专题71 瓜豆原理中动点轨迹不确定型最值问题(解析版)
初中数学最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
最值问题——瓜豆原理

△OPQ是等腰直角三角形,∠POQ=90°且 OP=OQ,当点P在直线AB上运动时,求Q点 轨迹?
△OPQ是直角三角形,∠POQ=90°且 OP=2OQ,当点P在直线AB上运动时,求Q 点轨迹?
线型模型总结
必要条件: 主动点、从动点与定点连线的夹角是定量(∠PAQ是定值) 主动点、从动点到定点的距离之比是定量(AP:AQ是定值) 结论: P、Q两点轨迹所在直线的夹角等于∠PAQ P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)
线形——平行四边形问题
线形——路径长问题
圆形最值问题
过关检测
最值问题
瓜豆原理
瓜豆原理——种豆得豆,种瓜得瓜
• P是直线AB上ー动点,连接OP,取OP中点Q,当点P在AB上运动时,Q点轨迹是?
P 是 圆 O 上 ー 个 动 点 , A 为 定 点 , 连 接 A P, Q 为 A P 中 点 . 当 点 P 在 园 O 上 运 动 时 , Q 点 轨 迹 是 ?
圆型变形
P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP. 考虑:当点P在圆O上 运动时,Q点轨迹是?
圆型变形
△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
圆型模型总结
必要条件: 主动点、从动点与定点连线的夹角是定量(∠PAQ是定值) 主动点、从动点到定点的距离之比是定量(AP:AQ是定值) 结论: 主、从动点与定点连线的夹角等于两圆心与定点连线的夹角∠PAQ=AO:AM
任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
分析步骤
• ① 找三点:主动点P ; 从动点Q ;中心点A(主从连线公共点) • ②分析主动点关于中心点到从动点的运动,推出:
最值系列问题之轨迹问题(瓜豆原理)

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.⑧到两条平行线距离相等的点的轨迹是和这两条平行线平行且到这两条平行线距离相等的一条直线.本文讨论一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.该题型常见于中考的大小压轴题中,以最值计算或函数解析式的方式出题。
一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.考虑:当点P在圆O上运动时,Q点轨迹是?Q【分析】Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.引例3:如图,△APQ是直角三角形,∠P AQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?【分析】考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.【模型总结】为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).Q【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠P AQ=∠OAM;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.考虑:当点P在圆O上运动时,Q点轨迹是?【分析】Q点满足(1)∠P AQ=60°;(2)AP=AQ,故Q点轨迹是个圆:考虑∠P AQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.即可确定圆M位置,任意时刻均有△APO≌△AQM.【小结】可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.【思考2】如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.考虑:当点P在圆O上运动时,如何作出Q点轨迹?【分析】Q点满足(1)∠P AQ=45°;(2)AP:AQ1,故Q点轨迹是个圆.连接AO,构造∠OAM=45°且AO:AM:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.【练习】如图,点P(3,4),圆P半径为2,A(2.8,0),B(5.6,0),点M是圆P上的动点,点C是MB的中点,则AC的最小值是_______.【分析】M点为主动点,C点为从动点,B点为定点.考虑C是BM中点,可知C点轨迹:取BP中点O,以O为圆心,OC为半径作圆,即为点C轨迹.当A、C、O三点共线且点C在线段OA上时,AC取到最小值,根据B、P坐标求O,利用两点间距离公式求得OA,再减去OC即可.【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.F考虑DE⊥DF且DE=DF,故作DM⊥DO且DM=DO,F点轨迹是以点M为圆心,2为半径的圆.直接连接OM,与圆M交点即为F点,此时OF最小.可构造三垂直全等求线段长,再利用勾股定理求得OM,减去MF即可得到OF的最小值.【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.连接AM并延长与圆M交点即为所求的点O,此时AO最大,根据AB先求AM,再根据BC与BO的比值可得圆M的半径与圆A半径的比值,得到MO,相加即得AO.此题方法也不止这一种,比如可以如下构造旋转,当A、C、A’共线时,可得AO最大值.A'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q点轨迹线段.Q2AB CQ1【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)P 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.A【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A是第一象限内横坐标为AC⊥x轴于点M,交直线y=-x于点N,若点P是线段ON上的一个动点,∠APB=30°,BA⊥P A,则点P在线段ON上运动时,A点不变,B点随之运动.求当点P从点O 运动到点N时,点B运动的路径长是________.【分析】根据∠P AB=90°,∠APB=30°可得:AP:AB,故B点轨迹也是线段,且P点轨迹路径长与B,P点轨迹长ON为B点轨迹长为【练习】如图,在平面直角坐标系中,A(-3,0),点B是y轴正半轴上一动点,点C、D在x正半轴上,以AB为边在AB的下方作等边△ABP,点B在y轴上运动时,求OP的最小值.【分析】求OP是等边三角形且B点在直线上运动,故可知P点轨迹也是直线.取两特殊时刻:(1)当点B与点O重合时,作出P点位置P1;(2)当点B在x轴上方且AB与x轴夹角为60°时,作出P点位置P2.连接P1P2,即为P点轨迹.根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12P P ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2CG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.GABCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.G 2三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k的值为( )A .2B .4C .6D .8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【练习】如图,A(-1,1),B(-1,4),C(-5,4),点P是△ABC边上一动点,连接OP,以OP为斜边在OP的右上方作等腰直角△OPQ,当点P在△ABC边上运动一周时,点Q的轨迹形成的封闭图形面积为________.【分析】根据△OPQ是等腰直角三角形可得:Q点运动轨迹与P点轨迹形状相同,根据OP:OQ,可得P点轨迹图形与Q,故面积比为2:1,△ABC面积为1/2×3×4=6,故Q点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M考虑到AP =2AD ,故P 点轨迹是以N 为圆心,即可求出PB 的取值范围.。
