【期末复习总结】基础分子生物学.doc

合集下载

分子生物学期末复习(整理版)

分子生物学期末复习(整理版)

1)分子生物学从分子水平上研究生命现象物质基础得学科.研究细胞成分得物理、化学得性质与变化以及这些性质与变化与生命现象得关系,如遗传信息得传递,基因得结构、复制、转录、翻译、表达调控与表达产物得生理功能,以及细胞信号得转导等.2)移动基因:又称转座子.由于它可以从染色体基因组上得一个位置转移到另一个位置,就是指在不同染色体之间跃迁,因此也称跳跃基因。

3)假基因:有些基因核苷酸序列与相应得正常功能基因基本相同,但却不能合成出功能蛋白质,这些失活得基因称为假基因。

4)重叠基因:所谓重叠基因就是指两个或两个以上得基因共有一段DNA序列,或就是指一段DNA序列成为两个或两个以上基因得组成部分。

5)基因家族:就是真核生物基因组中来源相同、结构相似、功能相关得一组基因。

6)基因:能够表达与产生蛋白质与RNA得DNA序列,就是决定遗传性状得功能单位、7)基因组:细胞或生物体得一套完整单倍体得遗传物质得总与、8)端粒:以线性染色体形式存在得真核基因组DNA末端都有一种特殊得结构叫端粒、该结构就是一段DNA序列与蛋白质形成得一种复合体,仅在真核细胞染色体末端存在、9)操纵子:就是指数个功能上相关得结构基因串联在一起,构成信息区,连同其上游得调控区(包括启动子与操纵基因)以及下游得转录终止信号所构成得基因表达单位,所转录得RNA为多顺反子、10)顺式作用元件:就是指那些与结构基因表达调控相关,能够被基因调控蛋白特异性识别与结合得特异DNA序列、包括启动子,上游启动子元件,增强子,加尾信号与一些反应元件等、11)反式作用因子:就是指真核细胞内含有得大量可以通过直接或间接结合顺式作用元件而调节基因转录活性得蛋白质因子、12)启动子:就是RNA聚合酶特异性识别与结合得DNA序列、13)增强子:位于真核基因中远离转录起始点,能明显增强启动子转录效率得特殊DNA序列、它可位于被增强得转录基因得上游或下游,也可相距靶基因较远、14)转录因子:直接结合或间接作用于基因启动子、形成具有RNA聚合酶活性得动态转录复合体得蛋白质因子.有通用转录因子、序列特异性转录因子、辅助转录因子等。

(完整word版)分子生物学知识点归纳

(完整word版)分子生物学知识点归纳

分子生物学1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。

2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。

3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。

4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。

甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。

真核生物中的DNA甲基化则在基因表达调控中有重要作用。

真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’.5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。

“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。

6.DNA双螺旋结构模型要点:(1)DNA是反向平行的互补双链结构。

(2)DNA双链是右手螺旋结构。

螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。

每个碱基旋转角度为36度。

DNA双螺旋分子表面存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。

(3)疏水力和氢键维系DNA双螺旋结构的稳定。

DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。

7.核小体的组成:染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。

各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。

核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。

8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。

9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。

分子生物学复习总结

分子生物学复习总结

第一章1、hnRNA:mRNA的原始转录物是分子量极大的前体,在核内加工过程中形成分子大小不等的中间物,即核内不均一RNA(hnRNA,heterogeneous nuclear RNA),其中至少有一部分转变并运送到细胞质而成为成熟mRNA。

2、同功tRNA:多个tRNA携带一种氨基酸,这些tRNA称为同功tRNA。

3、snRNA:(small nuclear RNA):即核内小分子RNA。

100~300个核苷酸4、scRNA(small cytoplasmic RNA):即胞浆小RNA,常形成RNP5、iRNA(initiator RNA):即起始RNA,DNA合成的引物6、端粒酶(telomerase)是一种自身携带模板RNA的逆转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒内3’端的寡聚核苷酸片段,包含两个活性位点,即逆转录酶活性和核酸内切酶活性。

7、核酶(ribozyme)即具有催化作用的一类RNA分子。

8、基因芯片:是在固相支持物上原位合成寡核苷酸或直接将大量DNA探针以点涂的方式有序地固化于支持物表面,然后与标记的样品杂交,通过对杂交信号的检测分析,即可得出样品的信号(基因序列或表达的信息。

)9、反义核酸(antisense nuleic acid)是根据碱基互补原理,用人工合成或生物体自身合成的特定互补的DNA 或RNA片段(或其化学修饰的衍生物),能够与目的序列结合,通过空间位阻效应或诱导RNase活性,在复制、转录、剪接、mRNA转运及翻译等水平,抑制或封闭目的基因的表达。

10、反义技术(antisense technology):根据碱基互补原理,用人工合成或生物体自身合成的特定互补的DNA 或RNA片段(或其化学修饰产物)抑制或封闭目的基因的表达的技术。

11、RNAi:将这一内源性异常产生的dsRNA所诱导的美丽线虫中相关基因沉默的现象称为RNA干扰(RNA interference,RNAi),因为RNAi作用发生在转录后水平,所以又被称为转录后基因沉默。

分子生物学知识点.doc

分子生物学知识点.doc

一1、分子生物学:研究核酸等生物大分子的功能、形态结构等特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动的适应自然界转向主动地改造和重组自然界的基础学科2、基因:是合成一种功能蛋白或RNA分子所必需的全部DNA序列。

