2018年新人教A版高中数学必修2全册同步检测含答案解析
2018学年高一数学人教A版必修2练习:章末整合2 含解析
章末知识整合专题一公理的应用1.证明共面问题.证明共面问题,一般有两种方法.一是由某些元素确定一个平面,再证明其余元素在这个平面内;二是分别由不同元素确定若干个平面,再证明这些平面重合.2.证明三点共线问题.证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上.3.证明三线共点问题.证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上的问题.例1 正方体ABCDA1B1C1D1中,对角线A1C与平面BDC1交于点O,AC,BD交于点M,求证:C1,O,M三点共线.证明:如图,∵AA1∥CC1,∴AA1,CC1确定一个平面A1C,显然有A1C⊂平面A1C,又∵A1C∩平面BC1D=O,AC∩BD=M,∴点C1,O,M三点在平面A1C内,也在平面BC1D内,从而C1,O,M三点都在这两个平面的交线上,即C1,O,M三点共线.►跟踪训练1.如图,已知E,F,G,H分别是正方体ABCDA1B1C1D1的棱AB,BC,CC1,C1D1的中点.证明:FE,HG,DC三线共点.证明:连接C1B,由题意知,HC1綊EB,∴四边形HC1BE是平行四边形.∴HE∥C1B.又∵C1G=GC,CF=BF,故GF綊12C1B.∴GF∥HE,且GF≠HE.∴HG与EF相交.设交点为K,则K∈HG,又∵HG⊂平面D1C1CD,∴K∈平面D1C1CD.∵K∈EF,EF⊂平面ABCD.∴K∈平面ABCD.∵平面D1C1CD∩平面ABCD=DC.∴K∈DC.∴FE,HG,DC三线共点.2.如图所示,在正方体ABCDA1B1C1D1中,E是CC1的中点,画出平面AED1与正方体有关各面的交线.解析:如图所示,设D 1E 与DC 的延长线交于G ,连接AG ,设AG 与BC 交于F ,连接EF ,则AD 1,D 1E ,EF 和AF 为所求作的交线.(注:画截面与正方体有关的交线,必须作出它与有关棱的交点,根据“同一平面内两直线不平行必相交”和公理1去画直线确定交点)专题二 空间中的位置关系1.空间中两直线的位置关系⎩⎪⎨⎪⎧相交平行异面2.空间中直线与平面的位置关系⎩⎪⎨⎪⎧直线在平面内直线与平面平行直线与平面相交3.两个平面的位置关系⎩⎪⎨⎪⎧相交平行 求证:两条平行线中的一条与已知平面相交,则另一条也与该平面相交.已知:直线a ∥b ,a ∩平面α=P ,求证:直线b 与平面α相交.证明:∵a ∥b ,∴a 和b 确定平面设为β.∵a ∩α=P ,∴平面α和平面β相交于过点P 的直线,设为l. ∵在平面β内l 与两条直线a ,b 中的一条直线a 相交,∴l 必与b 相交于Q ,即b ∩l =Q ,又因为b 不在平面α内(若b在α内,则a∥b,∴a∥α,与a与α相交矛盾),故直线b和平面α相交.►跟踪训练3.已知直线a与b不平行,且a⊥平面α,b⊥平面β,试判断平面α与平面β的位置关系,并证明你的结论.解析:平面α与平面β相交.下面用反证法证明:假设α与β不相交,则α∥β.∵a⊥α,∴a⊥β.又b⊥β,∴a∥b,这和a与b不平行矛盾.∴假设不成立,故平面α与平面β一定相交.4.求证:如果过平面内一点的直线平行于与此平面平行的一条直线那么这条直线在此平面内.已知:l∥α,P∈α,P∈m,m∥l,求证:m⊂α.证明:设l与P确定平面为β,且α∩β=m′,∵l∥α,∴l∥m′.又∵l∥m,m,m′都经过点P,∴m,m′重合,∴m⊂α.专题三空间中的平行和垂直关系1.空间中的平行关系有三类:一是线线平行,由平行线的传递性和平面平行的性质定理可以证明线线平行,由线面平行(或垂直)的性质定理可以证明线线平行,根据线线平行可以得出两条异面直线所成的角,可以证明线面平行等.二是线面平行,由线面平行的定义和判定定理可证明线面平行.三是两个平面平行,用定义和判定定理可以证明两个平面平行,或垂直于同一条直线的两个平面平行,或平行于同一个平面的两个平面平行.由面面平行可以得出线面平行和线线平行,平行关系的转化是:2.空间中的垂直关系有三类:一是线线垂直,空间两直线垂直有相交垂直和异面垂直两种情形,由两直线所成的角是直角或者由线面垂直推出线线垂直.二是线面垂直,利用线面垂直的定义、判定定理、平面与平面垂直的性质定理来判定线面垂直.三是面面垂直,利用直二面角和面面垂直的判定定理判定两平面垂直.垂直关系的转化:如图所示,AD⊥平面ABC,CE⊥平面ABC,AC=AD=AB=1,BC=2,凸多面体ABCED的体积为12,F为BC的中点.(1)求证:AF∥平面BDE;(2)求证:平面BDE⊥平面BCE.证明:(1)∵AD⊥平面ABC,CE⊥平面ABC,∴四边形ACED为梯形,且平面ABC⊥平面ACED,∵BC2=AC2+AB2,∴AB⊥AC,∵平面ABC∩平面ACED=AC,∴AB⊥平面ACED,即AB为四棱锥BACED的高,∵V BACED=13·S ACED·AB=13×12×(1+CE)×1×1=12,∴CE=2,取BE的中点G,连接GF,GD,∴GF为三角形BCE的中位线,∴GF∥EC∥DA,GF=12CE=DA,∴四边形GFAD为平行四边形,∴AF∥GD,又GD⊂平面BDE,AF⊄平面BDE,∴AF∥平面BDE.(2)∵AB=AC,F为BC的中点,∴AF⊥BC,又GF⊥AF,BC∩GF=F,∴AF⊥平面BCE,∵AF∥GD,∴GD⊥平面BCE,又GD⊂平面BDE,∴平面BDE⊥平面BCE.►跟踪训练5.如图,在直四棱柱ABCDA1B1C1D1中,A1C1⊥B1D1,E,F 分别是AB,BC的中点.求证:(1)EF∥平面A1BC1;(2)平面D1DBB1⊥平面A1BC1.证明:(1)连接AC,则AC∥A1C1,而E,F分别是AB,BC的中点,所以EF∥AC,则EF∥A1C1,又∵EF⊄平面A1BC1,A1C1⊂平面A1BC1,故EF∥平面A1BC1.(2)因为BB1⊥平面A1B1C1D1,所以BB1⊥A1C1,又A1C1⊥B1D1,BB1∩B1D1=B1,则A1C1⊥平面D1DBB1,又A1C1⊂平面A1BC1,所以平面D1DBB1⊥平面A1BC1.6.某几何体的三视图如图所示,P是正方形ABCD对角线的交点,G是PB的中点.(1)根据三视图,画出该几何体的直观图.(2)在直观图中,①证明:PD∥平面AGC;②证明:平面PBD⊥平面AGC.(1)解析:该几何体的直观图如图甲所示.(2)证明:如图乙,①连接AC,BD交于点O,连接OG,因为G为PB的中点,O为BD的中点,所以OG∥PD.又OG⊂平面AGC,PD⊄平面AGC,所以PD∥平面AGC.②连接PO,由三视图可得到,PO⊥平面ABCD,所以AO⊥PO.又AO⊥BO,BO∩PO=O,所以AO⊥平面PBD.因为AO⊂平面AGC,所以平面PBD⊥平面AGC.7.如图1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分别是AC,AB上的点,CD=BE=2,O为BC的中点,将△ABC沿DE折起,得到如图2所示的四棱锥A′BCDE,其中A′O = 2.(1)求证:A′O⊥平面BCDE;(2)求二面角A′CDB的平面角的余弦值.解析:因为在等腰直角三角形ABC中,∠B=∠C=45°,CD=BE=2,CO=BO=3.所以在△COD中,OD=CO2+CD2-2CO·CD cos 45°=5,同理得OE= 5.因为AD=A′D=A′E=AE=22,A′O=3,所以A′O2+OD2=A′D2,A′O2+OE2=A′E2,所以∠A′OD =∠A′OE=90°.所以A′O⊥OD,A′O⊥OE.又OD∩OE=O,所以A′O⊥平面BCDE.(2)过点O作OF⊥CD的延长线于点F,连接A′F.因为A′O⊥平面BCDE,根据三垂线定理,有A′F⊥CD,所以∠A′FO为二面角A′CDB的平面角.在Rt△COF中,OF=CO·cos 45°=32 2,在Rt△A′OF中,A′F=AO2+OF2=30 2.所以cos∠A′FO=OFA′F=155,所以二面角A′CDB的平面角的余弦值为15 5.。
2018版高中数学人教A版 必修2第3章 学业分层测评18 含解析 精品
学业分层测评(十八)(建议用时:45分钟)[学业达标]一、选择题1.下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示【解析】当直线与y轴重合时,斜率不存在,选项A、D不正确;当直线垂直于x轴或y轴时,直线方程不能用截距式表示,选项C不正确;当x1≠x2,y1≠y2时由直线方程的两点式知选项B正确,当x1=x2,y1≠y2时直线方程为x -x1=0,即(x-x1)(y2-y1)=(y-y1)(x2-x1),同理x1≠x2,y1=y2时也可用此方程表示.故选B.【答案】 B2.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是()A.3x-y-8=0B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=0【解析】k AB=1-3-5-1=13,AB的中点坐标为(-2,2),所以所求方程为:y-2=-3(x+2),化简为3x+y+4=0.【答案】 B3.若直线ax+by+c=0经过第一、二、三象限,则() A.ab>0,bc>0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<0【解析】直线经过第一、二、三象限,则由y=-ab x-cb可知,⎩⎪⎨⎪⎧-a b >0,-c b >0⇒⎩⎨⎧ab <0,bc <0,选D.【答案】 D4.已知直线l 1:(k -3)x +(3-k )y +1=0与直线l 2:2(k -3)x -2y +3=0垂直,则k 的值是( )A .2B .3C .2或3D .2或-3【解析】 ∵l 1⊥l 2,∴2(k -3)2-2(3-k )=0, 即k 2-5k +6=0,得k =2或k =3. 【答案】 C5.两条直线l 1:x a -y b =1和l 2:x b -ya =1在同一直角坐标系中的图象可以是( )【解析】 化为截距式x a +y -b =1,x b +y-a =1.假定l 1,判断a ,b ,确定l 2的位置,知A 项符合. 【答案】 A 二、填空题6.过点P (1,2)且在两坐标轴上截距和为0的直线方程为________. 【解析】 当直线过原点时,在两坐标轴上的截距均为0,满足题意.此时直线方程为y =2x ,当直线不过原点时,可知直线在两坐标轴上的截距互为相反数,且不为0.可设直线方程为x a +y-a =1,即x -y =a ,因为直线过P (1,2),所以1-2=a ,所以a =-1,直线方程为x -y +1=0【答案】 y =2x 或x -y +1=07.直线l 过点P (-1,2),分别与x ,y 轴交于A ,B 两点,若P 为线段AB 的中点,则直线l 的方程为__________.【解析】 设A (x,0),B (0,y ).由P (-1,2)为AB 的中点, ∴⎩⎪⎨⎪⎧x +02=-1,0+y 2=2,∴⎩⎨⎧x =-2,y =4.由截距式得l 的方程为x -2+y4=1,即2x -y +4=0. 【答案】 2x -y +4=0 三、解答题8.若方程(m 2-3m +2)x +(m -2)y -2m +5=0表示直线. (1)求实数m 的范围;(2)若该直线的斜率k =1,求实数m 的值.【解】 (1)由⎩⎨⎧m 2-3m +2=0,m -2=0,解得m =2,若方程表示直线,则m 2-3m +2与m -2不能同时为0,故m ≠2. (2)由-(m 2-3m +2)m -2=1,解得m =0.9.已知三角形的三个顶点A (0,4),B (-2,6),C (-8,0). (1)求三角形三边所在直线的方程; (2)求AC 边上的垂直平分线的方程. 【解】 (1)直线AB 的方程为y -46-4=x -0-2-0, 整理得x +y -4=0; 直线BC 的方程为y -06-0=x +8-2+8,整理得x -y +8=0;由截距式可知,直线AC 的方程为x -8+y4=1,整理得x -2y +8=0. (2)线段AC 的中点为D (-4,2),直线AC 的斜率为12,则AC 边上的垂直平分线的斜率为-2,所以AC 边的垂直平分线的方程为y -2=-2(x +4),整理得2x +y +6=0.[能力提升]10.设A ,B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A .2y -x -4=0B .2x -y -1=0C .x +y -5=0D .2x +y -7=0【解析】 由x -y +1=0得A (-1,0),又P 的横坐标为2,且|P A |=|PB |,∴P 为线段AB 中垂线上的点,且B (5,0).PB 的倾斜角与P A 的倾斜角互补,则斜率互为相反数,故PB 的斜率k PB =-1,则方程为y =-(x -5),即x +y -5=0.【答案】 C11.直线过点P ⎝ ⎛⎭⎪⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求出直线的方程;若不存在,请说明理由. 【解】 设直线方程为x a +yb =1(a >0,b >0), 若满足条件(1),则a +b +a 2+b 2=12. ① 又∵直线过点P ⎝ ⎛⎭⎪⎫43,2,∴43a +2b =1.②由①②可得5a 2-32a +48=0,解得⎩⎨⎧a =4,b =3或⎩⎪⎨⎪⎧a =125,b =92,∴所求直线的方程为x 4+y 3=1或5x 12+2y9=1, 即3x +4y -12=0或15x +8y -36=0. 若满足条件(2),则ab =12, ③ 由题意得:43a +2b =1,④由③④整理得a 2-6a +8=0, 解得⎩⎨⎧ a =4,b =3或⎩⎨⎧a =2,b =6,∴所求直线的方程为x 4+y 3=1或x 2+y6=1, 即3x +4y -12=0或3x +y -6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x +4y -12=0.。
2018版高中数学(人教A版)必修2同步练习题: 第1章 学业分层测评3
学业分层测评(三)(建议用时:45分钟)[学业达标]一、选择题1.下列说法:①平行投影的投影线互相平行,中心投影的投影线相交于一点;②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③两条相交直线的平行投影是两条相交直线.其中正确的个数为()A.0 B.1C.2 D.3【解析】序号正误原因分析①√由平行投影和中心投影的定义可知②×空间图形经过中心投影后,直线可能变成直线,也可能变成一个点,如当投影中心在直线上时,投影为点;平行线有可能变成相交线,如照片中由近到远物体之间的距离越来越近,最后相交于一点③×两条相交直线的平行投影是两条相交直线或一条直线【答案】 B2.下列几何体各自的三视图中,只有两个视图相同的是()图1-2-13A.①③B.②③C.②④D.③④【解析】①③的三个三视图都相同,②④的正视图和侧视图相同.故选C.【答案】 C3.一根钢管如图1-2-14所示,则它的三视图为()图1-2-14A B C D【解析】该几何体是由圆柱中挖去一个圆柱形成的几何体,三视图为B.【答案】 B4.将长方体截去一个四棱锥,得到的几何体如图1-2-15所示,则该几何体的侧视图为()图1-2-15A B C D【解析】被截去的四棱锥的三条可见棱中,有两条为长方体的面对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有D符合.故选D.【答案】 D5.如图1-2-16,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影不可能是()图1-2-16A B C D【解析】由题意知光线从上向下照射,得到 C.光线从前向后照射,得到A.光线从左向右照射得到B.故空间四边形D′OEF在该正方体的各个面上的投影不可能是D,故选D.【答案】 D二、填空题6.若一个正三棱柱的三视图如图1-2-17所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是__________和__________.图1-2-17【答案】24[正三棱柱的高同侧视图的高,侧视图的宽度恰为底面正三角形的高,故底面边长为4.]7.如图1-2-18,图(1)、(2)、(3)是图(4)表示的几何体的三视图,其中图(1)是__________,图(2)是__________,图(3)是__________(写出视图名称).图1-2-18正视图侧视图俯视图[由几何体的位置知,(1)为正视图,(2)为侧视图,(3)为俯视图.]三、解答题8.画出如图1-2-19所示的物体的三视图.图1-2-19【解】三视图如图所示.9.已知一个几何体的三视图如图1-2-20,试根据三视图想象物体的原形,并试着画出实物草图.图1-2-20【解】由三视图知,该物体下部为长方体、上部为一个与长方体等高的圆柱,且圆柱的底面相切于长方体的上底面,由此可画出实物草图如图.[能力提升]10.如图1-2-21所示,画出四面体AB1CD1三视图中的正视图,以面AA1D1D 为投影面,则得到的正视图可以为()图1-2-21A[显然AB1,AC,B1D1,CD1分别投影得到正视图的外轮廓,B1C为可见实线,AD1为不可见虚线.故A正确.]11.一个物体由几块相同的正方体组成,其三视图如图1-2-22所示,试据图回答下列问题:图1-2-22(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?【解】(1)该物体一共有两层,从正视图和侧视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从侧视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个,该物体一共由7个小正方体构成.(四)之所以半路要拦下他们爷俩并进行“采访”(这个词汇用大了,说“随便聊聊”更合适),就是因为我从8岁的陈子昳身上突然想到了如今的教育。
2018年高中数学人教A版必修二章末综合检测二 含解析 精品
章末综合检测(二)时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若平面α∥平面β,直线a⊂平面α,点B∈平面β,则在平面β内过点B的所有直线中()A.不一定存在与a平行的直线B.一定不存在与a平行的直线C.存在无数条与a平行的直线D.存在唯一一条与a平行的直线解析:选D.因为平面α∥平面β,直线a⊂平面α,点B∈平面β,所以B∉a,过直线a与点B作平面γ,则平面γ与平面β的交线即为与a平行的唯一直线,故选D.2.给出下列命题:①过平面外一直线有且仅有一个平面和这个平面平行;②如果一个平面经过另一个平面的斜线,那么这两个平面不可能垂直;③若直角三角形ABC在平面α内的射影仍是直角三角形,则平面ABC∥平面α.其中正确命题的个数为()A.0B.1C.2 D.3解析:选A.对于①,平面外的直线有两类,其一是与平面相交的直线,其二是与平面平行的直线,显然①不正确;对于②,容易判断②是错误的;对于③,平面ABC与平面α也有可能相交,因此③不正确.故选A.3.对两条不相交的空间直线a与b,必存在平面α,使得()A.a⊂α,b⊂αB.a⊂α,b∥αC.a⊥α,b⊥αD.a⊂α,b⊥α解析:选B.因为已知两条不相交的空间直线a和b,所以可以在直线a上任取一点A,则A∉b,过A作直线c∥b,则过a,c必存在平面α且使得a⊂α,b∥α.4.在如图所示的四个正方体中,能得出AB⊥CD的是()解析:选A.A中,因为CD⊥平面AMB,所以CD⊥AB;B中,AB与CD成60°角;C中,AB与CD成45°角;D中,AB与CD夹角的正切值为2.5.如图所示,将无盖正方体纸盒展开,直线AB,CD在原正方体中的位置关系是()A.平行B.相交C.异面D.相交成60°解析:选D.如图所示,△ABC为正三角形,故AB,CD相交成60°.6.设A、B、C、D是空间四个不同的点,在下列结论中,不正确的是()A.若AC与BD共面,则AD与BC共面B.若AC与BD是异面直线,则AD与BC是异面直线C.若AB=AC,DB=DC,则AD=BCD.若AB=AC,DB=DC,则AD⊥BC解析:选C.对于A选项,若AC与BD共面,则A,B,C,D四点共面,则AD与BC共面;对于B选项,若AC与BD是异面直线,则A,B,C,D四点不共面,则AD与BC是异面直线;对于C选项,若AB=AC,DB=DC,则四边形ABCD可以是空间四边形,AD 不一定等于BC;对于D选项,若AB=AC,DB=DC,可以证明AD⊥BC.7.如图,在直三棱柱ABC-A1B1C1中,D为A1B1的中点,AB=BC=BB1=2,AC=25,则异面直线BD与AC所成的角为()A.30°B.45°C.60°D.90°解析:选C.如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角.由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.8.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定解析:选D.如图,在长方体ABCD-A1B1C1D1中,记l1=DD1,l2=DC,l3=DA,若l4=AA1,满足l1⊥l2,l2⊥l3,l3⊥l4,此时l1∥l4,可以排除选项A和C.若l4=DC1,也满足条件,可以排除选项B.故选D.9.在正方体ABCD A1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H 与平面AD1C的位置关系是()A.垂直B.平行C.斜交D.以上都不对解析:选A.如图,连接BD,B1D,B1D1,则平面DBB1D1⊥平面AD1C,平面DBB1D1∩平面AD1C=D1O.因为B1H⊥D1O,所以B1H⊥平面AD1C.10.在等腰Rt△A′BC中,A′B=BC=1,M为A′C的中点,沿BM把它折成二面角,折后A 与C的距离为1,则二面角C-BM-A的大小为()A.30°B.60°C.90°D.120°解析:选C .如图所示,由A ′B =BC =1,∠A ′BC =90°,得A ′C =2. 因为M 为A ′C 的中点,所以MC =AM =22,且CM ⊥BM ,AM ⊥BM , 所以∠CMA 为二面角C -BM -A 的平面角. 因为AC =1,MC =AM =22, 所以∠CMA =90°.11.已知直二面角α-l -β,A ∈α,AC ⊥l ,C 为垂足,B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A .62 B .52 C .63D .53解析:选C .如图,作DE ⊥BC 于点E ,由α-l -β为直二面角,AC ⊥l ,得AC ⊥β,进而AC ⊥DE ,又BC ⊥DE ,BC ∩AC =C ,于是DE ⊥平面ABC ,故DE 为D 到平面ABC 的距离.在Rt △BCD 中,利用等面积法得DE =BD ·DC BC =1×23=63.12.动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于点M ,N .设BP =x ,MN =y ,则函数y =f (x )的图象大致是( )解析:选B .取AA 1的中点E 和CC 1的中点F ,连接EF ,则MN 在平面BFD 1E 内平行移动,且MN ∥EF ,当P 点移动到BD 1的中点时,MN 有唯一的最大值,排除答案A ,C ;当P 点移动时,由于总保持MN ∥EF ,所以x 与y 的关系是线性的(例如:取AA 1=1,当x ∈⎝⎛⎦⎤0,32时,x 32=y 3⇒y =2x .同理,当x ∈⎝⎛⎦⎤32,3时,有3-x 32=y 3⇒y =23-2x ,排除答案D ).二、填空题:本题共4小题,每小题5分.13.已知a ,b 表示直线,α,β,γ表示不重合平面. ①若α∩β=a ,b ⊂α,a ⊥b ,则α⊥β;②若a ⊂α,a 垂直于β内任意一条直线,则α⊥β; ③若α⊥β,α∩β=a ,α∩γ=b ,则a ⊥b ; ④若a ⊥α,b ⊥β,a ∥b ,则α∥β. 上述命题中,正确命题的序号是 .解析:对①可举反例,如图,需b ⊥β才能推出α⊥β;对③可举反例说明,当γ不与α,β的交线垂直时,即可知a ,b 不垂直;根据面面、线面垂直的定义与判定知②④正确. 答案:②④ 14.如图,在△ABC 中,∠ACB =90°,直线l 过点A 且垂直于平面ABC ,动点P ∈l ,当点P 逐渐远离点A 时,∠PCB 的大小 .(填“变大”“变小”或“不变”)解析:由于直线l 垂直于平面ABC ,所以l ⊥BC ,又∠ACB =90°,所以AC ⊥BC ,所以BC ⊥平面APC ,所以BC ⊥PC ,即∠PCB 为直角,与点P 的位置无关. 答案:不变 15.如图,四面体P -ABC 中,P A =PB =13,平面P AB ⊥平面ABC ,∠ABC =90°,AC =8,BC =6,则PC = . 解析:取AB 的中点E ,连接PE . 因为P A =PB , 所以PE ⊥AB .又平面P AB ⊥平面ABC , 所以PE ⊥平面ABC . 连接CE ,所以PE ⊥CE . ∠ABC =90°,AC =8,BC =6, 所以AB =27,PE = P A 2-AE 2=6,CE = BE 2+BC 2=43, PC =PE 2+CE 2=7.答案:716.如图所示,在直四棱柱ABCD A 1B 1C 1D 1中,当四边形A 1B 1C 1D 1满足条件 时,有A 1C ⊥B 1D 1(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况).解析:由直四棱柱可知CC 1⊥平面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使得B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1.此题还可以填写四边形A 1B 1C 1D 1是菱形、正方形等条件. 答案:B 1D 1⊥A 1C 1(答案不唯一)三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)在空间四边形ABCD 中,E ,H 分别是AB ,AD 的中点,F ,G 分别是BC ,CD 上的点,且CF CB =CG CD =23.求证:(1)E ,F ,G ,H 四点共面; (2)三条直线EF ,GH ,AC 交于一点.证明:(1)在△ABD 中, E ,H 分别是AB 和AD 的中点, 所以EH ═∥12BD .在△CBD 中,CF CB =CG CD =23,所以FG ═∥23BD . 所以EH ∥FG .所以E ,F ,G ,H 四点共面. (2)由第一问可知,EH ∥FG , 且EH ≠FG ,所以它们的延长线必相交于一点,设为点P .因为AC 是平面ABC 和平面ADC 的交线,EF ⊂平面ABC ,GH ⊂平面ADC ,平面ABC ∩平面ADC =P ,所以由公理3知P ∈AC .所以三条直线EF ,GH ,AC 交于一点. 18.(本小题满分12分)如图,在正方体ABCD -A 1B 1C 1D 1中,S 是B 1D 1的中点,E 、F 、G 分别是BC 、DC 、SC 的中点,求证:(1)直线EG ∥平面BDD 1B 1; (2)平面EFG ∥平面BDD 1B 1. 证明:(1)如图,连接SB ,因为E 、G 分别是BC 、SC 的中点,所以EG∥SB.又因为SB⊂平面BDD1B1,EG⊄平面BDD1B1,所以直线EG∥平面BDD1B1.(2)连接SD,因为F、G分别是DC、SC的中点,所以FG∥SD.又因为SD⊂平面BDD1B1,FG⊄平面BDD1B1,所以FG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B1.19.(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(1)证明:BC1∥平面A1CD;(2)设AA1=AC=CB=2,AB=22,求三棱锥C-A1DE的体积.解:(1)证明:连接AC1交A1C于点F,则F为AC1中点.又D是AB中点,连接DF,则BC1∥DF.因为DF⊂平面A1CD,BC1⊄平面A1CD,所以BC1∥平面A1CD.(2)因为ABC-A1B1C1是直三棱柱,所以AA1⊥CD.因为AC=CB,D为AB的中点,所以CD⊥AB.又AA 1⊥AB ,AA 1∩AB =A ,所以CD ⊥平面ABB 1A 1. 由AA 1=AC =CB =2,AB =22得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3, 故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以V 三棱锥C -A 1DE=13×12×6×3×2=1. 20.(本小题满分12分)如图,在四棱锥P -ABCD 中,侧面P AD 是正三角形,且与底面ABCD 垂直,底面ABCD 是边长为2的菱形,∠BAD =60°,N 是PB 的中点,E 为AD 的中点,过A ,D ,N 的平面交PC 于点M .求证:(1)EN ∥平面PDC ; (2)BC ⊥平面PEB ; (3)平面PBC ⊥平面ADMN .证明:(1)因为AD ∥BC ,BC ⊂平面PBC , AD ⊄平面PBC ,所以AD ∥平面PBC .又平面ADMN ∩平面PBC =MN , 所以AD ∥MN . 又因为AD ∥BC , 所以MN ∥BC . 又因为N 为PB 的中点, 所以M 为PC 的中点, 所以MN =12BC .因为E 为AD 的中点, DE =12AD =12BC =MN ,所以DE ═∥MN ,所以四边形DENM 为平行四边形, 所以EN ∥DM .又因为EN ⊄平面PDC ,DM ⊂平面PDC , 所以EN ∥平面PDC .(2)因为四边形ABCD 是边长为2的菱形,且∠BAD =60°,E 为AD 中点,所以BE ⊥AD .又因为PE ⊥AD ,PE ∩BE =E , 所以AD ⊥平面PEB . 因为AD ∥BC , 所以BC ⊥平面PEB . (3)由第二问知AD ⊥PB . 又因为P A =AB , 且N 为PB 的中点, 所以AN ⊥PB . 因为AD ∩AN =A , 所以PB ⊥平面ADMN . 又因为PB ⊂平面PBC , 所以平面PBC ⊥平面ADMN . 21.(本小题满分12分)如图所示,在五面体ABCDEF 中,点O 是矩形ABCD 的对角线的交点,而△CDE 是等边三角形,棱EF ═∥12BC . (1)求证:FO ∥平面CDE ;(2)设BC =3CD ,求证:EO ⊥平面CDF . 证明:(1)取CD 的中点M ,连接OM ,EM ,在矩形ABCD 中,OM ═∥12BC . 又EF ═∥12BC ,所以EF ═∥OM . 于是四边形EFOM 为平行四边形, 所以FO ∥EM .因为FO ⊄平面CDE ,EM ⊂平面CDE , 所以FO ∥平面CDE .(2)连接FM .由第一问知,在等边三角形CDE 中,CM =DM ,所以EM ⊥CD 且EM =32CD =12BC =EF . 因此▱EFOM 为菱形,所以EO ⊥FM .因为CD ⊥OM ,CD ⊥EM ,所以CD ⊥平面EOM .所以CD ⊥EO .而FM ∩CD =M ,所以EO ⊥平面CDF .22.(本小题满分12分)如图(1),在矩形ABCD 中,已知AB =2,AD =22,M ,N 分别为AD 和BC 的中点,对角线BD 与MN 交于O 点,沿MN 把矩形ABNM 折起,使两个半平面所成二面角为60°,如图(2).(1)求证:BO ⊥DO ;(2)求AO 与平面BOD 所成角的正弦值.解:(1)证明:翻折前,由于M ,N 是矩形ABCD 的边AD 和BC 的中点,所以AM ⊥MN ,DM ⊥MN ,折叠后垂直关系不变,所以∠AMD 是两个半平面所成二面角的平面角,所以∠AMD =60°.连接AD ,由AM =DM ,可知△MAD 是正三角形,所以AD =2.在Rt △BAD 中,AB =2,AD =2,所以BD =6,由题可知BO =OD =3,由勾股定理可知三角形BOD 是直角三角形,所以BO ⊥DO .(2)如图,设E ,F 分别是BD ,CD 的中点,连接EF ,OE ,OF ,BC ,又BD =6,BC =2,CD =2,所以DC ⊥BC ,则EF ⊥CD .又OF ⊥CD ,所以CD ⊥平面OEF ,OE ⊥CD .又BO =OD ,所以OE ⊥BD ,又BD ∩CD =D ,所以OE ⊥平面ABCD .又OE ⊂平面BOD ,所以平面BOD ⊥平面ABCD .过A 作AH ⊥BD ,由面面垂直的性质定理,可得AH ⊥平面BOD ,连接OH ,则OH 是AO 在平面BOD 内的投影,所以∠AOH 为AO 与平面BOD 所成的角.又AH 是Rt △ABD 斜边上的高,所以AH =233,又OA =3,所以sin ∠AOH =AH OA =23.故AO 与平面BOD 所成角的正弦值为23.。
新人教A版高中数学必修二全册同步课时分层练习
新人教A版高中数学必修二全册同步课时分层练习课时分层作业(一) 棱柱、棱锥、棱台的结构特征(建议用时:45分钟)[基础达标练]一、选择题1.观察如下所示的四个几何体,其中判断不正确的是( )A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台B[结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.]2.下列说法正确的是( )A.有2个面平行,其余各面都是梯形的几何体是棱台B.多面体至少有3个面C.各侧面都是正方形的四棱柱一定是正方体D.九棱柱有9条侧棱,9个侧面,侧面为平行四边形D[选项A错误,反例如图①;一个多面体至少有4个面,如三棱锥有4个面,不存在有3个面的多面体,所以选项B错误:选项C错误,反例如图②,上、下底面是全等的菱形,各侧面是全等的正方形,它不是正方体;根据棱柱的定义,知选项D正确.]①②3.如图所示都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )①②③④A.①②B.②③C.③④D.①④B[在图②③中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图②③完全一样,而①④则不同.]4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定A[如图.因为有水的部分始终有两个平面平行,而其余各面都易证是平行四边形,因此是棱柱.]5.用一个平面去截一个三棱锥,截面形状是( )A.四边形B.三角形C.三角形或四边形D.不可能为四边形C[按如图①所示用一个平面去截三棱锥,截面是三角形;按如图②所示用一个平面去截三棱锥,截面是四边形.]①②二、填空题6.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.12[该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.] 7.如图所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.10[将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.]8.以三棱台的顶点为三棱锥的顶点,这样可以把一个三棱台分成________个三棱锥.3[如图,三棱台可分成三棱锥C1ABC,三棱锥C1ABB1,三棱锥AA1B1C1,三个.]三、解答题9.如图所示的几何体中,所有棱长都相等,分析此几何体的构成?有几个面、几个顶点、几条棱?[解]这个几何体是由两个同底面的四棱锥组合而成的八面体,有8个面,都是全等的正三角形;有6个顶点;有12条棱.10.试从正方体ABCDA1B1C1D1的八个顶点中任取若干,连接后构成以下空间几何体,并且用适当的符号表示出来.(1)只有一个面是等边三角形的三棱锥;(2)四个面都是等边三角形的三棱锥;(3)三棱柱.[解](1)如图①所示,三棱锥A1AB1D1(答案不唯一).(2)如图②所示,三棱锥B1ACD1(答案不唯一).(3)如图③所示,三棱柱A1B1D1ABD(答案不唯一).①②③[能力提升练]1.由五个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是( )A.三棱柱B.三棱台C.三棱锥D.四棱锥B[该多面体有三个面是梯形,而棱锥最多有一个面是梯形(底面),棱柱最多有两个面是梯形(底面),所以该多面体不是棱柱、棱锥,而是棱台.三个梯形是棱台的侧面,另两个三角形是底面,所以这个棱台是三棱台.]2.五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线共有________条.10 [在上底面选一个顶点,同时在下底面选一个顶点,且这两个顶点不在同一侧面上,这样上底面每个顶点对应两条对角线,所以共有10条.]课时分层作业(二) 旋转体与简单组合体的结构特征(建议用时:45分钟)[基础达标练]一、选择题1.下列几何体中是旋转体的是 ( )①圆柱;②六棱锥;③正方体;④球体;⑤四面体.A .①和⑤B .①C .③和④D .①和④D [根据旋转体的概念可知,①和④是旋转体.]2.图①②中的图形折叠后的图形分别是( )① ②A .圆锥、棱柱B .圆锥、棱锥C .球、棱锥D .圆锥、圆柱B [根据图①的底面为圆,侧面为扇形,得图①折叠后的图形是圆锥;根据图②的底面为三角形,侧面均为三角形,得图②折叠后的图形是棱锥.]3.圆锥的侧面展开图是直径为a 的半圆面,那么此圆锥的轴截面是( )A .等边三角形B .等腰直角三角形C .顶角为30°等腰三角形D .其他等腰三角形A [设圆锥底面圆的半径为r ,依题意可知2πr =π·a 2,则r =a 4,故轴截面是边长为a 2的等边三角形.]4.如图,在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是( )A .一个棱柱中挖去一个棱柱B .一个棱柱中挖去一个圆柱C .一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱B [一个六棱柱挖去一个等高的圆柱,选B.]5.用长为8,宽为4的矩形做侧面围成一个圆柱,则圆柱的轴截面的面积为( )A .32B .32πC .16πD .8πB [若8为底面周长,则圆柱的高为4,此时圆柱的底面直径为8π,其轴截面的面积为32π;若4为底面周长,则圆柱的高为8,此时圆柱的底面直径为4π,其轴截面的面积为32π.] 二、填空题6.如图是一个几何体的表面展开图形,则这个几何体是________.圆柱 [一个长方形和两个圆折叠后,能围成的几何体是圆柱.]7.下列命题中错误的是________.①过球心的截面所截得的圆面的半径等于球的半径;②母线长相等的不同圆锥的轴截面的面积相等;③圆台所有平行于底面的截面都是圆面;④圆锥所有的轴截面都是全等的等腰三角形.② [因为圆锥的母线长一定,根据三角形面积公式,当两条母线的夹角为90°时,圆锥的轴截面面积最大.]8.一个半径为5 cm 的球,被一平面所截,球心到截面圆心的距离为4 cm ,则截面圆面积为________ cm 2.9π [设截面圆半径为r cm ,则r 2+42=52,所以r =3.所以截面圆面积为9π cm 2.]三、解答题9.如图所示,梯形ABCD 中,AD ∥BC ,且AD <BC ,当梯形ABCD 绕AD 所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.[解] 如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.10.一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.[解] (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底面半径O 1A =2(cm),下底面半径OB =5(cm),又因为腰长为12 cm ,所以高AM =122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20 (cm),即截得此圆台的圆锥的母线长为20 cm.[能力提升练]1.如右图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为( )A .一个球体B .一个球体中间挖出一个圆柱C .一个圆柱D .一个球体中间挖去一个长方体B [圆旋转一周形成球,圆中的矩形旋转一周形成一个圆柱,所以选B.]2.如图所示,已知圆锥SO 中,底面半径r =1,母线长l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥侧面转到点A .则绳子的最短长度的平方f (x )=x 2+16(0≤x ≤4) [将圆锥的侧面沿SA 展开在平面上,如图所示,则该图为扇形,且弧AA ′的长度L 就是圆O 的周长,所以L =2πr =2π,所以∠ASM =L 2πl ×360°=2π2π×4×360°=90°. 由题意知绳子长度的最小值为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4).所以f (x )=AM 2=x 2+16(0≤x ≤4).]课时分层作业(三) 中心投影与平行投影 空间几何体的三视图(建议用时:45分钟)[基础达标练]一、选择题1.直线的平行投影可能是( )A .点B .线段C .射线D .曲线A [直线的平行投影可能是直线也可能是点,故选A.]2.下列说法错误的是( )A .正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度B .俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度C .侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度D .一个几何体的正视图和俯视图高度一样,正视图和侧视图长度一样,侧视图和俯视图宽度一样D [正视图和俯视图长度一样;正视图和侧视图高度一样;侧视图和俯视图宽度一样.故3.有下列说法:①从投影的角度看,三视图是在平行投影下画出来的投影图;②平行投影的投影线互相平行,中心投影的投影线相交于一点;③空间图形经过中心投影后,直线变成直线,平行线还是成平行的直线;④空间几何体在平行投影与中心投影下有不同的表现形式.其中正确说法有( )A.1个B.2个C.3个D.4个C[由投影的知识知①②④正确.只有③错误,空间图形经过中心投影后,直线变成直线、平行线有可能变成了相交直线,综上可知正确说法有3个,故选C.]4.一个长方体去掉一个小长方体,所得几何体的正视图与侧视图分别如图所示,则该几何体的俯视图为( )C[正视图中小长方形在左上方,对应俯视图应该在左侧,排除B,D,侧视图中小长方形在右上方,排除A,故选C.]5.如图所示,五棱柱的侧视图应为( )A B C DB[从五棱柱左面看,是2个矩形,上面的小一点,故选B.]二、填空题6.如下图,图①②③是图④表示的几何体的三视图,其中图①是________,图②是________,图③是________(说出视图名称).① ② ③ ④正视图 侧视图 俯视图 [由几何体的位置知,①为正视图,②为侧视图,③为俯视图.]7.若线段AB 平行于投影面,O 是线段AB 上一点,且AO OB =m n,点A ′,O ′,B ′分别是A ,O ,B 在投影面上的投影点,则A ′O ′O ′B ′=________. m n [由题意知AB ∥A ′B ′,OO ′∥AA ′,OO ′∥BB ′,则有A ′O ′O ′B ′=AO OB =m n.] 8.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为________.23 [由三视图知可把四棱锥放在一个正方体内部,四棱锥为D BCC 1B 1,最长棱为DB 1=DC 2+BC 2+BB 21=4+4+4=2 3.]三、解答题9.如图所示的几何体是由一个长方体木块锯成的.(1)判断该几何体是否为棱柱;(2)画出它的三视图.[解](1)是棱柱.因为该几何体的前、后两个面互相平行,其余各面都是矩形,而且相邻矩形的公共边都互相平行.