EOF 的度数是30°或150°.【点睛】本题主要考查了角的计算,涉及到的角有平角、直角;熟练掌握平角等于180度,直角等于90度,是解答本题的关键.23.(1)见解析;(2)AEM ∠,GEM ∠,DFN ∠,HFN ∠【分析】(1)根据平行线的性质和判定可以解答;(2)由已知及(1)的结论可知∠CFN=45°,然后结合图形根据角度的加减运算可以得到解答.【详解】(1)证明:∵//EM FN ,∴EFN FEM ∠=∠.∵EM 平分BEF ∠,FN 平分CFE ∠,∴2CFE EFN ∠=∠,2BEF FEM ∠=∠. ∴CFE BEF ∠=∠.∴//AB CD .(2)由(1)知AB //CD ,∴∠AEF+∠CFE=180°,∵∠AEF=2∠CFN=∠CFE ,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=∠FEM=∠BEM=45°,∠BEG=∠CFH=∠DFE=90°,∴∠AEM=∠GEM=∠HFN=∠DFN=90°+45°=135°,∴度数为135°的角有:AEM ∠、 GEM ∠、 DFN ∠、 HFN ∠.【点睛】本题考查平行线的判定和性质及角平分线的综合运用,熟练掌握平行线的判定和性质定理及角平分线的意义是解题关键.24.40AOC ∠=︒;70AOE ∠=︒【分析】先利用平角定义与90FOC求出90FOD ∠=︒,再利用互余关系求=40BOD ∠︒,利用对顶角性质求40AOC ∠=︒,利用邻补角定义,求出140AOD ∠=︒,利用角平分线定义便可求出AOE ∠.【详解】 解:90FOC ∠=︒,∴1801809090FOD FOC ∠=︒-∠=︒-︒=︒, ∵50BOF ∠=︒,90-50=40BOD FOD BOF ∴∠=∠-∠=︒︒︒,AOC ∠与BOD ∠是对顶角,40AOC BOD ∴∠=∠=︒;COD ∠是一个平角,∴∠AOC+∠AOD=180º,∵40AOC ∠=︒,140AOD ∴∠=︒, OE 平分AOD ∠, 12AOE AOD ∴∠=∠, 70AOE ∴∠=︒.【点睛】本题考查的知识点是对顶角、邻补角、两角互余、角平分线的意义,解题关键是熟练利用角平分线定理.25.(1)相等,理由见解析;(2)60°;(3)90AOC α∠=︒+.【分析】(1)根据题意和邻补角的性质即可求解.(2)结合题意和角平分线的性质即可求出MON ∠.(3)结合图形和角平分线的性质与(1)的结论即可求出AOC ∠的大小.【详解】(1)∵AOC ∠与AOB ∠互补,∴180AOC AOB ∠+∠=︒,∵180AOC DOC ∠+∠=︒,∴COD AOB ∠=∠(2)∵AOB ∠与AOC ∠互补,30AOB ∠=︒,∴18030150AOC ∠=︒-︒=︒,∵OM 为AOC ∠的平分线,∴75AOM ∠=︒,∵ON 为AOB ∠的平分线,∴15AON ∠=︒,∴751560MON ∠=︒-︒=︒(3)∵AOC AOB BOC ∠=∠+∠,180AOB AOC ∠=︒-∠,∴180AOC AOC BOC ∠=︒-∠+∠.∵BOC BOM COM ∠=∠+∠,∴180AOC AOC BOM COM ∠=︒-∠+∠+∠,∵BOM MON BON ∠=∠-∠,12COM AOC ∠=∠, ∴11802AOC AOC MON BON AOC ∠=︒-∠+∠-∠+∠, 又∵MON α∠=,12BON AOB ∠=∠, ∴11180(180)22AOC AOC AOC AOC α∠=︒-∠+-︒-∠+∠, ∴90AOC α∠=︒+.【点睛】本题考查邻补角和角平分线的性质.利用邻补角的性质求证COD AOB ∠=∠是解题的关键.26.∠C 的度数是151°.【分析】根据对顶角相等,等量代换得∠1=∠3,根据同位角相等判断两直线平行,再由两直线平行得同旁内角互补则可解答.【详解】解:如图,∵∠1=∠2又∵∠2=∠3∴∠1=∠3∴AB ∥CD∴∠A+∠C =180°,又∵∠A =29°∴∠C =151°答:∠C 的度数是151°.【点睛】本题考查了对顶角的性质、平行线的性质和判定,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.。
(易错题)初中数学七年级数学下册第一单元《相交线与平行线》测试题(包含答案解析)(2)

一、选择题1.如图,若1234//,//l l l l ,则图中与1∠互补的角有( )A .1个B .2个C .3个D .4个 2.在下列命题中,为真命题的是( ) A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行3.下列说法正确的是( ) A .命题一定是正确的 B .定理都是真命题C .不正确的判断就不是命题D .基本事实不一定是真命题 4.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 5.已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .6 6.交换下列命题的题设和结论,得到的新命题是假命题的是( ) A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣37.如图,//AB EF ,90C ∠=︒,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠=∠+∠B .180αβγ∠+∠+∠=︒C .90αβγ∠+∠-∠=︒D .90βγα∠+∠-∠=︒ 8.用反证法证明“m 为正数”时,应先假设( ). A .m 为负数 B .m 为整数 C .m 为负数或零 D .m 为非负数 9.