初中数学 中考压轴之瓜豆原理求线段最值问题

中考线段最值问题----瓜豆原理【问题引入】如下图1所示,Q为OP的中点,P为线段AB上的一个动点,Q为OP的中点,当P点在线段AB上运动时,Q点的运动轨迹是什么?【问题分析】如下图2,当P点为于A点时,此时Q点位于OA的中点Q1;当P点位于B点时,此时Q点位于OB的中点Q2;我们发现,△OQ1Q2△△OAB,随着Q点位置的不同,△OQ1Q2与△OAB 一直相似,其本质为动态相似!【模型建立】此类题中,题目或许先描述的是动点P,但最终问题问的是另一个动点Q,P和Q之间存在着某种联系,从P点出发探讨Q点运动轨迹即为本文要探讨的瓜豆原理。
1、两个概念:主动点:主动运动的点称为主动点,如上图1中的P点;从动点:由于主动点运动而“被迫”运动的点称为从动点,如上图1中的Q点;2、瓜豆原理成立的两个必要条件△主动点、从动点与定点连线的夹角为定值;△主动点、从动点到定点的距离之比是定值.举例如下:如下图3:,动点P在直线BC上运动,A为定点,Q为另一动点,且满足条件:①∠PAQ是定值;②AP:AQ是定值,则动点Q的轨迹与动点P的轨迹一致,即:P在直线BC上动,则Q在另一直线MN上动,且△BAC∽△MAN(动态相似)。
3、核心结论①从动点的运动轨迹与主动点运动轨迹一致,即如果主动点在直线上运动,则从动点也必然在直线上运动;如果主动点在圆上运动,则从动点也必然在圆上运动,故非常形象的称之为“瓜豆原理”。
②主动点的起点、终点、定点组成的三角形与从动点的起点、终点、定点组成的三角形相似(或全等),如上图中△AMN∽△ABC。
③主动点运动轨迹与从动点的运动轨迹的夹角(锐角)等于主、从动点与定点连线的夹角。
如上图中∠PAQ=α。
【类型总结】---核心处理方法:Step1:找出主动点的起点和终点;Step2:找出题中所有的定点;Step3:验证两个必要条件,即:①主、从动点与定点连线的夹角为定值;②主、从动点到定点的距离之比是定值。
初中数学最值系列之瓜豆原理

最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q 点轨迹是?A OQP【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.PQA MO【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.1引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?点轨迹是?OP QA【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P点轨迹都是圆.接下来确定圆心与半径.点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .MA QPO引例3:如图,△APQ 是直角三角形,∠P AQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是?迹是?OPQA【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1. 即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.OPQM A【模型总结】【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”.此类问题的必要条件:两个定量此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).αA QPOααOPQMA【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠P AQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:)主、从动点与定点的距离之比等于两圆心到定点的距离之比: AP :AQ =AO :AM ,也等于两圆半径之比.,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ . 考虑:当点P 在圆O 上运动时,Q 点轨迹是?点轨迹是?OPA Q【分析】【分析】Q 点满足(1)∠P AQ =60°;(2)AP =AQ ,故Q 点轨迹是个圆:点轨迹是个圆: 考虑∠P AQ =60°,可得Q 点轨迹圆圆心M 满足∠MAO =60°;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .60°MQAPO【小结】可以理解AQ 由AP 旋转得来,故圆M 亦由圆O 旋转得来,旋转角度与缩放比例均等于AP 与AQ 的位置和数量关系.的位置和数量关系.【思考2】如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为斜边作等腰直角△APQ . 考虑:当点P 在圆O 上运动时,如何作出Q 点轨迹?点轨迹?OPQA【分析】Q 点满足(1)∠P AQ =45°;(2)AP :AQ =2:1,故Q 点轨迹是个圆.点轨迹是个圆.连接AO ,构造∠OAM =45°且AO :AM =2:1.M 点即为Q 点轨迹圆圆心,点轨迹圆圆心,此时任意时刻均此时任意时刻均有△AOP ∽△AMQ .即可确定点Q 的轨迹圆.的轨迹圆.MOPQA【练习】如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.OyxA B CM P【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.轨迹.OOyxABC M P当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.即可.OPMCBAxyO【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC =22,点P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.A BC MP【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.点轨迹.DEFOABCM P当然,若能理解M 点与P 点轨迹关系,可直接得到M点的轨迹长为P 点轨迹长一半,即可解决问题.半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,25AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.为半径的圆.FEDCBAO考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.为半径的圆.OABCDEFM直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF 的最小值.的最小值.OABCDE FM【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.为半径的圆.OE DCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.轨迹圆圆心.E DM ABCO连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .OCBAM DE此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO 最大值.最大值.AB CDEOA'或者直接利用托勒密定理可得最大值.或者直接利用托勒密定理可得最大值.二、轨迹之线段篇二、轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?点轨迹是?PQABC【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,的一半,即即Q 点到BC 的距离是定值,的距离是定值,故故Q 点轨迹是一条直线.轨迹是一条直线.N CBAQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?点轨迹?CB AQ P【分析】【分析】当当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.点轨迹线段.Q 2Q 1ABC【模型总结】【模型总结】 必要条件:必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值). 