一个典型的真核基因包括:编码序列-外显子;内含子;5’端和3’端非翻译区UTR;调控序列3、基因组:某一特定生物体的整套遗传物质的综合。

基因组的大小用全部的DNA的碱基对总数表示5、分子生物学发展史1869年Miesher首次从莱茵河鲑鱼精子中提取了DNA。

1910年,德国科学家Kossel第一个分离了腺嘌呤、胸腺嘧啶和组氨酸。

1953年,Watson和Crick提出DNA反向平行双螺旋结构模型,为充分解释遗传信息的传递规律铺平了道路。

1961年,法国科学家Jacob和Monod提出并证实了操纵子作为调节细菌细胞代谢的分子机制。

此外,他们还首次提出存在一种与染色体DNA序列相互补、能将编码在染色体DNA上的遗传信息带到蛋白质合成场所并翻译产生蛋白质的信使核糖核酸。

这一学说对分子生物学的发展起到了十分重要的作用。

1968年,美国科学家Nirenberg由于在破译DNA遗传密码方面的贡献,与Holley和Khorana 等人分享了诺贝尔生理医学奖。

Holley的功绩在于阐明了酵母丙氨酸tRNA的核苷酸序列,并证实所有tRNA 具有相似结构,而Khorana第一个合成了核苷酸分子,并且人工复制了酵母基因6、中心法则内容DNA是自身复制的模板DNA通过转录作用将遗传信息传递给中间物质RNARNA通过翻译作用将遗传信息表达成蛋白质在某些病毒中,RNA也可以自我复制,并且还发现在一些病毒蛋白质的合成过程中,RNA可以在逆转录酶的作用下合成DNA.7、分子生物学的3条基本原理:构成生物体各类有机大分子的单体在不同生物中都是相同的;生物体内一切有机大分子的构成都遵循共同的规则;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

分子生物学总复习期末考试总复习

分子生物学总复习期末考试总复习

分子生物学课程重点,以及一份真题。

1、绪论(1)分子生物学的概念分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与蛋白质、蛋白质与核酸之间的互作及其基因表达调控机理的学科。

(3)经典历史事迹1928年格里菲斯证明了某种转化因子是遗传物质1944年艾弗里做了肺炎双球杆菌转换实验1953年沃森和克里克提出双螺旋结构桑格尔两次诺贝尔学奖2、染色体与 DNA(1)真核生物染色体具体组成成分为:组蛋白、非组蛋白和DNA。

在真核细胞染色体中,DNA与蛋白质完全融合在一起,其蛋白质与相应DNA的质量之比约为2:1。

这些蛋白质在维持染色体结构中起着重要作用。

(2)组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。

根据其凝胶电泳性质可将其分为H1、H2A、H2B、H3及H4。

组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。

H2A、H2B 介于两者之间。

H1易分离,不保守;组蛋白的特性:①进化上的极端保守,②无组织特异性;③肽链上分布的不对称性;组蛋白的修饰作用⑤富含赖氨酸的组蛋白H5(3)C值反常现象C值:一种生物单倍体基因组DNA的总量。

一般情况,真核生物C值是随着生物进化而增加,高等生物的C值一般大于低等生物。

(4)DNA的结构•DNA的一级结构即是指四种核苷酸的连接及排列顺序,表示该DNA分子的化学构成。

•DNA二级结构是指两条多核苷酸链反相平行盘绕所生成的双螺旋盘绕结构。

DNA的二级结构分两大类:一类是右手螺旋,如A-DNA和B-DNA;另一类是左手螺旋,即Z-DNA。

DNA三级结构:是双螺旋进一步缠绕,形成核小体,染色质,染色体等超螺旋结构,5、每轮碱基数10•DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。

超螺旋结构是DNA高级结构的主要形式(非唯一形式),可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶(通过催化DNA链的断裂和结合,从而影响DNA的拓扑状态。

(完整版)分子生物学期末复习.doc

(完整版)分子生物学期末复习.doc

(完整版)分子生物学期末复习.doc第一讲染色体与DNA一染色体(遗传物质的主要载体)1DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′ -OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。

3 染色体蛋白主要分为组蛋白和非组蛋白两类。

真核细胞的染色体中, DNA与组蛋白的质量比约为 1:14组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。

组蛋白含有大量的赖氨酸和精氨酸,其中 H3、H4富含精氨酸, H1富含赖氨酸。

H2A、H2B介于两者之间。

5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有 H5)③ 肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。

碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。

修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓 C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。

从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。

3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA 总量的 10%~80%。

不重复序列长约750~ 2 000bp ,相当于一个结构基因的长度)②中度重复序列(各种rRNA、 tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星 DNA(只存在于真核生物中,占基因组的 10%~60%,由 6~100个碱基组成)三染色体与核小体1 染色质 DNA的 Tm值比自由 DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA 复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为 200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由 H2A、H2B、 H3、 H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且 DNA含量少主要是单拷贝基因整个染色体 DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。

分子生物学总结知识点

分子生物学总结知识点

分子生物学总结知识点(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--分子生物学总结知识点分子生物学总结知识点篇一:分子生物学总结第一章绪论1、细胞学说1847年由德国科学家施莱登和施旺提出。

细胞学说的主要内容有:①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细胞的产物所组成;②所有细胞在结构和组成上基本相似;③新细胞是由已存在的细胞分裂而来;④生物的疾病是因为其细胞机能失常。