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个10.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°11.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°12.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积二、填空题∠=∠=∠=︒,则∠4的度数是___________.13.已知:如图,1235414.如图,在甲,乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东55︒,若同时开工,则在乙地公路按南偏西___度的走向施工,才能使公路准确接通.15.过直线AB上一点O作射线OC、OD,使OC⊥OD,当∠AOC=50°时,则∠BOD的度数__.16.如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)______________.17.如图,AB∥CD,∠1=64°,FG平分∠EFD,则∠EGF=__________________°.18.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.19.如图,a∥b,∠1=80°,∠2=45°,∠3=_____.20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.在ABC 中,AB AC =,直线l 经过点A ,且与BC 平行.仅用圆规完成下列画图.(保留画图痕迹,不写作法)(1)如图①,在直线l 上画出一点P ,使得APC ACB ∠=∠;(2)如图②,在直线l 上画出所有的点Q ,使得12AQC ACB ∠=∠.22.如图,已知180EFC BDC ︒∠+∠=,DEF B ∠=∠.(1)试判断DE 与BC 的位置关系,并说明理由.(2)若DE 平分ADC ∠,3BDC B ∠=∠,求EFC ∠的度数.23.ABC 在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)ABC 关于x 轴对称图形为111A B C △,画出111A B C △的图形;(2)将ABC 向右平移4个单位,再向下平移3个单位,得到图形为222A B C △,画出222A B C △的图形;(3)求ABC 的面积.24.如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知//AB CD ,请问B ,D ∠,E ∠有何关系并说明理由; (2)如图(3)所示,已知//AB CD ,请问B ,E ∠,D ∠又有何关系并说明理由; (3)如图(4)所示,已知//AB CD ,请问E G +∠∠与B F D ++∠∠∠有何关系并说明理由.25.把一块含60°角的直角三角尺()0090,60EFG EFG EGF ∠=∠=放在两条平行线,AB CD 之间.(1)如图1,若三角形的60°角的顶点G 放在CD 上,且221∠=∠,求1∠的度数;(2)如图2,若把三角尺的两个锐角的顶点,E G 分别放在AB 和CD 上,请你探索并说明AEF ∠与FGC ∠间的数量关系;(3)如图3,若把三角尺的直角顶点F 放在CD 上,30°角的顶点E 落在AB 上,请直接写出AEG ∠与CFG ∠的数量关系.26.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【详解】解:解:∵1234//,//l l l l ,∴∠1+∠2=180°,∠2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D .【点睛】本题主要考查了平行线的性质,注意不要漏角是解题的关键.2.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C 、两直线平行,同旁内角互补,此项是假命题;D 、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B .【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.3.B解析:B【分析】根据命题的定义、真命题与假命题的定义逐项判断即可得.【详解】A 、命题有真命题和假命题,此项说法错误;B 、定理都是经过推论、论证的真命题,此项说法正确;C 、不正确的判断是假命题,此项说法错误;D 、基本事实是真命题,此项说法错误;故选:B .【点睛】本题考查了命题、真命题与假命题,熟练掌握理解各概念是解题关键.4.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.5.B解析:B【分析】利用平行线间的距离相等可知ABC 与ACD △的高相等,底边之比等于面积之比,设ACE △的面积为x ,建立方程即可求解.【详解】∵//AB CD∴ABC 与ACD △的高相等∵2CD AB =∴=2ACD ABC S S设ACE △的面积为x ,则=8+=+ACD CDE ACE SS S x ,=2+=+ABC ABE ACE S S S x ∴()822+=+x x解得4x =∴=4ACE S故选B .