结论:结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角)夹角)MNααPQ A BCP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )M NααA BC【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.ABCDE FP【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A 是第一象限内横坐标为23的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥P A ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.yxN MPACBO【分析】根据∠P AB =90°,∠APB =30°可得:AP :AB =3:1,故B 点轨迹也是线段,且P 点轨迹路径长与B 点轨迹路径长之比也为3:1,P 点轨迹长ON 为26,故B 点轨迹长为22.【练习】如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.的最小值.POABxy【分析】求OP 最小值需先作出P 点轨迹,根据△ABP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.点轨迹.P 2P 1y xBAO根据∠ABP =60°可知:12P P 与y 轴夹角为60°,作OP ⊥12PP ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.PP 2P 1y xBAO【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为的最小值为 .【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:点轨迹:考虑到F 点轨迹是线段,点轨迹是线段,故故G 点轨迹也是线段,点轨迹也是线段,取起点和终点即可确定线段位置,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.点运动轨迹.G 2G 1ED CBACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.小值.GA BCDEF根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG . 过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =,所以CH =52,因此CG 的最小值为52.F HG 2G 1ED CBA三、轨迹之其他图形篇三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与从动点与定点连线形成的夹角以及主、定点连线形成的夹角以及主、从动点到定点的距离之比,从动点到定点的距离之比,从动点到定点的距离之比,可确定从动点的轨迹,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x =-的图像上有一个动点A ,连接AO并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数k y x=的图像上运动,若tan ∠CAB =2,则k 的值为(的值为( ) CBAOyxA .2B .4C .6D .8【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k =4×=4×2=82=8.NM xyOABC【思考】若将条件“tan ∠CAB =2”改为“△ABC 是等边三角形”,k 会是多少?会是多少?【练习】如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.QCxyOA B P【分析】根据△OPQ 是等腰直角三角形可得:Q 点运动轨迹与P 点轨迹形状相同,根据OP :OQ =2:1,可得P 点轨迹图形与Q 点轨迹图形相似比为2:1,故面积比为2:1,△ABC 面积为1/2×1/2×3×3×3×4=64=6,故Q 点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点根据主动点轨迹推导即可,甚至无需作图.轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.A BCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M 为圆心、2为半径的圆为半径的圆E MPD CBA考虑到AP =2AD ,故P 点轨迹是以N 为圆心,22为半径的圆,为半径的圆,即可求出即可求出PB 的取值范围.值范围.NEABCD PM。
瓜豆原理动点轨迹问题

瓜豆原理动点轨迹问题
瓜豆原理动点轨迹问题是指给定一个平面上的动点,该动点以一定的速度和方向运动,瓜豆原理用于描述该动点的运动轨迹。
瓜豆原理是描述运动学关系的公式之一,它认为在一个恒力作用下,物体的速度的变化量正比于时间的变化量。
具体地说,假设动点在平面上的位置由坐标(x,y)表示,速度的大小为v,方向与x轴的夹角为θ。
根据瓜豆原理,动点在时
间t后的位置可以用以下公式表示:
x = x0 + v * cos(θ) * t
y = y0 + v * sin(θ) * t
其中,x0和y0是动点的初始位置坐标。
瓜豆原理动点轨迹问题就是给定动点的初始速度、方向和初始位置,求解动点在空间中的运动轨迹。
通常,可以使用数值计算方法,如欧拉法或Runge-Kutta法来求解连续的轨迹点。
最值模型-瓜豆原理(解析版)--中考数学常见几何模型全归纳之模型解读

最值模型-瓜豆原理动点轨迹问题是中考的重要题型,受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的集中点。
掌握该压轴题型的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径。
本专题就最值模型中的瓜豆原理(动点轨迹基本类型为直线型和圆弧型)进行梳理及对应试题分析,方便掌握。
【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线_上运动;瓜在圆周上运动,豆的轨迹也是圆。
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”。
模型1、运动轨迹为直线模型1-1如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?解析:当P点轨迹是直线时,Q点轨迹也是一条直线.理由:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.模型1-2如图,在△APQ中AP=AQ,∠PAQ为定值,当点P在直线BC上运动时,求Q点轨迹?解析:当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形。
理由:当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段。
【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。
1)当动点轨迹确定时可直接运用垂线段最短求最值;2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定:①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线;②当某动点到某条直线的距离不变时,该动点的轨迹为直线;③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线;④若动点轨迹用上述方法都合适,则可以将所求线段转化为其他已知轨迹的线段求值。
瓜豆原理解析