(2)该几何体的三视图如图:10.某组合体的三视图如图所示,试画图说明此组合体的结构特征.[解]该三视图表示的几何体是由一个四棱柱和一个四棱台拼接而成的组合体(如图所示).[能力提升练]1.如图所示,画出四面体AB1CD1三视图中的正视图,以AA1D1D为投影面,则得到的正视图可以为( )A B C DA [显然AB 1,AC ,B 1D 1,CD 1分别投影得到正视图的外轮廓,B 1C 为可见实线,AD 1为不可见虚线.故A 正确.]2.太阳光线与地面成60°的角,照射在地面上的一个皮球上,皮球在地面上的投影长是103,则皮球的直径是________.15 [皮球的直径d =103sin 60°=103×32=15.]课时分层作业(四) 空间几何体的直观图(建议用时:45分钟)[基础达标练]一、选择题1.如图,已知等腰三角形ABC ,则如下所示的四个图中,可能是△ABC 的直观图的是( )① ② ③ ④A .①②B .②③C .②④D .③④D [原等腰三角形画成直观图后,原来的腰长不相等,③④两图分别为在∠x ′O ′y ′成135°和45°的坐标系中的直观图.]2.对于用斜二测画法画水平放置的图形的直观图来说,下列描述不正确的是( ) A .三角形的直观图仍然是一个三角形 B .90°的角的直观图会变为45°的角 C .与y 轴平行的线段长度变为原来的一半 D .由于选轴的不同,所得的直观图可能不同B [对于A ,根据斜二测画法特点知,相交直线的直观图仍是相交直线,因此三角形的直观图仍是一个三角形,故A 正确;对于B ,90°的角的直观图会变为45°或135°的角,故B 错误;C ,D 显然正确.]3.把△ABC 按斜二测画法得到△A ′B ′C ′(如图所示),其中B ′O ′=C ′O ′=1,A ′O ′=32,那么△ABC 是一个( )A .等边三角形B .直角三角形C .等腰三角形D .三边互不相等的三角形A [根据斜二测画法还原三角形在直角坐标系中的图形,如图所示:由图易得AB =BC =AC =2,故△ABC 为等边三角形,故选A.]4.一个建筑物上部为四棱锥,下部为长方体,且四棱锥的底面与长方体的上底面尺寸一样,已知长方体的长、宽、高分别为20 m 、5 m 、10 m ,四棱锥的高为8 m ,若按1∶500的比例画出它的直观图,那么直观图中,长方体的长、宽、高和棱锥的高应分别为( )A .4 cm ,1 cm ,2 cm ,1.6 cmB .4 cm ,0.5 cm ,2 cm ,0.8 cmC .4 cm ,0.5 cm ,2 cm ,1.6 cmD .2 cm ,0.5 cm ,1 cm ,0.8 cmC [由比例尺可知长方体的长、宽、高和四棱锥的高分别为4 cm ,1 cm ,2 cm 和1.6 cm ,再结合斜二测画法,可知直观图的相应尺寸应分别为4 cm ,0.5 cm ,2 cm ,1.6 cm.]5.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+ 2B .1+22C .2+22D .1+ 2A [画出其相应平面图易求,故选A.]二、填空题6.斜二测画法中,位于平面直角坐标系中的点M(4,4)在直观图中的对应点是M′,则点M′的坐标为________.M′(4,2)[在x′轴的正方向上取点M1,使O′M1=4,在y′轴上取点M2,使O′M2=2,过M1和M2分别作平行于y′轴和x′轴的直线,则交点就是M′.]7.水平放置的△ABC的斜二测直观图如图所示,已知A′C′=3,B′C′=2,则AB边上的中线的实际长度为________.2.5 [由直观图知,由原平面图形为直角三角形,且AC=A′C′=3,BC=2B′C′=4,计算得AB=5,所求中线长为2.5.]8.如图所示,水平放置的△ABC在直角坐标系中的直观图,其中D′是A′C′的中点,且∠ACB≠30°,则原图形中与线段BD的长相等的线段有________条.2 [△ABC为直角三角形,因为D为AC中点,所以BD=AD=CD.所以与BD的长相等的线段有2条.]三、解答题9.如图,△A′B′C′是水平放置的平面图形的直观图,试画出原平面图形△ABC.[解](1)画法:过C′,B′分别作y′轴的平行线交x′轴于D′,E′;(2)在直角坐标系xOy中.在x轴上取二点E,D使OE=O′E′,OD=O′D′,再分别过E,D作y轴平行线,取EB=2E′B′,DC=2D′C′.连接OB,OC,BC即求出原△ABC.10.画出底面是正方形,侧棱均相等的四棱锥的直观图.[解] (1)画轴.画x 轴、y 轴、z 轴,使∠xOy =45°,∠xOz =90°,如图①. (2)画底面.以O 为中心在xOy 平面内画出正方形水平放置的直观图ABCD . (3)画顶点.在Oz 轴上截取OP ,使OP 的长度是原四棱锥的高.(4)成图.连接PA 、PB 、PC 、PD ,并擦去辅助线,得四棱锥的直观图如图②.① ② [能力提升练]1.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm ,另一个圆锥顶点到底面的距离为3 cm ,则其直观图中这两个顶点之间的距离为( )A .2 cmB .3 cmC .2.5 cmD .5 cm D [由题意可知其直观图如下图:由图可知两个顶点之间的距离为5 cm.故选D.]2.已知用斜二测画法,画得的正方形的直观图面积为182,则原正方形的面积为________.72 [如图所示,作出正方形OABC 的直观图O ′A ′B ′C ′,作C ′D ′⊥x ′轴于点D ′.S 直观图=O ′A ′×C ′D ′.又S 正方形=OC ×OA .所以S 正方形S 直观图=OC ×OAO ′A ′×C ′D ′,又在Rt △O ′D ′C ′中,O ′C ′=2C ′D ′,即C ′D ′=22O ′C ′,结合平面图与直观图的关系可知OA =O ′A ′,OC =2O ′C ′,所以S 正方形S 直观图=OC ×OA OA ×22O ′C ′=2O ′C ′22O ′C ′=2 2. 又S 直观图=182,所以S 正方形=22×182=72.]课时分层作业(五) 柱体、锥体、台体的表面积与体积(建议用时:45分钟)[基础达标练]一、选择题1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .πC [底面圆半径为1,高为1,侧面积S =2πrh =2π×1×1=2π.故选C.]2.已知高为3的直棱柱ABC A 1B 1C 1的底面是边长为1的正三角形,则三棱锥B 1ABC 的体积为( )A .14B .12C .36D .34D [由题意,锥体的高为BB 1,底面为S △ABC =34,所以V =13Sh =13×34×3=34.] 3.如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( ) A .π B .2π C .4π D .8πB [设圆柱的底面半径为r ,则圆柱的母线长为2r , 由题意得S 圆柱侧=2πr ×2r =4πr 2=4π, 所以r =1, 所以V圆柱=πr 2×2r =2πr 3=2π.]4.如图,一个底面半径为2的圆柱被一平面所截,截得的几何体的最短和最长母线长分别为2和3,则该几何体的体积为( )A .5πB .6πC .20πD .10πD [用一个完全相同的几何体把题中几何体补成一个圆柱,如图,则圆柱的体积为π×22×5=20π,故所求几何体的体积为10π.]5.体积为52的圆台,一个底面积是另一个底面积的9倍,那么截得这个圆台的圆锥的体积是( )A .54B .54πC .58D .58πA [设上底面半径为r ,则由题意求得下底面半径为3r ,设圆台高为h 1,则52=13πh 1(r2+9r 2+3r ·r ),∴πr 2h 1=12.令原圆锥的高为h ,由相似得r 3r =h -h 1h,∴h =32h 1,∴V 原圆锥=13π(3r )2×h =3πr 2×32h 1=92×12=54.]二、填空题6.已知圆锥SO 的高为4,体积为4π,则底面半径r =________. 3 [设底面半径为r ,则13πr 2×4=4π,解得r =3,即底面半径为 3.]7.已知一个圆台的正视图如图所示, 若其侧面积为35π, 则a 的值为____.2 [圆台的两底面半径分别为1,2,高为a , 则母线长为1+a 2, 则其侧面积等于π(1+2)·(1+a 2)=35π,解得a 2=4,所以a =2(舍去负值).]8.已知一个圆锥的侧面展开图为半圆,且面积为S ,则圆锥的底面面积是________.S2[如图所示, 设圆锥的底面半径为r , 母线长为l .由题意,得⎩⎪⎨⎪⎧12πl 2=S ,πl =2πr ,解得r =S2π.所以圆锥的底面面积为πr 2=π×S 2π=S2.]三、解答题9.若圆锥的表面积是15π,侧面展开图的圆心角是60°,求圆锥的体积. [解] 设圆锥的底面半径为r ,母线为l , 则2πr =13πl ,得l =6r .又S 锥=πr 2+πr ·6r =7πr 2=15π,得r =157, 圆锥的高h =35·157, V =13πr 2h =13π×157×35×157=2537π. 10.在长方体ABCD A 1B 1C 1D 1中,截下一个棱锥C A 1DD 1,求棱锥C A 1DD 1的体积与剩余部分的体积之比.[解] 已知长方体可以看成直四棱柱,设它的底面ADD 1A 1的面积为S ,高为h ,则它的体积为V =Sh .而棱锥C A 1DD 1的底面积为12S ,高为h ,故三棱锥C A 1DD 1的体积为:VC A 1DD 1=13⎝ ⎛⎭⎪⎫12S h =16Sh ,余下部分体积为:Sh -16Sh =56Sh .所以棱锥C A 1DD 1的体积与剩余部分的体积之比1∶5.[能力提升练]1.三棱锥P ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE 的体积为V 1,P ABC 的体积为V 2,则V 1V 2=________.14 [如图,设点C 到平面PAB 的距离为h ,三角形PAB 的面积为S ,则V 2=13Sh ,V 1=V E ADB =13×12S ×12h =112Sh ,所以V 1V 2=14.] 2.用一张正方形的纸把一个棱长为1的正方体礼品盒完全包住,不将纸撕开,则所需纸的最小面积是________.8 [如图①为棱长为1的正方体礼品盒,先把正方体的表面按图所示方式展成平面图形,再把平面图形尽可能拼成面积较小的正方体,如图②所示,由图知正方形的边长为22,其面积为8.]课时分层作业(六) 球的体积和表面积(建议用时:45分钟)[基础达标练]一、选择题1.如果三个球的半径之比是1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的( )A .59倍B .95倍 C .2倍 D .3倍 B [设小球半径为1,则大球的表面积S 大=36π,S 小+S 中=20π,36π20π=95.]2.把半径分别为6 cm ,8 cm ,10 cm 的三个铁球熔成一个大铁球,这个大铁球的半径为( )A .3 cmB .6 cmC .8 cmD .12 cmD [由43πR 3=43π·63+43π·83+43π·103,得R 3=1 728,检验知R =12.]3.将直径为2的半圆绕直径所在的直线旋转半周而形成的曲面所围成的几何体的表面积为( )A .2πB .3πC .4πD .6πB [由题意知,该几何体为半球, 表面积为大圆面积加上半个球面积, S =π×12+12×4×π×12=3π.]4.将棱长为2的正方体削成一个体积最大的球,则这个球的体积为( ) A .163πB .4π3C .323πD .4πB [根据题意知,此球为正方体的内切球,所以球的直径等于正方体的棱长,故r =1,所以V =43πr 3=43π.]5.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4B [设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴r =1-⎝ ⎛⎭⎪⎫122=32.∴圆柱的体积为V =πr 2h =34π×1=3π4.故选B.] 二、填空题6.若一个球的表面积与其体积在数值上相等,则此球的半径为________. 3 [设此球的半径为R ,则4πR 2=43πR 3,R =3.]7.如图是一个几何体的三视图,根据图中的数据可得该几何体的表面积为________.33π [由三视图可知该几何体是上面为半球,下面为圆锥的组合体,所以表面积S =12×4π×32+π×3×5=33π.]8.如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.32[设球O 的半径为R , ∵球O 与圆柱O 1O 2的上、下底面及母线均相切, ∴圆柱O 1O 2的高为2R ,底面半径为R .∴V 1V 2=πR 2·2R 43πR3=32.] 三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.[解] 该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π.该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.10.已知过球面上A ,B ,C 三点的截面和球心的距离等于球半径的一半,且AB =18,BC=24,AC =30,求球的表面积和体积.[解] 因为AB ∶BC ∶AC =18∶24∶30=3∶4∶5, 所以△ABC 是直角三角形,∠B =90°.又球心O 到截面△ABC 的投影O ′为截面圆的圆心,也即是Rt △ABC 的外接圆的圆心,所以斜边AC 为截面圆O ′的直径(如图所示), 设O ′C =r ,OC =R ,则球半径为R ,截面圆半径为r , 在Rt △O ′CO 中,由题设知sin ∠O ′CO =OO ′OC =12, 所以∠O ′CO =30°,所以rR=cos 30°=32,即R =23r ,(*) 又2r =AC =30⇒r =15,代入(*)得R =10 3.所以球的表面积为S =4πR 2=4π×(103)2=1 200π. 球的体积为V =43πR 3=43π×(103)3=4 0003π.[能力提升练]1.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面积和球的表面积之比为( )A .4∶3B .3∶1C .3∶2D .9∶4C [作圆锥的轴截面,如图,设球半径为R ,则圆锥的高h =3R ,圆锥底面半径r =3R ,则l =(h 2+r 2)=23R ,所以S 圆锥侧S 球 =πrl 4πR 2=π×3R ·23R 4πR 2=32.] 2.在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球. 若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是________.9π2[当球的半径最大时,球的体积最大. 在直三棱柱内,当球和三个侧面都相切时,因为AB ⊥BC ,AB =6,BC =8,所以AC =10,底面的内切圆的半径即为此时球的半径r =6+8-102=2,直径为4>侧棱. 所以球的最大直径为3,半径为32,此时体积V =9π2.]课时分层作业(七) 平面(建议用时:45分钟)[基础达标练]一、选择题1.已知点A ,直线a ,平面α,以下命题表述正确的个数是( )①A ∈a ,a ⊄α⇒Aα;②A ∈a ,a ∈α⇒A ∈α;③Aa ,a ⊂α⇒A α;④A ∈a ,a ⊂α⇒A ⊂α.A .0B .1C .2D .3A [①不正确,如a ∩α=A ;②不正确,∵“a ∈α”表述错误;③不正确,如图所示,A a ,a ⊂α,但A ∈α;④不正确,“A ⊂α”表述错误.]2.下列命题中正确命题的个数是( ) ①三角形是平面图形; ②四边形是平面图形;③四边相等的四边形是平面图形; ④圆是平面图形. A .1个 B .2个 C .3个D .4个B [根据公理2可知①④正确,②③错误.故选B.] 3.两个平面若有三个公共点,则这两个平面( ) A .相交 B .重合C .相交或重合D .以上都不对C [若三点在同一条直线上,则这两个平面相交或重合,若三点不共线,则这两个平面重合.]4.如果空间四点A,B,C,D不共面,那么下列判断中正确的是( )A.A,B,C,D四点中必有三点共线B.A,B,C,D四点中不存在三点共线C.直线AB与CD相交D.直线AB与CD平行B[两条平行直线、两条相交直线、直线及直线外一点都分别确定一个平面,选B.] 5.三条两两平行的直线可以确定平面的个数为( )A.0 B.1C.0或1 D.1或3D[当三条直线是同一平面内的平行直线时,确定一个平面,当三条直线是三棱柱侧棱所在的直线时,确定三个平面,选D.]二、填空题6.设平面α与平面β相交于l,直线a⊂α,直线b⊂β,a∩b=M,则M________l.∈[因为a∩b=M,a⊂α,b⊂β,所以M∈α,M∈β.又因为α∩β=l,所以M∈l.] 7.在长方体ABCDA1B1C1D1的所有棱中,既与AB共面,又与CC1共面的棱有________条.5[由题图可知,既与AB共面又与CC1共面的棱有CD、BC、BB1、AA1、C1D1共5条.] 8.已知平面α与平面β、平面γ都相交,则这三个平面可能的交线有________条.1或2或3 [当β与γ相交时,若α过β与γ的交线,有1条交线;若α不过β与γ的交线,有3条交线;当β与γ平行时,有2条交线.]三、解答题9.已知:A∈l,B∈l,C∈l,D l,如图所示.求证:直线AD,BD,CD共面.[证明]因为D l,所以l与D可以确定平面α,因为A∈l,所以A∈α,又D∈α,所以AD⊂α.同理,BD⊂α,CD⊂α,所以AD,BD,CD在同一平面α内,即它们共面.10.求证:三棱台A1B1C1ABC三条侧棱延长后相交于一点.[证明]如图,延长AA1,BB1,设AA1∩BB1=P,又BB1⊂面BC1,∴P∈面BC1,AA1⊂面AC1,∴P∈面AC1,∴P为平面BC1和面AC1的公共点,又∵面BC1∩面AC1=CC1,∴P∈CC1,即AA1,BB1,CC1延长后交于一点P.[能力提升练]1.如图,α∩β=l,A∈α,C∈β,C l,直线AD∩l=D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过( )A.点A B.点BC.点C,但不过点D D.点C和点DD[A、B、C确定的平面γ与直线BD和点C确定的平面重合,故C、D∈γ,且C、D∈β,故C,D在γ和β的交线上.]2.若直线l与平面α相交于点O,A,B∈l,C,D∈α,且AC∥BD,则O,C,D三点的位置关系是________.共线[∵AC∥BD,∴AC与BD确定一个平面,记作平面β,则α∩β=CD.∵l∩α=O,∴O∈α. 又∵O∈AB⊂β,∴O∈直线CD,∴O,C,D三点共线.]课时分层作业(八) 空间中直线与直线之间的位置关系(建议用时:45分钟)[基础达标练]一、选择题1.若a和b是异面直线,b和c是异面直线,则a和c的位置关系是( )A.异面或平行B.异面或相交C.异面D.相交、平行或异面D[异面直线不具有传递性,可以以长方体为载体加以说明,a、b异面,直线c的位置可如图所示.]2.分别和两条异面直线平行的两条直线的位置关系是( )A.一定平行B.一定相交C.一定异面D.相交或异面D[可能相交也可能异面,选D.]3.在正方体AC1中,E,F分别是线段BC,CD1的中点,则直线A1B与直线EF的位置关系是( )A.相交B.异面C.平行D.垂直A[如图所示,直线A1B与直线外一点E确定的平面为A1BCD1,EF⊂平面A1BCD1,且两直线不平行,故两直线相交.]4.如图所示,在正方体ABCDA1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成的角的大小为( )A.30° B.45°C.60°D.90°C[连接B1D1,D1C(图略),则B1D1∥EF,故∠D1B1C即为所求,又B1D1=B1C=D1C,∴∠D1B1C =60°.]5.设P是直线l外一定点,过点P且与l成30°角的异面直线( )A.有无数条B.有两条C.至多有两条D.有一条A[如图,过点P作直线l′∥l,以l′为轴,与l′成30°角的圆锥面的所有母线都与l成30°角.因此,这样的异面直线有无数条.]二、填空题6.如图所示,在三棱锥PABC的六条棱所在的直线中,异面直线共有________对.3 [PA与BC,PB与AC,PC与AB互为异面直线,∴共3对.]7.给出下列四个命题,其中正确命题的序号是________.①在空间,若两条直线不相交,则它们一定平行;②平行于同一条直线的两条直线平行;③一条直线和两条平行直线的一条相交,那么它也和另一条相交;④空间四条直线a,b,c,d,如果a∥b,c∥d,且a∥d,那么b∥c.②④[①错,可以异面;②正确,公理4;③错误,和另一条可以异面;④正确,由平行直线的传递性可知.]8.如图所示,正方体ABCDA1B1C1D1中,AC与BC1所成角的大小是________.。
高中数学(新人教A版)必修第二册同步习题:简单随机抽样(同步习题)【含答案及解析】
第九章统计9.1随机抽样9.1.1简单随机抽样基础过关练题组一统计学的有关概念1.下列调查中,可以用普查的方式进行调查的是()A.检验一批钢材的抗拉强度B.检验海水中微生物的含量C.调查某小组10名成员的业余爱好D.检验一批汽车的使用寿命2.为了解某班学生的会考合格率,要从该班70人中选30人进行考察分析,则70人的会考成绩的全体是,样本是,样本量是.3.某学校根据高考考场要求,需要给本校45个高考考场配备监控设备,该校高考前购进45套监控设备,现需要检查这批监控设备的质量,是全部检查还是抽取部分检查?谈谈你的想法和理由.深度解析题组二 简单随机抽样4.下列几个抽样中,简单随机抽样的个数是( )①仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;②某班从50名同学中选出5名数学成绩最优秀的同学代表本班参加数学竞赛;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出7个号签;④为了进一步严厉打击交通违法,交警队在某一路口随机抽查司机是否酒驾.A.0 B .1 C .2 D .35.(2020河南信阳高一下学期第一次月考)用简单随机抽样方法从含有10个个体的总体中抽取一个容量为3的样本,则某一特定个体“第一次被抽到”“第二次被抽到”的可能性分别是( )A.110,110B.310,15C.15,310D.310,310 6.在总体量为N 的一批零件中抽取一个容量为30的样本,若每个零件被抽取的概率为25%,则N 的值为 .题组三 抽签法和随机数法7.下列抽样试验中,适合用抽签法的是( )A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验8.为迎接2022年北京冬季奥运会,奥委会现从报名的某高校30名志愿者中选取6人组成奥运志愿小组,请用抽签法设计抽样方案.9.为检验某公司生产的袋装牛奶的质量是否达标,需从800袋袋装牛奶中抽取50袋进行检验.试利用随机数法抽取样本,并写出抽样过程.题组四总体平均数与样本平均数10.下列判断正确的是()A.样本平均数一定小于总体平均数B.样本平均数一定大于总体平均数C.样本平均数一定等于总体平均数D.样本量越大,样本平均数越接近总体平均数11.用抽签法抽取一个容量为5的样本,样本数据分别为2,4,5,7,9,则该样本的平均数为()A.4.5B.4.8C.5.4D.612.从有400人参加的某项运动的达标测试中,通过简单随机抽样抽取50人的成绩,统计数据如下表,则这400人成绩的平均数的估计值是.分数54321人数5152055答案全解全析基础过关练1.C A.不能用普查的方式进行调查,因为这种试验具有破坏性;B.用普查的方式进行调查无法完成;C.可以用普查的方式进行调查;D.试验具有破坏性,且需要耗费大量的时间,普查在实际生产中无法实现.2.答案总体;所选30人的会考成绩;30解析为了强调调查目的,由总体、样本、样本量的定义知,70人的会考成绩的全体是总体,样本是所选30人的会考成绩,样本量是30.3.解析必须全部检查,即普查.因为高考是一件非常严肃、责任重大的事情,对高考的要求非常严格,所配设备必须全部合格,且这批设备数量较少,全部检查的方案是可行的,所以应该进行全部检查,这样可确保万无一失.深度剖析全面调查与抽样调查:方法特点全面调查抽样调查优点所调查的结果比较全面、系统1.迅速、及时;2.节约人力、物力和财力缺点耗费大量的人力、物力和财力获取的信息不够全面、系统适用范围1.调查对象很少;2.要获取详实、系统和全面的信息1.大批量检验;2.破坏性试验;3.不需要全面调查等4.B①不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;②不是简单随机抽样,因为每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;③是简单随机抽样,因为总体中的个体数是有限的,且是从总体中逐个进行抽取的,每个个体被抽到的可能性相同;④不是简单随机抽样,因为被抽取的总体中的个体数不确定.综上,只有③是简单随机抽样..5.A简单随机抽样中每个个体被抽取的机会均等,都为1106.答案120=25%=0.25,解得N=120.解析根据题意,得30N7.B A中总体容量较大,样本容量也较大,不适合用抽签法;B中总体容量较小,样本容量也较小,且同厂生产的两箱产品可视为搅拌均匀了,可用抽签法;C中甲、乙两厂生产的两箱产品质量可能差别较大,不能满足搅拌均匀的条件,不能用抽签法;D中总体容量较大,不适合用抽签法.8.解析①将30名志愿者编号,号码分别是1,2, (30)②将号码分别写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签;③将小纸片放入一个不透明的盒里,充分搅拌;④从盒中不放回地逐个抽取6个号签,使与号签上编号相同的志愿者进入样本.9.解析①将800袋袋装牛奶分别编号,为1,2,3, (800)②利用随机数工具产生1~800范围内的整数随机数;③把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需的50袋.10.D由样本平均数的定义可知,样本量越大,其平均数越接近总体平均数.11.C样本的平均数为2+4+5+7+9=5.4.512.答案 3.2解析抽取的50人的成绩的平均数为1×(5×5+4×15+3×20+2×5+1×5)=3.2,所以这50400人成绩的平均数的估计值是3.2.。
最新人教版高中数学必修2课时同步测题(全册 共236页 附解析)
最新人教版高中数学必修2课时同步测题(全册共236页附解析)目录1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图1.2.3 空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积1.3.2 球的体积和表面积章末复习课第一单元评估验收卷(一)第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1 平面第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.2 空间中直线与直线之间的位置关系2.1.3 空间中直线与平面之间的位置关系2.1.4 平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定2.2.3 直线与平面平行的性质2.2.4 平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1 直线与平面垂直的判定2.3.2 平面与平面垂直的判定2.3.3 直线与平面垂直的性质2.3.4 平面与平面垂直的性质章末复习课第二单元评估验收卷(二)第三章直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是()A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCD-A1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是()A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12 l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB 所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是()A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.5.一个四棱锥S-ABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥V-ABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥V-ABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为()A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB=BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC 是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz =90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章空间几何体1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积A级基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( )A .4倍B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C -AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( )A .3πB .33πC .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S圆锥表=πr2+πrl=π+2π=3π.故选A.答案:A4.(2015·课标全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有()A.14斛B.22斛C.36斛D.66斛解析:由l=14×2πr=8得圆锥底面的半径r=16π≈163,所以米堆的体积V=14×13πr2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛).答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为()A.1∶ 2 B.1∶ 3C.2∶ 2 D.3∶ 6解析:棱锥B′ ACD′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B′C=2,S△B′AC=3 2.三棱锥的表面积S 锥=4×32=23,又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2,所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm ,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π.答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r =7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( )A .3倍B .3 3 倍C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝ ⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( )A .RB .2RC .3RD .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V=43π⎝⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a,a,a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2解析:设该球的半径为R,所以(2R)2=(2a)2+a2+a2=6a2,即4R2=6a2.所以球的表面积为S=4πR2=6πa2.答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是()A.4π+24 B.4π+32C.22πD.12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3.答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6.,所以R -r =2. 答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3.答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O -ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5, 所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r , 所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B。
【同步汇编】人教A版2018年高一数学必修2 分层测评与综合测评汇编150页(30份,含解析)
人教A版必修2 分层测评与综合测评汇编目录人教A版必修2学业分层测评1 棱柱、棱锥、棱台的结构特征含解析人教A版必修2学业分层测评2 旋转体与简单组合体的结构特征含解析人教A版必修2学业分层测评3 中心投影与平行投影空间几何体的三视图含解析人教A版必修2学业分层测评4 空间几何体的直观图含解析人教A版必修2学业分层测评5 柱体、锥体、台体的表面积与体积含解析人教A版必修2学业分层测评6 球的体积和表面积含解析人教A版必修2学业分层测评7 平面含解析人教A版必修2学业分层测评8 空间中直线与直线之间的位置关系含解析人教A版必修2学业分层测评9 空间中直线与平面之间位置关系平面与平面之间位置关系含解析人教A版必修2学业分层测评10 直线与平面平行的判定平面与平面平行的判定含解析人教A版必修2学业分层测评11 直线与平面平行的性质平面与平面平行的性质含解析人教A版必修2学业分层测评12 直线与平面垂直的判定含解析人教A版必修2学业分层测评13 平面与平面垂直的判定含解析人教A版必修2学业分层测评14 直线与平面垂直的性质平面与平面垂直的性质含解析人教A版必修2学业分层测评15 倾斜角与斜率含解析人教A版必修2学业分层测评16 两条直线平行与垂直的判定含解析人教A版必修2学业分层测评17 直线的点斜式方程含解析人教A版必修2学业分层测评18 直线的两点式方程直线的一般式方程含解析人教A版必修2学业分层测评19 两条直线的交点坐标两点间的距离含解析人教A版必修2学业分层测评20 点到直线的距离两条平行直线间的距离含解析人教A版必修2学业分层测评21 圆的标准方程含解析人教A版必修2学业分层测评22 圆的一般方程含解析人教A版必修2学业分层测评23 直线与圆的位置关系含解析人教A版必修2学业分层测评24 圆与圆的位置关系直线与圆的方程的应用含解析人教A版必修2学业分层测评25 空间直角坐标系空间两点间的距离公式含解析人教A版必修2章末综合测评1 含解析人教A版必修2章末综合测评2 含解析人教A版必修2章末综合测评3 含解析人教A版必修2章末综合测评4 含解析人教A版必修2模块综合测评含解析学业分层测评(一)(建议用时:45分钟)[达标必做]一、选择题1.下列描述中,不是棱柱的结构特征的是()A.有一对面互相平行B.侧面都是四边形C.相邻两个侧面的公共边都互相平行D.所有侧棱都交于一点【解析】由棱柱的结构特征知D错.【答案】 D2.观察如图1-1-8的四个几何体,其中判断不正确的是()图1-1-8A.①是棱柱B.②不是棱锥C.③不是棱锥D.④是棱台【解析】结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,④是棱台,③不是棱锥,故B错误.【答案】 B3.四棱柱的体对角线的条数为()A.6 B.7C.4 D.3【解析】共有4条体对角线,一个底面上的每个点与另一个底面上的不相邻的点连成一条体对角线.【答案】 C4.(2016·长春高二检测)若一个正棱锥的各棱长和底面边长均相等,则该棱锥一定不是()A.三棱锥B.四棱锥C.五棱锥D.六棱锥【解析】因为正六边形的边长与它的外接圆半径相等,所以满足上述条件的棱锥一定不是六棱锥.【答案】 D5.纸质的正方体的六个面根据其方位分别标记为上、下、东、南、西、北.现在沿该正方体的一些棱将正方体剪开,外面朝上展平得到如图1-1-9所示的平面图形,则标“△”的面的方位是()【导学号:09960004】图1-1-9A.南B.北C.西D.下【解析】将题给图形还原为正方体,并将已知面“上”、“东”分别指向上面、东面,则标记“△”的为北面,选B.【答案】 B二、填空题6.如图1-1-10所示,在所有棱长均为1的三棱柱上,有一只蚂蚁从点A出发,围着三棱柱的侧面爬行一周到达点A1,则爬行的最短路程为________.图1-1-10【解析】将三棱柱沿AA1展开如图所示,则线段AD1即为最短路线,即AD1=AD2+DD21=10.【答案】107.下列四个平面图形都是正方体的展开图,还原成正方体后,数字排列规律完全一样的两个是________.(1)(2)(3)(4)图1-1-11【解析】(2)(3)中,①④为相对的面,②⑤为相对的面,③⑥为相对的面,故它们的排列规律完全一样.【答案】(2)(3)三、解答题8.如图1-1-12,已知四边形ABCD是一个正方形,E,F分别是边AB 和BC的中点,沿折痕DE,EF,FD折起得到一个空间几何体,问:这个空间几何体是什么几何体?【导学号:09960005】图1-1-12【解】折起后是一个三棱锥(如图所示).9.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由八个面围成,其中两个面是互相平行且全等的六边形,其他各面都是平行四边形;(2)由五个面围成,其中一个是正方形,其他各面都是有一个公共顶点的三角形.【解】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.[自我挑战]10.某同学制作了一个对面图案相同的正方体礼品盒(如图1-1-13),则这个正方体礼品盒的表面展开图应该为()图1-1-13【解析】两个不能并列相邻,B、D错误;两个不能并列相邻,C错误,故选A.也可通过实物制作检验来判定.【答案】 A11.如图1-1-14所示,已知三棱台ABC-A′B′C′.(1)把它分成一个三棱柱和一个多面体,并用字母表示;(2)把它分成三个三棱锥并用字母表示.【导学号:09960006】图1-1-14【解】(1)如图(1)所示,三棱柱是棱柱A′B′C′-AB″C″,多面体是B′C′-BCC″B″.(2)如图(2)所示:三个三棱锥分别是A′-ABC,B′-A′BC,C′-A′B′C.(1)(2)学业分层测评(二)(建议用时:45分钟)[达标必做]一、选择题1.下列命题中,真命题的个数是()①圆锥的轴截面是所有过顶点的截面中面积最大的一个;②圆柱的所有平行于底面的截面都是圆面;③圆台的两个底面可以不平行.A.0 B.1C.2 D.3【解析】①中当圆锥过顶点的轴截面顶角大于90°时,其面积不是最大的;③圆台的两个底面一定平行,故①③错误.【答案】 B2.以钝角三角形的较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A.两个圆锥拼接而成的组合体B.一个圆台C.一个圆锥D.一个圆锥挖去一个同底的小圆锥【解析】如图,以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.【答案】 D3.用一个平面去截一个几何体,得到的截面是圆面,这个几何体不可能是()A.圆锥B.圆柱C.球D.棱柱【解析】用一个平面去截圆锥、圆柱、球均可以得到圆面,但截棱柱一定不会产生圆面.【答案】 D4.在日常生活中,常用到的螺母可以看成一个组合体,其结构特征是()A.一个棱柱中挖去一个棱柱B.一个棱柱中挖去一个圆柱C.一个圆柱中挖去一个棱锥D .一个棱台中挖去一个圆柱【解析】 一个六棱柱挖去一个等高的圆柱,选B.【答案】 B5.一个正方体内接于一个球,过球心作一截面,如图1-1-21所示,则截面可能的图形是( )图1-1-21A .①③B .②④C .①②③D .②③④【解析】 当截面平行于正方体的一个侧面时得③,当截面过正方体的体对角线时得②,当截面不平行于任何侧面也不过对角线时得①,但无论如何都不能截出④.【答案】 C二、填空题6.如图1-1-22是一个几何体的表面展开图形,则这个几何体是________.【导学号:09960010】图1-1-22【解析】 一个长方形和两个圆折叠后,能围成的几何体是圆柱.【答案】 圆柱7.一圆锥的母线长为6,底面半径为3,用该圆锥截一圆台,截得圆台的母线长为4,则圆台的另一底面半径为________.【解析】 作轴截面如图,则r 3=6-46=13,∴r =1.【答案】 1三、解答题8.指出如图1-1-23(1)(2)所示的图形是由哪些简单几何体构成的.图1-1-23【解】 图(1)是由一个三棱柱和一个四棱柱拼接而成的简单组合体. 图(2)是由一个圆锥和一个四棱柱拼接而成的简单组合体.9.一个圆台的母线长为12 cm ,两底面面积分别为4π cm 2和25π cm 2.求:(1)圆台的高;(2)截得此圆台的圆锥的母线长.【解】 (1)圆台的轴截面是等腰梯形ABCD (如图所示).由已知可得上底半径O 1A =2(cm),下底半径OB =5(cm),又因为腰长为12 cm ,所以高AM =122-(5-2)2=315(cm).(2)如图所示,延长BA ,OO 1,CD ,交于点S ,设截得此圆台的圆锥的母线长为l ,则由△SAO 1∽△SBO 可得l -12l =25,解得l =20(cm),即截得此圆台的圆锥的母线长为20 cm.[自我挑战]10.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且距离为1,那么这个球的半径是( )A .4B .3C .2D .0.5【解析】 如图所示,∵两个平行截面的面积分别为5π、8π,∴两个截面圆的半径分别为r 1=5,r 2=2 2.∵球心到两个截面的距离d 1=R 2-r 21,d 2=R 2-r 22,∴d 1-d 2=R 2-5-R 2-8=1,∴R 2=9,∴R =3.【答案】 B11.一个圆锥的底面半径为2 cm ,高为6 cm ,在圆锥内部有一个高为x cm 的内接圆柱.(1)用x 表示圆柱的轴截面面积S; 【导学号:09960011】(2)当x 为何值时,S 最大?【解】 (1)如图,设圆柱的底面半径为r cm ,则由r 2=6-x 6,得r =6-x 3,∴S =-23x 2+4x (0<x <6).(2)由S =-23x 2+4x =-23(x -3)2+6,∴当x =3时,S max =6 cm 2.学业分层测评(三)(建议用时:45分钟)[达标必做]一、选择题1.下列说法:①平行投影的投影线互相平行,中心投影的投影线相交于一点; ②空间图形经过中心投影后,直线变成直线,但平行线可能变成了相交的直线;③两条相交直线的平行投影是两条相交直线.其中正确的个数为( )A .0B .1C .2D .32.(2016·南宁高一期末)下列几何体各自的三视图中,只有两个视图相同的是( )图1-2-12A .①③B .②③C .②④D .③④【解析】 ①③的三个三视图都相同,②④的正视图和侧视图相同.故选C.【答案】 C3.