【点睛】本题考查平行线间的距离问题,由平行线间的距离相等得到两三角形的高相等,从而建立方程是解题的关键.6.C解析:C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A 的题设和结论,得到的新命题是同位角相等,两直线平行是真命题; 交换命题B 的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C 的题设和结论,得到的新命题是所有的相等的角都是直角是假命题; 交换命题D 的题设和结论,得到的新命题是若a-3=b-3,则a=b 是真命题,故选C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】如图,分别过C 、D 作AB 的平行线CM 和DN ,∵AB//EF ,∴AB//CM //DN //EF ,∴αBCM ∠∠=,MCD NDC ∠∠=,NDE γ∠∠=,∴αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠+=++=++,又∵BC CD ⊥,∴BCD 90∠=,∴αβ90γ∠∠∠+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .8.C解析:C【分析】根据反证法的性质分析,即可得到答案.【详解】用反证法证明“m 为正数”时,应先假设m 为负数或零故选:C .【点睛】本题考查了反证法的知识,解题的关键是熟练掌握反证法的性质,从而完成求解. 9.C解析:C【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质11.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.12.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.二、填空题13.126°【分析】由∠1=∠2及对顶角相等可得出∠1=∠5利用同位角相等两直线平行可得出l1∥l2利用两直线平行同旁内角互补可求出∠6的度数再利用对顶角相等可得出∠4的度数【详解】解:给各角标上序号如解析:126°.【分析】由∠1=∠2及对顶角相等可得出∠1=∠5,利用“同位角相等,两直线平行”可得出l1∥l2,利用“两直线平行,同旁内角互补”可求出∠6的度数,再利用对顶角相等可得出∠4的度数.【详解】解:给各角标上序号,如图所示.∵∠1=∠2,∠2=∠5,∴∠1=∠5,∴l1∥l2,∴∠3+∠6=180°.∵∠3=54°,∴∠6=180°-54°=126°,∴∠4=∠6=126°.故答案为:126°.【点睛】本题考查了平行线的判定与性质,牢记平行线的各判定与性质定理是解题的关键.14.55【分析】先求出∠COD然后根据方向角的知识即可得出答案【详解】解:如图:即在乙地公路应按南偏西55度的走向施工才能使公路准确接通故答案为:55【点睛】此题考查了方向角平行线的知识解答本题的关键是解析:55【分析】先求出∠COD,然后根据方向角的知识即可得出答案.【详解】解:如图://AD OC,∴∠=∠=︒,COD ADO55即在乙地公路应按南偏西55度的走向施工,才能使公路准确接通.故答案为:55.【点睛】此题考查了方向角、平行线的知识,解答本题的关键是求出∠COD的度数,另外要熟练方向角的表示方法.15.40º或140º【分析】根据题意可知射线OCOD可能在直线AB的同侧也可能在直线AB的异侧分两种情况进行讨论即可【详解】解:由OC⊥OD可得∠DOC=90°如图1当∠AOC=50°时∠BOD=180解析:40º或140º【分析】根据题意可知,射线OC、OD可能在直线AB的同侧,也可能在直线AB的异侧,分两种情况进行讨论即可.【详解】解:由OC⊥OD,可得∠DOC=90°,如图1,当∠AOC=50°时,∠BOD=180°-50°-90°=40°;如图2,当∠AOC=50°时,∠AOD=90°-50°=40°,此时,∠BOD=180°-∠AOD=140°.故答案为40º或140º.【点睛】本题考查了垂线的定义及角的计算.解决问题的关键是根据题意画出图形,解题时注意分类讨论思想的运用.16.①③【分析】求出AB长为定值P到AB的距离为定值再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化∠APB的大小不断发生变化【详解】解:∵AB为定点∴AB长为定值∴①正确;∵点A解析:①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.17.【分析】根据两直线平行同位角相等求出∠EFD再根据角平分线的定义求出∠GFD然后根据两直线平行内错角相等解答【详解】解:∵AB∥CD∠1=64°∴∠EFD=∠1=64°∵FG平分∠EFD∴∠GFD=解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.18.40°【分析】本题主要利用两直线平行同旁内角互补两直线平行内错角相等以及角平分线的定义进行做题【详解】∵AD∥BC∴∠BCD=180°-∠D=80°又∵CA 平分∠BCD∴∠ACB=∠BCD=40°∴解析:40°【分析】本题主要利用两直线平行,同旁内角互补、两直线平行,内错角相等以及角平分线的定义进行做题.【详解】∵AD∥BC,∴∠BCD=180°-∠D=80°,又∵CA平分∠BCD,∠BCD=40°,∴∠ACB=12∴∠DAC=∠ACB=40°.【点睛】本题重点考查了平行线的性质及角平分线的定义,是一道较为简单的题目.19.55°【分析】根据平行线的性质和对顶角的性质即可得到结论【详解】解:∵a∥b∴∠1+∠3+∠4=180°∵∠2=∠4∠2=45°∴∠4=∠2=45°∵∠1=80°∴∠3=180°-45°-80°=5解析:55°【分析】根据平行线的性质和对顶角的性质即可得到结论.