瓜豆原理解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是A OQP【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.PQA MO【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP .考虑:当点P 在圆O 上运动时,Q 点轨迹是OP QA【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .MA QPO引例3:如图,△APQ 是直角三角形,∠PAQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是OPQA【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ; 考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.OPQM A【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).αA QPOααOPQMA【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠PAQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比: AP :AQ =AO :AM ,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ .考虑:当点P 在圆O 上运动时,Q 点轨迹是OPA Q【分析】Q 点满足(1)∠PAQ =60°;(2)AP =AQ ,故Q 点轨迹是个圆: 考虑∠PAQ =60°,可得Q 点轨迹圆圆心M 满足∠MAO =60°;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .60°MQAPO【小结】可以理解AQ 由AP 旋转得来,故圆M 亦由圆O 旋转得来,旋转角度与缩放比例均等于AP 与AQ 的位置和数量关系.【思考2】如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为斜边作等腰直角△APQ .考虑:当点P 在圆O 上运动时,如何作出Q 点轨迹OPQA【分析】Q 点满足(1)∠PAQ =45°;(2)AP :AQ 1,故Q 点轨迹是个圆.连接AO ,构造∠OAM =45°且AO :AM:1.M 点即为Q 点轨迹圆圆心,此时任意时刻均有△AOP ∽△AMQ .即可确定点Q 的轨迹圆.MOPQA【练习】如图,点P (3,4),圆P 半径为2,A (,0),B (,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.OyxA B CM P【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.OOyxABC M P当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.OPMCBAxyO【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC =P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.A BC MP【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.DEF OABCM P当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.FE DCBAO考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.OABCDEFM直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF 的最小值.OABCDE FM【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.E DM ABCO连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .OCBAM DE此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO 最大值.AB CDEOA'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是PQABC【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.N CBAQP M【引例】如图,△APQ 是等腰直角三角形,∠PAQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹CBAQP【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠PAQ (当∠PAQ ≤90°时,∠PAQ 等于MN 与BC 夹角)M NααPQ A BCP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )M NααA BC【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.ABCDE FP【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A 是第一象限内横坐标为的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.yxN MPACBO【分析】根据∠PAB =90°,∠APB =30°可得:AP:AB ,故B 点轨迹也是线段,且P 点轨迹路径长与B ,P点轨迹长ON 为,故B 点轨迹长为【练习】如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.POABxy【分析】求OP 最小值需先作出P 点轨迹,根据△ABP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.P 2P 1y xBAO根据∠ABP =60°可知:12PP 与y 轴夹角为60°,作OP ⊥12PP ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.PP 2P 1y xBAO【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GABCDEF【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1ED CBACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG . 过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE , 所以CH =52,因此CG 的最小值为52.FHG 2G 1ED CBA三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数k y x=的图像上运动,若tan ∠CAB =2,则k 的值为( )CBAOyxA .2B .4C .6D .8【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k =4×2=8.NM xyOABC【思考】若将条件“tan ∠CAB =2”改为“△ABC 是等边三角形”,k 会是多少【练习】如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.QCxyOA B P【分析】根据△OPQ 是等腰直角三角形可得:Q 点运动轨迹与P 点轨迹形状相同,根据OP :OQ,可得P 点轨迹图形与Q 点轨迹图形相似,故面积比为2:1,△ABC 面积为1/2×3×4=6,故Q 点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M 为圆为半径的圆EMPD CBA考虑到AP =2AD ,故P 点轨迹是以N 为圆心,PB 的取值范围.NEA BCD PM。
2021中考数学专题05 瓜豆原理中最值问题