(2016·葫芦岛高一期末)一根钢管如图1-2-13所示,则它的三视图为( ) 图1-2-13A B C D【解析】该几何体是由圆柱中挖去一个圆柱形成的几何体,三视图为B.【答案】 B4.(2016·台州高二检测)将长方体截去一个四棱锥,得到的几何体如图1-2-14所示,则该几何体的侧视图为()【导学号:09960014】图1-2-14A B C D【解析】被截去的四棱锥的三条可见棱中,有两条为长方体的面对角线,它们在右侧面上的投影与右侧面(长方形)的两条边重合,另一条为体对角线,它在右侧面上的投影与右侧面的对角线重合,对照各图,只有D 符合.故选D.【答案】 D5.(2016·安庆高二检测)如图1-2-15,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的各个面上的投影不可能是()图1-2-15A B C D【解析】由题意知光线从上向下照射,得到C.光线从前向后照射,得到A.光线从左向右照射得到B.故空间四边形D′OEF在该正方体的各个面上的投影不可能是D,故选D.【答案】 D二、填空题6.(2015·肇庆高二检测)已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积S的取值范围是________.【导学号:09960015】【解析】正视图的最小面积为正方形ABB1A1的面积,为1,最大面积为矩形ACC1A1的面积,为2,故所求范围为[1,2].【答案】[1,2]7.(2015·昆明高二检测)如图1-2-16为长方体木块堆积成的几何体的三视图,此几何体共由________块木块堆成.图1-2-16【解析】该几何体的实物图如图.故此几何体共有4块木块堆成.【答案】 4三、解答题8.画出如图1-2-17所示的几何体的三视图.图1-2-17【解】该几何体的三视图如图所示.9.(2016·潍坊高一检测)已知一个几何体的三视图如图1-2-18,试根据三视图想象物体的原形,并试着画出实物草图.图1-2-18【解】由三视图知,该物体下部为长方体、上部为一个与长方体等高的圆柱,且圆柱的底面相切于长方体的上底面,由此可画出实物草图如图.[自我挑战]10.(2015·济南高一检测)如图1-2-19,E、F分别是正方体ABCD-A1B1C1D1中AD1、B1C上的动点(不含端点),则四边形B1FDE的俯视图可能是()【导学号:09960016】图1-2-19【解析】D的投影为D1,E的投影在A1D1上,F的投影在B1C1上,则俯视图可能为B.【答案】 B11.一个物体由几块相同的正方体组成,其三视图如图1-2-20所示,试据图回答下列问题:图1-2-20(1)该物体有多少层?(2)该物体的最高部分位于哪里?(3)该物体一共由几个小正方体构成?【解】(1)该物体一共有两层,从正视图和侧视图都可以看出来.(2)该物体最高部分位于左侧第一排和第二排.(3)从侧视图及俯视图可以看出,该物体前后一共三排,第一排左侧2个,右侧1个;第二排左侧2个,右侧没有;第三排左侧1个,右侧1个,该物体一共由7个小正方体构成.学业分层测评(四)(建议用时:45分钟)[达标必做]一、选择题1.用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x 轴、y轴,且∠A=90°,则在直观图中∠A′等于()A.45°B.135°C.45°或135°D.90°【解析】在画直观图时,∠A′的两边依然分别平行于x′轴、y′轴,而∠x′O′y′=45°或135°.【答案】 C2.由斜二测画法得到:①相等的线段和角在直观图中仍然相等;②正方形在直观图中是矩形;③等腰三角形在直观图中仍然是等腰三角形;④菱形的直观图仍然是菱形.上述结论正确的个数是()A.0 B.1 C.2 D.3【解析】只有平行且相等的线段在直观图中才相等,而相等的角在直观图中不一定相等,如角为90°,在直观图中可能是135°或45°,故①错,由直观图的斜二测画法可知②③④皆错.故选A.【答案】 A3.如图1-2-30为一平面图形的直观图的大致图形,则此平面图形可能是()【导学号:09960020】图1-2-30A B C D【解析】根据该平面图形的直观图,该平面图形为一个直角梯形,且在直观图中平行于y′轴的边与底边垂直.【答案】 C4.(2015·江西师大附中高一检测)已知水平放置的△ABC是按“斜二测画法”得到如图1-2-31所示的直观图,其中B′O′=C′O′=1,A′O′=32,那么原△ABC中∠ABC的大小是()图1-2-31A.30°B.45°C.60°D.90°【解析】根据斜二测画法可知△ABC中,BC=2,AO=3,AO⊥BC,∴AB=AC=12+(3)2=2,故△ABC是等边三角形,则∠ABC=60°.【答案】 C5.如图,在斜二测画法下,两个边长为1的正三角形ABC的直观图不是全等三角形的一组是()【解析】根据斜二测画法知在A,B,D中,正三角形的顶点A,B 都在x轴上,点C由AB边上的高线确定,所得直观图是全等的;对于C,左侧建系方法画出的直观图,其中有一条边长度为原三角形的边长,但右侧的建系方法中所得的直观图中没有边与原三角形的边长相等,由此可知不全等.【答案】 C二、填空题6.如图1-2-32所示,四边形OABC是上底为2,下底为6,底角为45°的等腰梯形,由斜二测画法,画出这个梯形的直观图O′A′B′C′,则在直观图中梯形的高为________.图1-2-32【解析】按斜二测画法,得梯形的直观图O′A′B′C′,如图所示,原图形中梯形的高CD=2,在直观图中C′D′=1,且∠C′D′E′=45°,作C′E′垂直于x′轴于E′,则C′E′=C′D′·sin 45°=2 2.【答案】 227.(2015·雅安高二检测)如图1-2-33所示,斜二测画法得到直观图四边形A ′B ′C ′D ′是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是________.【导学号:09960021】图1-2-33【解析】 在梯形A ′B ′C ′D ′中,B ′C ′=A ′D ′+2·A ′B ′cos 45°=1+2,则原平面图形是上底为1,下底为1+2,高为2的直角梯形,其面积S =12(1+1+2)×2=2+ 2.【答案】 2+ 2三、解答题8.如图1-2-34,△A ′B ′C ′是水平放置的平面图形的斜二测直观图,将其恢复成原图形.图1-2-34【解】 画法:(1)如图②,画直角坐标系xOy ,在x 轴上取OA =O ′A ′,即CA =C ′A ′;① ②(2)在图①中,过B ′作B ′D ′∥y ′轴,交x ′轴于D ′,在图②中,在x 轴上取OD =O ′D ′,过D 作DB ∥y 轴,并使DB =2D ′B ′.(3)连接AB ,BC ,则△ABC 即为△A ′B ′C ′原来的图形,如图②.9.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm ,高为3 cm ,画出这个正六棱锥的直观图.【解】 (1)先画出边长为3 cm 的正六边形的水平放置的直观图,如图①所示;(2)过正六边形的中心O ′建立z ′轴,在z ′轴上截取O ′V ′=3 cm ,如图②所示;(3)连接V ′A ′、V ′B ′、V ′C ′、V ′D ′、V ′E ′、V ′F ′,如图③所示;(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.[自我挑战]10.水平放置的△ABC 的斜二测直观图如图1-2-35所示,已知B ′C ′=4,A ′C ′=3,则△ABC 中AB 边上的中线的长度为( )【导学号:09960022】图1-2-35 A.732 B.73 C .5 D.52【解析】 由斜二测画法规则知△ABC 是∠ACB 为直角的三角形,其中AC =3,BC =8,AB =73,所以AB 边上的中线长为732.【答案】 A11.(2015·咸阳高一检测)一个水平放置的平面图形的斜二测直观图是直角梯形ABCD ,如图1-2-36所示,∠ABC =45°,AB =AD =1,DC ⊥BC ,求原平面图形的面积.图1-2-36【解】 过A 作AE ⊥BC ,垂足为E ,又∵DC ⊥BC 且AD ∥BC ,∴四边形ADCE 是矩形, ∴EC =AD =1,由∠ABC =45°,AB =AD =1知BE =22,∴原平面图形是梯形且上下两底边长分别为1和1+22,高为2, ∴原平面图形的面积为12×⎝ ⎛⎭⎪⎫1+1+22×2=2+22.学业分层测评(五)(建议用时:45分钟)[达标必做]一、选择题1.圆台OO ′的母线长为6,两底面半径分别为2,7,则圆台OO ′的侧面积是( )A .54πB .8πC .4πD .16π【解析】 S 圆台侧=π(r +r ′)l =π(7+2)×6=54π.【答案】 A2.(2015·烟台高一检测)如果轴截面为正方形的圆柱的侧面积是4π,那么圆柱的体积等于( )A .πB .2πC .4πD .8π【解析】 设轴截面正方形的边长为a ,由题意知S 侧=πa ·a =πa 2.又∵S 侧=4π,∴a =2.∴V 圆柱=π×2=2π.【答案】 B3.如图1-3-7,某几何体的正视图与侧视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是( )图1-3-7【解析】 由三视图的概念可知,此几何体高为1,其体积V =Sh =S =12,即底面积S =12,结合选项可知,俯视图为三角形.【答案】 C4.(2016·天津高一检测)一个四棱锥的侧棱长都相等,底面是正方形,其正(主)视图如图1-3-8所示,该四棱锥的侧面积和体积分别是( )图1-3-8A .45,8B .45,83 C .4(5+1),83D .8,8【解析】 由题图知,此棱锥高为2,底面正方形的边长为2,V =13×2×2×2=83,侧面三角形的高h =22+12=5,S 侧=4×⎝ ⎛⎭⎪⎫12×2×5=4 5.【答案】 B 5.(2015·安徽高考)一个四面体的三视图如图1-3-9所示,则该四面体的表面积是( )图1-3-9A .1+ 3B .2+ 3C .1+2 2D .2 2【解析】根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+ 3.故选B.【答案】 B 二、填空题6.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm ,则该棱柱的侧面积为________cm 2.【导学号:09960026】【解析】 棱柱的侧面积S 侧=3×6×4=72(cm 2). 【答案】 72 7.(2015·天津高考)一个几何体的三视图如图1-3-10所示(单位:m),则该几何体的体积为________m 3.图1-3-10【解析】 由几何体的三视图可知该几何体由两个圆锥和一个圆柱构成,其中圆锥的底面半径和高均为1,圆柱的底面半径为1且其高为2,故所求几何体的体积为V =13π×12×1×2+π×12×2=83π.【答案】 83π 三、解答题8.一个三棱柱的底面是边长为3的正三角形,侧棱垂直于底面,它的三视图如图1-3-11所示,AA 1=3.(1)请画出它的直观图;(2)求这个三棱柱的表面积和体积.图1-3-11【解】 (1)直观图如图所示.(2)由题意可知,S △ABC =12×3×332=934.S 侧=3×AC ×AA 1=3×3×3=27.故这个三棱柱的表面积为27+2×934=27+932.这个三棱柱的体积为934×3=2734.9.已知圆台的高为3,在轴截面中,母线AA 1与底面圆直径AB 的夹角为60°,轴截面中的一条对角线垂直于腰,求圆台的体积.【导学号:09960027】【解】 如图所示,作轴截面A 1ABB 1,设圆台的上、下底面半径和母线长分别为r 、R ,l ,高为h .作A 1D ⊥AB 于点D ,则A 1D =3.又∵∠A 1AB =60°,∴AD =A 1Dtan 60°,即R -r =3×33,∴R -r = 3. 又∵∠BA 1A =90°,∴∠BA 1D =60°. ∴BD =A 1D ·tan 60°,即R +r =3×3,∴R +r =33,∴R =23,r =3,而h =3,∴V 圆台=13πh (R 2+Rr +r 2) =13π×3×[(23)2+23×3+(3)2] =21π.所以圆台的体积为21π.[自我挑战]10.(2016·蚌埠市高二检测)圆锥的侧面展开图是圆心角为120°、半径为2的扇形,则圆锥的表面积是________.【导学号:09960028】【解析】 因为圆锥的侧面展开图是圆心角为120°、半径为2的扇形,所以圆锥的侧面积等于扇形的面积=120×π×22360=43π, 设圆锥的底面圆的半径为r ,因为扇形的弧长为2π3×2=43π,所以2πr =43π,所以r =23,所以底面圆的面积为49π.所以圆锥的表面积为169π.【答案】 169π11.若E ,F 是三棱柱ABC -A 1B 1C 1侧棱BB 1和CC 1上的点,且B 1E =CF ,三棱柱的体积为m ,求四棱锥A -BEFC 的体积.【解】 如图所示,连接AB 1,AC 1. ∵B 1E =CF ,∴梯形BEFC 的面积等于梯形B 1EFC 1的面积. 又四棱锥A -BEFC 的高与四棱锥A -B 1EFC 1的高相等,∴V A -BEFC =VA -B 1EFC 1=12VA -BB 1C 1C , 又VA -A 1B 1C 1=13S △A 1B 1C 1·h , VABC -A 1B 1C 1=S △A 1B 1C 1·h =m ,∴VA -A 1B 1C 1=m3,∴VA -BB 1C 1C =VABC -A 1B 1C 1-VA -A 1B 1C 1=23m ,∴V A -BEFC =12×23m =m3. 即四棱锥A -BEFC 的体积是m3.学业分层测评(六)(建议用时:45分钟)[达标必做]一、选择题1.设正方体的表面积为24,那么其外接球的体积是( ) A.43π B.8π3 C .43π D .323π【解析】 设正方体边长为a ,由题意可知,6a 2=24,∴a =2. 设正方体外接球的半径为R ,则3a =2R ,∴R =3,∴V 球=43πR 3=43π. 【答案】 C2.两个球的体积之比为8∶27,那么这两个球的表面积之比为( ) A .2∶3 B .4∶9 C.2∶ 3 D.8∶27【解析】 ⎝ ⎛⎭⎪⎫43πr 3∶⎝ ⎛⎭⎪⎫43πR 3=r 3∶R 3=8∶27,∴r ∶R =2∶3,∴S 1∶S 2=r 2∶R 2=4∶9. 【答案】 B3.把一个铁制的底面半径为r ,高为h 的实心圆锥熔化后铸成一个铁球,则这个铁球的半径为( )A.r h 2B.r 2h 4C.3r 2h 4D.r 2h2【解析】 ∵13πr 2h =43πR 3,∴R =3r 2h 4. 【答案】 C4.一平面截一球得到直径是6 cm 的圆面,球心到这个平面的距离是4 cm ,则该球的体积是( )【导学号:09960032】A.100π3 cm 3B.208π3 cm 3C.500π3 cm 3D.41613π3cm 3 【解析】 根据球的截面性质,有R =r 2+d 2=32+42=5,∴V 球=43πR 3=5003π(cm 3).【答案】 C5.等边圆柱(轴截面是正方形)、球、正方体的体积相等,它们的表面积的大小关系是( )A .S 球<S 圆柱<S 正方体B .S 正方体<S 球<S 圆柱C .S 圆柱<S 球<S 正方体D .S 球<S 正方体<S 圆柱 【解析】 设等边圆柱底面圆半径为r , 球半径为R ,正方体棱长为a ,则πr 2·2r =43πR 3=a 3,⎝ ⎛⎭⎪⎫R r 3=32,⎝ ⎛⎭⎪⎫a r 3=2π,S 圆柱=6πr 2,S 球=4πR 2,S 正方体=6a 2,S 球S 圆柱=4πR 26πr 2=23·⎝ ⎛⎭⎪⎫R r 2=323<1, S 正方体S 圆柱=6a 26πr 2=1π·⎝ ⎛⎭⎪⎫a r 2=34π>1,故选A. 【答案】 A 二、填空题6.一个几何体的三视图(单位:m)如图1-3-16所示,则该几何体的体积为________m 3.图1-3-16【解析】 由三视图知,几何体下面是两个球,球半径为32; 上面是长方体,其长、宽、高分别为6、3、1,所以V =43π×⎝ ⎛⎭⎪⎫323×2+1×3×6=9π+18.【答案】 9π+18 7.(2016·河源高二检测)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个直径为 6 cm ,深为 1 cm 的空穴,则该球半径是________cm ,表面积是________cm 2.【导学号:09960033】【解析】设球心为O,OC是与冰面垂直的一条球半径,冰面截球得到的小圆圆心为D,AB为小圆D的一条直径,设球的半径为R,则OD=R -1,则(R-1)2+32=R2,解得R=5 cm,所以该球表面积为S=4πR2=4π×52=100π(cm2).【答案】 5 100π三、解答题8.如图1-3-17,一个圆柱形的玻璃瓶的内半径为3 cm,瓶里所装的水深为8 cm,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm,求钢球的半径.图1-3-17【解】设球的半径为R,由题意可得43πR3=π×32×0.5,解得R=1.5(cm),所以所求球的半径为1.5 cm.9.(2016·大同高二检测)如图1-3-18所示(单位:cm)四边形ABCD是直角梯形,求图中阴影部分绕AB旋转一周所成几何体的表面积和体积.图1-3-18【解】12S球=12×4π×22=8π(cm2),S圆台侧=π(2+5)(5-2)2+42=35π(cm2),S圆台下底=π×52=25π(cm2),即该几何体的表面积为8π+35π+25π=68π(cm2).又V 圆台=π3×(22+2×5+52)×4=52π(cm 3),V 半球=12×4π3×23=16π3(cm 3). 所以该几何体的体积为V 圆台-V 半球=52π-16π3=140π3(cm 3).[自我挑战]10.一块石材表示的几何体的三视图如图1-3-19所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )图1-3-19A .1B .2C .3D .4【解析】 由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.因此选B.【答案】 B 11.轴截面为正三角形的圆锥内有一个内切球,若圆锥的底面半径为2,求球的体积.【导学号:09960034】【解】 如图所示,作出轴截面,因为△ABC 是正三角形,所以CD =12AC =2,所以AC =4,AD =32×4=23, 因为Rt △AOE ∽Rt △ACD ,所以OE AO =CD AC .设OE =R ,则AO =23-R ,所以R 23-R =12,所以R =233.所以V 球=43πR 3=43π·⎝ ⎛⎭⎪⎫2333=323π27. 所以球的体积等于323π27.学业分层测评(七)(建议用时:45分钟)[达标必做]一、选择题1.(2016·郑州高一检测)给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定3个平面.其中正确的序号是()A.①B.①④C.②③D.③④【解析】因为梯形有两边平行,所以梯形确定一个平面,所以①是正确的;三条平行直线不一定共面,如直三棱柱的三条平行的棱,所以②不正确;有三个公共点的两个平面不一定重合,如两个平面相交,三个公共点都在交线上,所以③不正确;三条直线两两相交,可以确定的平面个数是1或3,所以④不正确.【答案】 A2.已知α,β为平面,A,B,M,N为点,a为直线,下列推理错误的是()A.A∈a,A∈β,B∈a,B∈β⇒a⊂βB.M∈α,M∈β,N∈α,N∈β⇒α∩β=MNC.A∈α,A∈β⇒α∩β=AD.A,B,M∈α,A,B,M∈β,且A,B,M不共线⇒α,β重合【解析】选项C中,α与β有公共点A,则它们有过点A的一条交线,而不是点A,故C错.【答案】 C3.(2016·蚌埠高二检测)经过空间任意三点作平面()【导学号:09960046】A.只有一个B.可作两个C.可作无数多个D.只有一个或有无数多个【解析】若三点不共线,只可以作一个平面;若三点共线,则可以作出无数多个平面,选D.【答案】 D4.空间四点A、B、C、D共面而不共线,那么这四点中()A.必有三点共线B.必有三点不共线C.至少有三点共线D.不可能有三点共线【解析】如图(1)(2)所示,A、C、D均不正确,只有B正确,如图(1)中A、B、D不共线.(1)(2)【答案】 B5.如图2-1-7,平面α∩平面β=l,A、B∈α,C∈β,C∉l,直线AB∩l =D,过A、B、C三点确定的平面为γ,则平面γ、β的交线必过()图2-1-7A.点A B.点BC.点C,但不过点D D.点C和点D【解析】根据公理判定点C和点D既在平面β内又在平面γ内,故在β与γ的交线上.故选D.【答案】 D二、填空题6.如图2-1-8,在正方体ABCD-A1B1C1D1中,试根据图形填空:图2-1-8(1)平面AB1∩平面A1C1=________;(2)平面A1C1CA∩平面AC=________;(3)平面A1C1CA∩平面D1B1BD=________;(4)平面A1C1,平面B1C,平面AB1的公共点为________.【答案】(1)A1B1(2)AC(3)OO1(4)B17.空间三条直线,如果其中一条直线和其他两条直线都相交,那么这三条直线能确定的平面个数是________.【解析】如图,在正方体ABCD-A1B1C1D1中,①AA1∩AB=A,AA1∩A1B1=A1,直线AB,A1B1与AA1可以确定一个平面(平面ABB1A1).。
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总
(人教版)高中数学必修二(全册)同步练习+单元检测卷汇总课后提升作业一棱柱、棱锥、棱台的结构特征(45分钟70分)一、选择题(每小题5分,共40分)1.下列说法中正确的是( )A.棱柱的面中,至少有两个面互相平行B.棱柱中两个互相平行的平面一定是棱柱的底面C.棱柱中一条侧棱的长就是棱柱的高D.棱柱的侧面一定是平行四边形,但它的底面一定不是平行四边形【解析】选A.棱柱的两底面互相平行,故A正确;棱柱的侧面也可能有平行的面(如正方体),故B错;立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,故C错;由棱柱的定义知,棱柱的侧面一定是平行四边形,但它的底面可以是平行四边形,也可以是其他多边形,故D错.2.四棱柱有几条侧棱,几个顶点( )A.四条侧棱、四个顶点B.八条侧棱、四个顶点C.四条侧棱、八个顶点D.六条侧棱、八个顶点【解析】选C.结合正方体可知,四棱柱有四条侧棱,八个顶点.3.下列说法错误的是( )A.多面体至少有四个面B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形C.长方体、正方体都是棱柱D.三棱柱的侧面为三角形【解析】选D.三棱柱的侧面是平行四边形,故D错误.4.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( )A.棱柱B.棱台C.由一个棱柱与一个棱锥构成D.不能确定【解析】选 A.根据棱柱的结构特征,当倾斜后水槽中的水形成了以左右(或前后)两个侧面为底面的四棱柱.5.(2016·郑州高一检测)如图都是正方体的表面展开图,还原成正方体后,其中两个完全一样的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【解题指南】让其中一个正方形不动,其余各面沿这个正方形的各边折起,进行想象后判断.【解析】选B.在图(2)(3)中,⑤不动,把图形折起,则②⑤为对面,①④为对面,③⑥为对面,故图(2)(3)完全一样,而(1)(4)则不同. 【补偿训练】下列图形经过折叠可以围成一个棱柱的是( )【解析】选D.A,B,C中底面多边形的边数与侧面数不相等.6.若棱台上、下底面的对应边之比为1∶2,则上、下底面的面积之比是( )A.1∶2B.1∶4C.2∶1D.4∶1【解析】选 B.由棱台的概念知,上、下两底面是相似的多边形,故它们的面积之比等于对应边长之比的平方,故为1∶4.7.(2016·温州高一检测)在五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个五棱柱的对角线的条数共有( )A.20条B.15条C.12条D.10条【解析】选 D.因为棱柱的侧棱都是平行的,所以过任意不相邻的两条侧棱的截面为一个平行四边形,共可得5个截面,每个平行四边形可得到五棱柱的两条对角线,故共有10条对角线.8.(2015·广东高考)若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.大于5B.等于5C.至多等于4D.至多等于3【解析】选 C.正四面体的四个顶点是两两距离相等的,即空间中n 个不同的点两两距离都相等,则正整数n的取值至多等于4.二、填空题(每小题5分,共10分)9.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何体是________.(写出所有正确结论的编号)①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.【解析】如图:①正确,如图四边形A1D1CB为矩形;②错误,任意选择4个顶点,若组成一个平面图形,则必为矩形或正方形,如四边形ABCD为正方形,四边形A1BCD1为矩形;③正确,如四面体A1ABD;④正确,如四面体A1C1BD;⑤正确,如四面体B1ABD;则正确的说法是①③④⑤.答案:①③④⑤10.(2016·天津高一检测)一个棱柱有10个顶点,所有的侧棱长的和为60cm,则每条侧棱长为________cm.【解析】因为n棱柱有2n个顶点,又此棱柱有10个顶点,所以它是五棱柱,又棱柱的侧棱都相等,五条棱长的和为60cm,可知每条侧棱长为12cm.答案:12三、解答题(每小题10分,共20分)11.根据下面对几何体结构特征的描述,说出几何体的名称.(1)由8个面围成,其中2个面是互相平行且全等的六边形,其他各面都是平行四边形.(2)由5个面围成,其中一个是正方形,其他各面都是有1个公共顶点的三角形.【解析】(1)根据棱柱的结构特征可知,该几何体为六棱柱.(2)根据棱锥的结构特征可知,该几何体为四棱锥.12.已知三棱柱ABC-A′B′C′,底面是边长为1的正三角形,侧面为全等的矩形且高为8,求一点自A点出发沿着三棱柱的侧面绕行一周后到达A′点的最短路线长.【解析】将三棱柱侧面沿侧棱AA′剪开,展成平面图形如图,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=3,A1A″=8,所以AA″==.【延伸探究】本题条件不变,求一点自A点出发沿着三棱柱的侧面绕行两周后到达A′点的最短路线长.【解析】将两个相同的题目中的三棱柱的侧面都沿AA′剪开,然后展开并拼接成如图所示,则AA″即为所求的最短路线.在Rt△AA1A″中,AA1=6,A1A″=8,所以AA″===10.【能力挑战题】如图,在边长为2a的正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.问:(1)折起后形成的几何体是什么几何体?(2)这个几何体共有几个面,每个面的三角形有何特点?(3)每个面的三角形面积为多少?【解析】(1)如图,折起后的几何体是三棱锥.(2)这个几何体共有4个面,其中△DEF为等腰三角形,△PEF为等腰直角三角形,△DPE和△DPF均为直角三角形.(3)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=S正方形ABCD-S△PEF-S△DPF-S△DPE=(2a)2-a2-a2-a2=a2.关闭Word文档返回原板块温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
2018年高中数学模块综合检测新人教A版必修2
模块综合检测班级____ 姓名____ 考号____ 分数____本试卷满分150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在下列各题的四个选项中,只有一个选项是符合题目要求的.1.若α∥β,a⊂α,b⊂β,则a与b的位置关系是( )A.平行或不共面 B.相交C.不共面 D.平行答案:A解析:满足条件的情形如下:2.若k<0,b<0,则直线y=kx+b不通过( )A.第一象限 B.第二象限C.第三象限 D.第四象限答案:A解析:∵k<0,∴必过第二、四象限.∵b<0,∴必过第三象限,所以直线不通过第一象限.3.下列关于直线l、m与平面α、β的命题中,正确命题是( )A.若l⊂β,且α⊥β,则l⊥αB.若l⊥β,且α∥β,则l⊥αC.若l⊥β,且α⊥β,则l⊥αD.若α∩β=m,且l∥m,则l∥α答案:B解析:本小题考查空间想象能力,由线面平行垂直的相互转化可知选项B正确.4.已知各顶点都在一个球面上的正四棱柱(侧棱垂直于底面且底面为正方形的四棱柱)的高为2,这个球的表面积为6π,则这个正四棱柱的体积为( )A.1 B.2C.3 D.4答案:B解析:设正四棱柱的底面边长是a,球半径是R,则有4πR2=6π,4R2=6.2a2+22=2R,2a2=4R2-4=2.因此该正四棱柱的体积是2a2=2,选B.5.一个空间几何体的三视图如右图所示,则该几何体的体积为( )A.1B.2C.4D.8答案:B解析:V =13×12(1+2)×2×2=2.6.两圆C 1:x 2+y 2=r 2与C 2:(x -3)2+(y +1)2=r 2(r >0)相切,则r 的值为( ) A.10-1B.102C.10D.10-1或10+1 答案:B解析:∵两圆相切且半径相等, ∴|OO 1|=2r .∴r =102.7.直线2ax +y -2=0与直线x -(a +1)y +2=0互相垂直,则这两条直线的交点坐标为( )A .(-25,-65)B .(25,-65)C .(25,65)D .(-25,65)答案:C解析:由题意知:a =1,∴2x +y -2=0,x -2y +2=0,解得x =25,y =65,故选C.8.与圆C :x 2+(y +5)2=3相切,且其纵截距和横截距相等的直线共有( ) A .2条 B .3条 C .4条 D .6条答案:C解析:因为原点在圆外,过原点的两条切线在两轴上的截距相等,若切线不过原点,设切线方程x +y =a (a ≠0),圆心(0,-5),r =3,故有|0-5-a |2,∴a =-5±6,于是在两轴上截距相等,斜率为-1的直线又有2条,故共有4条.9.一束光线从点A (4,1)出发经x 轴反射到圆C :(x -2)2+(y -2)2=2上的最短路程是( )A.13 B .213 C.13+ 2 D.13- 2 答案:D解析:A (4,1)关于x 轴的对称点为B (4,-1),圆心C (2,2),则A 点经x 轴反射到圆上的最短路程为|BC |-r =13- 2.10.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =4,AA 1=6,则AC 1和底面ABCD 所成的角为( )A .30° B.45° C .60° D.75° 答案:A解析:如图所示,连结AC ,在长方体ABCD -A 1B 1C 1D 1中,CC 1⊥底面ABCD ,所以∠C 1AC就是AC 1与底面ABCD 所成的角.因为AB =2,BC =4,AA 1=6,所以CC 1=AA 1=6,AC 1=2 6.所以在Rt △ACC 1中,sin ∠C 1AC =CC 1AC 1=62 6=12.所以∠C 1AC =30°.11.如图所示,已知四棱锥P -ABCD ,底面ABCD 为菱形,且PA ⊥底面ABCD ,M 是PC 上的任意一点,则下列选项能使得平面MBD ⊥平面PCD 的是( )A .M 为PC 的中点B .DM ⊥BC C .DM ⊥PCD .DM ⊥PB 答案:C解析:∵底面ABCD 为菱形,则BD ⊥AC ,PA ⊥底面ABCD ,则PA ⊥BD ,PA ∩AC =A ,∴BD ⊥平面PAC ,∵PC ⊂平面PAC ,∴BD ⊥PC ,若是DM ⊥PC ,则有PC ⊥平面MBD ,而PC ⊂平面PCD ,∴平面MBD ⊥平面PCD ,故C 成立.12.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B —AC —D ,则四面体ABCD 的外接球的体积为( )A.125π12B.125π9C.125π6D.125π3答案:C解析:取AC 的中点O . ∵O 到各顶点距离相等,∴O 是球心,∴2R =5,R =52.∴V 球=43π⎝ ⎛⎭⎪⎫523=125π6,故选C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.直线x +y +1=0截圆x 2+y 2-4x +2y -5=0所得的弦长为________. 答案:4 2解析:由题意知:圆的半径为10,圆心(2,-1)到直线x +y +1=0为2,又半弦长、圆半径、弦心距构成直角三角形,故所求弦长为210-2=4 2.14.若直线(m +1)x -y -(m +5)=0与直线2x -my -6=0平行,则m =________. 答案:-2解析:由题意知:m +1=2m,解得:m =1或-2.当m =1时,两直线方程均为2x -y -6=0,两直线重合;当m =-2时,直线为x +y +3=0,x +y -3=0,两直线平行.15.已知正三棱柱ABC -A 1B 1C 1的各条棱长都相等,M 是侧棱CC 1的中点,则异面直线AB 1和BM 所成的角的大小是________.答案:90°解析:作BC 的中点N ,连接AN ,则AN ⊥面BCC 1B 1, 连结B 1N ,则B 1N 是AB 1在面BCC 1B 1的射影.所以B 1N ⊥BM ,AB 1⊥BM ,即异面直线AB 1与BM 所成角大小为90°.16.已知m 、n 是不同的直线,α、β是不重合的平面,给出下列命题: ①若α∥β,m ⊂α,n ⊂β,则m ∥n ; ②若m ,n ⊂α,m ∥β,则α∥β; ③若m ⊥α,n ⊥β,m ∥n ,则α∥β;④m ,n 是两条异面直线 ,若m ∥α,m ∥β,n ∥α,n ∥β,则α∥β.其中,正确的命题是__________.(写出所有正确命题的序号)答案:③④解析:①中,若α∥β,m ⊂α,n ⊂β,则可能m ∥n 或m 、n 异面,故①错误;②中,若m 、n ⊂α,m ∥β,则只有当m 与n 不平行且n ∥β时,α∥β,故②错误;③中,⎭⎪⎬⎪⎫m ∥n m ⊥α⇒⎭⎪⎬⎪⎫n ⊥αn ⊥β⇒α∥β,故③正确. ④中,由m ∥α,可过m 作一平面与α相交于m 1,于是m ∥m 1,同理,由m ∥β,可知在β内存在直线m 2,使m ∥m 2,这样就有m 1∥m 2,而m 1⊂α,m 2⊂β,所以可得m 1∥β,同理在α内有直线n 1∥β,根据m 、n 异面知m 1、n 1相交,所以α∥β,故④正确.三、解答题:本大题共5小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知直线l 的方程为3x +4y -12=0,求下列直线l ′的方程,l ′满足: (1)过点(-1,3),且与l 平行; (2)与直线l 关于y 轴对称.解:(1)∵l ∥l ′,∴l ′的斜率为-34,∴直线l ′的方程为:y -3=-34(x +1),即3x +4y -9=0.(2)l 与y 轴交于点(0,3),该点也在直线l ′上,在直线l 上取一点A (4,0),则点A 关于y 轴的对称点A ′(-4,0)在直线l ′上,所以直线l ′经过(0,3)和(-4,0),故直线l ′的方程为3x -4y +12=0.18.(12分)已知直线l 经过两点(2,1),(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于点(2,0),求圆C 的方程.解:(1)由已知,直线l 的斜率k =3-16-2=12所以,直线l 的方程为x -2y =0.(2)因为圆C 的圆心在直线l 上,可设圆心坐标为(2a ,a ), 因为圆C 与x 轴相切于(2,0)点,∵圆心在直线x =2上, ∴a =1,∴圆心坐标为(2,1),半径为1,∴圆C 的方程为(x -2)2+(y -1)2=1. 19.(12分)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形,俯视图为一个矩形与它的一条对角线.(1)用斜二测画法画出这个几何体的直观图; (2)求该几何体的表面积;(3)在几何体直观图中,在线段PB 上是否存在点M ,使得PB ⊥平面MAC ?若存在,求线段PM 的长;若不存在,请说明理由.解:(1)直观图如图所示.(2)由三视图得,底面ABCD 为正方形, PD ⊥底面ABCD , 则PD ⊥BC ,而底面ABCD 为正方形,BC ⊥DC , 所以BC ⊥平面PCD , 从而BC ⊥PC , 同理,AB ⊥AP ,因此,四个侧面都是直角三角形,即S △PAD =S △PCD =12×4×4=8,S △PAB =S △PCB =12×4×4 2=8 2.所以,几何体的表面积为S =16+16 2+16=32+16 2. (3)设DB 与AC 相交于点E ,在△PDB 中,作EM ⊥PB 于M , ∵PD ⊥平面ABCD ,AC ⊂平面ABCD ,∴AC ⊥PD ,由于ABCD 为正方形,则AC ⊥DB ,又DB ∩PD =D ,∴AC ⊥平面PBD ∴AC ⊥PB ,又∵AC ∩EM =E , 则PB ⊥平面MAC .在Rt △PDB 中,PD =4,DB =4 2,EB =2 2,PB =4 3,BM =EB ×cos∠DBP =EB ×DB PB =433,则PM =PB -BM =4 3-43 3=833,故线段PB 上存在点M ,使得PB ⊥平面MAC ,且PM =833.20.(12分)如图,在侧棱垂直底面的四棱柱ABCD -A 1B 1C 1D 1中,AD ∥BC ,AD ⊥AB ,AB =2,AD =2,BC =4,AA 1=2,E 是DD 1的中点,F 是平面B 1C 1EF 与直线AA 1的交点. 求证:(1)EF ∥A 1D 1;(2)BA 1⊥平面B 1C 1EF .证明:(1)因为C 1B 1∥A 1D 1,C 1B 1⊄平面ADD 1A 1,所以C 1B 1∥平面A 1D 1DA , 又因为平面B 1C 1EF ∩平面A 1D 1EF =EF , 所以C 1B 1∥EF ,所以A 1D 1∥EF .(2)因为BB 1⊥平面A 1B 1C 1D 1,所以BB 1⊥B 1C 1,又因为B 1C 1⊥B 1A 1, 所以B 1C 1⊥平面ABB 1A 1,所以B 1C 1⊥BA 1,在矩形ABB 1A 1中,F 是AA 1的中点,tan ∠A 1B 1F =tan ∠AA 1B =22,即∠A 1B 1F =∠AA 1B ,故BA 1⊥B 1F ,所以BA 1⊥平面B 1C 1EF .21.(12分)已知实数x 、y 满足方程x 2+y 2-4x +1=0,(1)求y x的最值; (2)求y -x 的最小值;(3)求x 2+y 2的最大值和最小值.解:(1)设yx=k ,即y =kx ,由圆心(2,0)到y =kx 距离为半径时,直线与圆相切.∴|2k -0|1+k 2=3, ∴k =± 3.∴k max =3,k min =- 3. (2)设y -x =b ,则y =x +b . ∴|2-0+b |2= 3.∴b =-2± 6.∴(y -x )min =-2- 6.(3)x 2+y 2是圆上点与原点距离的平方.∴(x 2+y 2)max =(2+3)2=7+4 3. (x 2+y 2)min =(2-3)2=7-4 3. 22.(12分)如图,在直角梯形ABCD 中,∠A =∠D =90°,AB <CD ,SD ⊥平面ABCD ,AB =AD =a ,SD =2a(1)求证:平面SAB ⊥平面SAD ;(2)设SB 的中点为M ,当CD AB为何值时,能使DM ⊥MC ?请给出证明. 解:(1)证明:∵∠BAD =90°,∴AB ⊥AD . 又SD ⊥平面ABCD ,AB ⊂平面ABCD , ∴SD ⊥AB ,∴AB ⊥平面SAD .又AB ⊂平面SAB ,∴平面SAB ⊥平面SAD .(2)当CD AB=2时,能使DM ⊥MC . 连接BD ,∵∠BAD =90°,AB =AD =a , ∴BD =2a ,∴SD =BD ,∠BDA =45°. 又M 为SB 的中点,∴DM⊥SB.①设CD的中点为P,连接BP,则DP∥AB,且DP=AB.∴BP∥AD,∴BP⊥CD,∴BD=BC.又∠BDC=90°-∠BDA=45°,∴∠CBD=90°,即BC⊥BD. 又BC⊥SD.∴BC⊥平面SBD.∴DM⊥BC.②由①②知DM⊥平面SBC.∴DM⊥MC.。
新教材人教A版高中数学必修第二册全册各章综合测验汇总(共五套,附解析)