【详解】解:∵a∥b,∴∠1+∠3+∠4=180°,∵∠2=∠4,∠2=45°,∴∠4=∠2=45°∵∠1=80°,∴∠3=180°-45°-80°=55°,故答案为:55°.【点睛】本题考查了平行线的性质和对顶角的性质,熟记性质并准确识图是解题的关键.20.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.三、解答题21.(1)见解析;(2)见解析【分析】(1)以C为圆心,以CA为半径画弧,交点即为所求;(2)以A为圆心,以AC为半径画弧,交点即为所求.【详解】(1)如图所示,点P 即为所求,理由如下:CP CA =,//l BC ,则APC CAP ACB ∠=∠=∠.(2)如图所示,点12Q Q 、即为所求,理由如下:1AC AQ =,//l BC ,则11112AQ C ACQ BCQ ACB ∠=∠=∠=∠; 12CQ CQ =,则1221CQ Q CQ Q ∠=∠.【点睛】本题考查了基本作图,熟记等腰三角形的性质,平行线的性质是解题的关键.22.(1)DE ∥BC ;(2)72°【分析】(1)先根据已知条件得出∠EFC=∠ADC ,故AD ∥EF ,由平行线的性质得∠DEF=∠ADE ,再由∠DEF=∠B ,可知∠B=∠ADE ,故可得出结论.(2)依据DE 平分∠ADC ,∠BDC=3∠B ,即可得到∠ADC 的度数,再根据平行线的性质,即可得出∠EFC 的度数.【详解】解:(1)DE ∥BC .理由:∵∠EFC+∠BDC=180°,∠ADC+∠BDC=180°,∴∠EFC=∠ADC ,∴AD ∥EF ,∴∠DEF=∠ADE ,又∵∠DEF=∠B ,∴∠B=∠ADE ,∴DE ∥BC .(2)∵DE 平分∠ADC ,∴∠ADE=∠CDE ,又∵DE ∥BC ,∴∠ADE=∠B ,∵∠BDC=3∠B ,∴∠BDC=3∠ADE=3∠CDE ,又∵∠BDC+∠ADC=180°,3∠ADE+2∠ADE=180°,解得∠ADE=36°,∴∠ADF=72°,又∵AD ∥EF ,∴∠EFC=∠ADC=72°.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行是解答此题的关键. 23.(1)详见解析;(2)详见解析;(3)2.【分析】(1)分别作出A 、B 、C 关于对称轴x 的对应点A 1、B 1、C 1,再顺次连接即可得所求图形;(2)分别将A 、B 、C 三点向右平移4个单位,再向下平移3个单位,得到对应点A 2、B 2、C 2,再顺次连接即可得所求图形为222A B C △;(3)利用构图法即可求解;【详解】(1) ;(2) ;(3)ABC S =2×3-1112⨯⨯-1222⨯⨯-1132⨯⨯ 136222=--- 64=-2=.【点睛】本题考查作图—轴对称及平移变换,还涉及到三角形面积公式,解题的关键是熟练掌握轴对称的性质及平移的性质.24.(1)E B D ∠=∠+∠,理由见解析;(2)360B D E ∠+∠+∠=︒,理由见解析;(3)B F D E G ∠+∠+∠=∠+∠,理由见解析【分析】(1)过点E 作直线a 与AB ,CD 互相平行,运用平行线的性质证明即可;(2)方法同(1),过E 作直线b 与AB ,CD 互相平行,运用平行线的性质证明即可; (3)可先分别过点E ,F ,G ,作直线c ,d ,e 与AB ,CD 互相平行,同样运用平行线的性质证明即可.【详解】(1)E B D ∠=∠+∠,理由如下:如图所示,过点E 作直线a ,使得////a AB CD ,则1B ∠=∠,D 2∠=∠,(两直线平行,内错角相等),∴12BED B D ∠=∠+∠=∠+∠,即:E B D ∠=∠+∠;(2)360B D E ∠+∠+∠=︒,理由如下:如图所示,过点E 作直线b ,使得////b AB CD ,则3180B ∠+∠=︒,4180D ∠+∠=︒,(两直线平行,同旁内角互补),∴34360B D ∠+∠+∠+∠=︒,∵34BED ∠=∠+∠,∴360B D BED ∠+∠+∠=︒,即:360B D E ∠+∠+∠=︒;(3)B F D E G ∠+∠+∠=∠+∠,理由如下:如图所示,过点E ,F ,G 作直线c ,d ,e ,使得////////c d e AB CD ,则5B ∠=∠,67∠=∠,89∠=∠,10D ∠=∠,(两直线平行,内错角相等), ∵65BEF BEF B ∠=∠-∠=∠-∠,910FGD FGD D ∠=∠-∠=∠-∠, ∴7869EFG BEF B FGD D ∠=∠+∠=∠+∠=∠-∠+∠-∠,∴EFG B D BEF FGD ∠+∠+∠=∠+∠,即:B F D E G ∠+∠+∠=∠+∠.【点睛】本题考查平行线性质的运用,准确掌握平行线的性质并灵活运用是解题关键. 25.(1)40°;(2)∠AEF+∠FGC=90°;(3)AEG ∠+CFG ∠=300°【分析】(1)根据平行线的性质得:1=∠EGD ,结合∠2=2∠1和平角的定义,即可求解; (2)过点F 作FP ∥AB ,根据平行线的性质和直角的意义,即可求解;(3)根据平行线的性质得∠AEF+∠CFE=180°,结合条件,即可求解.【详解】(1)∵AB ∥CD ,∴∠1=∠EGD ,∵∠2+∠FGE+∠EGD=180°,∠2=2∠1,∴2∠1+60°+∠1=180°,解得∠1=40°;(2)如图,过点F 作FP ∥AB ,∵CD ∥AB ,∴FP ∥AB ∥CD ,∴∠AEF=∠EFP ,∠FGC=∠GFP .∴∠AEF+∠FGC=∠EFP+∠GFP=∠EFG ,∵∠EFG=90°,∴∠AEF+∠FGC=90°;(3) AEG ∠+CFG ∠=300°,理由如下:∵AB ∥CD ,∴∠AEF+∠CFE=180°,即AEG ∠−30°+CFG ∠−90°=180°,整理得:AEG ∠+CFG ∠=300°.【点睛】本题主要考查平行线的性质,添加辅助线,构造相等的角,是解题的关键 26.(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC ∥AD ,∵AF ∥DE ,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF ,∴BC∥AD.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。