2、分子生物学的概念:分子生物学是研究核酸、蛋白质等生物大分子的结构与功能,并从分子水平上阐明蛋白质与核酸、蛋白质与蛋白质之间的相互作用的关系及其基因表达调控机理的学科。

3、中心法则1958年由克里克提出4、分子生物学的研究内容:a:DNA重组技术(基因工程)b:基因的表达调控c:生物大分子的结构和功能研究(结构分子生物学)d:基因组、功能基因组与生物信息学研究RNA复制逆转录蛋白质【名词解释】:1、同功tRNA:多个tRNA携带一种氨基酸,这些tRNA称为同功tRNA。

2、iRNA:即起始RNA,DNA合成的引物3、核酶:即具有催化作用的一类RNA分子。

4、端粒酶:是一种自身携带模板RNA的逆转录酶,催化端粒DNA的合成,能够在缺少DNA模板的情况下延伸端粒内3’端的寡聚核苷酸片段,包含两个活性位点,即逆转录酶活性和核酸内切酶活性。

5、反义核酸:是根据碱基互补原理,用人工合成或生物体自身合成的特定互补的DNA或RN段(或其化学修饰的衍生物),能够与目的序列结合,通过空间位阻效应或诱导RNase活性,在复制、转录、剪接、mRNA转运及翻译等水平,抑制或封闭目的基因的表达。

第二章核酸的结构与功能1、染色质的类型分为两种类型:常染色质和异染色质。

常染色质处于伸展状态,碱性染料着色浅而均匀;异染色质处于凝集状态,碱性染料着色较深。

2、染色质蛋白质分为两类:组蛋白和非组蛋白。

【通用文档】分子生物学知识点.doc

【通用文档】分子生物学知识点.doc

一1、分子生物学:研究核酸等生物大分子的功能、形态结构等特征及其重要性和规律性的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动的适应自然界转向主动地改造和重组自然界的基础学科2、基因:是合成一种功能蛋白或RNA分子所必需的全部DNA序列。

一个典型的真核基因包括:编码序列-外显子;内含子;5’端和3’端非翻译区UTR;调控序列3、基因组:某一特定生物体的整套遗传物质的综合。

基因组的大小用全部的DNA的碱基对总数表示5、分子生物学发展史1869年Miesher首次从莱茵河鲑鱼精子中提取了DNA。

1910年,德国科学家Kossel第一个分离了腺嘌呤、胸腺嘧啶和组氨酸。

1953年,Watson和Crick提出DNA反向平行双螺旋结构模型,为充分解释遗传信息的传递规律铺平了道路。

1961年,法国科学家Jacob和Monod提出并证实了操纵子作为调节细菌细胞代谢的分子机制。

此外,他们还首次提出存在一种与染色体DNA序列相互补、能将编码在染色体DNA上的遗传信息带到蛋白质合成场所并翻译产生蛋白质的信使核糖核酸。

这一学说对分子生物学的发展起到了十分重要的作用。

1968年,美国科学家Nirenberg由于在破译DNA遗传密码方面的贡献,与Holley和Khorana 等人分享了诺贝尔生理医学奖。

Holley的功绩在于阐明了酵母丙氨酸tRNA的核苷酸序列,并证实所有tRNA 具有相似结构,而Khorana第一个合成了核苷酸分子,并且人工复制了酵母基因6、中心法则内容DNA是自身复制的模板DNA通过转录作用将遗传信息传递给中间物质RNARNA通过翻译作用将遗传信息表达成蛋白质在某些病毒中,RNA也可以自我复制,并且还发现在一些病毒蛋白质的合成过程中,RNA可以在逆转录酶的作用下合成DNA.7、分子生物学的3条基本原理:构成生物体各类有机大分子的单体在不同生物中都是相同的;生物体内一切有机大分子的构成都遵循共同的规则;某一特定生物体所拥有的核酸及蛋白质分子决定了它的属性。

《分子生物学》期末复习总结

《分子生物学》期末复习总结

《分子生物学期末复习总结》郭红双一至八、内容梗概:【细菌的基因转移四种机制】1.接合(conjugation):当细胞与细胞、或细菌通过菌毛相互接触时,质粒DNA从一个细胞(细菌)转移至另一细胞(细菌)的DNA转移。

2.转化(transformation)通过自动获取或人为地供给外源DNA,使细胞或培养的受体细胞获得新的遗传表型.3.转导(transduction):是通过噬菌体将基因从供体转移到受体细胞的过程。

4.细胞融合(cell fusion):由细胞质膜融合导致的基因转移和重组。

【感受态细胞】受体细胞经过一些特殊方法(如电击、CaCl2)处理后,细胞膜的通透性发生了暂时性改变,成为能允许外源DNA分子进入的状态。

【转座子(transposon)】1.概念:是在基因组中可以移动的一段DNA序列,可以转移到细胞基因组的任何位置。

2.转座作用:一个转座子由基因组的一个位置转移到另一个位置的过程称为转座或移位,或异常重组。

3.转座特点:①能从基因组的一个位点转移到另一个位点(又称跳跃基因);②不以独立形式存在;③转座子编码自身的转座酶;④转座的频率很低;⑤转座作用可引起基因表达内容的改变甚至失活。