专题瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?P QAB C【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.N C B AQP M【引例】如图,△APQ 是等腰直角三角形,∠P AQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹?CB AQ P【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ 是定值);主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠P AQ (当∠P AQ ≤90°时,∠P AQ 等于MN 与BC 夹角) M N ααP QAB CP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN ) M NααAB C【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B CDE F2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24πB .22πC .1D .23、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.4、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.5、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【精典例题】1、如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GA B C DE F【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1E DCB ACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG .过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE =, 所以CH =52,因此CG 的最小值为52. F HG 2G 1E DCB A 2、如图,等腰Rt △ABC 中,斜边AB 的长为2,O 为AB 的中点,P 为AC 边上的动点,OQ ⊥OP 交BC 于点Q ,M 为PQ 的中点,当点P 从点A 运动到点C 时,点M 所经过的路线长为( )A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=222,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO COAOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,∴PE=22AP=22CQ ,QF=22BQ , ∴PE+QF=22(CQ+BQ )=22BC=222, ∵M 点为PQ 的中点,∴MH 为梯形PEFQ 的中位线,∴MH=12(PE+QF )=12, 即点M 到AB 的距离为12, 而CO=1,∴点M 的运动路线为△ABC 的中位线,∴当点P 从点A 运动到点C 时,点M 所经过的路线长=12AB=1, 故选C .3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为_____.【答案】213【详解】ABCD 为矩形,AB DC ∴=又=PAB PCD S S∴点P 到AB 的距离与到CD 的距离相等,即点P 线段AD 垂直平分线MN 上, 连接AC ,交MN 与点P ,此时PC PD +的值最小,且PC PD AC +==22224652213AB BC +=+==故答案为:2134、如图,在平面内,线段AB =6,P 为线段AB 上的动点,三角形纸片CDE 的边CD 所在的直线与线段AB 垂直相交于点P ,且满足PC =P A .若点P 沿AB 方向从点A 运动到点B ,则点E 运动的路径长为______.【答案】62 【详解】解:如图,由题意可知点C 运动的路径为线段AC ′,点E 运动的路径为EE ′,由平移的性质可知AC ′=EE ′,在Rt △ABC ′中,易知AB =BC ′=6,∠ABC ′=90°,∴EE ′=AC 2266+2故答案为:625、如图,等边三角形ABC 的边长为4,点D 是直线AB 上一点.将线段CD 绕点D 顺时针旋转60°得到线段DE ,连结BE .(1)若点D 在AB 边上(不与A ,B 重合)请依题意补全图并证明AD=BE ;(2)连接AE ,当AE 的长最小时,求CD 的长.【答案】(1)见解析;(2)27【详解】解:(1)补全图形如图1所示,AD=BE,理由如下:∵△ABC是等边三角形,∴AB=BC=AC,∠A=∠B=60°,由旋转的性质得:∠ACB=∠DCE=60°,CD=CE,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴AD=BE.(2)如图2,过点A作AF⊥EB交EB延长线于点F.∵△ACD≌△BCE,∴∠CBE=∠A=60°,∴点E的运动轨迹是直线BE,根据垂线段最短可知:当点E与F重合时,AE的值最小,此时CD=CE=CF,∵∠ACB=∠CBE=60°,∴AC∥EF,∵AF⊥BE,∴AF⊥AC,在Rt △ACF 中, ∴CF=22AC AF +=()22423+=27,∴CD=CF=27.专题 瓜豆原理中动点轨迹圆或圆弧型最值问题【专题说明】动点的轨迹为定圆时,可利用:“一定点与圆上的动点距离最大值为定点到圆心的距离与半径之和,最小值为定点到圆心的距离与半径之差”的性质求解。
最值模型之瓜豆模型(解析版)

最值模型之瓜豆模型模型一直线轨迹型瓜豆原理知识梳理【模型解读】瓜豆原理:若两动点到某定点的距离比是定值,夹角是定角,则两动点的运动路径相同。
动点轨迹基本类型为直线型和圆弧型。
主动点叫瓜,从动点叫豆,瓜在直线上运动,豆也在直线上运动;瓜在圆周上运动,豆的轨迹也是圆。
运动轨迹为直线型的瓜豆原理题目(1)如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是?(2)如图,D 、E 是边长为4的等边三角形ABC 上的中点,P 为中线AD 上的动点,把线段PC 绕C 点逆时针旋转60°得到P ',求P '点轨迹?解析Q 点轨迹是直线l 。
(相似模型)P '点轨迹是直线BP '(手拉手模型)确定从动点轨迹的方法:当确定轨迹是线段的时候,可以任取两个时刻的从动点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段。
【最值原理】动点轨迹为一条直线时,利用“垂线段最短”求最值。
1)当动点轨迹已知时可直接运用垂线段最短求最值;2)当动点轨迹未知时,先确定动点轨迹,再垂线段最短求最值。
例题解析1如图,△ABC 是边长为6的等边三角形,点E 为高BD 上的动点.连接CE ,将CE 绕点C 顺时针旋转60°得到CF .连接AF ,EF ,DF ,则△CDF 周长的最小值是.【答案】3+33/33+3【分析】根据题意,证明△CBE ≌△CAF ,进而得出F 点在射线AF 上运动,作点C 关于AF 的对称点C ′,连接DC ,设CC 交AF 于点O ,则∠AOC =90°,则当D ,F ,C 三点共线时,FC +FD 取得最小值,即FC +FD =F C +F D =CD ,进而求得C D ,即可求解.【详解】解:∵E 为高BD 上的动点.∴∠CBE =12∠ABC =30°∵将CE 绕点C 顺时针旋转60°得到CF .△ABC 是边长为6的等边三角形,∴CE =CF ,∠ECF =∠BCA =60°,BC =AC ∴△CBE ≌△CAF ∴∠CAF =∠CBE =30°,∴F 点在射线AF 上运动,如图所示,作点C 关于AF 的对称点C ′,连接DC ,设CC 交AF 于点O ,则∠AOC =90°在Rt △AOC 中,∠CAO =30°,则CO =12AC =3,则当D ,F ,C 三点共线时,FC +FD 取得最小值,即FC +FD =F C +F D =CD∵CC =AC =6,∠ACO =∠C CD ,CO =CD ∴△ACO ≌△C CD ∴∠C DC =∠AOC =90°在△C DC 中,C D =CC 2-CD 2=62-32=33,∴△CDF 周长的最小值为CD +FC +CD =CD +DC =3+33,故答案为:3+33.2如图,在平行四边形ABCD 中,AB =6,BC =10,∠B =60°,点E 在线段BC 上运动(含B 、C 两点).连接AE ,以点A 为中心,将线段AE 逆时针旋转60°得到AF ,连接DF ,则线段DF 长度的最小值为.【答案】23【分析】以AB为边向右作等边△ABG,作射线GF交AD于点H,过点D作DM⊥GH于M.利用全等三角形的性质证明∠AGF=60°,得出点F在平行于AB的射线GH上运动,求出DM即可.【详解】解:如图,以AB为边向右作等边△ABG,作射线GF交AD于点H,过点D作DM⊥GH于M.∵四边形ABCD是平行四边形,∠B=60°,∴∠BAD=120°,∵△ABG是等边三角形,∴∠BAG=∠EAF=60°,BA=GA,EA=FA,∴∠BAE=∠FAG,∴△BAE≌△GAF(SAS),∴∠B=∠AGF=60°,∴点F在平行于AB的射线GH上运动,∵∠HAG=∠AGF=60°,∴△AHG是等边三角形,∴AB=AG=AH=6,∴DH=AD-AH=4,=23,∵∠DHM=∠AHG=60°,∴DM=DH•sin60°=4×32根据垂线段最短可知,当点F与M重合时,DF的值最小,最小值为23,故答案为:23.3如图,在△ABC中,∠ACB=90°,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP ,连接DP ,则DP 的最小值是.