七年级下数学第1章相交线与平行线 浙教版新教材 易错题 带答案

七年级下数学易错题集答案1.如图1-2-3,若直线MN 与△ABC 的边AB 、AC 分别交于E 、F ,则图中的内错角有 ( C )图1-2-3A .2对B .4对C .6对D .8对2.如图1-2-15,在四边形ABCD 中,连接BD ,则图中的哪些角与∠A 是同旁内角?图1-2-15解:∠A 的同旁内角有∠DBA ,∠CBA ,∠BDA ,∠CDA .3.三条直线相交于三点可构成12个角,这12个角中有多少对同位角?有多少对内错角?有多少对同旁内角?解:有12对同位角,6对内错角,6对同旁内角.4.下列说法不正确的是 ( D ) A .同一平面上的两条直线不平行就相交B .同位角相等,两直线平行C .过直线外一点只有一条直线与已知直线平行D .同位角互补,两直线平行5.已知同一平面内有三条直线l 1、l 2、l 3,如果l 1⊥l 2,l 2⊥l 3,则l 1与l 3的位置关系是 ( A )A .平行B .相交C .垂直D .以上都不对图1-3-16.如图1-3-27,直线EF 交AB 、CD 于点M 、N ,∠EMB =∠END ,MG 平分∠EMB ,NH 平分∠END .试问图中有哪些直线平行?为什么?解:∵∠EMB =∠END ,∴AB ∥CD (同位角相等,两直线平行).∵MG 平分∠EMB ,NH 平分∠END ,∴∠EMG =12∠EMB ,∠ENH =12∠END .又∵∠EMB =∠END ,∴∠EMG =∠ENH ,∴MG ∥NH (同位角相等,两直线平行). 7.如图1-3-28所示,已知点E 在AB 上,且CE 平分∠BCD ,DE 平分∠ADC ,∠EDC +∠DCE =90°,试说明AD ∥BC .【解析】 利用同旁内角互补,两直线平行证明,即证明∠ADC +∠BCD =180°.解:∵DE 平分∠ADC ,∴∠ADC =2∠EDC .∵CE 平分∠BCD ,∴∠BCD =2∠DCE ,∴∠ADC +∠BCD =2∠EDC +2∠DCE =2(∠EDC +∠DCE ).∵∠EDC +∠DCE =90°,∴∠ADC +∠BCD =180°,∴AD ∥BC (同旁内角互补,两直线平行).8.[2012·山西]如图1-4-5,直线AB ∥CD ,∠CEF =140°,则∠A =( B )图1-4-5A.35° B .40° C .45° D .50°9.[2011·衢州]如图1-4-6,直尺一边AB 与量角器的零刻度线CD 平行,若量图1-3-27图1-3-28角器的一条刻度线OF 的读数为70°,OF 与AB 交于点E ,那么∠AEF =__70__度.图1-4-610.[2011·温州]如图1-4-7,a ∥b ,∠1=40°,∠2=80°,则∠3=__120__度.图1-4-7图1-4-711.[2012·宜宾]如图1-4-12,已知∠1=∠2=∠3=59°,则∠4=__121°__.12.如图1-4-28所示,∠1=∠2,CE ∥BF ,试说明AB ∥CD .【解析】 利用平行线将∠1转化为∠B ,又由∠1=∠2,得∠2=∠B .解:∵CE ∥BF (已知),∴∠1=∠B (两直线平行,同位角相等).∵∠1=∠2(已知),∴∠2=∠B .∴AB ∥CD (内错角相等,两直线平行).13.如图1-4-29所示,已知AB ∥CD ,分别探索下列四个图形中∠P 与∠A ,∠C 的关系,请你从所得的四个关系中任选一个加以说明.解:(1)∠P =360°-∠A -∠C ;(2)∠P =∠A +∠C ;(3)∠P =∠C -∠A ;图1-4-28(4)∠P=∠A-∠C(说明略).图1-4-2914.[2012·济南]如图1-5-13,在Rt△ABC中,∠C=90°,AC=4,将△ABC 沿CB向右平移得到△DEF,若平移距离为2,则四边形ABED的面积等于__8__.图1-5-1315.[2011·河北]如图1-5-14(1),两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图1-5-14(2),则阴影部分的周长为__2__.图1-5-1416.[2012·宁夏]如图1-8,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB=__70__度.图1-8 17.[2012·潜江]如图1-9,AB∥CD ,∠A =48°,∠C =22°,则∠E 等于( B )A .70°B .26°C .36°D .16°类型之四 平行线的判定与性质在实际生活中的应用18.探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关,如图1-10,从点O 照射到抛物线上的光线OB 、OC 等反射以后沿着与PO 平行的方向射出.如果∠BOP =45°,∠QOC =88°,那么∠ABO 和∠DCO各是多少度?【解析】 由条件可知AB ∥PQ ∥CD ,根据AB ∥PQ ,可由∠BOP 求出∠ABO ,根据PQ ∥CD ,可由∠QOC 求出∠DCO .解:由PQ ∥BA ,可得∠ABO =∠BOP =45°.