高中数学必修第二册全册各章测验汇总章末质量检测(一) 平面向量及其应用 ............................................................................... 1 章末质量检测(二) 复数 ....................................................................................................... 8 章末质量检测(三) 立体几何初步 ..................................................................................... 14 章末质量检测(四) 统计 ..................................................................................................... 23 章末质量检测(五)概率 (32)章末质量检测(一) 平面向量及其应用一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在⊙O 中,向量OB →,OC →,AO →是( ) A .有相同起点的向量 B .共线向量 C .模相等的向量 D .相等的向量解析:由图可知OB →,OC →,AO →是模相等的向量,其模均等于圆的半径,故选C. 答案:C2.若A (2,-1),B (4,2),C (1,5),则AB →+2BC →等于( ) A .5 B .(-1,5) C .(6,1) D .(-4,9)解析:AB →=(2,3),BC →=(-3,3),∴AB →+2BC →=(2,3)+2(-3,3)=(-4,9). 答案:D3.设向量a ,b 均为单位向量,且|a +b |=1,则a 与b 的夹角θ为( ) A.π3 B.π2 C.2π3 D.3π4解析:因为|a +b |=1,所以|a |2+2a ·b +|b |2=1,所以cos θ=-12.又θ∈[0,π],所以θ=2π3.答案:C4.若A (x ,-1),B (1,3),C (2,5)三点共线,则x 的值为( ) A .-3 B .-1 C .1 D .3解析:AB →∥BC →,(1-x,4)∥(1,2),2(1-x )=4,x =-1,故选B. 答案:B5.已知向量a ,b 满足a +b =(1,3),a -b =(3,-3),则a ,b 的坐标分别为( ) A .(4,0),(-2,6) B .(-2,6),(4,0) C .(2,0),(-1,3) D .(-1,3),(2,0)解析:由题意知,⎩⎪⎨⎪⎧a +b =1,3,a -b =3,-3,解得⎩⎪⎨⎪⎧a =2,0,b =-1,3.答案:C6.若a =(5,x ),|a |=13,则x =( ) A .±5 B.±10 C .±12 D.±13解析:由题意得|a |=52+x 2=13, 所以52+x 2=132,解得x =±12. 答案:C7.如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( ) A .50 2 m B .50 3 m C .25 2 m D.2522m解析:由正弦定理得AB =AC ·sin∠ACB sin B=50×2212=502(m).答案:A8.已知平面内四边形ABCD 和点O ,若OA →=a ,OB →=b ,OC →=c ,OD →=d ,且a +c =b+d ,则四边形ABCD 为( )A .菱形B .梯形C .矩形D .平行四边形 解析:由题意知a -b =d -c , ∴BA →=CD →,∴四边形ABCD 为平行四边形,故选D. 答案:D9.某人在无风条件下骑自行车的速度为v 1,风速为v 2(|v 1|>|v 2|),则逆风行驶的速度的大小为( )A .v 1-v 2B .v 1+v 2C .|v 1|-|v 2| D.v 1v 2解析:题目要求的是速度的大小,即向量的大小,而不是求速度,速度是向量,速度的大小是实数,故逆风行驶的速度大小为|v 1|-|v 2|.答案:C10.已知O 为坐标原点,点A 的坐标为(2,1),向量AB →=(-1,1),则(OA →+OB →)·(OA→-OB →)等于( )A .-4B .-2C .0D .2解析:因为O 为坐标原点,点A 的坐标为(2,1), 向量AB →=(-1,1), 所以OB →=OA →+AB →=(2,1)+(-1,1)=(1,2), 所以(OA →+OB →)·(OA →-OB →)=OA →2-OB →2=(22+12)-(12+22) =5-5=0.故选C. 答案:C11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac,(b +c +a )(b+c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形 解析:∵sin A sin B =a c ,∴a b =ac,∴b =c .又(b +c +a )(b +c -a )=3bc ,∴b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3,∴△ABC 是等边三角形.答案:C12.在△ABC 中,若|AB →|=1,|AC →|=3,|AB →+AC →|=|BC →|,则AB →·BC→|BC →|=( )A .-32 B .-12C.12D.32解析:由向量的平行四边形法则,知当|AB →+AC →|=|BC →|时,∠A =90°.又|AB →|=1,|AC →|=3,故∠B =60°,∠C =30°,|BC →|=2,所以AB →·BC →|BC →|=|AB →||BC →|cos 120°|BC →|=-12.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知A ,B ,C 是不共线的三点,向量m 与向量AB →是平行向量,与BC 是共线向量,则m =________.解析:∵A ,B ,C 不共线,∴AB →与BC →不共线.又m 与AB →,BC →都共线,∴m =0. 答案:014.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 解析:方法一:设OB →=(x ,y ),由|OA →|=|OB →|知x 2+y 2=10,又OA →·OB →=x -3y=0,所以x =3,y =1或x =-3,y =-1.当x =3,y =1时,|AB →|=25;当x =-3,y =-1时,|AB →|=2 5.故|AB →|=2 5.方法二:由几何意义知,|AB →|就是以OA →,OB →为邻边的正方形的对角线长,又|OA →|=10,所以|AB →|=10×2=2 5.答案:2 515.给出以下命题:①若a ≠0,则对任一非零向量b 都有a·b ≠0; ②若a ·b =0,则a 与b 中至少有一个为0; ③a 与b 是两个单位向量,则a 2=b 2. 其中正确命题的序号是________.解析:上述三个命题中只有③正确,因为|a |=|b |=1,所以a 2=|a |2=1,b 2=|b |2=1,故a 2=b 2.当非零向量a ,b 垂直时,有a·b =0,显然①②错误.答案:③16.用两条成120°角的等长绳子悬挂一个灯具,已知灯具重量为10 N ,则每根绳子的拉力大小为________N.解析:如图,由题意得,∠AOC =∠COB =60°,|OC →|=10,则|OA →|=|OB →|=10,即每根绳子的拉力大小为10 N.答案:10三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图所示,已知OA →=a ,OB →=b ,OC →=c ,OD →=d ,OE →=e ,OF →=f ,试用a ,b ,c ,d ,e ,f 表示:(1)AD →-AB →; (2)AB →+CF →; (3)EF →-CF →.解析:(1)因为OB →=b ,OD →=d , 所以AD →-AB →=BD →=OD →-OB →=d -b . (2)因为OA →=a ,OB →=b ,OC →=c ,OF →=f , 所以AB →+CF →=(OB →-OA →)+(OF →-OC →)=b +f -a -c . (3)EF →-CF →=EF →+FC →=EC →=OC →-OE →=c -e .18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,(1)c ∥d ;(2)c ⊥d .解析:由题意得a ·b =|a ||b |cos 60°=2×3×12=3.(1)当c ∥d ,c =λd ,则5a +3b =λ(3a +k b ). ∴3λ=5,且kλ=3,∴k =95.(2)当c ⊥d 时,c ·d =0,则(5a +3b )·(3a +k b )=0. ∴15a 2+3k b 2+(9+5k )a ·b =0, ∴k =-2914.19.(12分)已知向量a =(1,3),b =(m,2),c =(3,4),且(a -3b )⊥c . (1)求实数m 的值; (2)求向量a 与b 的夹角θ.解析:(1)因为a =(1,3),b =(m,2),c =(3,4), 所以a -3b =(1,3)-(3m,6)=(1-3m ,-3).因为(a -3b )⊥c ,所以(a -3b )·c =(1-3m ,-3)·(3,4) =3(1-3m )+(-3)×4 =-9m -9=0, 解得m =-1.(2)由(1)知a =(1,3),b =(-1,2), 所以a ·b =5,所以cos θ=a ·b |a ||b |=510×5=22.因为θ∈[0,π],所以θ=π4.20.(12分)已知向量a =(1,3),b =(2,-2). (1)设c =2a +b ,求(b -a )·c ; (2)求向量a 在b 方向上的投影.解析:(1)由a =(1,3),b =(2,-2),可得c =(2,6)+(2,-2)=(4,4),b -a=(1,-5),则(b -a )·c =4-20=-16.(2)向量a 在b 方向上的投影为a ·b |b |=-422=- 2. 21.(12分)已知O ,A ,B 是平面上不共线的三点,直线AB 上有一点C ,满足2AC→+CB →=0,(1)用OA →,OB →表示OC →;(2)若点D 是OB 的中点,证明四边形OCAD 是梯形. 解析:(1)因为2AC →+CB →=0, 所以2(OC →-OA →)+(OB →-OC →)=0, 2OC →-2OA →+OB →-OC →=0, 所以OC →=2OA →-OB →.(2)证明:如图, DA →=DO →+OA →=-12OB →+OA →=12(2OA →-OB →).故DA →=12OC →.故四边形OCAD 为梯形.22.(12分)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知(a -3b )·cos C=c (3cos B -cos A ).(1)求sin B sin A的值;(2)若c =7a ,求角C 的大小.解析:(1)由正弦定理得,(sin A -3sin B )cos C =sin C (3cos B -cos A ), ∴sin A cos C +cos A sin C =3sin C cos B +3cos C sin B , 即sin(A +C )=3sin(C +B ),即sin B =3sin A ,∴sin Bsin A=3.(2)由(1)知b =3a ,∵c =7a ,∴cos C =a 2+b 2-c 22ab =a 2+9a 2-7a 22×a ×3a =3a 26a 2=12,∵C ∈(0,π),∴C =π3.章末质量检测(二) 复数一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数i -i 2的实部为( ) A .0 B .1 C .i D .-2 解析:i -i 2=1+i. 答案:B2.用C ,R 和I 分别表示复数集、实数集和虚数集,那么有( ) A .C =R ∩I B .R ∩I ={0}C .R =C ∩ID .R ∩I =∅解析:由复数的概念可知R ⊂C ,I ⊂C ,R ∩I =∅. 答案:D3.下列说法正确的是( )A .如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B .a i 是纯虚数(a ∈R )C .如果复数x +y i(x ,y ∈R )是实数,那么x =0,y =0D .复数a +b i(a ,b ∈R )不是实数解析:两个复数的实部的差和虚部的差都等于0,则它们的实部、虚部分别相等,所以A 正确;B 中,当a =0时,a i =0是实数,所以B 不正确;要使复数x +y i(x ,y ∈R )是实数,则只需y =0,所以C 不正确;D 中,当b =0时,复数a +b i 是实数,所以D 不正确.答案:A4.复数z =-1-2i(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限解析:由题意得复数z 的实部为-1,虚部为-2,因此在复平面内对应的点为(-1,-2),位于第三象限.答案:C5.设z 1=3-4i ,z 2=-2+3i ,则z 1-z 2在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:z 1-z 2=5-7i. 答案:D6.复数1-7i 1+i 的虚部为( )A .0 B. 2 C .4 D .-4 解析:∵1-7i1+i=1-7i 1-i 1+i1-i =-6-8i2=-3-4i ,∴复数1-7i1+i 的虚部为-4,选D.答案:D7.复数z =(a 2-2a -3)+(a +1)i 为纯虚数,实数a 的值是( ) A .-1 B .3C .1D .-1或3解析:由题意知⎩⎪⎨⎪⎧a 2-2a -3=0,a +1≠0,解得a =3.故选B.答案:B8.已知z-1+i =2+i ,则复数z =( )A .-1+3iB .1-3iC .3+iD .3-i解析:由题意知z -=(1+i)(2+i)=2-1+3i =1+3i ,从而z =1-3i ,选B. 答案:B9.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-3,1)B .(-1,3)C .(1,+∞) D.(-∞,-3)解析:由已知可得复数z 在复平面内对应的点的坐标为(m +3,m -1),且该点在第四象限,所以⎩⎪⎨⎪⎧m +3>0,m -1<0,解得-3<m <1.答案:A10.已知复数z 1=-1+2i ,z 2=1-i ,z 3=3-4i ,它们在复平面上所对应的点分别为A ,B ,C ,若OC →=λOA →+μOB →(λ,μ∈R ),则λ+μ的值是( )A .1B .2C .3D .4解析:依题意3-4i =λ(-1+2i)+μ(1-i)=μ-λ+(2λ-μ)i ,∴⎩⎪⎨⎪⎧μ-λ=32λ-μ=-4,∴⎩⎪⎨⎪⎧λ=-1μ=2,∴λ+μ=1.答案:A11.复数z =x +y i(x ,y ∈R )满足条件|z -4i|=|z +2|,则|2x+4y|的最小值为( )A .2B .4C .4 2D .16解析:由|z -4i|=|z +2|得x +2y =3. 则2x+4y≥22x +2y=2·23=4 2.12.已知f (n )=i n -i -n (i 2=-1,n ∈N ),集合{f (n )}的元素个数是( ) A .2个 B .3个 C .4个 D .无数个 解析:f (0)=i 0-i 0=0,f (1)=i -i -1=i -1i=2i ,f (2)=i 2-i -2=0, f (3)=i 3-i -3=-2i.∴{f (n )}={0,-2i,2i}. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若复数z =(m -1)+(m +2)i 对应的点在直线y =2x 上,则实数m 的值是________.解析:由已知得2(m -1)-(m +2)=0,∴m =4. 答案:414.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则z 的实部是________. 解析:设z =a +b i(a ,b ∈R ),则i(z +1)=i(a +1+b i)=-b +(a +1)i =-3+2i , 所以a =1,b =3,复数z 的实部是1. 答案:115.在复平面内,复数1+i 与-1+3i 分别对应向量OA →和OB →,其中O 为坐标原点,则|AB →|=________.解析:∵AB →=(-1+3i)-(1+i)=-2+2i , ∴|AB →|=2 2. 答案:2 216.设i 是虚数单位,若复数a -103-i(a ∈R )是纯虚数,则a 的值为________. 解析:先利用复数的运算法则将复数化为x +y i(x ,y ∈R )的形式,再由纯虚数的定义求a .因为a -103-i =a -103+i 3-i 3+i=a -103+i10=(a -3)-i ,由纯虚数的定义,知a -3=0,所以a =3.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)实数m 为何值时,复数z =m +6m -1+(m 2+5m -6)i 是实数? 解析:复数z 为实数,则虚部为0,由于实部是分式,因此要求分式有意义,则⎩⎪⎨⎪⎧m 2+5m -6=0,m ≠1,解得m =-6.所以当m =-6时,复数z 是实数. 18.(12分)计算⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220.解析:⎣⎢⎡⎦⎥⎤1+2i ·i 100+⎝ ⎛⎭⎪⎫1-i 1+i 52-⎝ ⎛⎭⎪⎫1+i 220=[(1+2i)·1+(-i)5]2-i 10=(1+i)2-i 10=1+2i.19.(12分)复数z =(a 2+1)+a i(a ∈R )对应的点在第几象限?复数z 对应的点的轨迹方程是什么?解析:因为a 2+1≥1>0,复数z =(a 2+1)+a i 对应的点为(a 2+1,a ),所以z 对应的点在第一、四象限或实轴的正半轴上.设z =x +y i(x ,y ∈R ),则⎩⎪⎨⎪⎧x =a 2+1,y =a ,消去a 可得x =y 2+1,所以复数z 对应的点的轨迹方程是y 2=x -1.20.(12分)设复数z 1=(a 2-4sin 2θ)+(1+2cos θ)i ,a ∈R ,θ∈(0,π),z 2在复平面内对应的点在第一象限,且z 22=-3+4i.(1)求z 2及|z 2|;(2)若z 1=z 2,求θ与a 的值.解析:(1)设z 2=m +n i(m ,n ∈R ),则z 22=(m +n i)2=m 2-n 2+2mn i =-3+4i ,即⎩⎪⎨⎪⎧m 2-n 2=-3,2mn =4,解得⎩⎪⎨⎪⎧m =1,n =2,或⎩⎪⎨⎪⎧m =-1,n =-2,所以z 2=1+2i 或z 2=-1-2i.又因为z 2在复平面内对应的点在第一象限,所以z 2=-1-2i 应舍去, 故z 2=1+2i ,|z 2|= 5.(2)由(1)知(a 2-4sin 2θ)+(1+2cos θ)i =1+2i ,即⎩⎪⎨⎪⎧a 2-4sin 2θ=1,1+2cos θ=2,解得cos θ=12,因为θ∈(0,π),所以θ=π3,所以a 2=1+4sin 2θ=1+4×34=4,a =±2.综上,θ=π3,a =±2.21.(12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .解析:设z =x +y i(x ,y ∈R ,y ≠0),∴x 2+y 2=1.则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i =(x 2-y 2+3x )+y (2x +1)i.∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧ 2x +1=0,x 2-y 2+3x <0,①②又x 2+y 2=1.③ 由①②③得⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.22.(12分)已知复数z 1=i(1-i)3. (1)求|z 1|;(2)若|z |=1,求|z -z 1|的最大值.解析:(1)|z 1|=|i(1-i)3|=|2-2i|=22+-22=2 2.(2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆,而z 1对应着坐标系中的点Z 1(2,-2).所以|z-z1|的最大值可以看成是点Z1(2,-2)到圆上的点的距离的最大值.由图知|z-z1|max=|z1|+r(r为圆的半径)=22+1.章末质量检测(三) 立体几何初步一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:A错误.如图1所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.B错误.如图2,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体都不是圆锥.C错误.若六棱锥的所有棱长都相等,则底面多边形是正六边形.由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.D正确.答案:D2.关于直观图画法的说法中,不正确的是( )A.原图形中平行于x轴的线段,其对应线段仍平行于x′轴,其长度不变B.原图形中平行于y轴的线段,其对应线段仍平行于y′轴,其长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可画成135°D.作直观图时,由于选轴不同,所画直观图可能不同解析:根据斜二测画法的规则可知B不正确.答案:B3.若圆柱的轴截面是一个正方形,其面积为4S,则它的一个底面面积是( )A .4SB .4πSC .πSD .2πS解析:由题意知圆柱的母线长为底面圆的直径2R , 则2R ·2R =4S ,得R 2=S .所以底面面积为πR 2=πS . 答案:C4.如果一个正四面体(各个面都是正三角形)的体积为9 cm 3,则其表面积为( ) A .18 3 cm 2B .18 cm 2C .12 3 cm 2D .12 cm 2解析:设正四面体的棱长为a cm ,则底面积为34a 2 cm 2,易求得高为63a cm ,则体积为13×34a 2×63a =212a 3=9,解得a =32,所以其表面积为4×34a 2=183(cm 2).答案:A5.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为1,6,3,其四面体的四个顶点在一个球面上,则这个球的表面积为( )A .16π B.32π C .36π D.64π解析:将四面体可补形为长方体,此长方体的对角线即为球的直径,而长方体的对角线长为12+62+32=4,即球的半径为2,故这个球的表面积为4πr 2=16π.答案:A6.若平面α∥平面β,直线a ∥平面α,点B 在平面β内,则在平面β内且过点B 的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线解析:当直线a ⊂平面β,且点B 在直线a 上时,在平面β内且过点B 的所有直线中不存在与a 平行的直线.故选A.答案:A7.若α∥β,A ∈α,C ∈α,B ∈β,D ∈β,且AB +CD =28,AB 、CD 在β内的射影长分别为9和5,则AB 、CD 的长分别为( )A .16和12B .15和13C .17和11D .18和10解析:如图,作AM ⊥β,CN ⊥β,垂足分别为M 、N ,设AB =x ,则CD =28-x ,BM =9,ND =5,∴x 2-81=(28-x )2-25, ∴x =15,28-x =13. 答案:B 8.如图,在棱长为4的正方体ABCD -A 1B 1C 1D 1中,P 是A 1B 1上一点,且PB 1=14A 1B 1,则多面体P -BCC 1B 1的体积为( )A.83B.163 C .4 D .5解析:V 多面体P -BCC 1B 1=13S 正方形BCC 1B 1·PB 1=13×42×1=163.答案:B9.如图,在直三棱柱ABC -A 1B 1C 1中,D 为A 1B 1的中点,AB =BC =BB 1=2,AC =25,则异面直线BD 与AC 所成的角为( )A .30° B.45° C .60° D.90°解析:如图,取B1C1的中点E,连接BE,DE,则AC∥A1C1∥DE,则∠BDE即为异面直线BD与AC所成的角(或其补角).由条件可知BD=DE=EB=5,所以∠BDE=60°,故选C.答案:C10.如图,在三棱锥P-ABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BCP⊥平面PAC,BC⊥PCD.AP⊥平面PBC解析:A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC,又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BCP⊥平面PAC,BC⊥PC,所以BC⊥平面APC,AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.答案:B11.在等腰Rt△ABC中,AB=BC=1,M为AC的中点,沿BM把它折成二面角,折后A与C的距离为1,则二面角C-BM-A的大小为( )A.30° B.60°C.90° D.120°解析:如图所示,由AB=BC=1,∠A′BC=90°,得A′C= 2.∵M为A′C的中点,∴MC=AM=22,且CM⊥BM,AM⊥BM,∴∠CMA为二面角C-BM-A的平面角.∵AC =1,MC =AM =22,∴∠CMA =90°. 答案:C12.在矩形ABCD 中,若AB =3,BC =4,PA ⊥平面AC ,且PA =1,则点P 到对角线BD 的距离为( )A.292 B.135C.175D.1195 解析:如图,过点A 作AE ⊥BD 于E ,连接PE . ∵PA ⊥平面ABCD ,BD ⊂平面ABCD , ∴PA ⊥BD ,∴BD ⊥平面PAE ,∴BD ⊥PE . ∵AE =AB ·AD BD =125,PA =1, ∴PE =1+⎝ ⎛⎭⎪⎫1252=135.答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.正方形ABCD 绕对角线AC 所在直线旋转一周所得组合体的结构特征是________. 解析:由圆锥的定义知是两个同底的圆锥形成的组合体. 答案:两个同底的圆锥组合体14.若某空间几何体的直观图如图所示,则该几何体的表面积是________. 解析:根据直观图可知该几何体是横着放的直三棱柱,所以S 侧=(1+2+3)×2=2+2+6, S 底=12×1×2=22, 故S 表=2+2+6+2×22=2+22+ 6.答案:2+22+ 615.如图,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上.若EF ∥平面AB 1C ,则线段EF 的长度等于________.解析:∵EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,∴F 为DC 中点.故EF =12AC = 2.答案: 216.矩形ABCD 中,AB =1,BC =2,PA ⊥平面ABCD ,PA =1,则PC 与平面ABCD所成的角是________.解析:tan∠PCA =PA AC=13=33,∴∠PCA =30°. 答案:30°三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如图是由正方形ABCE 和正三角形CDE 所组成的平面图形,试画出其水平放置的直观图.解析:(1)以AB 所在的直线为x 轴,AB 的中垂线为y 轴建立直角坐标系,如图(1),再建立坐标系x ′O ′y ′,使两轴的夹角为45°,如图(2).(2)以O ′为中点,在x ′轴上截取A ′B ′=AB ,分别过A ′,B ′作y ′轴的平行线,截取A ′E ′=12AE ,B ′C ′=12BC .在y ′轴上截取O ′D ′=12OD .(3)连接E ′D ′,E ′C ′,C ′D ′,并擦去作为辅助线的坐标轴,就得到所求的直观图,如图(3).18.(12分)如图,正方体ABCD -A ′B ′C ′D ′的棱长为a ,连接A ′C ′,A ′D ,A ′B ,BD ,BC ′,C ′D ,得到一个三棱锥.求:(1)三棱锥A ′-BC ′D 的表面积与正方体表面积的比值; (2)三棱锥A ′-BC ′D 的体积.解析:(1)∵ABCD -A ′B ′C ′D ′是正方体, ∴A ′B =A ′C ′=A ′D =BC ′=BD =C ′D =2a ,∴三棱锥A ′-BC ′D 的表面积为4×12×2a ×32×2a =23a 2.而正方体的表面积为6a 2,故三棱锥A ′-BC ′D 的表面积与正方体表面积的比值为23a 26a 2=33. (2)三棱锥A ′-ABD ,C ′-BCD ,D -A ′D ′C ′,B -A ′B ′C ′是完全一样的. 故V 三棱锥A ′-BC ′D =V 正方体-4V 三棱锥A ′-ABD =a 3-4×13×12a 2×a =a33.19.(12分)如图,四边形ABCD 与四边形ADEF 都为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明:(1)设DF 与GN 交于点O ,连接AE ,则AE 必过点O ,且O 为AE 的中点,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO .因为BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为AD,EF的中点,四边形ADEF为平行四边形,所以DE∥GN.因为DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.因为M为AB的中点,N为AD的中点,所以MN为△ABD的中位线,所以BD∥MN.因为BD⊄平面MNG,MN⊂平面MNG,所以BD∥平面MNG.因为DE∩BD=D,BD,DE⊂平面BDE,所以平面BDE∥平面MNG.20.(12分)S是Rt△ABC所在平面外一点,且SA=SB=SC,D为斜边AC的中点.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.证明:(1)如图所示,取AB的中点E,连接SE,DE,在Rt△ABC中,D、E分别为AC、AB的中点,∴DE∥BC,∴DE⊥AB,∵SA=SB,∴△SAB为等腰三角形,∴SE⊥AB.又SE∩DE=E,∴AB⊥平面SDE.又SD⊂平面SDE,∴AB⊥SD.在△SAC中,SA=SC,D为AC的中点,∴SD⊥AC.又AC∩AB=A,∴SD⊥平面ABC.(2)由于AB=BC,则BD⊥AC,由(1)可知,SD⊥平面ABC,BD⊂平面ABC,∴SD⊥BD,又SD∩AC=D,∴BD⊥平面SAC.21.(12分)如图,在斜三棱柱ABC-A1B1C1中,侧面AA1C1C是菱形,AC1与A1C交于点O,点E是AB的中点.(1)求证:OE∥平面BCC1B1;(2)若AC1⊥A1B,求证:AC1⊥BC.证明:(1)连接BC1,因为侧面AA1C1C是菱形,AC1与A1C交于点O,所以O为AC1的中点,又因为E是AB的中点,所以OE∥BC1,因为OE⊄平面BCC1B1,BC1⊂平面BCC1B1,所以OE∥平面BCC1B1.(2)因为侧面AA1C1C是菱形,所以AC1⊥A1C,因为AC1⊥A1B,A1C∩A1B=A1,A1C⊂平面A1BC,A1B⊂平面A1BC,所以AC1⊥平面A1BC,因为BC⊂平面A1BC,所以AC1⊥BC.22.(12分)如图所示,在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点,连接ED,EC,EB和DB.(1)求证:平面EDB⊥平面EBC;(2)求二面角E-DB-C的正切值.解析:(1)证明:在长方体ABCD-A1B1C1D1中,AB=2,BB1=BC=1,E为D1C1的中点.所以△DD1E为等腰直角三角形,∠D1ED=45°.同理∠C1EC=45°.所以∠DEC=90°,即DE⊥EC.在长方体ABCD-A1B1C1D1中,BC⊥平面D1DCC1,又DE⊂平面D1DCC1,所以BC⊥DE.又EC∩BC=C,所以DE⊥平面EBC.因为DE⊂平面DEB,所以平面DEB⊥平面EBC.(2)如图所示,过E在平面D1DCC1中作EO⊥DC于O.在长方体ABCD-A1B1C1D1中,因为平面ABCD⊥平面D1DCC1,且交线为DC,所以EO⊥面ABCD.过O在平面DBC中作OF⊥DB于F,连接EF,所以EF⊥BD.∠EFO为二面角E-DB-C的平面角.利用平面几何知识可得OF=15,又OE=1,所以tan∠EFO= 5.章末质量检测(四) 统计一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从某年级500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查的学生是样本C.抽取的60名学生的体重是一个样本D.抽取的60名学生是样本容量解析:A×总体应为500名学生的体重B×样本应为每个被抽查的学生的体重C√抽取的60名学生的体重构成了总体的一个样本D×样本容量为60,不能带有单位2.某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将70个同学按01,02,03,…,70进行编号,然后从随机数表第9行第9列的数开始向右读,则选出的第7个个体是( )(注:如表为随机数表的第8行和第9行)63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54A .07B .44C .15D .51解析:找到第9行第9列数开始向右读,符合条件的是29,64,56,07,52,42,44,故选出的第7个个体是44.答案:B3.对于数据3,3,2,3,6,3,10,3,6,3,2,有以下结论: ①这组数据的众数是3.②这组数据的众数与中位数的数值不等. ③这组数据的中位数与平均数的数值相等. ④这组数据的平均数与众数的数值相等. 其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个解析:由题意知,众数与中位数都是3,平均数为4.只有①正确,故选A. 答案:A4.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .10解析:若设高三学生数为x ,则高一学生数为x 2,高二学生数为x2+300,所以有x+x 2+x 2+300=3 500,解得x =1 600.故高一学生数为800,因此应抽取的高一学生数为800100=8.答案:A5.在样本频率分布直方图中,共有9个小长方形,若中间一个小长方形的面积等于其他8个长方形的面积和的25,且样本容量为140,则中间一组的频数为( )A .28B .40C .56D .60解析:设中间一组的频数为x ,则其他8组的频数和为52x ,所以x +52x =140,解得x =40.答案:B6.某校共有学生2 000名,各年级男、女生人数如表所示:一年级二年级三年级女生373380y男生377370z现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( )A.24 B.18C.16 D.12解析:一年级的学生人数为373+377=750,二年级的学生人数为380+370=750,于是三年级的学生人数为2 000-750-750=500,那么三年级应抽取的人数为500×642 000=16.故选C.答案:C7.某篮球队甲、乙两名运动员练习罚球,每人练习10组,每组罚球40个.命中个数的茎叶图如下图,则下面结论中错误的一个是( )A.甲的极差是29 B.乙的众数是21C.甲罚球命中率比乙高 D.甲的中位数是24解析:甲的极差是37-8=29;乙的众数显然是21;甲的平均数显然高于乙,即C成立;甲的中位数应该是23.答案:D8.为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,…,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .1B .8C .12D .18解析:由图知,样本总数为N =200.16+0.24=50.设第三组中有疗效的人数为x ,则6+x 50=0.36,解得x =12. 答案:C9.一组数据的方差为s 2,平均数为x ,将这组数据中的每一个数都乘以2,所得的一组新数据的方差和平均数为( )A.12s 2,12x B .2s 2,2x C .4s 2,2x D .s 2,x解析:将一组数据的每一个数都乘以a ,则新数据组的方差为原来数据组方差的a 2倍,平均数为原来数据组的a 倍.故答案选C.答案:C10.某超市连锁店统计了城市甲、乙的各16台自动售货机在12:00至13:00间的销售金额,并用茎叶图表示如图,则可估计有( )A .甲城市销售额多,乙城市销售额不够稳定B .甲城市销售额多,乙城市销售额稳定C .乙城市销售额多,甲城市销售额稳定D .乙城市销售额多,甲城市销售额不够稳定解析:十位数字是3,4,5时乙城市的销售额明显多于甲,估计乙城市销售额多,甲的数字过于分散,不够稳定,故选D.答案:D11.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加上2所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:设A 样本数据为x i ,根据题意可知B 样本数据为x i +2,则依据统计知识可知A ,B 两样本中的众数、平均数和中位数都相差2,只有方差相同,即标准差相同.答案:D12.将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x 表示:则7个剩余分数的方差为( ) A.1169 B.367 C .36 D.677解析:由题图可知去掉的两个数是87,99,所以87+90×2+91×2+94+90+x=91×7,解得x =4.故s 2=17[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=367.故选B. 答案:B二、填空题(本大题共4小题,每小题5分,共20分.请把答案填在题中横线上) 13.将一个容量为m 的样本分成3组,已知第一组频数为8,第二、三组的频率为0.15和0.45,则m =________.解析:由题意知第一组的频率为 1-(0.15+0.45)=0.4, 所以8m=0.4,所以m =20.答案:2014.某单位有职工100人,不到35岁的有45人,35岁到49岁的有25人,剩下的为50岁以上(包括50岁)的人,用分层抽样的方法从中抽20人,各年龄段分别抽取的人数为________.解析:由于样本容量与总体个体数之比为20100=15,故各年龄段抽取的人数依次为45×15=9(人),25×15=5(人),20-9-5=6(人).答案:9,5,615.某市高三数学抽样考试中,对90分以上(含90分)的成绩进行统计,其频率分布图如图所示,若130~140分数段的人数为90人,则90~100分数段的人数为________.解析:由频率分布图知,设90~100分数段的人数为x ,则0.40x =0.0590,所以x=720.答案:72016.设样本数据x 1,x 2,…,x 2017的方差是4,若y i =2x i -1(i =1,2,…,2 017),则y 1,y 2,…,y 2017的方差为________.解析:本题考查数据的方差.由题意得D (y i )=D (2x i -1)=D (2x i )=4D (x i )=4×4=16.答案:16三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某总体共有60个个体,并且编号为00,01,…,59.现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11列的1开始.依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),求抽取样本的号码.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 39 90 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 35 46 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 79 20 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 30 71 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60解析:由随机数表法可得依次的读数为:18,24,54,38,08,22,23,0118.(12分)某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%,为了了解各组不同的年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定:(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解析:(1)设登山组人数为x ,游泳组中,青年人、中年人、老年人各占比例分别为a ,b ,c ,则有x ·40%+3xb 4x =47.5%,x ·10%+3xc4x=10%.解得b =50%,c =10%. 故a =1-50%-10%=40%.即游泳组中,青年人、中年人、老年人各占比例分别为40%,50%,10%.(2)游泳组中,抽取的青年人数为200×34×40%=60;抽取的中年人数为200×34×50%=75;抽取的老年人数为200×34×10%=15.19.(12分)已知一组数据按从小到大的顺序排列为-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.解析:由于数据-1,0,4,x,7,14的中位数为5,所以4+x2=5,x =6.设这组数据的平均数为x -,方差为s 2,由题意得 x -=16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743. 20.(12分)为了了解小学生的体能情况,抽取了某校一个年级的部分学生进行一分钟跳绳次数测试,将取得数据整理后,画出频率分布直方图(如图).已知图中从左到右前三个小组频率分别为0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生有多少人;(3)若次数在75次以上(含75次)为达标,试估计该年级学生跳绳测试的达标率是多少.解析:(1)由累积频率为1知,第四小组的频率为1-0.1-0.3-0.4=0.2. (2)设参加这次测试的学生有x 人,则0.1x =5, 所以x =50.即参加这次测试的学生有50人. (3)达标率为0.3+0.4+0.2=90%,所以估计该年级学生跳绳测试的达标率为90%.21.(12分)市体校准备挑选一名跳高运动员参加全市中学生运动会,对跳高运动队的甲、乙两名运动员进行了8次选拔比赛.他们的成绩(单位:m)如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运动员的跳高平均成绩分别是多少?(2)哪位运动员的成绩更为稳定?(3)若预测跳过1.65 m就很可能获得冠军,该校为了获得冠军,可能选哪名运动员参赛?若预测跳过1.70 m才能得冠军呢?解析:(1)甲的平均成绩为:(1.70+1.65+1.68+1.69+1.72+1.73+1.68+1.67)÷8=1.69 m,乙的平均成绩为:(1.60+1.73+1.72+1.61+1.62+1.71+1.70+1.75)÷8=1.68 m;(2)根据方差公式可得:甲的方差为0.0006,乙的方差为0.00315∵0.0006<0.00315∴甲的成绩更为稳定;(3)若跳过1.65 m就很可能获得冠军,甲成绩均过1.65米,乙3次未过1.65米,因此选甲;若预测跳过1.70 m才能得冠军,甲成绩过1.70米3次,乙过1.70米5次,因此选乙.22.(12分)某中学高一女生共有450人,为了了解高一女生的身高(单位:cm)情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:(1)(2)画出频率分布直方图;(3)估计该校高一女生身高在[149.5,165.5]范围内的有多少人?解析:(1)由题意得M=80.16=50,落在区间[165.5,169.5]内的数据频数m=50-(8+6+14+10+8)=4,。
2018-2019数学同步新课标导学人教A版必修二通用版练习本册综合学业质量标准检测 Word版含解析
本册综合学业质量标准检测本检测仅供教师备用,学生书中没有本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分分.考试时间分钟.第Ⅰ卷(选择题共分)一、选择题(本大题共个小题,每小题分,共分,在每小题给出的四个选项中,只有一项是符合题目要求的).(·泰安二中高一检测)直线=与直线=+垂直,则等于( ).-..-.[解析]由题意,得=-,∴=-..空间中到、两点距离相等的点构成的集合是( ).线段的中垂线.线段的中垂面.过中点的一条直线.一个圆[解析]空间中线段的中垂面上的任意一点到、两点距离相等..若一个三角形的平行投影仍是三角形,则下列命题:①三角形的高线的平行投影,一定是这个三角形的平行投影的高线;②三角形的中线的平行投影,一定是这个三角形的平行投影的中线;③三角形的角平分线的平行投影,一定是这个三角形的平行投影的角平分线;④三角形的中位线的平行投影,一定是这个三角形的平行投影的中位线.其中正确的命题有( ).①②.②③.③④.②④[解析]垂直线段的平行投影不一定垂直,故①错;线段的中点的平行投影仍是线段的中点,故②正确;三角形的角平分线的平行投影,不一定是角平分线,故③错;因为线段的中点的平行投影仍然是线段的中点,所以中位线的平行投影仍然是中位线,故④正确.选..如图,在同一直角坐标系中,表示直线=与=+正确的是( )[解析]当>时,直线=的斜率=>,直线=+在轴上的截距等于>,此时,选项、、、都不符合;当<时,直线=的斜率=<,直线=+在轴上的截距等于<,只有选项符合,故选..已知圆++-+=截直线++=所得弦的长度为,则实数的值是( )....[解析]圆++-+=的圆心(-),半径=(<).圆心(-)到直线++=的距离==由题意,得=..在圆柱内有一个内接正三棱锥,过一条侧棱和高作截面,正确的截面图形是( )[解析]如图所示,由图可知选..(·天水市高一检测)圆+-+=和圆+-=交于、两点,则的垂直平分线的方程是( ).++=.--=.--=.-+=[解析]圆+-+=的圆心(,-),圆+-=的圆心(),的垂直平分线过圆心、,∴所求直线的斜率==,所求直线方程为=(-),即--=..(·南平高一检测)已知直线与直线-+=关于直线=对称,则直线的方程为( ) .+-=.-+=.+-=.+-=[解析]由(\\(-+==)),得(\\(==)).由题意可知直线的斜率与直线-+=的斜率互为相反数∴=-,故直线的方程为-=-(-)即+-=..某几何体的三视图如下所示,则该几何体的体积是( )....。
2018年高中数学人教A版必修二章末综合检测一 含解析