【答案】22-2【分析】在BC上截取BE=BD,根据等腰直角三角形的性质求得BA和BE,再证明△BDP ≌△BEP (SAS),从而可得到PE=DP ,则当PE⊥CD时,PE有最小值,即DP 有最小值,再求得PE,从而求得DP 的最小值.【详解】解:如图,在BC上截取BE=BD,连接EP∵∠ACB=90°,AC=BC=4,CD⏊AB,∴BA=AC2+BC2=42+42=42,∠ABC=∠BAC=∠BCD=∠DCA=45°,BD=CD=AD=22=BE ,∵以B 点为旋转中心把线段BP 逆时针旋转45°得到BP ,∴BP =BP ,∠PBP =45°∴∠ABC =∠PBP =45°∴∠ABC -∠PBD =∠PBP -∠PBD 即∠EBP =∠DBP ,又∵BE =BD ,BP =BP ,∴△BDP ≌△BEP SAS ,∴PE =DP ,∴当PE ⊥CD 时,PE 有最小值,即DP 有最小值,∵PE ⊥CD ,∠BCD =45°,∴CE =2PE =BC -BE =4-22∴PE =22CE =22×4-22 =22-2,∴DP =PE =22-2.即DP 的最小值是22-24如图,在矩形ABCD 中,AB =3,BC =4,P 是对角线AC 上的动点,连接DP ,将直线DP 绕点P 顺时针旋转,使∠1=∠2,且过点D 作DG ⊥PG ,连接CG .则CG 最小值为【答案】3625【分析】策略一:得到G 点轨迹直线后,画出起点G 1和终点G 2策略2:旋转相似:【解析】如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E.△ADH∽△PDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=1.5,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=3,∴AC=32+42=5,DH=AD﹒DCAC =125,∴CH=CD2-DH2=95,∴EH=DH﹒CHCD=3625,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=3625,∴CG的最小值为3625,5如图,在矩形ABCD中,AB=5,BC=9,E是边AB上一点,AE=2,F是直线BC上一动点,将线EF绕点E逆时针旋转90°得到线段EG,连接CG,DG,则CG+DG的最小值是.【答案】13【分析】将△FBE绕点E逆时针旋转90°得到△GHE,延长GH交BC于点M,延长CB至点N,使CM= NM,连接DN,由矩形的条件和旋转的性质可得EH=EB=3,∠B=∠BEH=∠EHG=90°,可说明四边形EBMH是矩形,然后由正方形的性质可得到CN=12,GM⊥CN,从而说明GM是CN的垂直平分线,进一步推导出CG+DG=NG+DG≥ND,当点N,G,D三点共线时,CG+DG取最小值,最后由勾股定理可求解.【详解】解:将△FBE绕点E逆时针旋转90°得到△GHE,延长GH交BC于点M,延长CB至点N,使CM =NM,连接DN,∵在矩形ABCD中,AB=5,BC=9,AE=2,∴EB=AB-AE=3,∠B=∠BCD=90°,CD=5,∴EH=EB=3,∠B=∠BEH=∠EHG=90°,∴∠EHM=90°,∴四边形EBMH是矩形,∴BM =EH =3,∠BMH =90°,∴CN =2CM =2×9-3 =12,GM ⊥CN ,∴GM 是CN 的垂直平分线,∴CG =NG ,∵F 是直线BC 上一动点,∴CG +DG =NG +DG ≥ND ,∴当点N ,G ,D 三点共线时,CG +DG 取最小值ND ,在Rt △NCD 中,CN =12,CD =5,ND =CN 2+CD 2=122+52=13,∴CG +DG 的最小值是13.故答案为:13.变式训练6如图,在平面直角坐标系xOy 中,点A 的坐标为(0,4),P 是x 轴上一动点,把线段PA 绕点P 顺时针旋转60°得到线段PF ,连接OF ,则线段OF 长的最小值是.【答案】2【分析】点F 运动所形成的图象是一条直线,当OF ⊥F 1F 2时,垂线段OF 最短,当点F 1在x 轴上时,由勾股定理得:P 1O =F 1O =433,进而得P 1A =P 1F 1=AF 1=833,求得点F 1的坐标为433,0 ,当点F 2在y 轴上时,求得点F 2的坐标为(0,-4),最后根据待定系数法,求得直线F 1F 2的解析式为y =3x -4,再由线段中垂线性质得出F 1F 2=AF 1=833,在Rt △OF 1F 2中,设点O 到F 1F 2的距离为h ,则根据面积法得12×OF 1×OF 2=12×F 1F 2×h ,即12×433×4=12×833×h ,解得h =2,根据垂线段最短,即可得到线段OF 的最小值为2.【详解】解:∵将线段PA 绕点P 顺时针旋转60°得到线段PF ,∴∠APF =60°,PF =PA ,∴△APF 是等边三角形,∴AP =AF ,如图,当点F 1在x 轴上时,△P 1AF 1为等边三角形,则P 1A =P 1F 1=AF 1,∠AP 1F 1=60°,∵AO ⊥P 1F 1,∴P 1O =F 1O ,∠AOP 1=90°,∴∠P 1AO =30°,且AO =4,由勾股定理得:P 1O =F 1O =433,∴P 1A =P 1F 1=AF 1=833,∴点F 1的坐标为433,0 ,如图,当点F 2在y 轴上时,∵△P 2AF 2为等边三角形,AO ⊥P 2O ,∴AO =F 2O =4,∴点F 2的坐标为(0,-4),∵tan ∠OF 1F 2=OF 2OF 1=4433=3,∴∠OF 1F 2=60°,∴点F 运动所形成的图象是一条直线,∴当OF ⊥F 1F 2时,线段OF 最短,设直线F 1F 2的解析式为y =kx +b ,则,解得,∴直线F 1F 2的解析式为y =3x -4,∵AO =F 2O =4,AO ⊥P 1F 1,∴F 1F 2=AF 1=833,在Rt △OF 1F 2中,OF ⊥F 1F 2,设点O 到F 1F 2的距离为h ,则12×OF 1×OF 2=12×F 1F 2×h ,∴12×433×4=12×833×h ,解得h =2,即线段OF 的最小值为27如图,矩形ABCD 中,AB =6,BC =8,E 为BC 上一点,且BE =2,为AB 边上的一个动点,连接,将绕着点顺时针旋转到EG 的位置,连接和CG ,则CG 的最小值为.【答案】2+32/32+2【分析】如图,将线段BE 绕点顺时针旋转45°得到线段ET ,连接交于.首先证明∠ETG =90°,推出点G 在射线TG 上运动,推出当CG ⊥TG 时,CG 的值最小,进一步即得答案.【详解】解:如图,将线段BE 绕点E 顺时针旋转得到线段ET ,连接,连接交CG 于.∵四边形ABCD 是矩形,∴AB =CD =6,∠B =∠BCD =90°,∵∠BET =∠FEG =45°,∴∠BEF =∠TEG ,在△EBF 和△ETG 中,,∴△EBF ≌△ETG (SAS ),∴∠B =∠ETG =90°,点G 在射线TG 上运动,当CG ⊥TG 时,CG 的值最小,∵BC =8,,,∴CE =CD =6,∴,∴,∴四边形ETGJ 是矩形,∴DE ⎳GT ,GJ =TE =BE =2,∴CJ ⊥DE ,∴JE =JD ,∴CJ =12DE =32,∴CG=CJ+GJ=2+32,∴CG的最小值为2+328如图,矩形ABCD的边AB=112,BC=3,E为AB上一点,且AE=1,F为AD边上的一个动点,连接EF,若以EF为边向右侧作等腰直角三角形EFG,EF=EG,连接CG,则CG的最小值为()A.5B.52C.3D.22【答案】B【分析】过点G作GH⊥AB于H,过点G作MN∥AB,由“AAS”可证△GEH≌△EFA,可得GH=AE= 1,可得点G在平行AB且到AB距离为1的直线MN上运动,则当F与D重合时,CG有最小值,即可求解.【详解】解:如图,过点G作GH⊥AB于H,过点G作MN∥AB,∵四边形ABCD是矩形,AB=112,BC=3,∴∠B=90°,CD=112,AD=3,∵AE=1,∴BE=92,∵∠GHE=∠A=∠GEF=90°,∴∠GEH+∠EGH=90°,∠GEH+∠FEA=90°,∴∠EGH=∠FEA,又∵GE=EF,∴△GEH≌△EFA(AAS),∴GH=AE=1,∴点G在平行AB且到AB距离为1的直线MN上运动,∴当F与D重合时,CG有最小值,此时AF=EH=3,∴CG的最小值=112-1-32+22=52,故选B.9如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为底向右侧作等腰直角△EFG,连接CG,则CG的最小值为.