由PQ ∥CD ,可得∠QOC +∠DCO =180°.又∠QOC =88°,所以∠DCO =180°-88°=92°.19.(10分) 如图21所示,已知CD ∥AB ,∠DCB =70°,∠CBF =20°,∠EFB =130°,问直线FE 与AB 有什么样的位置关系,为什么?【解析】 利用CD ∥AB 求出∠ABF 的度数,从而判定EF 与AB的关系.解: ∵CD ∥AB ,∴∠ABC =∠DCB =70°.又∵∠CBF =20°,∴∠FBA =50°.又∵∠EFB =130°, 图1-9图1-10图21∴∠EFB +∠FBA =180°,∴EF ∥AB .20.(10分)如图22所示,CD 平分∠ACB ,DE ∥BC 交AC 于E ,若∠ACB =50°,∠B =76°,求∠EDC 及∠BDC 的度数.【解析】 题目已知DE ∥BC ,易知∠B 与∠BDE 互补,而∠BDE =∠BDC +∠CDE ,又∠CDE 与∠DCB 互为内错角,由平行线的性质得∠CDE =∠DCB ,再根据题目已知CD 是∠ACB 的角平分线,可求出∠CDE 的度数,从而求出∠BDC .解: ∵DE ∥BC (已知),∴∠EDC =∠BCD (两直线平行,内错角相等).∵CD 平分∠ACB (已知),∴∠BCD =12∠ACB (角平分线的定义).∵∠ACB =50°,∴∠BCD =25°,∠EDC =25°.又∵DE ∥BC (已知),∴∠EDB +∠B =180°(两直线平行,同旁内角互补).∵∠B =76°,∴∠EDB =104°.又∵∠EDB =∠EDC +∠BDC (已知),∴∠BDC =∠EDB -∠EDC =104°-25°=79°.21.(12分)如图(1)所示,是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么你可深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知AB ∥CD ,请问∠B ,∠D ,∠E 有何关系并说明理由;(2)如图(3)所示,已知AB ∥CD ,请问∠B ,∠E ,∠D 又有何关系并说明理由;(3)如图(4)所示,已知AB ∥CD ,请问∠E +∠G 与∠B +∠F +∠D 有何关系并说明理由.图22图23【解析】此类题要过各个分点作已知直线的平行线,充分运用平行线的性质进行推导.解:(1)如答图(1),过E作EM∥AB,根据平行线的传递性,则EM∥CD.∵EM∥AB∥CD,∴∠MEB=∠B,∠MED=∠D,∴∠B+∠D=∠MEB+∠MED=∠BED.(2)如答图(2),过E作EM∥AB,根据平行线的传递性,则EM∥CD.∵EM∥AB∥CD,∴∠MEB+∠B=180°,∠MED+∠D=180°,∴∠B+∠BED+∠D=∠B+∠MEB+∠MED+∠D=360°.(3)如答图(3),分别过E,F,G作AB的平行线,充分运用平行线的性质,得∠BEF+∠FGD=∠B+∠EFG+∠D.第21题答图。
浙教版七年级下册数学第一章 平行线含答案【参考答案】

浙教版七年级下册数学第一章平行线含答案一、单选题(共15题,共计45分)1、如图,两个形状、大小完全相同的三角形ABC和三角形DEF重叠在一起,固定三角形ABC不动,将三角形DEF向右平移,当点E和点C重合时,停止平移. 连结AE,DC,在整个过程中,图中阴影部分面积和的变化情况是()A.一直增大B.一直减少C.先减少后增大D.一直不变2、如图,已知AB∥CD,∠C=35°,BC平分∠ABE,则∠ABE的度数是( )A.17.5°B.35°C.70°D.105°3、如图,将含30°角的直角三角板ABC放在平行线α和b上,∠C=90°,∠A=30°,若∠1=20°,则∠2的度数等于()A.60°B.50°C.40°D.30°4、如图所示的四个图形中,∠1和∠2一定相等的是()A. B. C. D.5、下列选项中∠1与∠2不是同位角的是()A. B. C.D.6、观察图,在下列四种图形变换中,该图案不包含的变换是()A.旋转B.轴对称C.位似D.平移7、在同一平面内,不重合的两条直线的位置关系是()A.平行B.相交C.平行或相交D.平行、相交或垂直8、小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n 上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°9、已知:如图,点D是射线AB上一动点,连接CD,过点D作DE∥BC交直线AC于点E,若∠ABC=84°,∠CDE=20°,则∠ADC的度数为( )A.104°B.76°C.104°或64°D.104°或76°10、下列说法错误的是()A.两直线平行,内错角相等B.两直线平行,同旁内角相等C.对顶角相等D.平行于同一条直线的两直线平行11、如图.已知直线a,b被直线c所截,且a∥b,∠1=48°,那么∠2的度数为()A.42°B.48°C.52°D.132°12、如图,将三角形纸板ABC沿直线AB平移,使点A移到点B,若∠CAB=50°,∠ABC=100°,则∠CBE的度数为()A.50°B.40°C.30°D.100°13、如图,己知l∥AB,AC为角平分线,下列说法错误的是()1A.∠1=∠4B.∠1=∠5C.∠2=∠3D.