【插入序列(IS) 】最简单的转座子只含有与转座有关的酶基因,不含有任何宿主基因(包括抗药性基因),常被称为插入序列。

IS序列都是可以独立存在的单元,带有介导自身移动的蛋白。

【DNA的三级结构】1.一级:DNA分子中各核苷之间的连接方式和排列顺序;2.二级:DNA双螺旋结构;3.三级:DNA的超螺旋结构。

【染色体的三级结构】核小体——染色质——染色体九、RNA转录后的拼接与加工【核内不均一RNA(hnRNA)】1.概念:是mRNA转录的初始产物,平均分子长度为8-10Kb(2Kb-14Kb)左右,比mRNA的平均长度(1.8-2Kb)要大4-5倍。

hnRNA分子经裂解和拼接,只有少部分序列转变为成熟的mRNA,其余在加工过程中被降解。

分子生物学复习总结

分子生物学复习总结

分子生物学复习总结第一篇:分子生物学复习总结分子生物学一.绪论1.分子生物学研究的主要内容包括:1)DNA重组技术;2)基因表达调控的研究;3)生物大分子的结构功能研究;4)基因组、功能基因组与生物信息学研究。

P112.分子生物学研究的三大理论和两大技术保证:1)40年代确定了遗传信息的携带者,即基因的分子载体是DNA而不是蛋白质,解决了遗传的物质基础问题;2)50年代提出了DNA分子的双螺旋结构模型和半保留复制机制,解决了基因的自我复制和世代交替问题;3)50年代末至60年代,相继提出了“中心法则”和操纵子学说,成功地破译了遗传密码,充分认识了遗传信息的流动和表达。

两大技术保证:1)DNA的体外切割和连接;2)DNA的核苷酸序列分析技术。

二.染色体与DNA3.核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。

八聚体在中间,DNA分子盘绕在外,而H1则是在核小体的外面。

每个核小体只有一个H1。

核小体的形成是染色体中DNA压缩的第一个阶段。

4.原核生物DNA的主要特征:1)原核生物中一般只有一条染色体,且大都带有单拷贝基因,只有少数基因(如rRNA基因)是以多拷贝形式存在的;2)整个染色体DNA几乎全部由功能基因与调控序列所组成;3)几乎每个基因序列都与它所编码的蛋白质序列成线性对应状态。

5.真核细胞染色体具有如下特征:1)分子结构相对稳定;2)能够自我复制,使亲、子代之间保持连续性;3)能够指导蛋白质的合成,从而控制整个生命过程;4)能够产生可遗传的变异。

6.染色体上的蛋白质包括组蛋白和非组蛋白。

组蛋白是染色体的结构蛋白,它与DNA形成核小体。

7.组蛋白具有如下特性:1)进化上的极端保守性;2)无组织特异性;3)肽链上氨基酸分布的不对称性,碱性氨基酸集中分布在N端的半条链上;4)组蛋白的修饰作用,包括甲基化、乙酰化、磷酸化及ADP核糖基化等;5)富含赖氨酸的组蛋白H5,H5的磷酸化在蛋白质的失活过程中起重要作用。

基础分子生物学知识点总结

基础分子生物学知识点总结

基础分子生物学知识点总结一、细胞结构与功能1. 细胞膜细胞膜是细胞的外层膜状结构,由脂质和蛋白质构成。

它在细胞中的作用是保护细胞内部结构,控制物质的进出,并参与细胞间相互作用。

2. 细胞核细胞核是细胞内的一种重要细胞器,包含遗传物质DNA和RNA等。

细胞核的主要功能是储存遗传信息,调控基因表达,并参与细胞分裂。

3. 线粒体线粒体是细胞内的能量中心,参与细胞内的氧化还原反应,生成ATP分子,提供细胞所需的能量。

4. 端粒端粒是染色体末端的一种特殊结构,它在细胞分裂过程中保护染色体的稳定性,对细胞的寿命和衰老起重要作用。

5. 液泡液泡是细胞内的一种囊泡结构,内部含有细胞液和可溶性物质,参与细胞代谢和废物的储存与排泄。

6. 高尔基体高尔基体是细胞内的一种细胞器,主要参与细胞内物质的合成、运输和改造,是细胞分泌的重要场所。

7. 酶酶是一种生物催化剂,可以加速生物化学反应的进行,不参与反应本身的化学性质。

在细胞内,酶是细胞内代谢反应的催化剂,起着十分重要的作用。

8. 细胞骨架细胞骨架是由蛋白质构成的细胞内骨架结构,提供细胞形状的支持,维持细胞内器官的位置和运动,参与细胞的分裂和运输。

9. 细胞质细胞质是细胞内由细胞膜包围的一种基质结构,包含细胞器和细胞液等,是细胞内的主要活动场所。

10. 核糖体核糖体是细胞内的一种参与蛋白质合成的细胞器,含有rRNA和蛋白质,是蛋白质翻译的场所。

二、基因结构和功能1. DNADNA是细胞内的一种重要遗传物质,它包含遗传信息,可以编码生物体的形态和功能;2. RNARNA是DNA的合成产物,主要包括mRNA、tRNA和rRNA等,参与蛋白质的合成和翻译过程。

3. 基因基因是DNA表型表达和遗传的基本单位,是细胞内遗传信息的载体,负责编码蛋白质的合成。

4. 基因表达基因表达是指基因产生相应功能蛋白质的过程,包括转录和翻译两个过程。

5. 转录转录是DNA向RNA的过程,包括启动、延伸和终止三个阶段,是基因表达的第一步。

(完整版)分子生物学期末复习

(完整版)分子生物学期末复习

第一讲染色体与DNA一染色体(遗传物质的主要载体)1 DNA作为遗传物质的优点:储存遗传信息量大;碱基互补,双螺旋结构使遗传稳定;核糖2′-OH脱氢使在水中稳定性大于RNA;可以突变以进化,方便修复以稳定遗传2 真核细胞染色体特点:①分子结构相对稳定;②能够自我复制,使亲子代之间保持连续性;③能够指导蛋白质的合成,从而控制整个生命过程;④能够产生可遗传的变异。