【分析】策略一:反向构造+伸缩如图从主动点F到从动点G可以理解为,将线段FE绕定点E顺时针旋转了45°再缩短为原来的22,反向构造则需要把CE绕点E逆时针旋转45°,再扩大变为原来的2倍,得到EH,显然△ECH为等腰直角三角形,进一步得到△FEH∽△GEC,相似比为2,所以CG=22FH≥22.策略二:求轨迹--以BE为底向上作等腰Rt△BHE,易得G点轨迹所在直线为BD,故CG最小值为2210如图,已知∠CAB=30°,AB=2,点D在射线AC上,以BD为边作正方形BDEF,连接AE、BE,则AE+BE的最小值为.【答案】2+6提示:以AB 为边作等腰Rt △ABG ,连接GE则GB =2AB ,EB =2DB ,∠GBE =∠ABD =45°-∠GBD∴△GBE ∽△ABD ,∴∠EGB =∠CAB =30°,∴∠AGE =75°∴点E 在直线GE 上运动作点B 关于GE 的对称点B ′,连接AB ′、BB ′、B ′E 、B ′G 则∠B ′GB =60°,B ′G =BG∴△B ′GB 是等边三角形,∴B ′G =B ′B又∵AG =AB ,AB ′=AB ′,∴△AB ′G ≌△AB ′B∴∠GAB ′=∠BAB ′=45°,∠GB ′A =∠BB ′A =30°,∴AB ′⊥BG设垂足为H ,则AH =BH =22AB =2∴B ′H =3BH =6,∴AB ′=AH +B ′H =2+6∴AE +BE =AE +B ′E ≥AB ′=2+6即AE +BE 的最小值为2+611正方形ABCD 的对角线相交于点O (如图1),如果∠BOC 绕点O 按顺时针方向旋转,其两边分别与边AB ,BC 相交于点E 、F (如图2),连接EF ,那么在点E 由B 到A 的过程中,线段EF 的中点G 经过的路线是()A.线段B.圆弧C.折线D.波浪线【答案】A【分析】连接OG ,BG ,根据题意可知∠EBF =∠EOF =90°则线段EF 的中点G 经过的路线是OB 的线段垂直平分线的一段,即线段【详解】连接OG ,BG ,根据题意可知∠EBF =∠EOF =90°,,∴点G 在线段OB 的垂直平分线上.则线段EF 的中点G 经过的路线是OB 的线段垂直平分线的一段,即线段12如图,在正方形ABCD 中,AB =8,点E 在边AD 上,且AD =4AE ,点P 为边AB 上的动点,连接PE ,过点E 作EF ⊥PE ,交射线BC 于点F ,则EFPE=.若点M 是线段EF 的中点,则当点P 从点A 运动到点B 时,点M 运动的路径长为.【答案】【分析】过F 作FK ⊥AD 交AD 延长线于点K ,证明△AEP ∽△KFE ,得到EF PE =FKAE即可求解;过M 作GH ⊥AD 交AD 于点G ,交BC 于点H ,证明△EGM ≌△FHM ,得到MG =MH ,故点M 的运动轨迹是一条平行于BC 的线段,当点P 与A 重合时,BF 1=AE =2,当点P 与B 重合时,由△EF 1B ≌△F 2F 1E 得到,即,从而求解.【详解】解:过F 作FK ⏊AD 交AD 延长线于点K则四边形ABFK 为矩形,∠A =∠K =90°∴AB =FK =8由题意可得:AE =14AD =2∵EF ⊥PE∴∠AEP +∠KEF =∠PEF =90°又∵∠PEA +∠APE =90°∴∠APE =∠KEF ∴△AEP ∽△KFE ∴EF PE =FK AE=4过M 作GH ⊥AD 交AD 于点G ,交BC 于点H ,如下图∵AD ⎳CB ,GH ⊥AD ∴GH ⊥BC在△EGM 和△FHM 中∴△EGM ≌△FHM AAS ∴MG =MH ,故点M 的运动轨迹是一条平行于BC 的线段,当点P 与A 重合时,BF 1=AE =2当点P 与B 重合时,,∴∵∴∴,即解得F 1F 2=32∵M1、M 2分别为、的中点∴M 1M 2是△EF 1F 2的中位线∴M1M 2=12F 1F 2=16,即点运动的路径长为。
2021年中考数学重难点专项突破专题71 瓜豆原理中动点轨迹不确定型最值问题(解析版)

专题71 瓜豆原理中动点轨迹不确定型最值问题【专题说明】动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
【知识精讲】所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【精典例题】1、如图,在反比例函数2yx=−的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数kyx=的图像上运动,若tan∠CAB=2,则k的值为()A.2 B.4 C.6 D.8【分析】∠AOC=90°且AO:OC=1:2,显然点C的轨迹也是一条双曲线,分别作AM、CN垂直x轴,垂足分别为M、N,连接OC,易证△AMO∽△ONC,∴CN=2OM,ON=2AM,∴ON·CN=4AM·OM,故k=4×2=8.【思考】若将条件“tan∠CAB=2”改为“△ABC是等边三角形”,k会是多少?【模型】一、借助直角三角形斜边上的中线1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是()A.6 B.C.D.【答案】D【解析】解:如图,取CA的中点D,连接OD、BD,则OD=CD=AC=×4=2,由勾股定理得,BD==2,当O、D、B三点共线时点B到原点的距离最大,所以,点B到原点的最大距离是2+2.故答案为2+2.【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边1、如图,已知等边三角形ABC边长为,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是()A−1 B.3C.3 D【答案】B【详解】解:如图所示:过点C作CE⊥AB于点E,连接OE,∵△ABC 是等边三角形,∴CE=AC×sin60°=3=,AE=BE , ∵∠AOB=90°,∴EO 12=AB = ∴EC-OE ≥OC ,∴当点C ,O ,E 在一条直线上,此时OC 最短,故OC 的最小值为:OC =CE ﹣EO =3故选B .2、如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM 、ON 上,当B 在边ON 上运动时,A 随之在OM 上运动,矩形ABCD 的形状保持不变,其中AB=4,BC=2.运动过程中点D 到点O 的最大距离是______.【答案】【详解】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD ≤OE+DE ,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=4,BC=2,∴OE=AE=12AB=2,∴OD 的最大值为:,故答案为3、如图,在ABC △中,90ACB ∠=°,30CAB ∠=°,6AB =,以线段AB 为边向外作等边ABD △,点E 是线段AB 的中点,连结CE 并延长交线段AD 于点F .(1)求证:四边形BCFD 为平行四边形;(2)求平行四边形BCFD 的面积;(3)如图,分别作射线CM ,CN ,如图中ABD △的两个顶点A ,B 分别在射线CN ,CM 上滑动,在这个变化的过程中,求出线段CD 的最大长度.【答案】(1)证明见解析;(2);(3)333+.【详解】(1)在ABC �中,ACB 90∠=°,CAB 30∠=°,ABC 60∠∴=°,在等边ABD �中,BAD 60∠=°,BAD ABC 60∠∠∴==°,E 为AB 的中点,AE BE ∴=,又AEF BEC ∠∠= ,AEF BEC ∴��≌,在ABC �中,ACB 90∠=°,E 为AB 的中点,1CE AB 2∴=,1BE AB 2=,CE AE ∴=,EAC ECA 30∠∠∴==°,BCE EBC 60∠∠∴==°,又AEF BEC ��≌,AFE BCE 60∠∠∴==°,又D 60∠=° ,AFE D 60∠∠∴==°,FC BD ∴�,又BAD ABC 60∠∠==° ,AD BC ∴�,即FD BC �,∴四边形BCFD 是平行四边形;(2)在Rt ABC �中,BAC 30∠=° ,AB 6=,1BC AB 32∴==,∴AC ==,BCFD S 3∴==平行四边形(3)取AB 的中点G ,连结CG ,DG ,CDCD CG DG ≤+ ,CD ∴的最大长度CG DG 3=+=+4、如图,在Rt ABC ∆中,90ACB ∠=A ,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,N 是''A B 的中点,连接MN ,若4,60BC ABC =∠=°,则线段MN 的最大值为( )A .4B .8C .D .6【答案】D【详解】连接CN , ∵将ABC ∆绕顶点C 逆时针旋转得到''A B C ∆,∴''=90A CB ACB ∠=∠°,''460'B C BC A B C ABC ==∠=∠=°,, ∴'30A ∠=°,''8A B =,∵N 是''A B 的中点, ∴1''42CN A B ==, ∵在∆C MN 中,MN <CM+CN ,当且仅当M ,C ,N 三点共线时,MN=CM+CN=6,∴线段MN 的最大值为6.