∠1=∠314、如图,两个全等的直角三角形重叠在一起,将其中沿着点B到C的方向平移到的位置,,平移距离为,则的面积为()A.6B.12C.18D.2415、如图,能判定EB∥AC的条件是()A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE二、填空题(共10题,共计30分)16、如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________.17、两个角的两边分别平行,其中一个角是30°,则另一个角是________.18、如图,在中,,,点是的中点,连接,将沿射线方向平移,在此过程中,的边与的边、分别交于点、,当的面积是面积的时,则△BCD 平移的距离是________.19、将等腰直角三角形纸片和矩形纸片按如图方式折叠放在一起,若∠1=25°,则∠2的度数为________.20、一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当∠CAE=15°时,BC∥DE.则∠CAE(0°<∠CAE<180°)其它所有可能符合条件的度数为________.21、将一矩形纸条,按如图所示折叠,则∠1=________度.22、完成下面的证明.已知:如图,BC∥DE,BE、DF分别是∠ABC、∠ADE的平分线.求证:∠1=∠2.证明:∵BC∥DE,∴∠ABC=∠ADE(________).∵BE、DF分别是∠ABC、∠ADE的平分线.∴∠3=∠ABC,∠4=∠ADE.∴∠3=∠4.∴________∥________(________).∴∠1=∠2(________).23、如图:已知,AB∥CD,∠1=50°,那么∠2=________°,∠3=________°24、将一副三角板如图放置.若AE∥BC,则∠AFD=________.25、在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.三、解答题(共5题,共计25分)26、如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.27、如图所示,AB∥CD∥EF,∠ABC=55°,∠CEF=150°,求∠BCE的度数.28、如图,矩形ABCD中,点E是CD延长线上一点,且,求证:.29、MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.30、如图,一块边长为8米的正方形土地,在上面修了三条道路,宽都是1米,空白的部分种上各种花草.(1)请利用平移的知识求出种花草的面积.(2)若空白的部分种植花草共花费了4620元,则每平方米种植花草的费用是多少元?参考答案一、单选题(共15题,共计45分)1、B2、C3、B4、B5、C6、D7、C8、D9、C10、B11、B12、C13、B14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下数学易错题集答案
1.如图1-2-3,若直线MN 与△ABC 的边AB 、AC 分别交于E 、F ,则图中的
内错角有 ( C )
图1-2-3
A .2对
B .4对
C .6对
D .8对
2.如图1-2-15,在四边形ABCD 中,连接BD ,则图中的哪些角与∠A 是同
旁内角?
图1-2-15
解:∠A 的同旁内角有∠DBA ,∠CBA ,∠BDA ,∠CDA .
3.三条直线相交于三点可构成12个角,这12个角中有多少对同位角?有多少
对内错角?有多少
对同旁内角?
解:有12对同位角,6对内错角,6对同旁内角.
4.下列说法不正确的是 ( D ) A .同一平面上的两条直线不平行就相交
B .同位角相等,两直线平行
C .过直线外一点只有一条直线与已知直线平行
D .同位角互补,两直线平行
5.已知同一平面内有三条直线l 1、l 2、l 3,如果l 1⊥l 2,l 2⊥l 3,则l 1与l 3的位置
关系是 ( A )
A .平行
B .相交
图1-3-1
C .垂直
D .以上都不对
6.如图1-3-27,直线EF 交AB 、CD 于点M 、N ,∠EMB =∠END ,MG 平
分∠EMB ,NH 平分∠END .试问图中有哪些直线
平行?为什么?
解:∵∠EMB =∠END ,
∴AB ∥CD (同位角相等,两直线平行).
∵MG 平分∠EMB ,NH 平分∠END ,
∴∠EMG =12∠EMB ,∠ENH =12∠END .
又∵∠EMB =∠END ,∴∠EMG =∠ENH ,
∴MG ∥NH (同位角相等,两直线平行).
7.如图1-3-28所示,已知点E 在AB 上,且CE 平分∠BCD ,DE 平分∠ADC ,
∠EDC +∠DCE =90°,试说明AD ∥BC .
【解析】 利用同旁内角互补,两直线平行证明,即
证明∠ADC +∠BCD =180°.
解:∵DE 平分∠ADC ,
∴∠ADC =2∠EDC .
∵CE 平分∠BCD ,
∴∠BCD =2∠DCE ,
∴∠ADC +∠BCD =2∠EDC +2∠DCE =2(∠EDC +
∠DCE ).
∵∠EDC +∠DCE =90°,
∴∠ADC +∠BCD =180°,
∴AD ∥BC (同旁内角互补,两直线平行).
8.[2012·山西]如图1-4-5,直线AB ∥CD ,∠CEF =140°,则∠A =( B ) 图1-3-27
图1-3-28
图1-4-5
A.35°B.40°C.45°D.50°
9.[2011·衢州]如图1-4-6,直尺一边AB与量角器的零刻度线CD平行,若量角器的一条刻度线OF的读数为70°,OF与AB交于点E,那么∠AEF=__70__度.
图1-4-6
10.[2011·温州]如图1-4-7,a∥b,∠1=40°,∠2=80°,则∠3=__120__度.
图1-4-7 图1-4-7
11.[2012·宜宾]如图1-4-12,已知∠1=∠2=∠3=59°,则∠4=__121°__. 12.如图1-4-28所示,∠1=∠2,CE∥BF,试说明AB∥CD.