章末综合检测(一)(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.过棱柱不相邻的两条侧棱的截面是( ) A .矩形 B .正方形 C .梯形D .平行四边形解析:选D .棱柱的侧棱平行且相等,故截面为平行四边形. 2.正方体的表面积与其外接球的表面积的比为( ) A .3∶π B .2∶π C .1∶2πD .1∶3π解析:选B .设正方体的棱长为a ,则球的直径为2R =3a ,所以R =32a .正方体的表面积为6a 2.球的表面积为4πR 2=4π·⎝⎛⎭⎫32a 2=3πa 2,所以它们的表面积之比为6a 2∶3πa 2=2∶π. 3.如图,在长方体ABCD -A 1B 1C 1D 1中,棱锥A 1-ABCD 的体积与长方体AC 1的体积的比值为( )A .12B .16C .13D .15解析:选C .设长方体过同一顶点的棱长分别为a ,b ,c ,则长方体的体积为V 1=abc ,四棱锥A 1-ABCD 的体积为V 2=13abc ,所以棱锥A 1-ABCD 的体积与长方体AC 1的体积的比值为13. 4.底面水平放置的正三棱柱的所有棱长均为2,当其正视图有最大面积时,其侧视图的面积为( ) A .2 3 B .3 C . 3D .4解析:选A .当正视图的面积达到最大时可知其为正三棱柱某个侧面的面积,可以按如图所示位置放置,此时侧视图的面积为23.5.如图是一个空间几何体的三视图,如果直角三角形的直角边长均为1,那么这个几何体的体积为( )A .1B .12C .13D .16解析:选C .由几何体的三视图可知,该几何体是底面边长为1的正方形、高为1的四棱锥,所以该几何体的体积为V =13×1×1×1=13,故选C .6.一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )A .13+23πB .13+23πC .13+26πD .1+26π 解析:选C .由三视图可知,四棱锥的底面是边长为1的正方形,高为1,其体积V 1=13×12×1=13.设半球的半径为R ,则2R =2,即R =22,所以半球的体积V 2=12×4π3R 3=12×4π3×⎝⎛⎭⎫223=26π.故该几何体的体积V =V 1+V 2=13+26π.故选C .7.圆锥的高扩大到原来的2倍,底面半径缩短到原来的12,则圆锥的体积( )A .缩小到原来的一半B .扩大到原来的两倍C .不变D .缩小到原来的16解析:选A .设变化前的圆锥的高为h ,底面半径为r ,变化后的高为h ′,底面半径为r ′, 则V ′V =13πr ′2h ′13πr 2h =14r 2·2hr 2h =12. 8.正六棱台的两底边长分别为1 cm ,2 cm ,高是1 cm ,则它的侧面积为( ) A .972 cm 2B .97 cm 2C .233 cm 2D .3 2 cm 2解析:选A .棱台的斜高为72cm , 所以S 侧=6×12×(1+2)×72=972(cm 2).9.一个圆锥形容器和一个圆柱形容器的轴截面如图所示,两容器内所盛液体的体积正好相等,且液面高度h 也相等,则ha等于( )A .12B .22C .32D .2解析:选C .V 圆锥液=πh 2·h3,V 圆柱液=π·⎝⎛⎭⎫a 22·h , 由已知得πh 33=π·⎝⎛⎭⎫a 22h ,所以h a =32.故选C .10.某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π解析:选A .原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为V =4×2×2+12π×22×4=16+8π. 11.如图所示,在长方体ABCD A 1B 1C 1D 1中,AB =6,AD =4,AA 1=3,分别过BC ,A 1D 1的两个平行截面将长方体分成三部分,记V 1=V AEA1DFD 1,V 3=V B 1E 1B C 1F 1C ,其余部分的体积为V 2,若V 1∶V 2∶V 3=1∶4∶1,则截面A 1EFD 1的面积为( )A .410B .8 3C .413D .16解析:选C .三部分都是棱柱,分别为三棱柱AA 1E DD 1F 、三棱柱B 1BE 1C 1CF 1和四棱柱A 1EBE 1D 1FCF 1,显然它们等高,设为h ,三棱柱的底面面积分别为S 1,S 3,四棱柱的底面面积为S 2,由V 1∶V 2∶V 3=1∶4∶1,得(S 1h )∶(S 2h )∶(S 3h )=1∶4∶1. 所以S 1∶S 2∶S 3=1∶4∶1, 所以S 四边形A 1EBE 1=4S △A 1AE =4S △BB 1E 1,设AE =a ,则BE =6-a , 所以(6-a )×3=4×12×a ×3,所以a =2.所以A 1E =22+32=13. 所以S 四边形A 1EFD 1=13×4=413.12.已知四棱锥S -ABCD 的所有顶点都在同一球面上,底面ABCD 是正方形且和球心O 在同一平面内,当此四棱锥体积取得最大值时,其表面积等于4+43,则球O 的体积等于( ) A .423πB .823πC .1623πD .3223π解析:选B .由题意可知四棱锥S -ABCD 的所有顶点都在同一个球面上,底面ABCD 是正方形且和球心O 在同一平面内,当体积最大时,可以判定该棱锥为正四棱锥,底面在球大圆上,可得知底面正方形的对角线长度的一半为球的半径r ,且四棱锥的高h =r ,进而可知此四棱锥的四个侧面均是边长为2r 的正三角形,底面为边长为2r 的正方形,所以该四棱锥的表面积为S =4×34(2r )2+(2r )2=23r 2+2r 2=(23+2)r 2=4+43,因此r 2=2,r =2,进而球O 的体积V =43πr 3=43π×22=82π3,故选B .二、填空题:本题共4小题,每小题5分.13.如图所示,梯形A 1B 1C 1D 1是一平面图形ABCD 的直观图(斜二测画法),若A 1D 1∥O 1y 1,A 1B 1∥C 1D 1,A 1B 1=23C 1D 1=2,A 1D 1=1,则四边形ABCD 的面积是__________.解析:把图还原,四边形ABCD 为直角梯形,AB =A 1B 1=2,CD =C 1D 1=3,AD =2A 1D 1=2.其面积为12×(2+3)×2=5.答案:514.如果用半径为R =23的半圆形铁皮卷成一个圆锥筒,那么这个圆锥筒的高是__________.解析:设圆锥筒的底面半径为r ,则2πr =πR =23π,则r =3,所以圆锥筒的高h =R 2-r 2=(23)2-(3)2=3. 答案:315.某简单组合体的三视图如图所示,其中正视图与侧视图相同(尺寸如图,单位:cm),则该组合体的体积是________cm 3(结果保留π).解析:由题知该组合体的底部为正四棱柱,上部为圆锥,其中四棱柱的底面边长为1 cm ,高为1 cm ,圆锥的底面圆半径为1,高为1,故该组合体的体积为V =12×1+13π×12×1=⎝⎛⎭⎫1+π3 cm 3. 答案:1+π316.如图,球O 的半径为5,一个内接圆台的两底面半径分别为3和4(球心O 在圆台的两底面之间),则圆台的体积为________.解析:作经过球心的截面(如图),O 1A =3,O 2B =4, OA =OB =5.则OO 1=4,OO 2=3,O 1O 2=7, V =π3(32+32×42+42)×7=2593π. 答案:2593π三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)如图所示,设计一个四棱锥形冷水塔塔顶(无底),四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2 m ,高为7 m ,制造这个塔顶需要多少铁板?解:如图所示,连接AC 和BD 交于点O ,连接SO .作SP ⊥AB ,连接OP .在Rt △SOP 中,SO =7 m ,OP =12BC =1 m ,所以SP =2 2 m ,则△SAB 的面积是12×2×22=22(m 2).所以四棱锥的侧面积是4×22=82(m 2),即制造这个塔顶需要8 2 m 2铁板. 18.(本小题满分12分)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,求几何体EFC 1-DBC 的体积.解:如图,连接DF ,DC 1,则几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,所以几何体EFC 1-DBC 的体积V =VD -EFC 1+VD -CBFC 1=13×12×3×4×6+13×12×(3+6)×6×6=12+54=66,故几何体EFC 1-DBC 的体积为66.19.(本小题满分12分)某高速公路收费站入口处的安全标识墩如图所示,墩的上半部分是正四棱锥P -EFGH ,下半部分是长方体ABCD -EFGH .该标识墩的正视图和俯视图如图所示.(1)请画出该安全标识墩的侧视图; (2)求该安全标识墩的体积; (3)求该安全标识墩的侧面积.解:(1)侧视图和正视图一样,如图所示.(2)该安全标识墩的体积V =V P -EFGH +V ABCD -EFGH=13×402×60+402×20=64 000(cm 3). (3)如图,连接EG ,HF 交于点O ,连接PO ,结合三视图可知OP =60 cm , OG =12EG =20 2 cm , 可得PG =602+(202)2 =2011(cm).于是四棱锥P -EFGH 的侧面积S 1= 4×12×40×(2011)2-202 =1 60010(cm 2),长方体ABCD -EFGH 的侧面积S 2=4×40×20 =3 200(cm 2),故该安全标识墩的侧面积S =S 1+S 2=1 600(10+2)(cm 2).20.(本小题满分12分)在棱长为1的正方体内,有两球相外切,并且又分别与正方体内切. (1)求两球的半径之和;(2)球的半径是多少时,两球的体积之和最小?解:(1)如图所示,ABCD 为过球心的对角面,AC =3, 设两球半径分别为R 、r , 则有R +r +3(R +r )=3, 所以R +r =3-32.(2)设两球的体积之和为V ,则 V =43π(R 3+r 3)=43π(R +r )(R 2-Rr +r 2) =43π(R +r )[(R +r )2-3Rr ] =43π(R +r )·[(R +r )2-3R (R +r -R )] =43π·3-32·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫3-322-3R ⎝ ⎛⎭⎪⎫3-32-R =2(3-3)3π⎣⎢⎡⎦⎥⎤3R 2-3(3-3)2R +⎝ ⎛⎭⎪⎫3-322, 所以当R =3-34时,V 有最小值.21.(本小题满分12分)用一块矩形铁皮作圆台形铁桶的侧面,要求铁桶的上底半径是24 cm ,下底半径为16 cm ,母线长为48 cm . (1)求矩形铁皮长边的最小值; (2)求该铁桶的容积. 解:(1)如图,设OA =x cm ,由相似三角形的知识可得x x +48=1624,由此得x =96. 又2π×242π×(96+48)=16,所以∠AOA ′=16×360°=60°,于是△BOB ′为正三角形, 那么BB ′=OB =144 cm ,即矩形铁皮长边的最小值为144 cm .(2)由第一问中图可知O 1O 2=482-(24-16)2 =835(cm).那么该铁桶的容积V =13(242π+162π+242π×162π)×835=9 728353π(cm 3).22.(本小题满分12分)如图,已知圆锥SO 中,底面半径r =1,母线l =4,M 为母线SA 上的一个点,且SM =x ,从点M 拉一根绳子,围绕圆锥的侧面转到A 点.求 (1)绳子的最短长度的平方f (x );(2)绳子最短时,顶点到绳子的最短距离.解:将圆锥的侧面沿SA 展开在一个平面上,如图,则该图为扇形,且弧AA ′的长度L 就是圆锥底面圆的周长,所以L =2πr =2π,所以∠ASM =L 2πl ×360°=2π2π×4×360°=90°. (1)由题意知绳子的最短长度为展开图中的AM ,其值为AM =x 2+16(0≤x ≤4), 所以f (x )=AM 2=x 2+16(0≤x ≤4).(2)绳子最短时,在展开图中作SR ⊥AM ,垂足为R ,则SR 的长度为顶点S 到绳子的最短距离,在△SAM 中,S △SAM =12SA ·SM =12AM ·SR ,所以SR =SA ·SM AM =4xx 2+16(0≤x ≤4),即绳子最短时,顶点到绳子的最短距离为4x x 2+16(0≤x ≤4).。
2018年新人教A版高中数学选修2-3全册同步检测含答案解析
2018年新人教A版高中数学选修2-3全册同步检测目录第1章1.1第1课时分类加法计数原理与分步乘法计数原理第1章1.1第2课时分类加法计数原理与分步乘法计数原理的应用第1章1.2-1.2.1第1课时排列与排列数公式第1章1.2-1.2.1第2课时排列的综合应用第1章1.2-1.2.2第1课时组合与组合数公式第1章1.2-1.2.2第2课时组合的综合应用第1章1.3-1.3.1二项式定理第1章1.3-1.3.2“杨辉三角”与二项式系数的性质第1章章末复习课第1章章末评估验收(一)第2章2.1-2.1.1离散型随机变量第2章2.1-2.1.2第1课时离散型随机变量的分布列第2章2.1-2.1.2第2课时两点分布与超几何分布第2章2.2-2.2.1条件概率第2章2.2-2.2.2事件的相互独立性第2章2.2-2.2.3独立重复试验与二项分布第2章2.3-2.3.1离散型随机变量的均值第2章2.3-2.3.2离散型随机变量的方差第2章2.4正态分布第2章章末复习课第2章章末评估验收(二)第3章3.1第1课时线性回归模型第3章3.1第2课时线性回归分析第3章3.2独立性检验的基本思想及其初步应用第3章章末复习课第3章章末评估验收(三) 模块综合评价(一)模块综合评价(二)第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第1课时分类加法计数原理与分步乘法计数原理A级基础巩固一、选择题1.某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有() A.1种B.2种C.3种D.4种解析:分两类:买1本或买2本书,各类购买方式依次有2种、1种,故购买方式共有2+1=3(种).故选C.答案:C2.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法有()A.7种B.12种C.64种D.81种解析:要完成配套,分两步:第一步,选上衣,从4件中任选一件,有4种不同的选法;第二步,选长裤,从3条长裤中任选一条,有3种不同选法.故不同取法共有4×3=12(种).答案:B3.将3张不同的奥运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2 160 B.720 C.240 D.120解析:第1张门票有10种分法,第2张门票有9种分法,第3张门票有8种分法,由分步乘法计数原理得分法共有10×9×8=720(种).答案:B4.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40 B.16 C.13 D.10解析:分两类情况讨论.第一类,直线a分别与直线b上的8个点可以确定8个不同的平面;第二类,直线b分别与直线a上的5个点可以确定5个不同的平面.根据分类加法计数原理知,8+5=13(个),即共可以确定13个不同的平面.答案:C5.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有()A.30个B.42个C.36个D.35个解析:要完成这件事可分两步,第一步确定b(b≠0)有6种方法,第二步确定a有6种方法,故由分步乘法计数原理知共有虚数6×6=36(个).答案:C二、填空题6.加工某个零件分三道工序,第一道工序有5人,第二道工序有6人,第三道工序有4人,从中选3人每人做一道工序,则选法有________种.解析:选第一、第二、第三道工序各一人的方法数依次为5,6,4,由分步乘法计数原理知,选法总数为N=5×6×4=120(种).答案:1207.三名学生分别从计算机、英语两学科中选修一门课程,不同的选法有________种.解析:由分步乘法计数原理知,不同的选法有N=2×2×2=23=8(种).答案:88.一学习小组有4名男生、3名女生,任选一名学生当数学课代表,共有________种不同选法;若选男女生各一名当组长,共有________种不同选法.解析:任选一名当数学课代表可分两类,一类是从男生中选,有4种选法;另一类是从女生中选,有3种选法.根据分类加法计数原理,不同选法共有4+3=7(种).若选男女生各一名当组长,需分两步:第1步,从男生中选一名,有4种选法;第2步,从女生中选一名,有3种选法.根据分步乘法计数原理,不同选法共有4×3=12(种).答案:712三、解答题9.若x,y∈N*,且x+y≤6,试求有序自然数对(x,y)的个数.解:按x的取值进行分类:x=1时,y=1,2,…,5,共构成5个有序自然数对;x=2时,y=1,2,…,4,共构成4个有序自然数对;……x=5时,y=1,共构成1个有序自然数对.根据分类加法计数原理,有序自然数对共有N=5+4+3+2+1=15(个).10.现有高一四个班的学生34人,其中一、二、三、四班分别有7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选两人做中心发言,这两人需来自不同的班级,有多少种不同的选法?解:(1)分四类.第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步.第一、第二、第三、第四步分别从一、二、三、四班学生中选一人任组长.所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步.从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以,共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).B级能力提升1.某班小张等4位同学报名参加A、B、C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有()A.27种B.36种C.54种D.81种解析:除小张外,每位同学都有3种选择,小张只有2种选择,所以不同的报名方法有3×3×3×2=54(种).答案:C2.有三个车队分别有4辆、5辆、5辆车,现欲从其中两个车队各抽取一辆车外出执行任务,设不同的抽调方案数为n,则n的值为________.解析:不妨设三个车队分别为甲、乙、丙,则分3类.甲、乙各一辆共4×5=20(种);甲、丙各一辆共4×5=20(种);乙、丙各一辆共5×5=25(种),所以共有20+20+25=65(种).答案:653.乒乓球队的10名队员中有3名主力队员,派5名参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员中选2名安排在第二、四位置,求不同的出场安排共有多少种.解:按出场位置顺序逐一安排:第一位置有3种安排方法;第二位置有7种安排方法;第三位置有2种安排方法;第四位置有6种安排方法;第五位置有1种安排方法.由分步乘法计数原理知,不同的出场安排方法有3×7×2×6×1=252(种).第一章计数原理1.1 分类加法计数原理与分步乘法计数原理第2课时分类加法计数原理与分步乘法计数原理的应用A级基础巩固一、选择题1.植树节那天,四位同学植树,现有3棵不同的树,若一棵树限1人完成,则不同的植树方法种数有()A.1×2×3 B.2×3×4C.34D.43解析:完成这件事分三步.第一步,植第一棵树,有4种不同的方法;第二步,植第二棵树,有4种不同的方法;第三步,植第三棵树,也有4种不同的方法.由分步乘法计数原理得:N=4×4×4=43,故选D.答案:D2.从1,2,3,4,5五个数中任取3个,可组成不同的等差数列的个数为() A.2 B.4C.6 D.8解析:分两类:第一类,公差大于0,有以下4个等差数列:①1,2,3,②2,3,4,③3,4,5,④1,3,5;第二类,公差小于0,也有4个.根据分类加法计数原理可知,可组成的不同的等差数列共有4+4=8(个).答案:D3.从集合{1,2,3}和{1,4,5,6}中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数为()A.12 B.11C.24 D.23解析:先在{1,2,3}中取出1个元素,共有3种取法,再在{1,4,5,6}中取出1个元素,共有4种取法,取出的2个数作为点的坐标有2种方法,由分步乘法计数原理知不同的点的个数有N=3×4×2=24(个).又点(1,1)被算了两次,所以共有24-1=23(个).答案:D4.已知x∈{2,3,7},y∈{-31,-24,4},则xy可表示不同的值的个数是() A.1+1=2 B.1+1+1=3C.2×3=6 D.3×3=9解析:x,y在各自的取值集合中各选一个值相乘求积,这件事可分两步完成.第一步,x在集合{2,3,7}中任取一个值有3种方法;第二步,y在集合{-31,-24,4}中任取一个值有3种方法.根据分步乘法计数原理知,不同值有3×3=9(个).答案:D5.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数的个数是()A.20 B.16C.14 D.12解析:因为四位数的每个位数上都有两种可能性(取2或3),其中四个数字全是2或3的不合题意,所以适合题意的四位数共有2×2×2×2-2=14(个).答案:C二、填空题6.3位旅客投宿到1个旅馆的4个房间(每房间最多可住3人)有________种不同的住宿方法.解析:分三步,每位旅客都有4种不同的住宿方法,因而共有不同的方法4×4×4=43=64(种).答案:647.甲、乙、丙3个班各有三好学生3,5,2名,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种不同的推选方法.解析:分为三类:第一类,甲班选一名,乙班选一名,根据分步乘法计数原理,选法有3×5=15(种);第二类,甲班选一名,丙班选一名,根据分步乘法计数原理,选法有3×2=6(种);第三类,乙班选一名,丙班选一名,根据分步乘法计数原理,选法有5×2=10(种).综合以上三类,根据分类加法计数原理,不同选法共有15+6+10=31(种).答案:318.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面.不同的安排方法共有________种.解析:分三类.若甲在周一,则乙、丙的排法有4×3=12(种);若甲在周二,则乙、丙的排法有3×2=6(种);若甲在周三,则乙、丙的排法有2×1=2(种).所以不同的安排方法共有12+6+2=20(种).答案:20三、解答题9.某单位职工义务献血,在体检合格的人中,O型血的共有28人,A型血的共有7人,B型血的共有9人,AB型血的共有3人.(1)从中任选1人去献血,有多少种不同的选法?(2)从四种血型的人中各选1人去献血,有多少种不同的选法?解:从O型血的人中选1人有28种不同的选法,从A型血的人中选1人有7种不同的选法,从B型血的人中选1人有9种不同的选法,从AB型血的人中选1人有3种不同的选法.(1)任选1人去献血,即无论选哪种血型的哪一个人,“任选1人去献血”这件事情都可以完成,所以用分类加法计数原理,不同的选法有28+7+9+3=47(种).(2)要从四种血型的人中各选1人,即从每种血型的人中各选出1人后,“各选1人去献血”这件事情才完成,所以用分步乘法计数原理,不同的选法有28×7×9×3=5 292(种).10.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排百位数字,从1,2,…,7共7个数字中选一个,有7种选法;再排十位数字,从除去百位数字外,剩余的7个数字(包括0)中选一个,有7种选法;最后排个位数字,从除前两步选出的数字外,剩余的6个数字中选一个,有6种选法.由分步乘法计数原理得,共可以组成的不同三位数有7×7×6=294(个).B级能力提升1.将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法有()A.6种B.12种C.18种解析:因为每一行从左到右,每一列从上到下分别依次增大,1,2,9只有一种填法,5只能填在右上角或左下角,5填好后与之相邻的空格可填6,7,8任一个;余下两个数字按从小到大只有一种方法.结果共有2×3=6(种),故选A.答案:A2.把9个相同的小球放入编号为1,2,3的三个箱子里,要求每个箱子放球的个数不小于其编号数,则不同的放球方法共有________种.解析:分四类:第一个箱子放入1个小球,将剩余的8个小球放入2,3号箱子,共有4种放法;第一个箱子放入2个小球,将剩余的7个小球放入2,3号箱子,共有3种放法;第一个箱子放入3个小球,将剩余的6个小球放入2,3号箱子,共有2种放法;第一个箱子放入4个小球则共有1种放法.根据分类加法计数原理共有10种情况.答案:103.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图所示的6个点A,B,C,A1,B1,C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有多少种?解:第一步,在点A1,B1,C1上安装灯泡,A1有4种方法,B1有3种方法,C1有2种方法,4×3×2=24,即共有24种方法.第二步,从A,B,C中选一个点安装第4种颜色的灯泡,有3种方法.第三步,再给剩余的两个点安装灯泡,共有3种方法,由分步乘法计数原理可得,安装方法共有4×3×2×3×3=216(种).第一章 计数原理 1.2 排列与组合 1.2.1 排列第1课时 排列与排列数公式A 级 基础巩固一、选择题1.从集合{3,5,7,9,11}中任取两个元素:①相加可得多少个不同的和?②相除可得多少个不同的商?③作为椭圆x 2a 2+y 2b 2=1中的a ,b ,可以得到多少个焦点在x 轴上的椭圆方程?④作为双曲线x 2a 2-y 2b 2=1中的a ,b ,可以得到多少个焦点在x 轴上的双曲线方程?上面四个问题属于排列问题的是( )A .①②③④B .②④C .②③D .①④解析:因为加法满足交换律,所以①不是排列问题;除法不满足交换律,如53≠35,所以②是排列问题.若方程x 2a 2+y 2b 2=1表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小一定;在双曲线x 2a 2-y 2b2=1中不管a >b 还是a <b ,方程均表示焦点在x 轴上的双曲线,且是不同的双曲线.故③不是排列问题,④是排列问题.答案:B2.计算A 67-A 56A 45=( )A.12 B.24 C.30 D.36解析:A67=7×6A45,A56=6A45,所以A67-A56A45=36A45A45=36.答案:D3.北京、上海、香港三个民航站之间的直达航线,需要准备不同的飞机票的种数为()A.3 B.6 C.9 D.12解析:这个问题就是从北京、上海、香港三个民航站中,每次取出两个站,按照起点站在前、终点站在后的顺序排列,求一共有多少种不同的排列.答案:B4.若从6名志愿者中选出4名分别从事翻译、导游、导购、保洁四项不同的工作,则选派方案有()A.180种B.360种C.15种D.30种解析:由排列定义知选派方案有A46=6×5×4×3=360(种).答案:B5.用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有() A.24个B.30个C.40个D.60个解析:将符合条件的偶数分为两类:一类是2作个位数,共有A 24个,另一类是4作个位数,也有A 24个.因此符合条件的偶数共有A 24+A 24=24(个).答案:A 二、填空题6.若A m10=10×9×…×5,则m =_________________________.解析:由10-(m -1)=5,得m =6. 答案:67.现有8种不同的菜种,任选4种种在不同土质的4块地上,有________种不同的种法(用数字作答).解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地上,则本题即为从8个不同元素中任选4个元素的排列问题.所以不同的种法共有A 48=8×7×6×5=1 680(种).答案:1 6808.从2,3,5,7中每次选出两个不同的数作为分数的分子、分母,则可产生不同的分数的个数是______,其中真分数的个数是____.解析:第一步:选分子,可从4个数字中任选一个作分子,共有4种不同选法;第二步:选分母,从剩下的3个数字中任选一个作分母,有3种不同选法.根据分步乘法计数原理,不同选法共有4×3=12(种),其中真分数有23,25,27,35,37,57,共6个.答案:12 6 三、解答题9.求下列各式中n 的值:(1)90A 2n =A 4n ;(2)A 4n A n -4n -4=42A n -2n -2.解:(1)因为90A 2n =A 4n ,所以90n (n -1)=n (n -1)(n -2)(n -3).所以n 2-5n +6=90. 所以(n -12)(n +7)=0. 解得n =-7(舍去)或n =12.所以满足90A 2n =A 4n 的n 的值为12.(2)由A 4n A n -4n -4=42A n -2n -2,得n !(n -4)!·(n -4)!=42(n -2)!.所以n (n -1)=42.所以n 2-n -42=0.解得n =-6(舍去)或n =7.10.用1,2,3,4,5,6,7这七个数字组成没有重复数字的四位数. (1)能被5整除的四位数有多少个? (2)这些四位数中偶数有多少个?解:(1)能被5整除的数个位必须是5,故有A 36=120(个).(2)偶数的个位数只能是2,4,6,有A 13种排法,其他位上有A 36种排法,由乘法原理知,四位数中偶数共有A 13·A 36=360(个).B 级 能力提升1.满足不等式A 7nA 5n >12的n 的最小值为( )A .12B .10C .9D .8解析:由排列数公式得n !(n -5)!(n -7)!n !>12,即(n -5)(n -6)>12,解得n >9或n <2.又n ≥7,所以n >9.又n ∈N *,所以n 的最小值为10.答案:B2.从集合{0,1,2,5,7,9,11}中任取3个元素分别作为直线方程Ax +By +C =0中的系数A ,B ,C ,所得直线经过坐标原点的有________条.解析:易知过原点的直线方程的常数项为0,则C =0,再从集合中任取两个非零元素作为系数A ,B ,有A 26种.所以符合条件的直线有A 26=30(条).答案:303.一条铁路线原有m 个车站,为了适应客运需要,新增加了n (n ≥1,n ∈N *)个车站,因而客运车票增加了58种,问:原来这条铁路线有多少个车站?现在又有多少个车站?解:原有m 个车站,所以原有客运车票A 2m 种,现有(n +m )个车站,所以现有客运车票A 2n +m 种.所以A 2n +m -A 2m =58,所以(n +m )(n +m -1)-m (m -1)=58. 即2mn +n 2-n =58,即n (2m +n -1)=29×2=1×58.由于n ,2m +n -1均为正整数,故可得方程组①⎩⎪⎨⎪⎧n =29,2m +n -1=2或②⎩⎪⎨⎪⎧n =2,2m +n -1=29 或③⎩⎪⎨⎪⎧n =1,2m +n -1=58或④⎩⎪⎨⎪⎧n =58,2m +n -1=1.方程组①与④不符合题意.解方程组②得m =14,n =2,解方程组③得m =29,n =1.所以原有14个车站,现有16个车站或原有29个车站,现有30个车站.第一章计数原理1.2 排列与组合1.2.1 排列第2课时排列的综合应用A级基础巩固一、选择题1.A,B,C,D,E五人并排站成一行,如果A,B必须相邻且B在A的右边,那么不同的排法种数是()A.6B.24C.48D.120解析:把A,B视为一人,且B固定在A的右边,则本题相当于4人的全排列,排法共有A44=24(种).答案:B2.用数字1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有()A.48个B.36个C.24个D.18个解析:个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.答案:B3.甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有()A.6种B.12种C.24种D.30种解析:首先甲、乙两人从4门课程中同选1门,有4种方法;其次从剩余3门中任选2门进行排列,排列方法有A23=6(种).于是,甲、乙所选的课程中恰有1门相同的选法共有4×6=24(种).答案:C4.3张卡片正反面分别标有数字1和2,3和4,5和7,若将3张卡片并列组成一个三位数,可以得到不同的三位数的个数为()A.30 B.48 C.60 D.96解析:“组成三位数”这件事,分2步完成:第1步,确定排在百位、十位、个位上的卡片,即为3个元素的一个全排列A33;第2步,分别确定百位、十位、个位上的数字,各有2种方法.根据分步乘法计数原理,可以得到不同的三位数有A33×2×2×2=48(个).答案:B5.生产过程有4道工序,每道工序需要安排一人照看,现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排1人,第四道工序只能从甲、丙两名工人中安排1人,则不同的安排方案共有() A.24种B.36种C.48种D.72种解析:分类完成.第1类,若甲在第一道工序,则丙必在第四道工序,其余两道工序无限制,有A24种排法;第2类,若甲不在第一道工序(此时乙一定在第一道工序),则第四道工序有2种排法,其余两道工序有A24种排法,有2A24种排法.由分类加法计数原理得,不同的安排方案共有A24+2A24=36(种).答案:B二、填空题6.若把英语单词“error”的字母顺序写错了,则可能出现的错误共有________种.解析:A25-1=19.答案:197.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.解析:先考虑产品A与B相邻,把A、B作为一个元素有A44种方法,而A、B可交换位置,所以摆法有2A44=48(种).又当A、B相邻又满足A、C相邻,摆法有2A33=12(种).故满足条件的摆法有48-12=36(种).答案:368.在所有无重复数字的四位数中,千位上的数字比个位上的数字大2的数共有________个.解析:千位数字比个位数字大2,有8种可能,即(2,0),(3,1),…,(9,7),前一个数为千位数字,后一个数为个位数字,其余两位无任何限制.所以共有8A28=448(个).答案:448三、解答题9.7人站成一排.(1)甲、乙、丙排序一定时,有多少种排法?(2)甲在乙的左边(不一定相邻)有多少种不同的排法?解析:(1)法一7人的所有排列方法有A77种,其中甲、乙、丙的排序有A33种,又已知甲、乙、丙排序一定,所以甲、乙、丙排序一定的排法共有A77A33=840(种).法二(插空法)7人站定7个位置,只要把其余4人排好,剩下的3个空位,甲、乙、丙就按他们的顺序去站,只有一种站法,故排法有A47=7×6×5×4=840(种).(2)“甲在乙的左边”的7人排列数与“甲在乙的右边”的7人排列数相等,而7人的排列数恰好是这二者之和,因此满足条件的排法有12A77=2 520(种).10.一场晚会有5个演唱节目和3个舞蹈节目,要求排出一个节目单.(1)3个舞蹈节目不排在开始和结尾,有多少种排法?(2)前4个节目要有舞蹈节目,有多少种排法?解:(1)先从5个演唱节目中选两个排在首尾两个位置有A25种排法,再将剩余的3个演唱节目,3个舞蹈节目排在中间6个位置上有A66种排法,故共有不同排法A25A66=1 440(种).(2)先不考虑排列要求,有A88种排列,其中前4个节目没有舞蹈节目的情况,可先从5个演唱节目中选4个节目排在前四个位置,然后将剩余四个节目排列在后四个位置,有A45A44种排法,所以前四个节目要有舞蹈节目的排法有A88-A45A44=37 440(种).B级能力提升1.在航天员进行的一项太空试验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C在实施时必须相邻,则试验顺序的编排方法共有() A.24种B.48种C.96种D.144种解析:本题是一个分步计数问题,由题意知程序A只能出现在第一步或最后一步,所以从第一个位置和最后一个位置中选一个位置排A,编排方法有A12=2(种).因为程序B和C在实施时必须相邻,所以把B和C看作一个元素,同除A外的3个元素排列,注意B和C之间有2种排法,即编排方法共有A44A22=48(种).根据分步乘法计数原理知,编排方法共有2×48=96(种),故选C.答案:C2.三个人坐在一排八个座位上,若每人的两边都要有空位,则不同的坐法种数为________.解析:“每人两边都有空位”是说三个人不相邻,且不能坐两头,可视作5个空位和3个人满足上述两要求的一个排列,只要将3个人插入5个空位形成的4个空当中即可.所以不同坐法共有A34=24(种).答案:243.用1,2,3,4,5,6,7排成无重复数字的七位数,按下述要求各有多少个?(1)偶数不相邻;(2)偶数一定在奇数位上;(3)1和2之间恰好夹有一个奇数,没有偶数.解:(1)用插空法,共有A44A35=1 440(个).(2)先把偶数排在奇数位上有A34种排法,再排奇数有A44种排法.所以共有A34A44=576(个).(3)1和2的位置关系有A22种,在1和2之间放一个奇数有A13种方法,把1,2和相应奇数看成整体再和其余4个数进行排列有A55种排法,所以共有A22A13A55=720(个).第一章计数原理1.2 排列与组合1.2.2 组合第1课时组合与组合数公式A级基础巩固一、选择题1.从10个不同的数中任取2个数,求其和、差、积、商这四个问题,属于组合的有()A.1个B.2个C.3个D.4个解析:因为减法、除法运算中交换位置,对结果有影响,所以属于组合的有2个.答案:B2.已知平面内A、B、C、D这4个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为()A.3 B.4 C.12 D.24解析:C34=C14=4.答案:B3.集合A={x|x=C n4,n是非负整数},集合B={1,2,3,4},则下列结论正确的是()A.A∪B={0,1,2,3,4} B.B AC.A∩B={1,4} D.A⊆B解析:依题意,C n4中,n可取的值为1,2,3,4,所以A={1,4,6},所以A∩B ={1,4}.答案:C4.下列各式中与组合数C m n(n≠m)相等的是()A.nm Cmn-1B.nn-mC m n-1C.C n-m+1n D.A m n n!解析:因为nn-m C m n-1=nn-m·(n-1)!m!(n-m-1)!=n!m!(n-m)!,所以选项B正确.答案:B5.C22+C23+C24+…+C216=()A.C215B.C316C.C317D.C417解析:原式=C22+C23+C24+…+C216=C34+C24+…+C216=C35+C25+…+C216=…=C316+C216=C317.答案:C二、填空题6.化简:C9m-C9m+1+C8m=________.解析:C9m-C9m+1+C8m=(C9m+C8m)-C9m+1=C9m+1-C9m+1=0.答案:07.已知圆上有9个点,每两点连一线段,则所有线段在圆内的交点最多有________个.解析:此题可化归为圆上9个点可组成多少个四边形,所以交点最多有C49=126(个).答案:1268.从一组学生中选出4名学生当代表的选法种数为A,从这组学生中选出2人担任正、副组长的选法种数为B,若BA=213,则这组学生共有________人.解析:设有学生n 人,则A 2nC 4n =213,解之得n =15.答案:15 三、解答题9.解不等式:2C x -2x +1<3C x -1x +1. 解:因为2C x -2x +1<3C x -1x +1,所以2C 3x +1<3C 2x +1.所以2×(x +1)x (x -1)3×2×1<3×(x +1)x 2×1.所以x -13<32,解得x <112.因为⎩⎪⎨⎪⎧x +1≥3x +1≥2,所以x ≥2.所以2≤x <112.又x ∈N *,所以x 的值为2,3,4,5.所以不等式的解集为{2,3,4,5}.10.平面内有10个点,其中任何3个点不共线. (1)以其中任意2个点为端点的线段有多少条? (2)以其中任意2个点为端点的有向线段有多少条? (3)以其中任意3个点为顶点的三角形有多少个?解:(1)所求线段的条数,即为从10个元素中任取2个元素的组合,共有C 210=10×92×1=45(条),即以10个点中的任意2个点为端点的线段共有45条.(2)所求有向线段的条数,即为从10个元素中任取2个元素的排列,共有A 210=10×9=90(条),即以10个点中的2个点为端点的有向线段共有90条.(3)所求三角形的个数,即从10个元素中任选3个元素的组合数,共有C 310=10×9×83×2×1=120(个).B级能力提升1.某研究性学习小组有4名男生和4名女生,一次问卷调查活动需要挑选3名同学参加,其中至少一名女生,则不同的选法种数为()A.120 B.84 C.52 D.48解析:用间接法可求得选法共有C38-C34=52(种).答案:C2.A,B两地街道如图所示,某人要从A地前往B地,则路程最短的走法有________种(用数字作答).解析:根据题意,要求从A地到B地路程最短,必须只向上或向右行走即可,分析可得,需要向上走2次,向右走3次,共5次,从5次中选3次向右,剩下2次向上即可,则不同的走法有C35=10(种).答案:103.现有5名男司机,4名女司机,需选派5人运货到某市.(1)如果派3名男司机、2名女司机,共有多少种不同的选派方法?(2)至少有两名男司机,共有多少种不同的选派方法?解:(1)从5名男司机中选派3名,有C35种方法,从4名男司机中选派2名,有C24种方法,根据分步乘法计数原理得所选派的方法总数为C35C24=C25C24=5×42×1×4×32×1=60(种).(2)分四类:第一类,选派2名男司机,3名女司机的方法有C25C34=40(种);第二类,选派3名男司机,2名女司机的方法有C35C24=。
2018-2019学年高中数学必修二人教A版章节练习题含答案 30份