3 染色体蛋白主要分为组蛋白和非组蛋白两类。

真核细胞的染色体中,DNA与组蛋白的质量比约为1:14 组蛋白是染色体的结构蛋白,分为H1、H2A、H2B、H3及H4五种,与DNA共同组成核小体。

组蛋白含有大量的赖氨酸和精氨酸,其中H3、H4富含精氨酸,H1富含赖氨酸。

H2A、H2B介于两者之间。

5 组蛋白具有如下特性:①进化上的极端保守性(不同种生物组蛋白的氨基酸组成十分相似)②无组织特异性(只有鸟类、鱼类及两栖类红细胞染色体不含H1而带有H5)③肽链上氨基酸分布的不对称性(碱性氨基酸集中分布在N端的半条链上,而大部分疏水基团都分布在C端。

碱性的半条链易与DNA的负电荷区结合,而另外半条链与其他组蛋白、非组蛋白结合)④存在较普遍的修饰作用(如甲基化、乙基化、磷酸化及ADP核糖基化等。

修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)二 DNA1 真核细胞基因组的最大特点是它含有大量的重复序列2 C值反常现象:①所谓C值,通常是指一种生物单倍体基因组DNA的总量②同类生物不同种属之间DNA总量变化很大。

从编码每类生物所需的DNA量的最低值看,生物细胞中的C值具有从低等生物到高等生物逐渐增加的趋势。

3 真核细胞DNA序列可被分为3类:①不重复序列(它占DNA总量的10%~80%。

不重复序列长约750~2 000bp,相当于一个结构基因的长度)②中度重复序列(各种rRNA、tRNA以及某些结构基因如组蛋白基因等都属于这一类)③高度重复序列—卫星DNA(只存在于真核生物中,占基因组的10%~60%,由6~100个碱基组成)三染色体与核小体1 染色质DNA的Tm值比自由DNA高,说明在染色质中DNA极可能与蛋白质分子相互作用2 在染色质状态下,由DNA聚合酶和RNA聚合酶催化的DNA复制和转录活性大大低于在自由DNA 中的反应3 DNA片段均为200bp基本单位的倍数,核小体是染色质的基本结构单位,由~200 bpDNA和组蛋白八聚体(由H2A、H2B、H3、H4各两个分子生成)组成四级压缩:第一级(DNA+组蛋白→核小体)第二级(核小体→螺线管)第三级(螺线体→超螺旋)第四级(超螺线体→染色体)4 原核生物基因组原核生物的基因组很小,大多只有一条染色体,且DNA含量少主要是单拷贝基因整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。

分子生物学复习资料.doc

分子生物学复习资料.doc

1:操纵子:在细菌基因组中,编码一组在功能上相关的蛋白质的几个结构基因,与共同的控制位点组成一个基因表达的协同单位,称为操纵子。

操纵基因:是操纵子中的控制基因,是阻遏蛋白的结合部位。

2:阻遏蛋白:是负调控系统中由调节基因编码的调节蛋白。

3:RNA病毒:基因组的是核酸是RNA的病毒。

病毒是最简单的生物,外壳蛋白包裹着里面的遗传物质核酸。

4:诱导物:诱导(induction)--可诱导基因在特定环境信号刺激下表达增强的过程。

在可诱导的操纵子中产生诱导作用的小分子物质就叫做诱导物(inducer)。

例如大肠杆菌的乳糖操纵子。

5:Tm(melting temperature):是使DNA双螺旋链解开一半时的温度。

DNA Tm 一般在70—85℃之间。

6:重叠基因:一段核酸序列可以编码多于一个多肽链。

7:内含子:在编码区能够编码蛋白质的序列。

8:外显子:在编码区不能够编码蛋白质的序列。

9:DNA损伤(DNA damage):是指在生物体生命过程中DNA双螺旋结构发生的任何改变。

10:DNA的转座,或称移位(transposition),是由可移位因子(transposable element)介导的遗传物质重排现象。

11:转座:从DNA到DNA的转移过程称转座。

12:反转座:从DNA到RNA再到DNA的转移过程叫反转座。

后者为经RNA介导的转座过程。

反转座仅发生于真核生物中。

13:转录( transcription ):是在DNA指导的RNA聚合酶催化下,按照碱基配对的原则,以四种NTP为原料,合成一条与DNA互补的RNA链的过程。

14:启动子:是RNA聚合酶特异性识别和结合的DNA序列。

15:终止子(terminator) :能提供转录终止信号的DNA序列称为终止子。

16:顺式作用元件(cis—acting element)是指对基因表达有调节活性的DNA序列,其活性只影响与其自身同处在一个DNA分子上的基因17:反式作用因子:与顺式作用元件相互作用的蛋白因子就称为反式作用因子(转录因子)。