【解析】利用平行线将∠1转化为∠B,又由∠1=∠2,
得∠2=∠B.
解:∵CE∥BF(已知),
∴∠1=∠B (两直线平行,同位角相等).
∵∠1=∠2(已知),
∴∠2=∠B .
∴AB ∥CD (内错角相等,两直线平行).
13.如图1-4-29所示,已知AB ∥CD ,分别探索下列四个图形中∠P 与∠A ,
∠C 的关系,请你从所得的四个关系中任选一个加以说明.
解:(1)∠P =360°-∠A -∠C ;
(2)∠P =∠A +∠C ;
(3)∠P =∠C -∠A ;
(4)∠P =∠A -∠C (说明略).
图1-4-29
14.[2012·济南]如图1-5-13,在Rt △ABC 中,∠C =90°,AC =4,将△ABC
沿CB 向右平移得到△DEF ,若平移距离为2,则四边形ABED 的面积等于
__8__.
图1-5-
13
图1-4-28
15.[2011·河北]如图1-5-14(1),两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,得到图1-5-14(2),则阴影部分的周长为__2__.
图1-5-14
16.[2012·宁夏]如图1-8,C岛在A岛的北偏东45°方向,在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB=__70__度.
图1-9
图1-8
17.[2012·潜江]如图1-9,AB∥CD,∠A=48°,∠C=22°,则∠E等于
(B)
A.70°B.26°C.36°D.16°
类型之四平行线的判定与性质在实际生活中的应用
18.探照灯、锅形天线、汽车灯以及其他很多灯具都与抛物线形状有关,如图1-10,从点O照射到抛物线上的光线OB、OC等反射以后沿着与PO平行的方向射出.如果∠BOP=45°,∠QOC=88°,那么∠ABO和∠DCO
各是多少度?
【解析】由条件可知AB∥PQ∥CD,根据AB∥PQ,可由∠BOP求
出∠ABO,根据PQ∥CD,可由∠QOC求出∠DCO.
解:由PQ∥BA,可得∠ABO=∠BOP=45°.
图1-10
由PQ∥CD,可得∠QOC+∠DCO=180°.
又∠QOC=88°,
所以∠DCO=180°-88°=92°.
19.(10分) 如图21所示,已知CD∥AB,∠DCB=70°,∠CBF=20°,∠EFB=130°,问直线FE与AB有什么样的位置关系,为什么?
【解析】利用CD∥AB求出∠ABF的度数,从而判定EF与AB 的关系.
解:∵CD∥AB,
∴∠ABC=∠DCB=70°.
又∵∠CBF=20°,∴∠FBA=50°.
又∵∠EFB=130°,
∴∠EFB+∠FBA=180°,
∴EF∥AB.
20.(10分)如图22所示,CD平分∠ACB,DE∥BC交AC于E,若∠ACB=50°,∠B=76°,求∠EDC及∠BDC的度数.
【解析】题目已知DE∥BC,易知∠B与∠BDE互补,而
∠BDE=∠BDC+∠CDE,又∠CDE与∠DCB互为内错角,
由平行线的性质得∠CDE=∠DCB,再根据题目已知CD是∠ACB的角平分线,可求出∠CDE的度数,从而求出∠BDC.
解:∵DE∥BC(已知),
∴∠EDC=∠BCD(两直线平行,内错角相等).
∵CD平分∠ACB(已知),图21
图22
∴∠BCD=1
∠ACB(角平分线的定义).
2
∵∠ACB=50°,
∴∠BCD=25°,∠EDC=25°.
又∵DE∥BC(已知),
∴∠EDB+∠B=180°(两直线平行,同旁内角互补).
∵∠B=76°,∴∠EDB=104°.
又∵∠EDB=∠EDC+∠BDC(已知),
∴∠BDC=∠EDB-∠EDC=104°-25°=79°.
21.(12分)如图(1)所示,是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么你可深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.
(1)如图(2)所示,已知AB∥CD,请问∠B,∠D,∠E有何关系并说明理由;
(2)如图(3)所示,已知AB∥CD,请问∠B,∠E,∠D又有何关系并说明理由;
(3)如图(4)所示,已知AB∥CD,请问∠E+∠G与∠B+∠F+∠D有何关系
并说明理由.
图23
【解析】此类题要过各个分点作已知直线的平行线,充分运用平行线的性质进行推导.
解:(1)如答图(1),过E作EM∥AB,根据平行线的传递性,则EM∥CD.
∵EM∥AB∥CD,
∴∠MEB=∠B,∠MED=∠D,
∴∠B+∠D=∠MEB+∠MED=∠BED.
(2)如答图(2),过E作EM∥AB,根据平行线的传递性,则EM∥CD.
∵EM∥AB∥CD,
∴∠MEB+∠B=180°,∠MED+∠D=180°,
∴∠B+∠BED+∠D=∠B+∠MEB+∠MED+∠D=360°.
(3)如答图(3),分别过E,F,G作AB的平行线,充分运用平行线的性质,得∠BEF+∠FGD=∠B+∠EFG+∠D.
第21题答图。