2018-2019学年高中数学必修二人教A版章节练习题含答案 30份目录1.1 空间几何体的结构1.1.1 柱、锥、台、球的结构特征1.1.2 简单组合体的结构特征【选题明细表】1.下列命题中,正确的是( D )(A)有两个面互相平行,其余各面都是四边形的几何体是棱柱(B)棱柱中互相平行的两个面叫做棱柱的底面(C)棱柱的侧面都是平行四边形,而底面不是平行四边形(D)棱柱的侧棱都相等,侧面是平行四边形详细分析:根据棱柱的概念及性质可知D正确.2.下面关于棱锥的说法正确的是( D )(A)有一个面是多边形,其余各面都是三角形的几何体是棱锥(B)底面是正多边形的棱锥是正棱锥(C)正棱锥的侧棱不一定相等(D)过棱锥的不相邻的两侧棱的截面是三角形详细分析:由于A中缺少了定义中的“其余各面是有一个公共顶点的三角形”,故A不正确;由于正棱锥的概念中除了底面是正多边形外,还要求顶点在底面上的射影是底面的中心,否则就不是正棱锥,故B 不正确;根据正棱锥的概念可知,正棱锥的侧棱长相等,故C不正确,D 显然正确.3.下列命题,其中正确命题的个数是( C )①圆柱的轴截面是过母线的截面中最大的一个(注:轴截面是指过旋转轴的截面)②用任意一个平面去截球体得到的截面一定是一个圆面③用任意一个平面去截圆锥得到的截面一定是一个圆(A)0 (B)1 (C)2 (D)3详细分析:由圆柱、圆锥与球的结构特征可知①②正确,故选C.4.(2018·辽宁省鞍山市第一中学高二上期末)正六棱柱ABCDEF-A1B1C1D1E1F1的底面边长为,侧棱长为1,则动点从A沿表面移到点D1时的最短的路程是( A )(A)2 (B)28 (C)2 (D)24解:如图所示.将正六棱柱的侧面展开,只需展开一半,即可求A与D1之间的距离.A =AD2+D=(3)2+1=28.所以AD1=2.5.(2018·安徽合肥模拟)如图所示,模块①~⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①~⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为( A )(A)模块①②⑤(B)模块①③⑤(C)模块②④⑤(D)模块③④⑤详细分析:逐个选择检验可知,①②⑤符合要求.6.在下面的四个平面图形中,哪几个是侧棱都相等的四面体的展开图.(填序号)详细分析:结合展开图与四面体,尝试折叠过程,可知①、②正确.答案:①②7.(2018·浙江衢州期中)用一个平行于圆锥底面的平面截圆锥,截得的圆台上、下底面的半径分别为 2 cm,5 cm,圆台的母线长为9 cm,则圆锥的母线长为.详细分析:用一个平行于圆锥底面的平面截圆锥,截得的圆台上、下底面的半径分别为2 cm,5 cm,圆台的母线长为9 cm,设圆锥的母线长为x,则=,即=,解得x=15.答案:158.如图,在透明塑料制成的长方体ABCDA1B1C1D1容器中灌进一些水,将容器底面一边BC置于地面上,再将容器倾斜,随着倾斜程度的不同,水的形状形成如图(1)(2)(3)三种形状.(阴影部分)请你说出这三种形状分别是什么名称,并指出其底面.解:(1)是四棱柱,底面是四边形EFGH和四边形ABCD;(2)是四棱柱,底面是四边形ABFE和四边形DCGH;(3)是三棱柱,底面是△EBF和△HCG.9.(2018·山西忻州一中高一测试)一个圆台上、下底面的半径分别为3 cm和8 cm,若两底面圆心的连线长为12 cm,则这个圆台的母线长为 cm.详细分析:如图,过点A作AC⊥OB,交OB于点C.在Rt△ABC中,AC=12 cm,BC=8-3=5(cm).所以AB==13(cm).答案:1310.如图中的组合体的结构特征有以下几种说法:(1)由一个长方体割去一个四棱柱构成.(2)由一个长方体与两个四棱柱组合而成.(3)由一个长方体挖去一个四棱台构成.(4)由一个长方体与两个四棱台组合而成.其中正确说法的序号是.详细分析:本题中的组合体可以看成是一个大的长方体割去一个四棱柱构成,也可以看成是一个小的长方体在肩上加两个四棱柱组合而成.答案:(1)(2)11.在正方体上任意选择4个顶点,它们可能是如下各种几何体的4个顶点,这些几何形体是(写出所有正确结论的编号).①矩形;②不是矩形的平行四边形;③有三个面为等腰直角三角形,有一个面为等边三角形的四面体;④每个面都是等边三角形的四面体;⑤每个面都是直角三角形的四面体.详细分析:在如图正方体ABCDA1B1C1D1中,若所取四点共面,则只能是正方体的表面或对角面.即正方形或长方形,所以①正确,②错误.棱锥A-BDA1符合③,所以③正确;棱锥A1BDC1符合④,所以④正确;棱锥AA1B1C1符合⑤,所以⑤正确.答案:①③④⑤12.在正方形ABCD中,E,F分别为AB,BC的中点,现沿DE,DF,EF把△ADE,△CDF,△BEF折起,使A,B,C三点重合,则折成的几何体为.详细分析:由于E,F分别为AB,BC的中点,折起后A,B,C三点重合,DA,DC重合,EA,EB重合,FB,FC重合,故会形成一个三棱锥.答案:三棱锥13.有一根长为3π cm,底面直径为2 cm的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为 cm.详细分析:把圆柱侧面及缠绕其上的铁丝展开,在平面上得到矩形ABCD(如图),由题意知BC=3π cm,AB=4π cm,点A与点C分别是铁丝的起、止位置,故线段AC的长度即为铁丝的最短长度.AC==5π(cm).故铁丝的最短长度为5π cm.答案:5π1.2.3 空间几何体的直观图【选题明细表】1.在斜二测画法的规则下,下列结论正确的是( C )①角的水平放置的直观图一定是角;②相等的角在直观图中仍然相等;③相等的线段在直观图中仍然相等;④若两条线段平行且相等,则在直观图中对应的两条线段仍然平行且相等;⑤同一个平面图形,由于在直角坐标系中的位置不同,它们直观图的形状可能不同.(A)①②③(B)①③⑤(C)①④⑤(D)④⑤详细分析:角在直观图中可以与原来的角不等,但仍然为角,故①正确;由正方形的直观图可排除②③;由于斜二测画法保持了平行性不变,因此④正确;而⑤显然正确.故选C.2.在用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x 轴、y轴,则在直观图中∠A′等于( D )(A)45°(B)135°(C)90°(D)45°或135°详细分析:由斜二测画法知,平行于坐标轴的线段仍平行于x′,y′轴,故∠A′为45°或135°.选D.3.用斜二测画法画出长为6,宽为4的矩形水平放置的直观图,则该直观图面积为( C )(A)12 (B)24 (C)6 (D)12详细分析:因为原矩形的面积S=6×4=24,所以其直观图的面积为24×=6.4.如图是水平放置的三角形的直观图,D为△ABC中BC的中点,则原图形中AB,AD,AC三条线段中( B )(A)最长的是AB,最短的是AC(B)最长的是AC,最短的是AB(C)最长的是AB,最短的是AD(D)最长的是AC,最短的是AD详细分析:因为AB∥y轴,BC∥x轴,根据斜二测画法规则,在原图中应有AB⊥BC,所以△ABC为B=90°的直角三角形,所以在AB,AD,AC三条线段中AC最长,AB最短.5.如图,△A′O′B′为水平放置的△AOB的直观图,且O′A′=2, O′B′=3,则△AOB的周长为( A )(A)12 (B)10 (C)8 (D)7详细分析:根据斜二测画法得到三角形OAB为直角三角形,底面边长OB=3,高OA=2O′A′=4,AB=5,所以直角三角形OAB的周长为3+4+5=12.6.如图所示,已知用斜二测画法画出的△ABC的直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为.详细分析:过C′作C′M′∥y′轴,且交x′轴于M′.过C′作C′D′⊥x′轴,且交x′轴于D′,且C′D′= a.所以∠C′M′D′=45°,所以C′M′= a.所以原三角形的高CM=a,底边长为a,其面积为S=×a×a=a2,或S直观=S原,所以S原=·a2=a2.答案:a27.如图所示为一个水平放置的正方形ABCO在直角坐标系xOy中,点B 的坐标为(2,2),则在用斜二测画法画出的正方形的直观图中,顶点B′到x′轴的距离为.详细分析:点B′到x′轴的距离等于点A′到x′轴的距离d,而O′A′=OA=1,∠C′O′A′=45°,所以d=O′A′=.答案:8.一个用斜二测画法画出来的三角形是一个边长为a的正三角形,则原三角形的面积是( C )(A)a2 (B)a2 (C)a2 (D)a2详细分析:因为S△A′B′C′=a2sin 60°=a2,所以S△ABC=2S△A′B′C′=a2.9.如图,△A′O′B′表示水平放置的△AOB的直观图,B′在x′轴上,A′O′和x′轴垂直,且A′O′=2,则△AOB的边OB上的高为.详细分析:由直观图与原图形中边OB长度不变,且S原=2S直观,得OB·h=2×·2O′B′.因为OB=O′B′,所以h=4.答案:410.在△ABC中,AC=10 cm,边AC上的高BD=10 cm,则其水平放置的直观图的面积为.详细分析:S△ABC=×10×10=50(cm)2,其直观图的面积为S=S△ABC= (cm)2.答案: cm211.有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3 cm,高为3 cm,画出这个正六棱锥的直观图.解:(1)先画出边长为3 cm的正六边形的水平放置的直观图,如图①所示;(2)过正六边形的中心O′建立z′轴,画出正六棱锥的顶点V′,在z′轴上截取O′V′=3 cm,如图②所示;(3)连接V′A′,V′B′,V′C′,V′D′,V′E′,V′F′,如图③所示;(4)擦去辅助线,遮挡部分用虚线表示,即得到正六棱锥的直观图,如图④所示.12.在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形并求出其面积.解:四边形ABCD的真实图形如图所示,因为A′C′在水平位置,A′B′C′D′为正方形,所以∠D′A′C′=∠A′C′B′=45°,所以在原四边形ABCD中,DA⊥AC,AC⊥BC,因为DA=2D′A′=2,AC=A′C′=,所以S四边形ABCD=AC·AD=2.1.3 空间几何体的表面积与体积1.3.1 柱体、锥体、台体的表面积与体积【选题明细表】1.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( B ) (A) (B) (C)2π (D)4π详细分析:由题意,该几何体可以看作是两个底面半径为,高为的圆锥的组合体,其体积为2××π×()2×=π.2.(2018·河南焦作期末)一个圆锥的侧面展开图是一个半径为2的半圆,则该圆锥的体积为( D )(A)2π (B)π (C) (D)详细分析:由题圆锥的底面周长为2π,底面半径为1,圆锥的高为,圆锥的体积为π·12·=π,故选D.3.(2018·河北沧州高一检测)圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为( A )(A)7 (B)6 (C)5 (D)3详细分析:设上、下底面半径为r,R.则2πR=3×2πr,所以R=3r.又π(r1+r2)l=S侧,所以S侧=π(3r+r)×3=84π,所以r=7.4.(2018·安徽马鞍山期中)若圆锥的高等于底面直径,则它的底面积与侧面积之比为( C )(A)1∶2 (B)1∶ (C)1∶ (D)∶2详细分析:若圆锥的高等于底面直径,则h=2r,则母线l==r, 而圆锥的底面面积为πr2,圆锥的侧面积为πrl=πr2,故圆锥的底面积与侧面积之比为1∶,故选C.5.(2018·桂林调研)正六棱柱的一条最长的对角线长是13,侧面积为180,棱柱的全面积为.详细分析:如图,设正六棱柱的底面边长为a,侧棱长为h,易知CF′是正六棱柱的一条最长的对角线,即CF′=13.因为CF=2a,FF′=h,所以CF′===13. ①因为正六棱柱的侧面积为180,所以S侧=6a·h=180, ②联立①②解得或当a=6,h=5时,S底=6×a2×2=108.所以S全=180+108.当a=,h=12时,S底=6×a2×2=,所以S全=180+.答案:180+或180+1086.如图,直三棱柱ABCA1B1C1的高为6 cm,底面直角三角形的边长分别为3 cm,4 cm,5 cm,以上、下底的内切圆为底面,挖去一个圆柱,求剩余部分形成的几何体的体积为.(π取3.14)详细分析:由题意知,Rt△ABC的内切圆O的半径为r=1(cm),所以所求几何体的体积为V=×3×4×6-π×12×6≈17.16(cm3).即剩余部分形成的几何体的体积为17.16 cm3.答案:17.16 cm37.若圆锥的侧面积为2π,底面面积为π,则该圆锥的体积为.详细分析:由题底面半径是1,圆锥的母线为2,则圆锥的高为,所以圆锥的体积为××π=.答案:8.(2018·湖南郴州二模)我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是( B )(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸;③台体的体积公式V=(S上++S下)·h)(A)2寸(B)3寸(C)4寸(D)5寸详细分析:如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.因为积水深9寸,所以水面半径为(14+6)=10寸,则盆中水的体积为π×9(62+102+6×10)=588π(立方寸),所以平地降雨量等于=3(寸).故选B.9.(2018·辽宁抚顺一中月考)如图,多面体ABCDEF中,BA,BC,BE两两垂直,且AB∥EF,CD∥BE,AB=BE=2,BC=CD=EF=1,则多面体ABCDEF的体积为.详细分析:多面体ABCDEF的体积等于四棱锥DABEF和三棱锥ABCD的体积之和.因为=×S四边形ABEF×BC=×(1+2)×2×1=1,=×S△BCD×AB=××1×1×2=.所以多面体ABCDEF的体积V多面体ABCDEF=+1=.答案:10.已知正四棱锥底面正方形的边长为4 cm,高与斜高的夹角为30°,求正四棱锥的侧面积和表面积.解:如图,正四棱锥的高PO,斜高PE,底面边心距OE组成Rt△POE.因为OE=2 cm,∠OPE=30°,所以PE=2OE=4 cm.因此S侧=4×PE·BC=4××4×4=32(cm2),S表面积=S侧+S底=32+16=48(cm2).11.(2018·江苏省连云港市高一期末)如图,正方体ABCDA1B1C1D1的棱长为2,P是BC的中点,点Q是棱CC1上的动点.(1)点Q在何位置时,直线D1Q,DC,AP交于一点,并说明理由;(2)求三棱锥B1-DBQ的体积;(3)若点Q是棱CC1的中点时,记过点A,P,Q三点的平面截正方体所得截面面积为S,求S.解:(1)当Q是棱CC1的中点时,直线D1Q,DC,AP交于一点,理由:延长D1Q、DC交于点O,则QC为△DD1O的中位线,所以C为DO的中点,延长AP、DC交于点O′,则PC为△ADO′的中位线,所以C为DO′的中点,所以点O与点O′重合,所以直线D1Q、DC、AP交于一点.(2)==×(×2×2)×2=.(3)连接AD1、PQ,由(1)知,AD1∥PQ,所以梯形APQD1为所求截面,梯形APQD1的高为=,S=(+2)×=.1.3.2 球的体积和表面积【选题明细表】1.两个球的表面积之差为48π,它们的大圆周长之和为12π,这两个球的半径之差为( C )(A)4 (B)3 (C)2 (D)1详细分析:令S球1=4πR2,S球2=4πr2,由题可知4πR2-4πr2=48π, ①又2πR+2πr=12π, ②得R-r=2.2.(2018·河南平顶山高一期末)长方体ABCDA1B1C1D1的八个顶点落在球O的表面上,已知AB=3,AD=4,BB1=5,那么球O的表面积为( D ) (A)25π (B)200π (C)100π (D)50π详细分析:由长方体的体对角线为外接球的直径,设球半径为r,则2r==5,则r=,4πr2=4×()2π=50π.3.已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧,且相距为1,那么这个球的半径是( B )(A)4 (B)3 (C)2 (D)5详细分析:BD=,AC=2,CD=OD-OC=-=-=1.解得R=3.4.圆柱形容器内盛有高度为8 cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是( D )(A) cm(B)2 cm(C)3 cm(D)4 cm详细分析:设球的半径为r,则V水=8πr2,V球=4πr3,加入小球后,液面高度为6r,所以πr2·6r=8πr2+4πr3,解得r=4.故选D.5.已知圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,则该圆柱的体积是( D )(A)π (B) (C)(D)6π详细分析:如图所示,圆柱的高为2,它的两个底面的圆周在直径为4的同一个球的球面上,所以该圆柱底面圆周半径为r==,所以该圆柱的体积为V=Sh=π·()2·2=6π.故选D.6.(2018·湖南郴州二模)底面为正方形,顶点在底面的投影为底面中心的棱锥PABCD的五个顶点在同一球面上,若该棱锥的底面边长为4,侧棱长为2,则这个球的表面积为.详细分析:正四棱锥PABCD外接球的球心在它的高PO1上,记为=4-R,O,OP=OA=R,PO或OO1=R-4(此时O在PO1的延长线上).在Rt△AO1O中,R2=8+(R-4)2得R=3,所以球的表面积S=36π.答案:36π7.如图所示(单位:cm)四边形ABCD是直角梯形,求图中阴影部分绕AB 旋转一周所成几何体的表面积和体积.解:S球=×4π×22=8π(cm2),S圆台侧=π(2+5)=35π(cm2),S圆台下底=π×52=25π(cm2),即该几何体的表面积为8π+35π+25π=68π(cm2).又V圆台=×(22+2×5+52)×4=52π(cm3),V半球=××23=(cm3).所以该几何体的体积为V圆台-V半球=52π-=(cm3).8.(2018·南昌八一中学高一测试)一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是π,那么这个三棱柱的体积是( D )(A)96(B)16(C)24(D)48详细分析:设球的半径为R,由πR3=π,得R=2.所以正三棱柱的高为h=4,设其底面边长为a,得×a=2,a=4.所以V=×(4)2×4=48.9.某街心花园有许多钢球(钢的密度为7.9 g/cm3),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是空心的还是实心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm, 2.243≈11.240 98).解:由于外径为50 cm的钢球的质量为7.9×π×()3≈516 792(g), 街心花园中钢球的质量为145 000 g,而145 000<516 792,所以钢球是空心的.设球的内径为2x cm,那么球的质量为7.9×[π×()3-πx3]=145 000.解得x3≈11 240.98,所以x≈22.4,2x≈45(cm).即钢球是空心的,其内径约为45 cm.10.(2018·陕西咸阳二模)已知一个三棱锥的所有棱长均为,求该三棱锥的内切球的体积.解:如图,AE⊥平面BCD,设O为正四面体A-BCD内切球的球心,则OE为内切球的半径,设OA=OB=R,又正四面体ABCD的棱长为, 在等边△BCD中,BE=,所以AE==.由OB2=OE2+BE2,得R2=(-R)2+,解得R=,所以OE=AE-R=,即内切球的半径是,所以内切球的体积为π×()3=π.11.据说伟大的阿基米德死了以后,敌军将领马塞拉斯给他建了一块墓碑,在墓碑上刻了一个如图所示的图案,图案中球的直径与圆柱底面的直径和圆柱的高相等,圆锥的顶点为圆柱上底面的圆心,圆锥的底面是圆柱的下底面.试计算出图形中圆锥、球、圆柱的体积比.解:设圆柱的底面半径为r,高为h,则V圆柱=πr2h,由已知知圆锥的底面半径为r,高为h,所以V圆锥=πr2h,球的半径为r,所以V球=πr3.又h=2r,所以V圆锥∶V球∶V圆柱=(πr2h)∶(πr3)∶(πr2h)=(πr3)∶(πr3)∶(2πr3)=1∶2∶3.第一章检测试题(时间:120分钟满分:150分)【选题明细表】一、选择题(本大题共12小题,每小题5分,共60分)1.下列说法正确的是( D )(A)有两个面平行,其余各面都是四边形的几何体叫棱柱(B)有两个面平行,其余各面都是平行四边形的几何体叫棱柱(C)各侧面都是正方形的四棱柱一定是正方体(D)九棱柱有9条侧棱,9个侧面,侧面均为平行四边形详细分析:选项A,B都不正确,反例如图所示.选项C也不正确,上、下底面是全等的菱形,各侧面是全等的正方形的四棱柱不是正方体.根据棱柱的定义知选项D正确.2.如图所示是由等腰梯形、矩形、半圆、圆、倒三角形对接形成的轴对称平面图形,若将它绕轴l旋转180°后形成一个组合体,下面说法不正确的是( A )(A)该组合体可以分割成圆台、圆柱、圆锥和两个球体(B)该组合体仍然关于轴l对称(C)该组合体中的圆锥和球只有一个公共点(D)该组合体中的球和半球只有一个公共点详细分析:组合体中只有一个球体和一个半球.故选A.3.长方体的高为1,底面积为2,垂直于底的对角面的面积是,则长方体的侧面积等于( C )(A)2(B)4(C)6 (D)3详细分析:设长方体的长、宽、高分别为a,b,c,则c=1,ab=2,·c=,所以a=2,b=1,故S侧=2(ac+bc)=6.4.如果一个水平放置的平面图形的斜二测直观图是如图所示的直角梯形,其中O′A′=2,∠B′A′O′=45°,B′C′∥O′A′.则原平面图形的面积为( A )(A)3 (B)6(C) (D)详细分析:因为O′A′=2,∠B′O′A′=∠B′A′O′=45°,所以O′B′=,又B′C′∥O′A′,所以∠C′B′O′=45°,∠O′C′B′=90°,所以B′C′=1,所以原图形为梯形,其上底为1,下底为2,高为2,所以S==3.5.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为( A )(A) (B) (C) (D)详细分析:底面ABCD外接圆的半径是,即AO=,则PO==,所以四棱锥的外接球的半径为,所以四棱锥的外接球的体积为π·3=.故选A.6.如图,正方体ABCDA′B′C′D′的棱长为4,动点E,F在棱AB上,且EF=2,动点Q在棱D′C′上,则三棱锥A′EFQ的体积( D )(A)与点E,F的位置有关(B)与点Q的位置有关(C)与点E,F,Q的位置都有关(D)与点E,F,Q的位置均无关,是定值详细分析:==×·EF·AA′·A′D′=,所以三棱锥A′EFQ的体积为定值,与点E,F,Q的位置均无关.故选D.7.已知圆台的上下底面半径分别为1和2,高为1,则该圆台的表面积为( B )(A)3π (B)(5+3)π(C)π(D)π详细分析:设圆台上底面的半径为r′,下底面的半径为r,高为h,母线长为l.则r′=1,r=2,h=1.则l==.由圆台表面积公式得S圆台=π(r′2+r2+r′l+rl)=π(1+4++2)=(5+3)π.故选B.8.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,表面积的最大值是( B )(A)22πR2 (B)πR2(C)πR2 (D)πR2详细分析:如图所示为组合体的轴截面,记BO1的长度为x,由相似三角形的比例关系,得=,则PO1=3x,圆柱的高为3R-3x,所以圆柱的表面积为S=2πx2+2πx·(3R-3x)=-4πx2+6πRx,则当x=R时,S取最大值,S max=πR2.故选B.9.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( B )(A)14斛(B)22斛(C)36斛(D)66斛详细分析:设圆锥底面半径为r,因为米堆底部弧长为8尺,所以r=8,r=≈(尺),所以米堆的体积为V=××π×()2×5≈(立方尺),又1斛米的体积约为1.62立方尺,所以该米堆有÷1.62≈22(斛),选B.10.若两球的体积之和是12π,经过两球球心的截面圆周长之和为6π,则两球的半径之差为( A )(A)1 (B)2 (C)3 (D)4详细分析:设两球的半径分别为R、r(R>r),则由题意得解得故R-r=1.11.如图所示,在三棱柱ABCA1B1C1中,侧棱垂直于底面,AB=AC=, BB1=BC=6,E,F为侧棱AA1上的两点,且EF=3,则多面体BB1C1CEF的体积为( A )(A)30 (B)18(C)15 (D)12详细分析:=--=S△ABC×6-S△ABC·A1F-S △ABC·AE=S△ABC·[6-(A1F+AE)]=5S△ABC.因为AC=AB=,BC=6,所以S△ABC=×6×=6.所以=5×6=30.故选A.12.如图,在等腰梯形ABCD中,AB=2DC=2,∠DAB=60°,E为AB的中点,将△ADE和△BEC分别沿ED,EC向上折起,使A,B重合于点P,则三棱锥PDCE的外接球的体积为( C )(A) (B)(C) (D)详细分析:因为ABCD为等腰梯形,AB=2DC,E为AB的中点,所以AD=DE=CE=BC,又∠DAB=60°,所以△ADE,△DCE,△CEB均为边长为1的正三角形,故翻折后的三棱锥P DC E为正四面体,其高P O1==,设球的半径为R,所以R2=(-R)2+()2,得R=,所以V=π.故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.若圆锥的表面积是15π,侧面展开图的圆心角是60°,则圆锥的体积为.详细分析:设圆锥的底面半径是r,母线长是l,高为h,则有所以l=6r,r2=,l2=.h2=l2-r2=75,所以h=5.所以V=πr2·h=π××5=π.答案:π14.如图所示,扇形的中心角为90°,弦AB将扇形分成两个部分,这两部分各以AO为轴旋转一周,所得的旋转体体积V1和V2之比为.详细分析:Rt△AOB绕OA旋转一周形成圆锥,其体积V1=R3,扇形绕OA旋转一周形成半球面,其围成的半球的体积V=R3,所以V2=V-V1=R3-R3=R3,所以V1∶V2=1∶1.答案:1∶115.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2,高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为.详细分析:原两个几何体的总体积V=×π×52×4+π×22×8=π.由题意知新圆锥的高为4,新圆柱的高为8,且它们的底面半径相同,可设两几何体的底面半径均为r(r>0),则×π×r2×4+π×r2×8=π,解得r2=7,从而r=.答案:16.在棱长为a的正方体ABCDA1B1C1D1中,EF是棱AB上的一条线段,且EF=b(b<a).若Q是CD上的动点,则三棱锥QD1EF的体积为.详细分析:==S△QEF·DD1=×b×a×a=a2b.答案:a2b三、解答题(本大题共5小题,共70分)17.(本小题满分14分)如图,正方体ABCDA′B′C′D′的棱长为a,连接A′C′,A′D,A′B,BD,BC′,C′D,得到一个三棱锥.求:(1)三棱锥A′BC′D的表面积与正方体表面积的比值;(2)三棱锥A′BC′D的体积.解:(1)因为ABCDA′B′C′D′是正方体,所以A′B=A′C′=A′D=BC′=BD=C′D=a,所以三棱锥A′BC′D的表面积为4××a××a=2a2.而正方体的表面积为6a2,故三棱锥A′BC′D的表面积与正方体表面积的比值为=. (2)三棱锥A′ABD,C′BCD,DA′D′C′,BA′B′C′是完全一样的.故=V正方体-4=a3-4××a2×a=.18.(本小题满分14分)已知一个三棱台上、下底面分别是边长为20 cm和30 cm的正三角形,侧面是全等的等腰梯形,且侧面面积等于上、下底面面积之和,求棱台的高和体积.解:如图所示,在三棱台ABCA′B′C′中,O′,O分别为上、下底面的中心,D,D′分别是BC,B′C′的中点,则DD′是等腰梯形BCC′B′的高,所以S侧=3××(20+30)·DD′=75DD′.又A′B′=20 cm,AB=30 cm,则上、下底面面积之和为S上+S下=×(202+302)=325(cm2).由S侧=S上+S下,得75DD′=325,所以,DD′=(cm).又因为O′D′=×20=(cm),OD=×30=5(cm),所以棱台的高h=O′O===4 (cm),由棱台的体积公式,可得棱台的体积为V=(S上+S下+)=×(325+×20×30)=1 900(cm3).19.(本小题满分14分)养路处建造圆锥形无底仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为12 m,高4 m,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大4 m(高不变);二是高度增加4 m(底面直径不变).(1)分别计算按这两种方案所建的仓库的体积;(2)分别计算按这两种方案所建的仓库的表面积;(3)哪个方案更经济些?解:(1)如果按方案一,仓库的底面直径变为16 m,则仓库的体积V1=Sh=×π×()2×4=(m3).如果按方案二,仓库的高变为8 m,则仓库的体积V2=Sh=×π×()2×8==96(m3).(2)如果按方案一,仓库的底面直径变为16 m,半径为8 m,棱锥的母线长为l==4(m),则仓库的表面积S1=π×8×4=32π(m2),如果按方案二,仓库的高变为8 m.棱锥的母线长为l==10(m),则仓库的表面积S2=π×6×10=60π(m2).(3)因为V2>V1,S2<S1,所以方案二比方案一更加经济.20.(本小题满分14分)如图,某种水箱用的“浮球”,是由两个半球和一个圆柱筒组成.已知半球的直径是6 cm,圆柱筒高为2 cm.(1)这种“浮球”的体积是多少 cm3(结果精确到0.1)?(2)要在2 500个这样的“浮球”表面涂一层胶,如果每平方米需要涂胶100克,那么共需胶多少克?解:(1)因为半球的直径是6 cm,可得半径R=3 cm,所以两个半球的体积之和为V球=πR3=π·27=36π(cm3).又圆柱筒的体积为V圆柱=πR2·h=π×9×2=18π(cm3).所以这种“浮球”的体积是V=V球+V圆柱=36π+18π=54π≈169.6(cm3).(2)根据题意,上下两个半球的表面积是S球表=4πR2=4×π×9=36π(cm2),又“浮球”的圆柱筒的侧面积为S圆柱侧=2πRh=2×π×3×2=12π(cm2),所以1个“浮球”的表面积为S==π(m2).因此,2 500个这样的“浮球”表面积的和为2 500S=2 500×π= 12π(m2).因为每平方米需要涂胶100克,所以共需要胶的质量为100×12π=1 200π(克).21.(本小题满分14分)已知圆柱OO1的底面半径为2,高为4.(1)求从下底面圆周上一点出发环绕圆柱侧面一周到达上底面的最短路径长;(2)若平行于轴OO1的截面ABCD将底面圆周截去四分之一,求截面面积;(3)在(2)的条件下,设截面将圆柱分成的两部分中较小部分为Ⅰ,较大部分为Ⅱ,求VⅠ∶VⅡ(体积之比).解:(1)将侧面沿过该点的母线剪开铺平得到一个矩形,邻边长分别是4π和4,则从下底面圆周上一点出发环绕侧面一周到达上底面的最短路径长。
新教材 人教A高中数学必修第二册全册各章测验及模块综合测验 精选最新配套习题含解析
人教A 必修第二册各章综合测验1、平面向量及其应用............................................................................................................ - 1 -2、复数 ................................................................................................................................. - 11 -3、立体几何初步 ................................................................................................................. - 17 -4、统计 ................................................................................................................................. - 30 -5、概率 ................................................................................................................................. - 41 - 模块综合测验 ....................................................................................................................... - 52 -1、平面向量及其应用(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.向量a =(2,-1),b =(-1,2),则(2a +b )·a =( ) A .6 B .5 C .1D .-6A [由向量数量积公式知,(2a +b )·a =(3,0)·(2,-1)=6.]2.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60°D .30°B [设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .]3.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,则a ·b 的值为( ) A .1 B .2 C .3D .4 A [a +b =(3,k +2),∵a +b 与a 共线, ∴3k -(k +2)=0,解得k =1.]4.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若b 2+c 2-a 2=65bc ,则sin(B +C )的值为( )A .-45B .45C .-35D .35B [由b 2+c 2-a 2=65bc ,得cos A =b 2+c 2-a 22bc =35,则sin(B +C )=sin A =45.]5.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值是( )A .-25B .25C .-24D .24A [因为|AB →|2+|BC →|2=9+16=25=|CA →|2, 所以∠ABC =90°,所以原式=AB →·BC →+CA →(BC →+AB →)=0+CA →·AC → =-AC →2=-25.]6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a 等于( )A .2B .1C .45D .53A [设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ), ∵AC →=2CB →,∴⎩⎨⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎨⎧x =3,y =3,∴C (3,3),又∵C 在直线y =12ax 上,所以3=12a ×3, ∴a =2.]7.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .49B .89C .23D .43 B [∵BP →=13BD →, ∴AP →-AB →=13(AD →-AB →), ∴AP →=23AB →+13AD →,又AD →=23AC →, ∴AP →=23AB →+29AC →=λAB →+μAC →, ∴λ=23,μ=29,∴λ+μ=89.]8.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MA →·MB →的取值范围是( )A .[-1,0]B .[-1,2]C .[-1,3]D .[-1,4]C [建立如图所示坐标系,设M (x ,y ),其中A (-1,-1),B (1,-1),易知x 2+y 2≤1,而MA →·MB →=(-1-x ,-1-y )·(1-x ,-1-y )=x 2+(y +1)2-1,若设E (0,-1),则MA →·MB →=|ME →|2-1,由于0≤|ME →|≤2,所以MA →·MB →=|ME →|2-1的取值范围是[-1,3],故选C .] 二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.对任意向量a ,b ,下列关系式中恒成立的是( ) A .|a ·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2ACD [|a ·b |=|a |·|b |·|cos 〈a ,b 〉|≤|a |·|b |,故A 正确;由向量的运算法则知C ,D 正确;当b =-a ≠0时,|a -b |>||a |-|b ||,故B 错误.故选ACD .]10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若A =π6,a =2,c =23,则角C 的大小是( )A .π6B .π3C .5π6D .2π3BD [由正弦定理可得a sin A =c sin C ,所以sin C =c a sin A =32,而a <c ,所以A <C ,所以π6<C <56π,故C =π3或23π.]11.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足B =π3,a +c =3b ,则ac =( )A .2B .3C .12D .13AC [∵B =π3,a +c =3b , ∴(a +c )2=a 2+c 2+2ac =3b 2,①由余弦定理可得,a 2+c 2-2ac cos π3=b 2,② 联立①②,可得2a 2-5ac +2c 2=0, 即2⎝ ⎛⎭⎪⎫a c 2-5⎝ ⎛⎭⎪⎫a c +2=0,解得a c =2或a c =12.故选AC .]12.点P 是△ABC 所在平面内一点,满足|PB →-PC →|-|PB →+PC →-2P A →|=0,则△ABC 的形状不可能是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形ACD [∵P 是△ABC 所在平面内一点,且 |PB →-PC →|-|PB →+PC →-2P A →|=0, ∴|CB →|-|(PB →-P A →)+(PC →-P A →)|=0, 即|CB →|=|AC →+AB →|, ∴|AB →-AC →|=|AC →+AB →|,两边平方并化简得AC →·AB →=0,∴AC →⊥AB →,∴∠A =90°,则△ABC 一定是直角三角形.故选ACD .]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.与向量a =(1,2)平行,且模等于5的向量为________.(1,2)或(-1,-2) [因为所求向量与向量a =(1,2)平行,所以可设所求向量为(x,2x ),又因为其模为5,所以x 2+(2x )2=5,解得x =±1.因此所求向量为(1,2)或(-1,-2).]14.已知向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,点P (m ,n )在圆x 2+y 2=5上,则m +n =________,|2a +b |=________.(本题第一空2分,第二空3分)334 [因为向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,P (m ,n )在圆x 2+y 2=5上,∴⎩⎨⎧-m +2n =0,m 2+n 2=5,解得m =2,n =1,即m +n =2+1=3. ∴2a +b =(3,5),∴|2a +b |=34.]15.在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a =2,则c =________.1 [∵S △ABC =12ab sin C , ∴12ab sin C =14(a 2+b 2-c 2), ∴a 2+b 2-c 2=2ab sin C .由余弦定理得,2ab cos C =2ab sin C ,∴tan C =1,∴C =45°,∴c =a 2+b 2-2ab cos C =3-2=1.]16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________.-12 [因为点O 是AB 的中点, 所以P A →+PB →=2PO →,设|PC →|=x ,则|PO →|=1-x (0≤x ≤1), 所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x ) =2⎝ ⎛⎭⎪⎫x -122-12. 所以当x =12时,(P A →+PB →)·PC →取到最小值-12.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. [解] (1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a·b -3|b |2=61.因为|a |=4,|b |=3,所以a·b =-6, 所以|a +b |=|a |2+|b |2+2a·b =42+32+2×(-6)=13.(2)因为a ·(a +b )=|a |2+a·b =42-6=10,所以向量a 在向量a +b 方向上的投影为a ·(a +b )|a +b |=1013=101313.18.(本小题满分12分)如图所示,在平面直角坐标系中,|OA →|=2|AB →|=2,∠OAB=2π3,BC →=(-1,3).(1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.[解] (1)连接OB (图略),设B (x B ,y B ),则x B =|OA →|+|AB →|·cos(π-∠OAB )=52, y B =|AB →|·sin(π-∠OAB )=32,∴OC →=OB →+BC →=⎝ ⎛⎭⎪⎫52,32+(-1,3)=⎝ ⎛⎭⎪⎫32,332, ∴B ⎝ ⎛⎭⎪⎫52,32,C ⎝ ⎛⎭⎪⎫32,332. (2)证明:∵OC →=⎝ ⎛⎭⎪⎫32,332, AB →=⎝ ⎛⎭⎪⎫12,32,∴OC →=3AB →,∴OC →∥AB →. 又易知OA 与BC 不平行, |OA →|=|BC →|=2,∴四边形OABC 为等腰梯形.19.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . [解] (1)由c =3a sin C -c cos A ,及正弦定理得 3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A , 故b 2+c 2=8. 解得b =c =2.20.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β. 代入sin α+sin β=1, 得sin α=sin β=12, 而α>β,所以α=5π6,β=π6.21.(本小题满分12分)如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →.(1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB →的值. [解] (1)∵BP →=P A →, ∴BO →+OP →=PO →+OA →, 即2OP →=OB →+OA →,∴OP →=12OA →+12OB →,即x =12,y =12. (2)∵BP →=3P A →,∴BO →+OP →=3PO →+3OA →, 即4OP →=OB →+3OA →,∴OP →=34O A →+14OB →.∴x =34,y =14. OP →·AB →=⎝ ⎛⎭⎪⎫34OA →+14OB →·(OB →-OA →)=14OB →·OB →-34OA →·OA →+12OA →·OB →=14×22-34×42+12×4×2×12=-9.22.(本小题满分12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 相距都为5 n mile ,与小岛D 相距为3 5 n mile.小岛A 对小岛B 与D 的视角为钝角,且sin A =35.(1)求小岛A 与小岛D 之间的距离和四个小岛所形成的四边形的面积; (2)记小岛D 对小岛B 与C 的视角为α,小岛B 对小岛C 与D 的视角为β,求sin(2α+β)的值.[解] (1)∵sin A =35,且角A 为钝角, ∴cos A =-1-⎝ ⎛⎭⎪⎫352=-45. 在△ABD 中,由余弦定理得:AD 2+AB 2-2AD ·AB ·cos A =BD 2. ∴AD 2+52-2AD ·5·⎝ ⎛⎭⎪⎫-45=(35)2⇒AD 2+8AD -20=0. 解得AD =2或AD =-10(舍).∴小岛A 与小岛D 之间的距离为2 n mile. ∵A ,B ,C ,D 四点共圆, ∴角A 与角C 互补.∴sin C =35,cos C =cos(180°-A )=-cos A =45. 在△BDC 中,由余弦定理得: CD 2+CB 2-2CD ·CB ·cos C =BD 2, ∴CD 2+52-2CD ·5·45=(35)2⇒CD 2-8CD -20=0, 解得CD =-2(舍)或CD =10. ∴S 四边形ABCD =S △ABD +S △BCD=12AB ·AD ·sin A +12CB ·CD ·sin C =12×5×2×35+12×5×10×35=3+15=18. ∴四个小岛所形成的四边形的面积为18平方n mile.