《分子生物学》复习资料.docx

《分子生物学》复习资料.docx

分子生物学“95%疾病产生的原因源自基因的无序表达。

”分子生物学的意义,就是消除疾病。

第一章绪论分子生物学研究:核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。

1861年,孟德尔的豌豆杂交试验揭示遗传的物质性(性状表征)1909年,Wilhelm Ludvig Johannsen使用"基因"代表遗传学最基本单位。

1910年,Morgan (美)通过果蝇实验证明:基因遗传性状分离,基因连锁交换现象。

1928年,Griffith (英)肺炎双球菌转化实验。

10年后,Avery (美)证明DNA分子是遗传信息的有效载体。

即标记核昔酸,%标记氨基酸。

噬菌体侵染过程:1尾端吸附,2 DNA注入,3利用细菌生命过程合成自身物质,4合成新 DNA和蛋白质,并组装为新子代噬菌体,5细菌裂解,噬菌体释放。

1953年,Watson和Crick提出脫氧核糖核昔酸的双螺旋膜型。

1958年,Crick提出中心法则。

基因表达调控主要表现:信号转导、转录因子、RNA剪辑。

基因组:人体全部基因总和。

蛋白组:人体全部蛋白总和基因组计划:人体全部基因序列测序。

蛋口组计划(后基因组计划):鉴定基因产物和功能。

第二章染色体与DNA真核细胞染色体蛋白质组成:组蛋片(染色体结构蛋白,组成核小体)、非组蛋白(RNA聚合酶、肌动蛋白、肌球蛋白、微管蛋白)组蛋白特点:1进化上的极端保守性。

2无组织特异性。

3肽链上氨基酸分布不对称。

4具有修饰作用:甲基化、磷酸化5富含赖氨酸的组蛋白H5真核生物基因组DNA分类:1不重复序列:结构基因基本为单拷贝基因2中都重复序列:3髙度重复序列:只在真核生物内出现,不转录。

包含:卫星DNA.反相重叠序列(互补序列重复)、较攵杂单位的重攵(灵长类特有)DNA包装步骤:1核小体的组成:组蛋白+200bp DNAo•核小体组蛋白:H2A S H2B、出、出各两分子生成的八聚体,并伴有Hi在核小体在外边, 直径lOnmo2将200bp的DNA分子(2nm)缠绕在核小体外,从68nm压缩到10nm中,压缩率1/73六个核小体形成一个螺线管,压缩率1/6,直径30血4螺线管形成超螺线管,压缩率1/40,直径4000nni5超螺线管形成染色单体,压缩率1/5原核生物基因组特点:1结构简单2存在转录单元3有重壳基因DNA的一级结构:四种核昔酸的连接排列顺序。

分子生物学复习总结L

分子生物学复习总结L

第一章绪论1、分子生物学(P1):从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。

广义上讲的分子生物学包括对蛋白质和核酸等生物大分子结构与功能的研究,以及从分子水平上阐明生命的现象和生物学规律。

狭义上的概念,即将分子生物学的范畴偏重于核酸(基因)的分子生物学,主要研究基因或DNA结构与功能、复制、转录、表达和调节控制等过程。

2、分子生物学研究的内容:基因与基因组的结构与功能;DNA的复制、转录与翻译;基因表达调控的研究;DNA重组技术;结构分子生物学。

(P1)第三章核酸的结构与功能1、DNA的基本结构——双螺旋结构(1)DNA的一级结构:DNA分子中各脱氧核苷酸之间的连接方式(3´-5´磷酸二酯键)和排列顺序叫做DNA的一级结构,简称为碱基序列。

一级结构的走向的规定为5´→3´。

不同的DNA分子具有不同的核苷酸排列顺序,因此携带有不同的遗传信息。

一级结构的表示法:结构式,线条式,字母式Chargaff首先注意到DNA碱基组成的某些规律性,在1950年总结出DNA碱基组成的规律:腺嘌呤和胸腺嘧啶的摩尔数相等,即A=T。

鸟嘌呤和胞腺嘧啶的摩尔数也相等,即G=C。

含氨基的碱基总数等于含酮基碱基总数,即A+C=G+T。

嘌呤的总数等于嘧啶的总数,即A+G=C+T。

(2)DNA的二级结构双螺旋结构(Watson-Crick模型)①为两条反向平行的多核苷酸链,碱基在螺旋内侧;磷酸和脱氧核糖位于外侧。

②两条链之间靠碱基对之间氢键连为一体,A=T G≡C 。

③螺旋直径2nm,每个螺圈含10个碱基对,螺距3.4nm 。

④表面的深沟、浅沟为蛋白识别DNA单一序列并发生作用的基础。

大沟和小沟:大沟宽2.2nm 小沟宽1.2nm(3)超螺旋是DNA三级结构的一种普遍形式,双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【期末复习总结】基础分子生物学基础分子生物学第一章1. DNA的发现Avery的肺炎双球菌转化实验Hershey和Chase的噬菌体侵染细菌试验2. 基因工程操作的工具限制性内切酶。

DNA连接酶。

运载体。

3. 原核生物的基因组和染色体结构都比较简单,转录和翻译在同一时间和空间内发生,基因表达的调控主要发生在转录水平。

真核生物转录和翻译过程在时间和空间上都被分隔开,且在转录和翻译后都有复杂的信息加工过程,其基因表达的调控可以发生在各种不同的水平上。

其基因表达调控主要表现在信号传导研究、转录因子研究及RNA 剪辑3个方面。

弟一早1. 原核细胞染色体:一般只有一条大染色体且大都带有单拷贝基因,除少数基因外(如rRNA基因)。

整个染色体DNA儿乎全部由功能基因和调控序列所组成。

几乎每个基因序列都与它所编码蛋白质序列呈线性对应关系。

2. 真核生物真核生物染色体中相对分子质量一般大大超过原核生物,并结合有大量的蛋白质DNA具体组成成分为:组蛋白、非组蛋白、DNAo其蛋白质与相应DNA的质量之比约为2:lo5. 组蛋白组蛋白是染色体的结构蛋白,其与DNA组成核小体。