(2)在△BDC 中,由正弦定理得:BC sin α=BD sin C ⇒5sin α=3535⇒sin α=55.∵DC 2+DB 2>BC 2, ∴α为锐角,∴cos α=255.又∵sin(α+β)=sin(180°-C )=sin C =35, cos(α+β)=cos(180°-C )=-cos C =-45. ∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=55×⎝⎛⎭⎪⎫-45+255×35=2525.2、复数(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=11-20i,则1-2i-z等于()A.z-1B.z+1C.-10+18i D.10-18iC[1-2i-z=1-2i-(11-20i)=-10+18i.]2.3+i1+i=()A.1+2i B.1-2i C.2+i D.2-iD[3+i1+i=(3+i)(1-i)(1+i)(1-i)=3-3i+i+12=2-i.故选D.]3.若复数z满足z1-i=i,其中i为虚数单位,则z=()A.1-i B.1+iC.-1-i D.-1+iA[由已知得z=i(1-i)=i+1,则z=1-i,故选A.]4.若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是() A.(2,4) B.(2,-4)C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,则b =( ) A . 2 B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为()A.(3,1) B.(-2,0)C.(0,4) D.(-1,-5)ACD[易知选项A、B、C、D中的点对应的复数分别为3+i、-2、4i、-1-5i,因此A、C、D中的点对应的复数为虚数.]10.已知复数z=a+b i(a,b∈R,i为虚数单位),且a+b=1,下列命题正确的是()A.z不可能为纯虚数B.若z的共轭复数为z,且z=z,则z是实数C.若z=|z|,则z是实数D.|z|可以等于1 2BC[当a=0时,b=1,此时z=i为纯虚数,A错误;若z的共轭复数为z,且z=z,则a+b i=a-b i,因此b=0,B正确;由|z|是实数,且z=|z|知,z是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y=x ,即Z 点在直线y =x 上,C 正确;易知点P 0到直线y =x 的垂线段的长度即为P 0、Z 之间距离的最小值,结合平面几何知识知D 正确.故选ACD .]12.对任意z 1,z 2,z ∈C ,下列结论成立的是( ) A .当m ,n ∈N *时,有z m z n =z m +nB .当z 1,z 2∈C 时,若z 21+z 22=0,则z 1=0且z 2=0C .互为共轭复数的两个复数的模相等,且|z |2=|z |2=z ·zD .z 1=z 2的充要条件是|z 1|=|z 2| AC [由复数乘法的运算律知A 正确;取z 1=1,z 2=i ,满足z 21+z 22=0,但z 1=0且z 2=0不成立,B 错误;由复数的模及共轭复数的概念知结论成立,C 正确; 由z 1=z 2能推出|z 1|=|z 2|, 但|z 1|=|z 2|推不出z 1=z 2,因此z 1=z 2的必要不充分条件是|z 1|=|z 2|,D 错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.] 15.设a ,b ∈R ,a +b i =11-7i1-2i(i 为虚数单位),则a +b 的值为________. 8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧ m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数. (2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |,即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0, 解得-1<a <1,即实数a 的取值范围为(-1,1).3、立体几何初步(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有()A.3个B.2个C.1个D.0个D[①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.] 2.在长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°D[由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.]3.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为()A.0 B.3C.2 D.1D[异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]4.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为()A.24 cm2B.36 cm2C.72 cm2D.84 cm2C[棱柱的侧面积S侧=3×6×4=72(cm2).]5.在正方体ABCD-A1B1C1D1中,动点E在棱BB1上,动点F在线段A1C1上,O为底面ABCD的中心,若BE=x,A1F=y,则四面体O-AEF的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关B[因为V O-AEF=V E-OAF,考察△AOF的面积和点E到平面AOF的距离的值,因为BB1∥平面ACC1A1,所以点E到平面AOF的距离为定值,又AO∥A1C1,所以OA为定值,点F到直线AO的距离也为定值,即△AOF的面积是定值,所以四面体O-AEF的体积与x,y都无关,故选B.]6.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB 的中点,则EF的长是()A.1 B. 2C.22D.12B[取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED=12SB=1,DF=12AC=1,所以EF=ED2+DF2= 2.]7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的余弦值为()A .12B .13C .33D .23C [取AC 的中点E ,CD 的中点F ,连接BE ,EF ,BF ,则EF =12,BE =22,BF =32,因为EF 2+BE 2=BF 2,所以△BEF 为直角三角形,cos θ=EF BF =33.]8.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A .5π12B .π3C .π4D .π6B [如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94, ∴PO = 3. 又AO =33×3=1, ∴tan ∠P AO =PO AO =3,∴∠P AO =π3.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题为真命题的是( )A .若两个平面有无数个公共点,则这两个平面重合B.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C.垂直于同一条直线的两条直线相互平行D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直BD[A错,两个平面相交时,也有无数个公共点;C错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故选BD.]10.如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于A,B的一点,则下列结论中正确的是()A.AE⊥CEB.BE⊥DEC.DE⊥平面CEBD.平面ADE⊥平面BCEABD[由AB是底面圆的直径,得∠AEB=90°,即AE⊥EB.∵圆柱的轴截面是四边形ABCD,∴AD⊥底面AEB,BC⊥底面AEB.∴BE⊥AD.又AD∩AE=A,AD,AE⊂平面ADE,∴BE⊥平面ADE,∴BE⊥DE.同理可得,AE⊥CE,易得平面BCE⊥平面ADE.可得A,B,D正确.∵AD∥BC,∴∠ADE(或其补角)为DE与CB所成的角,显然∠ADE≠90°,∴DE⊥平面CEB不正确,即C错误.故选ABD.]11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面P AD 为正三角形,且平面P AD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面P ACABC[如图,对于A,取AD的中点M,连接PM,BM,∵侧面P AD为正三角形,∴PM⊥AD,又底面ABCD是菱形,∠DAB=60°,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,PM,BM⊂平面PMB,∴AD⊥平面PBM,故A正确.对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确.对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=32,在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确.对于D,因为BD与P A不垂直,所以BD与平面P AC不垂直,故D错误.故选ABC.]12.如图所示,在四个正方体中,l是正方体的一条体对角线,点M、N、P 分别为其所在棱的中点,能得出l⊥平面MNP的图形为()AD[如图所示,正方体ABCD-A′B′C′D′.连接AC,BD.∵M、P分别为其所在棱的中点,∴MP∥AC.∵四边形ABCD为正方形,∴AC⊥BD,∵BB′⊥平面ABCD,AC⊂平面ABCD,∴BB′⊥AC,∵AC⊥BD,BD∩BB′=B,∴AC⊥平面DBB′,∵DB′⊂平面DBB′,∴AC⊥DB′.∵MP∥AC,∴DB′⊥MP,同理,可证DB′⊥MN,DB′⊥NP,∵MP∩NP=P,MP⊂平面MNP,NP⊂平面MNP,∴DB′⊥平面MNP,即l垂直平面MNP,故A正确.故D中,由A中证明同理可证l⊥MP,l⊥MN,又∵MP∩MN=M,∴l⊥平面MNP.故D正确.故选AD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.(本题第一空2分,第二空3分)3π33π[设圆锥的底面半径为r,根据题意,得2πr=2π,解得r=1,根据勾股定理,得圆锥的高为22-12=3,所以圆锥的表面积S=12×π×22+π×12=3π,体积V=13×π×12×3=33π.]14.已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该四棱锥的高为________.3[如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.]15.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.1∶24[因为D,E分别是AB,AC的中点,所以S△ADE ∶S△ABC=1∶4. 又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍,即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍,所以V1∶V2=13S△ADE·hS△ABC·H=124=1∶24.]16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.36π[如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S-ABC的体积V=13×⎝⎛⎭⎪⎫12SC·OB·OA=r33,即r33=9,∴r=3,∴S球表=4πr2=36π.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10 cm,求圆锥的母线长.[解]如图,设圆锥的母线长为l,圆台上、下底面的半径分别为r、R.因为l-10l=rR,所以l-10l=14,所以l=403cm.即圆锥的母线长为403cm.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.[证明](1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于点O,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)如图,已知三棱锥P-ABC,P A⊥平面ABC,∠ACB=90°,∠BAC=60°,P A=AC,M为PB的中点.(1)求证:PC⊥BC;(2)求二面角M-AC-B的大小.[解](1)证明:由P A⊥平面ABC,所以P A⊥BC,又因为∠ACB=90°,即BC⊥AC,P A∩AC=A,所以BC⊥平面P AC,所以PC⊥BC.(2)取AB中点O,连接MO,过O作HO⊥AC于H,连接MH,因为M是BP的中点,所以MO∥P A,又因为P A⊥平面ABC,所以MO⊥平面ABC,所以∠MHO为二面角M-AC-B的平面角,设AC=2,则BC=23,MO=1,OH=3,在Rt△MHO中,tan∠MHO=MOHO=33,所以二面角M-AC-B的大小为30°.20.(本小题满分12分)已知一个圆锥的底面半径为R,高为H, 在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?[解](1)设圆柱的底面半径为r, 则它的侧面积为S=2πrx, rR=H-xH,解得r=R-RH x,所以S圆柱侧=2πRx-2πRH x2.(2)由(1)知S圆柱侧=2πRx-2πRH x2,在此表达式中,S圆柱侧为x的二次函数,因此,当x=H2时,圆柱的侧面积最大.21.(本小题满分12分)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.[解](1)如图,由已知AD∥BC,故∠DAP或其补角为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=AD2+PD2=5,所以cos∠DAP=ADAP=55.所以异面直线AP与BC所成角的余弦值为5 5.(2)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又BC∥AD,所以PD⊥BC,又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(3)过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF与平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以直线AB与平面PBC所成角的正弦值为5 5.22.(本小题满分12分)如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.①②(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∵DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.4、统计(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN ,所以p 1=p 2=p 3,故选D .]2.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2∶3∶2∶4,则该样本中D 类产品的数量为( )A .22B .33C .40D .55C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为110×42+3+2+4=40.]3.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则|a -b |等于( )A .mhB .h mC .m hD .m +hC [在频率分布直方图中小长方形的高等于频率组距,所以h =m |a -b |,|a -b |=mh ,故选C .]4.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h)如下表:上班时间182021262728303233353640下班时间161719222527283030323637A.28与28.5 B.29与28.5C.28与27.5 D.29与27.5D[上班时间行驶速度的中位数是28+302=29,下班时间行驶速度的中位数是27+282=27.5.]5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则()A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<xD[由条形图可知,中位数为m e=5.5,众数为m o=5,平均值为x≈5.97,所以m o<m e<x.]6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1B[体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]7.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]8.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是()A.85,85,85 B.87,85,86C.87,85,85 D.87,85,90C[∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是()A.建设后,种植收入减少B.建设后,其他收入增加了一倍以上C.建设后,养殖收入增加了一倍D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半BCD[设建设前经济收入为a,则建设后经济收入为2a,由题图可知:种植收入第三产业收入养殖收入其他收入建设前经济收入0.6a 0.06a 0.3a 0.04a建设后经济收入0.74a 0.56a 0.6a 0.1a10.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分ABC [由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4 000×0.25=1 000,故B 正确;由频率分布直方图可得,平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)内的频率为0.45,[70,80)的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选ABC .]11.甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级 参加人数中位数 方差 平均数 甲 55 149 191 135 乙55151110135A .甲、乙两班学生成绩的平均数相同B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数ABC [甲、乙两班学生成绩的平均数都是135,故两班成绩的平均数相同,∴A 正确;s 2甲=191>110=s 2乙,∴甲班成绩不如乙班稳定,即甲班的成绩波动较大,∴B 正确;甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,∴C 正确;由题表看不出两班学生成绩的众数,∴D错误.]12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是()A.平均数x≤3B.平均数x≤3且标准差s≤2C.平均数x≤3且极差小于或等于2D.众数等于1且极差小于或等于4CD[A错,举反例:0,0,0,0,2,6,6,其平均数x=2≤3,不符合指标.B错,举反例:0,3,3,3,3,3,6,其平均数x=3,且标准差s=187≤2,不符合指标.C对,若极差等于0或1,在x≤3的条件下,显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D对,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选CD.]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.下列数据的70%分位数为________.20,14,26,18,28,30,24,26,33,12,35,22.28[把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35,因为有12个数据,所以12×70%=8.4,不是整数,所以数据的70%分位数为第9个数28.]14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:。
2018学年高中数学必修二人教A版模块综合测试 含解析
模块综合试题时间:120分钟 分值:150分 第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.下列命题正确的是( )A .四条线段顺次首尾连接,所得的图形一定是平面图形B .一条直线和两条平行直线都相交,则三条直线共面C .两两平行的三条直线一定确定三个平面D .和两条异面直线都相交的直线一定是异面直线解析:此题主要考查三个公理及推论的应用,两条平行线确定一个平面,第三条直线与其相交,由公理1可知,这三条直线共面,故B 正确.答案:B2.已知直线(a -2)x +ay -1=0与直线2x +3y +5=0平行,则a 的值为( )A .-6B .6C .-45D.45解析:由题意可知两直线的斜率存在,且-a -2a =-23,解得a =6.答案:B3.圆台侧面的母线长为2a ,母线与轴的夹角为30°,一个底面的半径是另一个底面半径的2倍.求两底面的面积之和是( )A .3πa 2B .4πa 2C .5πa 2D .6πa 2解析:设圆台上底面半径为r ,则下底面半径为2r ,如图所示,∠ASO =30°,在Rt △SA ′O ′中,r SA ′=sin30°,∴SA ′=2r.在Rt △SAO 中,2rSA =sin30°, ∴SA =4r.∴SA -SA ′=AA ′, 即4r -2r =2a ,r =a.∴S =S 1+S 2=πr 2+π(2r)2=5πr 2=5πa 2. 答案:C4.若直线l 过点A(3,4),且点B(-3,2)到直线l 的距离最远,则直线l 的方程为( )A .3x -y -5=0B .3x -y +5=0C .3x +y +13=0D .3x +y -13=0解析:当l⊥AB时,符合要求.∵k AB=4-23+3=13,∴l的斜率为-3,∴直线l的方程为y-4=-3(x-3),即3x+y-13=0.答案:D5.过原点且倾斜角为60°的直线被圆x2+y2-4y=0所截得的弦长为()A. 3 B.2C. 6 D.2 3解析:直线方程为y=3x,圆的标准方程为x2+(y-2)2=4,圆心(0,2)到直线y=3x的距离d=|3×0-2|(3)2+(-1)2=1.故所求弦长l=222-12=2 3.答案:D6.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC 的重心,则直线G1G2与BC的位置关系是()A.相交B.平行C.异面D.以上都有可能题图答图解析:连接SG1,SG2并延长分别交AB于点M,交AC于点N.∵1G 1M =2G 2N ,∴G 1G 2∥MN.∵M ,N 分别为AB ,AC 的中点, ∴MN ∥BC.故G 1G 2∥BC. 答案:B7.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S 1,S 2,S 3,则( )A .S 1<S 2<S 3B .S 3<S 2<S 1C .S 2<S 1<S 3D .S 1<S 3<S 2解析:设棱锥的底面面积为S.由截面的性质,可知S S 1=⎝ ⎛⎭⎪⎫2121=14S ;S S 2=212=12S ;⎝⎛⎭⎪⎫S S 33=213=134S ,故S 1<S 2<S 3.答案:A8.在圆的方程x 2+y 2+Dx +Ey +F =0中,若D 2=E 2>4F ,则圆的位置满足( )A .截两坐标轴所得弦的长度相等B .与两坐标轴都相切C .与两坐标轴相离D .上述情况都有可能解析:在圆的方程中令y =0得x 2+Dx +F =0. ∴圆被x 轴截得的弦长为|x 1-x 2|=D 2-4F.同理得圆被y 轴截得的弦长为E 2-4F =D 2-4F.故选A.9.在如图所示的空间直角坐标系O-xyz中,一个四面体的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2).给出编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为()A.①和②B.③和①C.④和③D.④和②解析:由三视图可知,该几何体的正视图显然是一个直角三角形(三个顶点坐标分别是(0,0,2),(0,2,0),(0,2,2))且内有一虚线(一直角顶点与另一直角边中点的连线),故正视图是④;俯视图在底面射影是一个斜三角形,三个顶点坐标分别是(0,0,0),(2,2,0),(1,2,0),故俯视图是②.故选D.答案:D10.在正方体ABCD-A1B1C1D1中,E,F分别是正方形ADD1A1和正方形ABCD的中心,G是CC1的中点,设GF,C1E与AB所成的角分别为α,β,则α+β等于()A.120°B.90°C.75°D.60°解析:根据异面直线所成角的定义知α+β=90°.答案:B11.已知点P(x,y)是直线kx+y+4=0(k>0)上一动点,PA,PB是圆C :x 2+y 2-2y =0的两条切线,A ,B 是切点.若四边形PACB 的最小面积是2,则k 的值为( )A. 2B.212 C .2 2 D .2解析:圆心C(0,1)到l 的距离d =5k 2+1.∴四边形面积的最小值为2(12×1×d 2-1)=2, ∴k 2=4,即k =±2.又k>0,∴k =2. 答案:D12.在矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为( )A.125π12B.125π9C.125π6D.125π3 解析:取AC 的中点O.由O 到各顶点距离相等,知O 是球心. 设外接球的半径为R ,则2R =5,R =52. 故外接球的体积V 球=43π⎝ ⎛⎭⎪⎫523=125π6.答案:C第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.解析:由方程组⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,得交点A(-2,2).因为所求直线垂直于直线3x -2y +4=0,故所求直线的斜率k =-23.由点斜式得所求直线方程为y -2=-23(x +2),即2x +3y -2=0.答案:2x +3y -2=014.长方体被一平行于棱的平面截成体积相等的两个几何体,其中一个几何体的三视图如图所示,则长方体的体积为________.解析:由三视图可知这个长方体的长、宽、高分别为3,4,4,所以长方体的体积为3×4×4=48.答案:4815.侧棱长为a 的正三棱锥P -ABC 的侧面都是直角三角形,且四个顶点都在一个球面上,则该球的表面积为________.解析:侧棱长为a 的正三棱锥P -ABC 其实就是棱长为a 的正方体的一角,所以球的直径就是正方体的对角线,所以球的半径为3a2,该球的表面积为3πa 2.答案:3πa 216.若⊙O 1:x 2+y 2=5与⊙O 2:(x -m)2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.解析:由题知O 1(0,0),O 2(m,0),且5<|m|<35,又O 1A ⊥AO 2,则有m 2=(5)2+(25)2=25,得m =±5.故|AB|=2×5×205=4. 答案:4三、解答题(本大题共6小题,共70分)17.(10分)已知直线l 平行于直线3x +4y -7=0,并且与两坐标轴围成的三角形的面积为24,求直线l 的方程.解:设l :3x +4y +m =0. 当y =0时,x =-m3; 当x =0时,y =-m4.∵直线l 与两坐标轴围成的三角形面积为24, ∴12·|-m 3|·|-m 4|=24. ∴m =±24.∴直线l 的方程为3x +4y +24=0或3x +4y -24=0.18.(12分)已知一个组合体的三视图如图所示,请根据具体的数据,计算该组合体的体积.解:由三视图可知此组合体的结构为:上部是一个圆锥,中部是一个圆柱,下部也是一个圆柱,由题图中的尺寸可知:上部圆锥的体积V 圆锥=13π×22×2=8π3,中部圆柱的体积V 圆柱=π×22×10=40π,下部圆柱的体积V ′圆柱=π×42×1=16π,故此组合体的体积V =8π3+40π+16π=176π3.19.(12分)求过点A(-2,-4)且与直线l :x +3y -26=0相切于点B(8,6)的圆的方程.解:设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 则圆心C(-D 2,-E2).∴k CB =6+E 28+D 2.∵k CB ·k l =-1,∴6+E 28+D 2·(-13)=-1.①又有(-2)2+(-4)2-2D -4E +F =0,② 82+62+8D +6E +F =0,③所以解①②③可得D =-11,E =3,F =-30. ∴所求圆的方程为x 2+y 2-11x +3y -30=0.20.(12分)如图,四棱锥P -ABCD 中,△PAB 是正三角形,四边形ABCD 是矩形,且平面PAB ⊥平面ABCD ,PA =2,PC =4.(1)若点E 是PC 的中点,求证:PA ∥平面BDE ;(2)若点F 在线段PA 上,且FA =λPA ,当三棱锥B -AFD 的体积为43时,求实数λ的值.解:(1)证明:如图(1),连接AC ,设AC ∩BD =Q ,连接EQ. 因为四边形ABCD 是矩形,所以点Q 是AC 的中点. 又点E 是PC 的中点,则在△PAC 中,中位线EQ ∥PA , 又平面BDE ,平面BDE ,所以PA ∥平面BDE.(2)依据题意可得:PA =AB =PB =2,取AB 中点O ,连接PO.所以PO ⊥AB ,且PO = 3.又平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,平面PAB ,则PO ⊥平面ABCD(如图(2));作FM ∥PO 交AB 于点M ,则FM ⊥平面ABCD.因为四边形ABCD 是矩形,所以BC ⊥AB.同理,可证BC ⊥平面PAB ,平面PAB ,则△PBC 是直角三角形.所以BC =PC 2-PB 2=2 3.则直角三角形ABD 的面积为S △ABD =12AB·AD =2 3.所以43=V B -AFD =V F -ABD =13S △ABD ·FM =233FM`FM =233.由FM ∥PO ,得FM PO =FA PA =2333==23.21.(12分)如图,在直角梯形ABCD 中,∠A =∠D =90°,AB<CD ,SD ⊥平面ABCD ,AB =AD =a ,SD =2a.(1)求证:平面SAB ⊥平面SAD.(2)设SB 的中点为M ,当CD AB 为何值时,能使DM ⊥MC ?请给出证明.解:(1)证明:∵∠BAD =90°,∴AB ⊥AD.又∵SD ⊥平面ABCD ,平面ABCD ,∴SD ⊥AB.又∵SD ∩AD =D ,∴AB ⊥平面SAD.又∵平面SAB ,∴平面SAB ⊥平面SAD.(2)当CD AB =2时,能使DM ⊥MC.证明:连接BD ,∵∠BAD =90°,AB =AD =a ,∴BD=2a,∠BDA=45°,∴SD=BD.又∵M为SB的中点,∴DM⊥SB.①设CD的中点为P,连接BP,∴DP∥AB,且DP=AB.故四边形ABPD是平行四边形.∴BP∥AD.故BP⊥CD.因而BD=BC.又∵∠BDC=90°-∠BDA=45°,∴∠CBD=90°,即BC⊥BD.又∵BC⊥SD,BD∩SD=D,∴BC⊥平面SBD.又∵平面SBD,∴DM⊥BC.②由①②知DM⊥平面SBC,又∵平面SBC,∴DM⊥MC.22.(12分)如图,已知圆心坐标为(3,1)的圆M与x轴及直线y=3x分别相切于A,B两点,另一圆N与圆M外切,且与x轴及直线y=3x分别相切于C,D两点.(1)求圆M与圆N的方程;(2)过点B作直线MN的平行线l,求直线l被圆N截得的弦的长度.解:(1)∵点M的坐标为(3,1),∴M到x轴的距离为1,即圆M的半径为1,则圆M的方程为(x-3)2+(y-1)2=1.设圆N的半径为r,连接MA,NC,OM,则MA⊥x轴,NC⊥x 轴,由题意知:M,N点都在∠COD的平分线上,∴O,M,N三点共线.由Rt△OAM∽Rt△OCN可知,OM ON=MA NC,即23+r=1r=3,则OC=33,则圆N的方程为(x-33)2+(y-3)2=9.(2)由对称性可知,所求的弦长等于过A点与MN平行的直线被圆N截得的弦的长度,此弦的方程是y=33(x-3),即x-3y-3=0,圆心N到该直线的距离d=3 2,则弦长为2r2-d2=33.。
2018年新人教A版高中数学选修2-1全册同步检测含答案解析
2018年新人教A版高中数学选修2-1全册同步检测目录第1章1.1-1.1.1命题第1章1.1-1.1.3四种命题间的相互关系第1章1.2-1.2.1充分条件与必要条件第1章1.2-1.2.2充要条件第1章1.3简单的逻辑联结词第1章1.4-1.4.2存在量词第1章1.4-1.4.3含有一个量词的命题的否定第1章章末复习课第1章章末评估验收(一)第2章2.1-2.1.1曲线与方程第2章2.1-2.1.2求曲线的方程第2章2.2-2.2.1椭圆及其标准方程第2章2.2-2.2.2第1课时椭圆的简单几何性质第2章2.2-2.2.2第2课时椭圆方程及性质的应用第2章2.3-2.3.1双曲线及其标准方程第2章2.3-2.3.2第1课时双曲线的简单几何性质第2章2.3-2.3.2第2课时双曲线方程及性质的应用第2章2.4-2.4.1抛物线及其标准方程第2章2.4-2.4.2第1课时抛物线的简单几何性质第2章2.4-2.4.2第2课时抛物线方程及性质的应用第2章章末复习课第2章章末评估验收(二)第3章3.1-3.1.1空间向量及其加减运算第3章3.1-3.1.2空间向量的数乘运算第3章3.1-3.1.3空间向量的数量积运算第3章3.1-3.1.4空间向量的正交分角及其坐标表示第3章3.1-3.1.5空间向量运算的坐标表示第3章3.2第1课时空间向量与平行关系第3章3.2第2课时空间向量与垂直关系第3章3.2第3课时空间向量与空间角第3章章末复习课第3章章末评估验收(三)模块综合评价第一章 常用逻辑用语 1.1 命题及其关系1.1.1 命题A 级 基础巩固一、选择题1.下列语句是命题的是( )①三角形的内角和等于180°;②2>3;③偶数是自然数;④x >2;⑤这座山真险啊! A .①②③ B .①③④ C .①②⑤D .②③⑤解析:①②③是命题,④中x >2无法判断真假,⑤是感叹句,所以④⑤不是命题. 答案:A2.下列命题中,是真命题的是( ) A .a >b ,c >d ⇒ac >bd B .a <b ⇒a 2<b 2 C.1a <1b⇒a >b D .a >b ,c <d ⇒a -c >b -d解析:可以通过举反例的方法说明A ,B ,C 为假命题. 答案:D3.下列命题中真命题的个数为( ) ①若x 2=1,则x =1; ②若x =y ,则x =y ; ③若a >b ,则a +c >b +c ; ④梯形的对角线一定不垂直.A .1B .2C .3D .4 解析:只有③正确.答案:A4.给出下列命题:①四个非零实数a ,b ,c ,d 满足ad =bc ,则a ,b ,c ,d 成等比数列; ②若整数a 能被2整除,则a 是偶数; ③在△ABC 中,若A >30°,则sin A >12.其中为假命题的序号是( )A .②B .①②C .②③D .①③解析:①中,若a =-1,b =52,c =2,d =-5满足ad =bc ,但a ,b ,c ,d 不成等比数列,故是假命题;③中,若150°<A <180°,则sin A <12,故是假命题.答案:D5.下列命题中,是真命题的是( ) A .若a 3+b 3=0,则a 2+b 2=0 B .若a >b ,则ac >bc C .若M ∩N =M ,则N ⊆M D .若M ⊆N ,则M ∩N =M解析:A.取a =1,b =-1,推不出a 2+b 2=0,A 不成立;B.c ≤0时,不成立;C.M ∩N =M ⇒M ⊆N ,C 不成立;D 成立.答案:D 二、填空题6.命题“末位数字是4的整数一定能被2整除”,写成“若p ,则q ”的形式为________.解析:条件是整数的末位数字是4,结论是它一定能被2整除. 答案:若一个整数的末位数字是4,则它一定能被2整除 7.已知下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线互相垂直.其中假命题的个数是________.解析:①②③④全为假命题.答案:48.给出下列三个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行.其中,是真命题的是________(填序号).答案:②三、解答题9.判断下列命题的真假.(1)二次函数y=ax2+bx+c(a≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y=1x的图象关于原点对称.解:(1)假命题.当a>0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y=1x是奇函数,所以其图象关于(0,0)对称.10.把下列命题改写成“若p,则q”的形式,并判断真假,且指出p和q分别指什么.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.p:两个实数乘积为1;q:两个实数互为倒数.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.p:一个函数为奇函数;q:函数的图象关于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.p:两个平面与同一条直线平行;q:两个平面平行.B级能力提升1.已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a、b相交,则α、β相交D.若α、β相交,则a、b相交解析:易知选项A、B、C都正确,对于D,α、β相交时,a、b一定不平行,但不一定相交,有可能异面,故D为假命题.答案:D2.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中真命题的序号是________.解析:易知①②④正确,对于③,对角线相等且平分时的四边形是矩形,只满足相等不是矩形.故③错误.答案:①②④3.判断“函数f(x)=2x-x2有三个零点”是否为命题.若是命题,是真命题还是假命题?说明理由.解:这是一个可以判断真假的陈述句,所以是命题,且是真命题.函数f(x)=2x-x2的零点即方程2x-x2=0的实数根,也就是方程2x=x2的实数根,即函数y=2x,y=x2的图象的交点的横坐标,易知指数函数y=2x的图象与抛物线y=x2有三个交点,所以函数f(x)=2x-x2有三个零点.第一章常用逻辑用语1.1 命题及其关系1.1.2 四种命题1.1.3 四种命题间的相互关系A级基础巩固一、选择题1.已知命题p:“若ab=1,则a+b≥2”,则下列说法正确的是()A.命题p的逆命题是“若ab≠1,则a+b<2”B.命题p的逆命题是“若a+b<2,则ab≠1”C.命题p的否命题是“若ab≠1,则a+b<2”D.命题p的否命题是“若a+b≥2,则ab=1”解析:“若p,则q”的逆命题是“若q,则p”,否命题是“若⌝p,则⌝q”.答案:C2.设a,b是向量,命题“若a=-b,则|a|=| b |”的逆命题是()A.若a≠-b,则|a|≠| b |B.若a=-b,则|a|≠| b |C.若|a|≠| b |,则a≠-bD.若|a|=| b |,则a=-b解析:原命题的条件是a=-b,作为逆命题的结论;原命题的结论是|a|=| b |,作为逆命题的条件,即得逆命题,“若|a|=| b |,则a=-b.”答案:D3.设m∈R,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0解析:“方程x2+x-m=0有实根”的否定是“方程x2+x-m=0没有实根”;“m>0”的否定即“m≤0”,故命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.答案:D4.下列四个命题中,真命题为()①“若x+y=0,则x,y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则关于x的方程x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.A.①②B.②③C.①③D.③④答案:C5.与命题“在等差数列{a n}中,若m+n=p+q,则a m+a n=a p+a q”为互逆命题的是()A.在等差数列{a n}中,若m+n≠p+q,则a m+a n≠a p+a qB.在等差数列{a n}中,若a m+a n=a p+a q,则m+n=p+qC.在等差数列{a n}中,若a m+a n≠a p+a q,则m+n≠p+qD.在等差数列{a n}中,若m+n≠p+q,则a m+a n=a p+a q答案:B二、填空题6.命题“若AB=AC,则△ABC是等腰三角形”的逆否命题为________(填“真命题”或“假命题”).解析:逆否命题:“若△ABC不是等腰三角形,则AB≠AC”,为真命题.答案:真命题7.下列命题:①“若xy=1,则x、y互为倒数”的逆命题;②“四边相等的四边形是正方形”的否命题;③“梯形不是平行四边形”的逆否命题;④“若ac2>bc2,则a>b”的逆命题.其中是真命题的是________(填序号).解析:①“若xy=1,则x,y互为倒数”的逆命题是“x、y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③.答案:①②③8.有下列四个命题:①“若x+y=0,则x、y互为相反数”的否命题;②“若x>y,则x2>y2”的逆否命题;③“对顶角相等”的逆命题.其中真命题的个数是________.答案:1三、解答题9.判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.解:因为m>0,所以12m>0,所以12m+4>0.所以方程x2+2x-3m=0的判别式Δ=12m+4>0.所以原命题“若m>0,则方程x2+2x-3m=0有实数根”为真命题.又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真命题.10.已知函数f(x)在(-∞,+∞)上是增函数,a,b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b)”.(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解:(1)逆命题:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0,真命题.