根据其凝胶电泳性质可将其分为HL H2A、H2B、H3及H4。

6. 组蛋白的特性:进化上极端保守性。

其中H3、H4最保守,H1较不保守。

无组织特异性.肽链上氨基酸分布的不对称性.组蛋白的修饰作用。

包括甲基化、乙基化、磷酸化及ADP核糖基化等。

富含赖氨酸的组蛋白H5.7. 非组蛋白色体上除了存在大约与DNA等量的组蛋白以外,还存在大量的非组蛋白。

组蛋白的量大约是组蛋白的60%〜70%,非组蛋白的组织专一性和种属专一性。

组蛋白包括酶类、骨架蛋白、核孔复合物蛋白以及肌动蛋白、肌球蛋白等。

它们也可能是染色质的组成成分。

类常见的非组蛋白:HMC蛋白。

一般认为可能与DNA的超螺旋结构有关。

DNA结合蛋白。

可能是一些与DNA的复制与转录有关的酶或调解物质。

A24非组蛋白。

位于核小体内,功能不详。

8. 真核细胞基因组最大的特点是有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能DNA所隔开,这就是著名的“C值反常现象”。

C值:一种生物单倍体基因组DNA的总量。

真核生物C值是随着生物进化而增加,高等生物的C值…般大于低等生物。

某些两栖类C值大于哺乳动物真核生物DNA序列大致可分为3类:重复序列、中度重复序列、高度重复序列一一卫星DNAoo9. 真核细胞染色体的结构四级分别为:核小体:核小体是由H2A、H2B、H3、H4各两个分子生成的八聚体和由大约200bpDNA组成的。

八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。

每个核小体只有一个Hlo (10纳米纤维)线管:螺线管每一螺旋包含6个核小体,压缩比为6。

这种螺线管是分裂间期和分裂前期染色体的基本组分。

(30纳米)螺旋圆筒:中期染色质是一细长、中空的圆筒,由3螺线管缠绕而成,压缩比为40o 色单体:由超螺旋圆筒再压缩5倍而成。

10. 真核生物基因组的结构特点总结归纳核基因组庞大,一般都远大于原核生物的基因组。

核基因组存在大量的重复序列。

核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要的区别。

核基因组的转录产物为单顺反子。

核基因是断裂基因,有内含子结构。

核基因组存在大量的顺式作用元件。

包括启动子、增强子、沉默子等。

核基因组中存在大量的DNA多态性。

DNA多态性是指DNA序列中发生变异而导致的个体间核昔酸序列的差异,主要包括单核昔酸多态性(SNP) 和串联重复序列多态性两类。

核基因组具有端粒结构。

10. 原核生物基因组:核生物基因组很小,大多只有一条染色体,且DNA含量少。

如大肠杆菌DNA 仅4.6Mb,完全伸展总长约为1.3mm,含4000多个基因。

基因组的结构来看,原核细胞DNA有如下特点:构简练。

非编码序列极少,这与真核细胞DNA冗余现象完全不同。

在转录单元。

多顺反子mRNAo重叠基因。

同一段DNA含有两种不同蛋白质的信息。

11. DNA作为遗传物质的主要优点:息量大,可以缩微面互补,电荷互补,双螺旋结构说明了精确复制机理糖的2,脱氧,在水溶液中稳定性好以突变,以求进化T无U,基因组得以增大,而无C脱氨基成U带来的潜在危险。

(尿嗟嚏DNA 糖昔酶可以灵敏识别DNA中的U而随时将其剔除)。

12. DNA的一级结构Watson和Crick于1953年提出了著名的DNA双螺旋模型。

脱氧核昔酸之间由3' -5'磷酸二酯键连接成DNA链,两条链的碱基通过氢键实现AT、GC配对。

DNA的二级结构DNA二级结构是指两条多核昔酸链反相平行盘绕所生成的双螺旋盘绕结构。

DNA有三种构象:A.DNA、B.DNA、Z-DNA,其中AB为右手构象,Z 为左手构象。

B型为普遍存在的结构。

DNA的高级结构DNA的高级结构指DNA双螺旋进一步扭曲盘旋所形成的特定空间结构。

超螺旋结构是DNA高级结构的主要形式,可分为正超螺旋和负超螺旋两类,它们在不同类型的拓扑异构酶作用下或特殊情况下可相互转变。

拓扑异构酶半不连续复制前导链、岗崎片段、随从链复制子为生物体DNA的复制单位。

14.原核、真核生物DNA复制特点1.原核生物DNA复制的特点DNA双螺旋的解旋。

首先在拓扑异构酶I的作用下解开负超螺旋,并由解链酶解开双链,接着由SSB蛋白来稳定解开的单链,以保证该局部结构不会恢复为双链。

DNA复制的引发。

首先由引发酶(一种RNA聚合酶)在DNA棋板上合成一段RNA链,接着由DNA聚合酶从RNA引物3'端合成新DNA链随链的引发过程由引发体来完成冈崎片段与半不连续复制已知DNA聚合酶的合成方向都是5' -3',这使得后随链无法连续合后随链以5' — 3'的方式先合成片段(冈崎片段),在连接为完整的链。

复制的终止复制叉前移,遇到约22个碱基的重复性终止序列(Ter)时,Ter-Tus 复合物能阻止DNA的解链,阻挡复制叉的前移。

制停止后,仍有50-100bp未被复制,将由修复方式填补空缺,而后两链解开。

DNA聚合酶己知大肠杆菌存在DNA聚合酶I、II、III、IV和V。

DNA聚合酶I非主要聚合酶,可确保DNA合成的准确性,并可切除紫外线照射产生的嚅啜二聚体。

DNA聚合酶II主要生理功能为修复DNAoDNA聚合酶III为主导聚合酶。

DNA聚合酶IV和V主要在SOS修复中起作用。

2. 真核生物DNA复制的特点:核生物每条染色体上可以有多个复制起点。

核生物DNA在完成复制前不能开始新的复制,而原核生物则可以连续开始新的DNA复制,一个复制单元多个复制叉。

DNA复制只能在分裂期进行。

制起点为自主复制序列(ARS)o制叉移动速度慢,仅50bp/s,不到大肠杆菌的1/20。

核生物DNA聚合酶有15种以上,其中DNA聚合酶a主要参与引物合成DNA聚合酶B活性水平稳定,主要在DNA损伤的修复中起作用DNA聚合酶5是主要负责DNA复制的酶DNA聚合酶£的主要功能可能是在去掉RNA引物后把缺口补全。

15.DNA的转座DNA的转座,或称位移,是由可位移因子介导的遗传物质重排现象。

转座子最先由Barbara McClintock于20世纪40年代在玉米遗传学研究时发现的。

转座子(transposon, Tn)是存在于染色体DNA上可自主复制和移位的基本单位。

转座子分为两大类:插入序列:最简单的转座子,不含任何宿主基因。

末端具有倒置重复序列复合型转座子:复合型转座子一类带有某些抗药性基因(或其它宿主基因)的转座子。

两翼往往是两个相同或高度同源的IS序列。

TnA家族。

携带3个基因转座子也存在于真核生物中。

在玉米和果蝇中发现了多个在基因组内随机分布而且能重复移动的转座因子序列。

米中的转座子Ac-Ds系统Spm-dSpm 系统蝇中的转座子:P转座子(可诱发杂种不育)3. 转座作用的机制制性内切酶切开靶序列座子插入,形成具有单链粘性末端的转座子补缺刻,形成直接重复序列。

转作可分为复制型和非复制型两大类制型(TnA类)复制型(IS序列、Mu及Tn5)4. 转座的遗传效应起插入突变,可导致基因表达失活。

生新的基因。

生的染色体畸变,引起DNA缺失或倒位。

起的生物进化,可产生新的生物学功能的基因。

第三章1. 无论在原核还是真核细胞中,RNA链的合成都具有以下几个特点:RNA按5' -3'方向合成DNA双链中的反义链为模板需要引物参与成的RNA有与DNA编码链相同的序列(A-U)录的基本过程包括:模板的识别,转录起始,转录延伸,转录终止2. 模板的识别模板的识别阶段主要指RNA聚合酶与启动子DNA双链相互作用并与之相结合的过程。

启动子是基因转录起始所必需的一段DNA序列,是基因表达调控的上游顺式作用元件之一。

真核细胞中的模板识别与原核细胞有所不同,需要一些转录调控因子 (辅助蛋白),RNA聚合酶才能识别启动子并形成转录前起始复合物(PIC)o转录起始RNA聚合酶结合到启动子上以后,使启动子附近的DNA解旋并解链, 形成转录泡以促使核糖核昔酸与模板DNA配对。

转录起始即是RNA链上第一个核昔酸链的产生。

无需引物。

起始后直到形成9个核昔酸的过程是通过启动子阶段,此时RNA聚合酶一直在启动子处,之后进入正常延伸。

转录延伸录延伸即是RNA聚合酶释放。

因子离开启动子后,核心酶沿着模板DNA移动并使新生RNA链不断伸长的过程。

转录终止RNA链延伸到终止位点时,RNA将停止合成,转录泡瓦解,DNA链复原,新生RNA链和RNA聚合酶将被释放下来。

这即是转录终止。

3.RNA聚合酶大肠杆菌RNA聚合酶:(2个a亚基1个B亚基1个B '亚基)・・(核心酶)+1个。

亚基..(全酶)亚基的功能:转录的其实过程需要全酶, 延伸过程仅需要核心酶。

亚基和B'亚基组成了聚合酶的催化中心,它们在序列上与真核生物RNA聚合酶的两个大亚基同源。

P亚基能与模板DNA、新生RNA链及核昔酸底物相结合。

亚基可能与核心酶的组装及启动子的识别有关,并参与RNA聚合酶和部分调节因子的相互作用。

因子的作用是负责模板链的选择与转录的起始,它是酶的别构效应物,使酶专一性识别启动子。

真核生物RNA聚合酶真核生物中共有3类RNA聚合酶。

酶位置转录产物相对活性对a ■鹅膏蕈的敏感性RNA聚合酶I 核仁28s,18s,5.8s rRNAs50〜70% 不敏感RNA 聚合酶II 核质hnRNA,mRNA,某些SnRNAs 20〜40%高度敏感RNA 聚合酶III 核质tRNA,5SrRNA,某些SnRNAs 〜10%存在物种特异性启动子区的基本结构动子是一段位于结构基因5'端上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合,并具有转录起始的特异性。

相关文档
最新文档