假设a+b<0,则a<-b,b<-a.因为f(x)在(-∞,+∞)上是增函数,所以f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b).这与题设矛盾,所以逆命题为真命题.(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0,真命题.因为原命题与其逆否命题等价,所以可证明原命题为真命题.因为a+b≥0,所以a≥-b,b≥-a.又因为f(x)在(-∞,+∞)上是增函数,所以f(a)≥f(-b),f(b)≥f(-a).所以f(a)+f(b)≥f(-a)+f(-b),即原命题为真命题.所以逆否命题为真命题.B级能力提升1.原命题为“若a n+a n+12<a n,n∈N+,则{a n}为递减数列”,关于其逆命题、否命题、逆否命题的真假性的判断依次如下,正确的是() A.真、真、真B.假、假、真C.真、真、假D.假、假、假解析:a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列.原命题与其逆命题都是真命题,所以其否命题和逆否命题也都是真命题.答案:A2.设原命题:若a +b ≥2,则a ,b 中至少有一个不小于1,则原命题为________命题,逆命题为________命题(填“真”或“假”).解析:逆否命题为:a ,b 都小于1,则a +b <2是真命题.所以原命题是真命题,逆命题为:若a ,b 中至少有一个不小于1,则a +b ≥2,例如a =3,b =-3满足条件a ,b 中至少有一个不小于1,但此时a +b =0,故逆命题是假命题.答案:真 假3.设0<a <1,0<b <1,0<c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不同时大于14.证明:假设(1-a )b >14,所以(1-a )b >12,(1-b )c >14,所以(1-b )c >12,(1-c )a >14,所以(1-c )a >12.相加得32<(1-a )b +(1-b )c +(1-c )a ≤1-a +b 2+1-b +c 2+1-c +a 2=32左右矛盾,故假设不成立. 所以(1-a )b ,(1-b )c ,(1-c )a 不同时大于14.第一章 常用逻辑用语 1.2 充分条件与必要条件 1.2.1 充分条件与必要条件A 级 基础巩固一、选择题1.“x >0”是“3x 2>0”成立的( ) A .充分不必要条件 B .必要不充分条件 C .既不充分也不必要条件 D .既是充分条件又是必要条件解析:x >0显然能推出3x 2>0,而3x 2>0,不能推出x >0. 答案:A2.“α=π6+2k π(k ∈Z)”是“cos 2α=12”的( )A .充分不必要条件B .必要不充分条件C .既是充分条件又是必要条件D .既不充分也不必要条件 解析:“α=π6+2k π(k ∈Z)”⇒“cos 2α=12”,“cos 2α=12”⇒/ “α=π6+2k π”(k ∈Z).因为α还可以等于2k π-π6(k ∈Z),所以选A.答案:A3.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由ln(x+1)<0得-1<x<0,故“x<0”是“ln(x+1)<0”的必要不充分条件.答案:B4.已知集合M={2,m},N={1,2,3},则“m=3”是“M⊆N”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:若m=3,则M={2,3},显然M⊆N;但当M⊆N时,m=1或m=3,故“m =3”是“M⊆N”的充分不必要条件.答案:A5.设x、y是两个实数,命题:“x、y中至少有一个数大于1”成立的充分不必要条件是()A.x+y=2 B.x+y>2C.x2+y2>2 D.xy>1答案:B二、填空题6.不等式(a+x)(1+x)<0成立的一个充分不必要条件是-2<x<-1,则a的取值范围是________.解析:由已知,得{x|-2<x<-1}{x|(x+a)(x+1)<0},所以-a<-2⇒a>2.答案:a >27.设α、β、γ为平面,m 、n 、l 为直线,则对于下列条件: ①α⊥β,α∩β=l ,m ⊥l ; ②α∩γ=m ,α⊥β,γ⊥β; ③α⊥γ,β⊥γ,m ⊥α; ④n ⊥α,n ⊥β,m ⊥α.其中为m ⊥β的充分条件的是________(将你认为正确的所有序号都填上). 答案:②④8.“x =1”是“方程x 3-3x +2=0的根”的________条件(填“充分”“必要”). 答案:充分 三、解答题9.已知p ,q 都是r 的必要条件,s 是r 的充分条件,q 是s 的充分条件.那么: (1)s 是q 的什么条件? (2)r 是q 的什么条件? (3)p 是q 的什么条件?解:(1)因为q ⇒s ,s ⇒r ⇒q ,所以s 是q 的充要条件. (2)因为r ⇒q ,q ⇒s ⇒r ,所以r 是q 的充要条件. (3)因为q ⇒s ⇒r ⇒p ,所以p 是q 的必要条件.10.已知命题p :α=β;命题q :tan α=tan β,判断p 是q 的什么条件? 解:当α=β=π2时,显然tan α与tan β无意义,即p ⇒/ q ,故p 不是q 的充分条件;又α=π4,β=5π4时,tan α=tan β,所以q ⇒/ p ,所以p 不是q 的必要条件,综上,p 既不是q 的充分条件,也不是必要条件.B 级 能力提升1.对任意实数a ,b ,c ,在下列命题中,真命题是( )A .“ac >bc ”是“a >b ”的必要条件B .“ac =bc ”是“a =b ”的必要条件C .“ac >bc ”是“a >b ”的充分条件D .“ac =bc ”是“a =b ”的充分条件 答案:B2.“函数y =cos 2ax -sin 2ax 的最小正周期为π”的一个充分条件可以是________. 答案:a =1(或a =-1)3.已知a 、b 为不等于0的实数,判断“ab >1”是“a >b ”的什么条件,并证明你的结论.解:由条件“ab >1”可得a -b b >0,若b >0,则a >b ;若b <0,则a <b ,所以“ab>1”“a >b ”,“ab>1”不是“a >b ”的充分条件. 反过来,a >b ⇔a -b >0,也不能推出a b >1⇔a -b b >0,“ab >1”也不是“a >b ”的必要条件.所以“ab >1”既不是“a >b ”的充分条件,也不是“a >b ”的必要条件.第一章常用逻辑用语1.2 充分条件与必要条件1.2.2 充要条件A级基础巩固一、选择题1.已知集合A为数集,则“A∩{0,1}={0}”是“A={0}的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:因为“A∩{0,1}={0}”得不出“A={0}”,而“A={0}”能得出“A∩{0,1}={0}”,所以“A∩{0,1}={0}”是“A={0}”的必要不充分条件.答案:B2.“x2>2 013”是“x2>2 012”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:由于“x2>2 013”时,一定有“x2>2 012”,反之不成立,所以“x2>2 013”是“x2>2 012”的充分不必要条件.答案:A3.在等比数列{an}中,a1=1,则“a2=4”是“a3=16”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:数列{an}中,a1=1,a2=4,则a3=16成立,反过来若a1=1,a3=16,则a2=±4,故不成立,所以“a 2=4”是“a 3=16”的充分不必要条件.答案:A4.“m =12”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0互相垂直”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:(m +2)x +3my +1=0与(m -2)x +(m +2)y -3=0互相垂直的充要条件是(m +2)(m -2)+3m (m +2)=0,即(m +2)(4m -2)=0. 所以m =-2,或m =12.故为充分不必要条件. 答案:B5.已知条件p :x 2-3x -4≤0;条件q :x 2-6x +9-m 2≤0,若p 是q 的充分不必要条件,则m 的取值范围是( )A .[-1,1]B .[-4,4]C .(-∞,-4]∪[4,+∞)D .(-∞,-1]∪[1,+∞)解析:p :-1≤x ≤4,q :3-m ≤x ≤3+m (m >0)或3+m ≤x ≤3-m (m <0), 依题意,⎩⎪⎨⎪⎧m >0,3-m ≤-1,3+m ≥4,或⎩⎪⎨⎪⎧m <0,3+m ≤-1,3-m ≥4,解得m ≤-4或m ≥4. 答案:C 二、填空题6.给定空间中直线l 及平面α,条件“直线l 与平面α内两条相交直线都垂直”是“直线l 与平面α垂直”的________条件.解析:“直线l 与平面α内两条相交直线都垂直”⇔“直线l 与平面α垂直”. 答案:充要条件7.已知α,β角的终边均在第一象限,则“α>β”是“sin α>sin β”的________(填“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要条件”).解析:若α=370°>β=30°,而sin α<sin β,所以“α>β”推不出“sin α>sinβ”,若sin 30°>sin 370°,而30°<370°,所以sin α>sin β推不出α>β.答案:既不充分也不必要条件8.已知p :x 2-4x -5>0,q :x 2-2x +1-λ2>0,若p 是q 的充分不必要条件,则正实数λ的取值范围是________.解析:命题p 成立,x 2-4x -5>0,得x >5或x <-1;命题q 成立,x 2-2x +1-λ2>0(λ>0)得x >1+λ或x <1-λ,由于p 是q 的充分不必要条件,所以1+λ≤5,1-λ≥-1,等号不能同时成立,解得λ≤2,由于λ>0,因此0<λ≤2.答案:(0,2] 三、解答题9.已知条件p :|x -1|>a 和条件q :2x 2-3x +1>0,求使p 是q 的充分不必要条件的最小正整数a .解:依题意a >0.由条件p :|x -1|>a 得x -1<-a ,或x -1>a ,所以x <1-a ,或x >1+a ,由条件q :2x 2-3x +1>0得x <12,或x >1.要使p 是q 的充分不必要条件,即“若p ,则q ”为真命题,逆命题为假命题,应有⎩⎨⎧1-a ≤12,1+a ≥1,解得a ≥12. 令a =1,则p :x <0,或x >2, 此时必有x <12,或x >1.即p ⇒q ,反之不成立.所以,使p 是q 的充分不必要条件的最小正整数a =1.10.已知ab ≠0,求证:a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0. 证明:(1)必要性.因为a +b =1,所以a +b -1=0.所以a 3+b 3+ab -a 2-b 2=(a +b )(a 2-ab +b 2)-(a 2-ab +b 2)= (a +b -1)(a 2-ab +b 2)=0. (2)充分性.因为a 3+b 3+ab -a 2-b 2=0, 即(a +b -1)(a 2-ab +b 2)=0. 又ab ≠0,所以a ≠0且b ≠0. 因为a 2-ab +b 2=⎝ ⎛⎭⎪⎫a -b 22+34b 2>0.所以a +b -1=0,即a +b =1.综上可知,当ab ≠0时,a +b =1的充要条件是a 3+b 3+ab -a 2-b 2=0B 级 能力提升1.已知函数f (x )=⎩⎪⎨⎪⎧x 2+ax ,x ≤1,ax 2+x ,x >1,则“a ≤-2”是“f (x )在R 上单调递减”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:C2.设集合A ={x |x (x -1)<0},B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”).解析:由于A ={x |0<x <1},则A ⊆B ,所以“m ∈A ”是“m ∈B ”的充分不必要条件.答案:充分不必要3.已知P ={x |x 2-8x -20 ≤0},S ={x ||x -1|≤m }.(1)是否存在实数m ,使x ∈P 是x ∈S 的充要条件?若存在,求出m 的范围. (2)是否存在实数m ,使x ∈P 是x ∈S 的必要条件?若存在,求出m 的范围. 解:(1)由题意x ∈P 是x ∈S 的充要条件,则P =S . 由x 2-8x -20≤0⇒-2≤x ≤10, 所以P =[-2,10].由|x -1|≤m ⇒1-m ≤x ≤1+m , 所以S =[1-m ,1+m ].要使P =S ,则⎩⎪⎨⎪⎧1-m =-2,1+m =10,所以⎩⎪⎨⎪⎧m =3,m =9,所以这样的m 不存在.(2)由题意x ∈P 是x ∈S 的必要条件,则S ⊆P . 由|x -1|≤m ,可得1-m ≤x ≤m +1,要使S ⊆P ,则⎩⎪⎨⎪⎧1-m ≥-2,1+m ≤10,所以m ≤3.故m ≤3时,x ∈P 是x ∈S 的必要条件.第一章常用逻辑用语1.3 简单的逻辑联结词A级基础巩固一、选择题1.已知命题p:3≥3,q:3>4,则下列判断正确的是()A.p∨q为真,p∧q为真,綈p为假B.p∨q为真,p∧q为假,綈p为真C.p∨q为假,p∧q为假假,綈p为假D.p∨q为真,p∧q为假,綈p为假解析:因为p为真命题,q为假命题,所以p∨q为真,p∧q为假,綈p为假,应选D。
人教a版高中数学必修二同步试题及答案
人教a版高中数学必修二同步试题及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x + 3,g(x) = x^2 - 4x + 3,则f(g(2))的值为:A. 3B. 5C. 7D. 92. 已知等差数列{an}的前三项分别为2,5,8,则该数列的公差d为:A. 2B. 3C. 4D. 53. 函数y = sin(x) + cos(x)的值域为:A. [-2, 2]B. [-1, 1]C. [0, √2]D. [0, 2]4. 已知三角形ABC的三边长分别为a,b,c,且满足a^2 + b^2 =c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定二、填空题(每题5分,共20分)5. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,圆心坐标为______。
6. 函数y = 2x^3 - 6x^2 + 3x + 1的导数为______。
7. 已知集合A = {1, 2, 3},B = {2, 3, 4},则A∩B = ______。
8. 已知直线方程为y = 2x + 1,求该直线与x轴的交点坐标为______。
三、解答题(每题10分,共20分)9. 已知函数f(x) = x^2 - 6x + 8,求函数的最小值。
解:函数f(x) = x^2 - 6x + 8 = (x-3)^2 - 1,当x = 3时,函数取得最小值,即f(3) = -1。
10. 已知等比数列{bn}的前三项分别为b1 = 2,b2 = 6,b3 = 18,求该数列的通项公式。
解:设等比数列{bn}的公比为q,则q = b2 / b1 = 6 / 2 = 3,所以通项公式为bn = b1 * q^(n-1) = 2 * 3^(n-1)。
四、证明题(每题10分,共20分)11. 证明:若a,b,c均为正整数,且a + b + c = 1,则a^2 + b^2 + c^2 ≥ 1/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年新人教A版高中数学必修二全册同步检测目录第1章1.1.1棱柱、棱锥、棱台的结构特征第1章1.1.2圆柱、圆锥、圆台、球、简单组合体的结构特征第1章1.2.2空间几何体的三视图第1章1.2.3空间几何体的直观图第1章1.3-1.3.2球的体积和表面积第1章1.3.1柱体、锥体、台体的表面积与体积第1章章末复习课第1章评估验收卷(一)第2章2.1.1平面第2章2.1.2空间中直线与直线之间的位置关系第2章2.1.3平面与平面之间的位置关系第2章2.2.1-2.2.2平面与平面平行的判定第2章2.2.3直线与平面平行的性质第2章2.2.4平面与平面平行的性质第2章2.3.1直线与平面垂直的判定第2章2.3.2平面与平面垂直的判定第2章2.3.3平面与平面垂直的性质第2章章末复习课第2章评估验收卷(二)第3章3.1.1倾斜角与斜率第3章3.1.2两条直线平行与垂直的判定第3章3.2.1直线的点斜式方程第3章3.2.2-3.2.3直线的一般式方程第3章3.3.2第1课时两直线的交点坐标、两点间的距离第3章3.3.2第2课时两直线的交点坐标、两点间的距离(习题课)第3章3.3.3-3.3.4两条平行直线间的距离第3章章末复习课第3章评估验收卷(三)第4章4.1.1圆的标准方程第4章4.1.2圆的一般方程第4章4.2.1直线与圆的位置关系第4章4.2.2-4.4.2.3直线与圆的方程的应用第4章4.3.1-4.3.2空间两点间的距离公式第4章章末复习课第4章评估验收卷(四)模块综合评价第一章空间几何体1.1 空间几何体的结构1.1.1 棱柱、棱锥、棱台的结构特征A级基础巩固一、选择题1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:由棱柱的定义及几何特征,①③为棱柱.答案:D2.对有两个面互相平行,其余各面都是梯形的多面体,以下说法正确的是() A.棱柱B.棱锥C.棱台D.一定不是棱柱、棱锥解析:根据棱柱、棱锥、棱台的特征,一定不是棱柱、棱锥.答案:D3.下列图形经过折叠可以围成一个棱柱的是()解析:A、B、C、中底面多边形的边数与侧面数不相等.答案:D4.由5个面围成的多面体,其中上、下两个面是相似三角形,其余三个面都是梯形,并且这些梯形的腰延长后能相交于一点,则该多面体是()A.三棱柱B.三棱台C.三棱锥D.四棱锥解析:根据棱台的定义可判断知道多面体为三棱台.答案:B5.某同学制作了一个对面图案均相同的正方形礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)()解析:其展开图是沿盒子的棱剪开,无论从哪个棱剪开,剪开的相邻面在展开在图中可以不相邻,但未剪开的相邻面在展开图中一定相邻,又相同的图案是盒子相对的面,展开后绝不能相邻.答案:A二、填空题6.如图所示,正方形ABCD中,E,F分别为CD,BC的中点,沿AE,AF,EF将其折成一个多面体,则此多面体是________.解析:折叠后,各面均为三角形,且点B、C、D重合为一点,因此该多面体为三棱锥(四面体).答案:三棱锥(四面体)7.一个棱柱有10个顶点,所有的侧棱长的和为60 cm,则每条侧棱长为________cm.解析:由题设,该棱柱为五棱柱,共5条侧棱.所以每条侧棱的长为605=12(cm).答案:128.①有两个面互相平行,其余各面都是平行四边形的几何体的侧棱一定不相交于一点,故一定不是棱台;②两个互相平行的面是平行四边形,其余各面是四边形的几何体不一定是棱台;③两个互相平行的面是正方形,其余各面是四边形的几何体一定是棱台.其中正确说法的个数为________.解析:①正确,因为具有这些特征的几何体的侧棱一定不相交于一点,故一定不是棱台;②正确;③不正确,当两个平行的正方形完全相等时,一定不是棱台.答案:29.根据如图所示的几何体的表面展开图,画出立体图形.解:图①是以ABCD为底面,P为顶点的四棱锥.图②是以ABCD和A1B1C1D1为底面的棱柱.其图形如图所示.B级能力提升1.如图所示,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是()A.棱柱B.棱台C.棱柱与棱锥的组合体D.不能确定解析:如图所示,倾斜小角度后,因为平面AA1D1D∥平面BB1C1C,所以有水的部分始终有两个平面平行,而其余各面都易证是平行四边形(水面与两平行平面的交线)因此呈棱柱形状.答案:A2.一个正方体的六个面上分别标有字母A,B,C,D,E,F,下图是此正方体的两种不同放置,则与D面相对的面上的字母是________.解析:由图知,标字母C的平面与标有A、B、D、E的面相邻,则与D面相对的面为E面,或B面,若B面与D面相对,则A面与B面相对,这时图②不可能,故只能与D面相对的面上字母为B.答案:B3.如图所示,M是棱长为2 cm的正方体ABCDA1B1C1D1的棱CC1的中点,求沿正方体表面从点A到点M的最短路程.解:若以BC为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为2 cm,3 cm,故两点之间的距离是13 cm.若以BB1为轴展开,则A,M两点连成的线段所在的直角三角形的两直角边的长度分别为1,4,故两点之间的距离是17 cm.故沿正方体表面从点A到点M的最短路程是13 cm.第一章空间几何体1.1 空间几何体的结构1.1.2 圆柱、圆锥、圆台、球、简单组合体的结构特征A级基础巩固一、选择题1.下列几何体中是旋转体的是()①圆柱②六棱锥③正方体④球体⑤四面体A.①和⑤B.①C.③和④D.①和④解析:圆柱、球体是旋转体,其余均为多面体.答案:D2.如图所示的简单组合体的结构特征是()A.由两个四棱锥组合成的B.由一个三棱锥和一个四棱锥组合成的C.由一个四棱锥和一个四棱柱组合成的D.由一个四棱锥和一个四棱台组合成的解析:这个8面体是由两个四棱锥组合而成.答案:A3.下图是由哪个平面图形旋转得到的()解析:图中几何体由圆锥、圆台组合而成,可由A中图形绕图中虚线旋转360°得到.答案:A4.如图所示的几何体是从一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得到的.现用一个平面去截这个几何体,若这个平面平行于底面,那么截面图形为()解析:截面图形应为图C所示的圆环面.答案:C5.用一张长为8、宽为4的矩形硬纸卷成圆柱的侧面,则相应圆柱的底面半径是() A.2 B.2πC.2π或4πD.π2或π4解析:如图所示,设底面半径为r,若矩形的长8恰好为卷成圆柱底面的周长,则2πr=8,所以r=4π;同理,若矩形的宽4恰好为卷成圆柱的底面周长,则2πr=4,所以r=2π.所以选C.答案:C二、填空题6.等腰三角形绕底边上的高所在的直线旋转180°,所得几何体是________.解析:结合旋转体及圆锥的特征知,所得几何体为圆锥.答案:圆锥7.给出下列说法:①圆柱的母线与它的轴可以不平行;②圆锥的顶点、圆锥底面圆周上任意一点及底面圆的圆心三点的连线,都可以构成直角三角形;③在圆台的上、下两底面圆周上各取一点,则这两点的连线是圆台的母线;④圆柱的任意两条母线所在的直线是互相平行的.其中正确的是____________(填序号).解析:由旋转体的形成与几何特征可知①③错误,②④正确.答案:②④8.如图是一个几何体的表面展成的平面图形,则这个几何体是__________.答案:圆柱三、解答题9.如图所示的物体是运动器材——空竹,你能描述它的几何特征吗?解:此几何体是由两个大圆柱、两个小圆柱和两个小圆台组合而成的.10.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.解:如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A =2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12l=25,所以l=20 cm.故截得此圆台的圆锥的母线长为20 cm.B级能力提升1.如图所示的平面中阴影部分绕中间轴旋转一周,形成的几何体形状为()A.一个球体B.一个球体中间挖出一个圆柱C.一个圆柱D.一个球体中间挖去一个长方体解析:外面的圆旋转形成一个球,里面的长方形旋转形成一个圆柱.所有形成的几何为一个球体挖出一个圆柱.答案:B2.一个半径为5 cm的球,被一平面所截,球心到截面圆心的距离为4 cm,则截面圆面积为__________cm2.解析:如图所示,过球心O作轴截面,设截面圆的圆心为O1,其半径为r.由球的性质,OO1⊥CD.在Rt△OO1C中,R=OC=5,OO1=4,则O1C=3,所以截面圆的面积S=π·r2=π·O1C2=9π.答案:9π3.如图,底面半径为1,高为2的圆柱,在A点有一只蚂蚁,现在这只蚂蚁要围绕圆柱由A点爬到B点,问蚂蚁爬行的最短距离是多少?解:把圆柱的侧面沿AB剪开,然后展开成为平面图形——矩形,如图所示,连接AB′,即为蚂蚁爬行的最短距离.因为AB=A′B′=2,AA′为底面圆的周长,且AA′=2π×1=2π.所以AB′=A′B′2+AA′2=4+(2π)2=21+π2,所以蚂蚁爬行的最短距离为21+π2.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.1 中心投影与平行投影1.2.2 空间几何体的三视图A级基础巩固一、选择题1.以下关于投影的叙述不正确的是()A.手影就是一种投影B.中心投影的投影线相交于点光源C.斜投影的投影线不平行D.正投影的投影线和投影面垂直解析:平行投影的投影线互相平行,分为正投影和斜投影两种,故C错.答案:C2.如图所示,水平放置的圆柱形物体的三视图是()答案:A3.如图,在直角三角形ABC,∠ACB=90°,△ABC绕边AB所在直线旋转一周形成的几何体的正视图为()解析:由题意,该几何体是两个同底的圆锥组成的简单组合体,且上部分圆锥比底部圆锥高,所以正视图应为选项B.答案:B4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:球的三视图都是圆;三棱锥的三视图都是全等的三角形;正方体的三视图都是正方形;圆柱的底面放置在水平面上,则其俯视图是圆,正视图是矩形,故几何体不可能是圆柱.答案:D5.一个四棱锥SABCD,底面是正方形,各侧棱长相等,如图所示,其正视图是一等腰三角形,其腰长与图中等长的线段是()A.AB B.SBC.BC D.SE解析:正视图的投影面应是过点E与底面ABCD垂直的平面,所以侧棱SB在投影面上的投影为线段SE.答案:D二、填空题6.下列几何体各自的三视图中,有且仅有两个视图相同的是________(填序号).①正方体②圆锥③三棱台④正四棱锥解析:在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.所以满足仅有两个视图相同的是②④.答案:②④7.一个简单几何体的正视图、侧视图如图所示,则其俯视图不可能为:①长方形;②正方形;③圆.其中满足条件的序号是________.答案:②③8.下图中的三视图表示的几何体是________.解析:根据三视图的生成可知,该几何体为三棱柱.答案:三棱柱三、解答题9.根据三视图(如图所示)想象物体原形,指出其结构特征,并画出物体的实物草图.解:由俯视图知,该几何体的底面是一直角梯形;由正视图知,该几何体是一四棱锥,且有一侧棱与底面垂直.所以该几何体如图所示.10.画出图中3个图形的指定视图.解:如图所示.B级能力提升1.如图所示为一个简单几何体的三视图,则其对应的实物图是()答案:A2.已知正三棱锥VABC的正视图、俯视图如图所示,它的侧棱VA=2,底面的边AC=3,则由该三棱锥得到的侧视图的面积为________.解析:正三棱锥VABC的侧视图不是一个等腰三角形,而是一个以一条侧棱、该侧棱所对面的斜高和底面正三角形的一条高构成的三角形,如侧视图所示(其中VF是斜高),由所给数据知原几何体的高为3,且CF=3 2.故侧视图的面积为S=12×32×3=334.答案:33 43.如图所示的是某两个几何体的三视图,试判断这两个几何体的形状.解:①由俯视图知该几何体为多面体,结合正视图和侧视图知,几何体应为正六棱锥.②由几何体的三视图知该几何体的底面是圆,相交的一部分是一个与底面同圆心的圆,正视图和侧视图是由两个全等的等腰梯形组成的.故该几何体是两个圆台的组合体.第一章空间几何体1.2 空间几何体的三视图和直观图1.2.3 空间几何体的直观图A级基础巩固一、选择题1.关于斜二测画法所得直观图,以下说法正确的是()A.等腰三角形的直观图仍是等腰三角形B.正方形的直观图为平行四边形C.梯形的直观图不是梯形D.正三角形的直观图一定为等腰三角形解析:由直观图的性质知B正确.答案:B2.利用斜二测画法画边长为3 cm的正方形的直观图,正确的是图中的()解析:正方形的直观图应是平行四边形,且相邻两边的边长之比为2∶1.答案:C3.如图,用斜二测画法画一个水平放置的平面图形为一个正方形,则原来图形的形状是()解析:直观图中正方形的对角线为2,故在平面图形中平行四边形的高为22,只有A项满足条件,故A正确.答案:A4.已知两个圆锥,底面重合在一起,其中一个圆锥顶点到底面的距离为2 cm,另一个圆锥顶点到底面的距离为3 cm,则其直观图中这两个顶点之间的距离为() A.2 cm B.3 cm C.2.5 cm D.5 cm解析:因为这两个顶点连线与圆锥底面垂直,现在距离为5 cm,而在直观图中根据平行于z轴的线段长度不变,仍为5 cm.答案:D5.若一个三角形采用斜二测画法,得到的直观图的面积是原三角形面积的()A.24B.2倍 C.22 D.2倍解析:底不变,只研究高的情况即可,此结论应识记.答案:A二、填空题6.如图所示,△A′B′C′是△ABC的水平放置的直观图,A′B′∥y轴,则△ABC是________三角形.解析:由于A′B′∥y轴,所以在原图中AB∥y轴,故△ABC为直角三角形.答案:直角7.已知△ABC的直观图如图所示,则△ABC的面积为________.解析:△ABC中,∠A=90°,AB=3,AC=6,所以S=12×3×6=9.答案:98.如图所示,水平放置的△ABC的斜二测直观图是图中的△A′B′C′,已知A′C′=6,B′C′=4,则AB边的实际长度是_______.解析:在原图中AC=6,BC=4×2=8,∠AOB=90°,所以AB=62+82=10.答案:10三、解答题9.如图所示,已知水平放置的平面图形的直观图是一等腰直角三角形ABC,且AB =BC=1,试画出它的原图形.解:(1)在如图所示的图形中画相应的x轴、y轴,使∠xOy=90°(O与A′重合);(2)在x轴上取C′,使A′C′=AC,在y轴上取B′,使A′B′=2AB;(3)连接B′C′,则△A′B′C′就是原图形.10.画出底面是正方形、侧棱均相等的四棱锥的直观图(棱锥的高不做具体要求).解:画法:(1)画轴.画Ox轴、Oy轴、Oz轴,∠xOy=45°(135°),∠xOz=90°,如图.(2)画底面.以O为中心在xOy平面内,画出底面正方形的直观图ABCD.(3)画顶点.在Oz轴上截取OP,使OP的长度是四棱锥的高.(4)成图.顺次连接PA、PB、PC、PD,并擦去辅助线,得四棱锥的直观图.B级能力提升1.水平放置的△ABC有一边在水平线上,它的斜二测直观图是正△A′B′C′,则△ABC 为()A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能解析:如下图所示,斜二测直观图还原为平面图形,故△ABC是钝角三角形.答案:C2.如图,Rt△O′A′B′是一平面图形的直观图,直角边O′B′=1,则这个平面图形的面积是________.解析:因为O′B=1,所以O′A′=2,所以在Rt△OAB中,∠AOB=90°,OB=1,OA=2 2.所以S△AOB=12×1×22= 2.答案:23.如图是一个空间几何体的三视图,试用斜二测画法画出它的直观图.解:根据三视图可以想象出这个几何体是六棱台.(1)画轴.如图①,画x轴、y轴、z轴,使∠xOy=45°,∠xOz=90°.(2)画两底面,由三视图知该几何体为六棱台,用斜二测画法画出底面正六边形ABCDEF,在z轴上截取OO′,使OO′等于三视图中的相应高度,过O′作Ox的平行线O′x′,Oy的平行线O′y′,利用O′x与O′y′画出底面正六边形A′B′C′D′E′F′.(3)成图.连接A′A,B′B,C′C,D′D,E′E,F′F,整理得到三视图表示的几何体的直观图,如图②.第一章 空间几何体 1.3 空间几何体的表面积与体积 1.3.1 柱体、锥体、台体的表面积与体积A 级 基础巩固一、选择题1.轴截面是正三角形的圆锥称作等边圆锥,则等边圆锥的侧面积是底面积的( ) A .4倍 B .3倍 C.2倍D .2倍解析:设轴截面正三角形的边长为2a ,所以S 底=πa 2,S 侧=πa ·2a =2πa 2,因此S 侧=2S 底. 答案:D2.如图所示,ABC A ′B ′C ′是体积为1的棱柱,则四棱锥C AA ′B ′B 的体积是( )A.13B.12C.23D.34解析:因为V C A ′B ′C ′=13V 柱=13,所以V C AA ′B ′B =1-13=23.答案:C3.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的全面积为( ) A .3π B .33π C .6πD .9π解析:由于圆锥的轴截面是等边三角形,所以2r =l , 又S 轴=12×l 2×sin 60°=34l 2=3,所以l =2,r =1.所以S 圆锥表=πr 2+πrl =π+2π=3π.故选A. 答案:A4.(2015·课标全国Ⅰ卷 )《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依恒内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放米约有( )A .14斛B .22斛C .36斛D .66斛解析:由l =14×2πr =8得圆锥底面的半径r =16π≈163,所以米堆的体积V =14×13πr 2h=14×2569×5=3209(立方尺),所以堆放的米有3209÷1.62≈22(斛). 答案:B5.已知正方体的8个顶点中,有4个为侧面是等边三角形的一三棱锥的顶点,则这个三棱锥与正方体的表面积之比为( )A .1∶ 2B .1∶3C .2∶ 2D .3∶6解析:棱锥B ′ ACD ′为适合条件的棱锥,四个面为全等的等边三角形,设正方体的边长为1,则B ′C =2,S △B ′AC =32.三棱锥的表面积S 锥=4×32=23, 又正方体的表面积S 正=6. 因此S 锥∶S 正=23∶6=1∶ 3. 答案:B 二、填空题6.若一个圆台的正视图如图所示,则其侧面积为________.解析:由正视图可知,该圆台的上、下底面圆的半径分别为1,2,其高为2, 所以其母线长l =⎝ ⎛⎭⎪⎫4-222+22=5, 所以S 侧=π(1+2)×5=35π. 答案:35π7.下图是一个空间几何体的三视图,这个几何体的体积是________.解析:由图可知几何体是一个圆柱内挖去一个圆锥所得的几何体,V =V 圆柱-V 圆锥=π×22×3-13π×22×3=8π.答案:8π8.(2015·福建卷)某几何体的三视图如图所示,则该几何体的表面积等于________.解析:由三视图知,该几何体是直四棱柱,底面是直角梯形,且底面梯形的周长为4+ 2.则S侧=8+22,S底=2×(1+2)2×1=3.故S表=S侧+S底=11+2 2.答案:11+22三、解答题9.已知圆柱的侧面展开图是长、宽分别为2π和4π的矩形,求这个圆柱的体积.解:设圆柱的底面半径为R,高为h,当圆柱的底面周长为2π时,h=4π,由2πR=2π,得R=1,所以V圆柱=πR2h=4π2.当圆柱的底面周长为4π时,h=2π,由2πR=4π,得R=2,所以V圆柱=πR2h=4π·2π=8π2.所以圆柱的体积为4π2或8π2.10.一个正三棱柱的三视图如图所示(单位:cm),求这个正三棱柱的表面积与体积.解:由三视图知直观图如图所示,则高AA′=2 cm,底面高B′D′=23cm,所以底面边长A ′B ′=23×23=4(cm).一个底面的面积为12×23×4=43(cm 2).所以表面积S =2×43+4×2×3=24+83(cm 2), V =43×2=83(cm 3).所以表面积为(24+83)cm 2,体积为83(cm 3).B 级 能力提升1.某几何体的三视图如图所示,俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )A.203π B.103π C .6πD.163π 解析:该几何体的上方是以2为底面圆的半径,高为2的圆锥的一半,下方是以2为底面圆的半径,高为1的圆柱的一半,其体积为V =π×22×12+12×13π×22×2=2π+43π=103π. 答案:B2.(2015·江苏卷)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个,若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥与圆柱各一个,则新的底面半径为__________.解析:底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱的总体积为13π×52×4+π×22×8=196π3.设新的圆锥和圆柱的底面半径为r ,则13π·r 2×4+π·r 2×8=28π3r 2=196π3,解得r=7.答案:73.某几何体的三视图如图所示(单位:cm),求该几何体的体积.解:由三视图知,该几何体是一个四棱柱与一个四棱锥的组合体. V 四棱柱=23=8,V 四棱锥=13×22×2=83.故几何体的体积V =V 四棱柱+V 四棱锥=8+83 =323(cm 3).第一章 空间几何体 1.3 空间几体的表面积与体积 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.若一个球的体积扩大到原来的27倍,则它的表面积扩大到原来的( ) A .3倍 B .3 3 倍 C .9倍D .9 3 倍解析:由V ′=27 V ,得R ′=3R ,R ′R=3则球的表面积比S ′∶S =⎝⎛⎭⎪⎫R ′R 2=9. 答案:C2.把3个半径为R 的铁球熔成一个底面半径为R 的圆柱,则圆柱的高为( ) A .R B .2R C .3R D .4R 解析:设圆柱的高为h ,则πR 2h =3×43πR 3,所以h =4R . 答案:D3.如图所示,是某几何体的三视图,则该几何体的体积为( )A .9π+42B .36π+18 C.92π+12 D.92π+18 解析:由三视图可知该几何体是一个长方体和球构成的组合体,其体积V =43π⎝ ⎛⎭⎪⎫323+3×3×2=92π+18.答案:D4.设长方体的长、宽、高分别为2a ,a ,a ,其顶点都在一个球面上,则该球的表面积为( )A .3πa 2B .6πa 2C .12πa 2D .24πa 2解析:设该球的半径为R , 所以(2R )2=(2a )2+a 2+a 2=6a 2, 即4R 2=6a 2.所以球的表面积为S =4πR 2=6πa 2. 答案:B5.下图是一个几何体的三视图,根据图中数据,可得几何体的表面积是( )A .4π+24B .4π+32C .22πD .12π解析:由三视图可知,该几何体上部分为半径为1的球,下部分为底边长为2,高为3的正四棱柱,几何体的表面积为4π+32.答案:B二、填空题6.将一钢球放入底面半径为3 cm 的圆柱形玻璃容器中,水面升高4 cm ,则钢球的半径是________.解析:圆柱形玻璃容器中水面升高4cm ,则钢球的体积为V =π×32×4=36π,即有43πR 3=36π,所以R =3. 答案:3 cm7.两个球的表面积之差为48π,它们的大圆周长之和为12π,则这两个球的半径之差为________.解析:由题意设两球半径分别为R 、r (R >r ),则:⎩⎪⎨⎪⎧4πR 2-4πr 2=48π2πR +2πr =12π即⎩⎪⎨⎪⎧R 2-r 2=12R +r =6., 所以R -r =2.答案:28.已知某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知几何体为组合体,上方是半径为1的球,下方是长方体,其底面是边长为2的正方形,侧棱长为4,故其体积V =43×π×13+2×2×4=16+4π3. 答案:16+4π3三、解答题9.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.解:组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π.因为圆柱的体积V 圆柱=πr 2l =π×12×3=3π,又两个半球的体积2V 半球=43πr 3=43π, 因此组合体的体积V =3π+43π=133π. 10.如图,一个圆柱形的玻璃瓶的内半径为3 cm ,瓶里所装的水深为8 cm ,将一个钢球完全浸入水中,瓶中水的高度上升到8.5 cm ,求钢球的半径.解:设球的半径为R ,由题意可得43πR 3=π×32×0.5, 解得:R =1.5 (cm),所以所求球的半径为1.5 cm.B 级 能力提升1.用与球心距离为1的平面去截球,所得的截面面积为π,则球的体积为( )A.8π3B.82π3 C .82π D.32π3解析:截面面积为π,则该小圆的半径为1,设球的半径为R ,则R 2=12+12=2,所以R =2,V =43πR 3=82π3. 答案:B2.边长为42的正方形ABCD 的四个顶点在半径为5的球O 的表面上,则四棱锥O ABCD 的体积是________.解析:因为正方形ABCD 外接圆的半径r =(42)2+(42)22=4.又因为球的半径为5,所以球心O 到平面ABCD 的距离d =R 2-r 2=3,所以V O ABCD =13×(42)3×3=32. 答案:323.体积相等的正方体、球、等边圆柱(轴截面为正方形的圆柱)的表面积分别是S 1,S 2,S 3,试比较它们的大小.解:设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r ,所以R =334πa ,r =312πa , 所以S 2=4π⎝⎛⎭⎪⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝⎛⎭⎪⎪⎫312πa 2=6π·314π2a 2=354πa 2, 所以S 2<S 3.又6a 2>3312πa 2=354πa 2,即S 1>S 3. 所以S 1,S 2,S 3的大小关系是S 2<S 3<S 1.章末复习课[整合·网络构建][警示·易错提醒]1.台体可以看成是由锥体截得的,易忽视截面与底面平行且侧棱(母线)延长后必交于一点.2.空间几何体不同放置时其三视图不一定相同.3.对于简单组合体,若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,易忽视虚线的画法.4.求组合体的表面积时:组合体的衔接部分的面积问题易出错.5.由三视图计算几何体的表面积与体积时,由于几何体的还原不准确及几何体的结构特征认识不准易导致失误.6.易混侧面积与表面积的概念.专题1空间几何体的三视图与直观图三视图是立体几何中的基本内容,能根据三视图识别其所表示的立体模型,并能根据三视图与直观图所提供的数据解决问题.主要考查形式:(1)由三视图中的部分视图确定其他视图;(2)由三视图还原几何体;(3)三视图中的相关量的计算.其中(3)是本章的难点,也是重点之一,解这类题的关键是准确地将三视图中的数据转化为几何体中的数据.[例1](1)若一个正三棱柱的三视图如图所示,则这个正三棱柱的高和底面边长分别为()A.2,23B.22,2C.4,2D.2,4(2)(2016·全国Ⅲ卷)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()A.18+36 5 B.54+18 5 C.90 D.81解析:(1)由三视图的画法规则知,正视图与俯视图长度一致,正视图与侧视图高度一致,俯视图与侧视图宽度一致.所以侧视图中2为正三棱柱的高,23为底面等边三角形的高,所以底面等边三角形边长为4.(2)由三视图可知,该几何体的底面是边长为3的正方形,高为6,侧棱长为35,则该几何体的表面积S=2×32+2×3×35+2×3×6=54+18 5.故选B.答案:(1)D(2)B归纳升华1.第(1)题中易把23误认为是正三棱锥底面等边三角形的边长.注意“长对正、高平齐、宽相等”.2.(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确。