故选D .【模型】三、借助构建全等图形1、如图,在△ABC 中,∠ACB =90°,∠A =30°,AB =5,点P 是AC 上的动点,连接BP ,以BP 为边作等边△BPQ ,连接CQ ,则点P 在运动过程中,线段CQ 长度的最小值是______.【答案】54.【详解】解:如图,取AB的中点E,连接CE,PE.∵∠ACB=90°,∠A=30°,∴∠CBE=60°,∵BE=AE,∴CE=BE=AE,∴△BCE是等边三角形,∴BC=BE,∵∠PBQ=∠CBE=60°,∴∠QBC=∠PBE,∵QB=PB,CB=EB,∴△QBC≌△PBE(SAS),∴QC=PE,∴当EP⊥AC时,QC的值最小,在Rt△AEP中,∵AE=52,∠A=30°,∴PE=12AE=54,∴CQ的最小值为54.故答案为:542、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B 逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是()A.6 B.3 C.2 D.1.5 【答案】B【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=12 AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG 和△NBH 中,BG BH MBG NBH MB NB = ∠=∠ =, ∴△MBG ≌△NBH (SAS ),∴MG=NH ,根据垂线段最短,当MG ⊥CH 时,MG 最短,即HN 最短,此时∠BCH=12×60°=30°,CG=12AB=12×12=6, ∴MG=12CG=12×6=3, ∴HN=3;故选:B .【模型】四、借助中位线1、如图,在等腰直角∆ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点P 为半圆上的动点,连接 BP ,取 BP 的中点 M ,则CM 的最小值为( )A.B.C− D.−【答案】C【详解】解:连接AP 、CP ,分别取AB 、BC 的中点E 、F ,连接EF 、EM 和FM ,∴EM 、FM 和EF 分别是△ABP 、△CBP 和△ABC 的中位线∴EM ∥AP ,FM ∥CP ,EF ∥AC ,EF=12AC∴∠EFC=180°-∠ACB=90°∵AC 为直径∴∠APC=90°,即AP ⊥CP∴EM ⊥MF ,即∠EMF=90°∴点M 的运动轨迹为以EF 为直径的半圆上取EF 的中点O ,连接OC ,点O 即为半圆的圆心当O 、M 、C 共线时,CM 最小,如图所示,CM 最小为CM 1的长, ∵等腰直角∆ABC 中,斜边 AB 的长度为 8,∴AB =∴EF=12AC =,FC=12BC =,∴OM 1=OF=12EF根据勾股定理可得∴CM 1=OC -OM 1即CM 故选C .2、如图,抛物线2119y x =−与x 轴交于A B ,两点,D 是以点()0,4C 为圆心,1为半径的圆上的动点,E 是线段AD 的中点,连接,OE BD ,则线段OE 的最小值是()A .2BC .52D .3 【答案】A【详解】 ∵2119y x =−,∴当0y =时,21019x =−,解得:=3x ±,∴A 点与B 点坐标分别为:(3−,0),(3,0),即:AO=BO=3,∴O 点为AB 的中点,又∵圆心C 坐标为(0,4),∴OC=4,∴BC长度5=,∵O点为AB的中点,E点为AD的中点,∴OE为△ABD的中位线,即:OE=12 BD,∵D点是圆上的动点,由图可知,BD最小值即为BC长减去圆的半径,∴BD的最小值为4,∴OE=12BD=2,即OE的最小值为2,故选:A.。
2024年中考数学复习 瓜豆原理中动点轨迹直线型最值问题以及逆向构造(原卷版+答案解析)

瓜豆原理中动点轨迹直线型最值问题以及逆向构造【专题说明】近些年的中考中,经常出现动点的运动轨迹类问题,通常出题以求出轨迹的长度或最值最为常见。
很多考生碰到此类试题常常无所适从,不知该从何下手。
动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.其实初中阶段如遇求轨迹长度仅有2种类型:“直线型”和“圆弧型”(两种类型中还会涉及点往返探究“往返型”),对于两大类型该如何断定,通常老师会让学生画图寻找3处以上的点来确定轨迹类型进而求出答案,对于填空选择题而言不外乎是个好方法,但如果要进行说理很多考生难以解释清楚。
瓜豆原理:一个主动点,一个从动点(根据某种约束条件,跟着主动点动),当主动点运动时,从动点的轨迹相同.只要满足:1.两“动”,一“定”;2.两动点与定点的连线夹角是定角3.两动点到定点的距离比值是定值。
【引例】(选讲)如图,△APQ是等腰直角三角形,∠P AQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠P AQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠P AQ(当∠P AQ≤90°时,∠P AQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)如图,D 、E 是边长为4的等边三角形ABC 上的中点,P 为中线AD 上的动点,把线段PC 绕C 点逆时针旋转60°,得到P ’,EP ’的最小值【分析】结合这个例题我们再来熟悉一下瓜豆模型第一层:点P ’运动的轨迹是直线吗?第二层:点P ’的运动长度和点P 的运动长度相同吗?第三层:手拉手模型怎么构造?第四层:分析∠CAP 和∠CBP ’第五层:点P 和点P ’轨迹的夹角和旋转角的关系P'P'P'总共提到了3种处理方式: 1.找始末,定轨迹2.在轨迹上找一点旋转,构造手拉手模型,再通过角度相等得到从动点轨迹.3.反向旋转相关定点,构造手拉手模型,代换所求线段,即逆向构造. 那么什么具体选择什么方法更合适呢?我们再看一道例题 【例题2 宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .现在,我们分别用上面提到的3种策略来处理这个题目策略一:找始末,定轨迹我们分别以BE ,AE 为边,按题目要求构造等边三角形得到G 1与G 2,连接G 1与G 2得到点G 的轨迹,再作垂线CH 得到最小值.前面提到过从动点轨迹和主动点轨迹的夹角与旋转角有关,我们可以调用这个结论,得到∠AMG 1=60°,BABABABA22进一步得到△MBG 1为等腰三角形后,求CH 就不难了.策略二:在点F 轨迹上找一点进行旋转.我们分别对A ,B 顺时针旋转60°,构造手拉手模型,再通过角度相等得到从动点轨迹,对A 点旋转会得到一个正切值为14的角,即1tan tan 4∠G M E =∠A FE=,然后进一步算出最值【简证】311202EM AE EN NEC IC ⇒°⇒∠,则5=2CH对B 点旋转得到∠EMG =∠FBE =90°,相对来说要容易一些.策略三:反向旋转相关定点,构造手拉手模型,代换所求线段.将点C 逆时针旋转60°,得到点H ,易证△CGE ≌△HFE ,则有CG =HF ,作MH ⊥AB 于M ,HM 即为所求.相比之下,先求轨迹后再求垂线段时,比较麻烦,而反向旋转代换所求线段感觉清爽很多.BABA如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为底向右侧作等腰直角△EFG ,连接CG ,则CG 的最小值为 .如图,正方形ABCD 的边长为4,E 为BC 上一点,F 为AB 边上一点,连接EF ,以EF 为底向右侧作等腰直角△EFG ,连接CG ,则AG 的最小值为 .1.如图,在△ABC中,∠ACB=90°,AC=BC=4,点D是BC边的中点,点P是AC边上一个动点,连接PD,以PD为边在PD的下方作等边△PDQ,连接CQ.则CQ的最小值是2.如图,在矩形ABCD中,AB=5,BC=5 3,点P在线段BC上运动(含B、C两点),连接AP,以点A 为中心,将线段AP逆时针旋转60°到AQ,连接DQ,则线段DQ的最小值为3、如图,在矩形ABCD中,AB=3,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,使∠1=∠2,且过点D作DG⊥PG,连接CG.则CG最小值为瓜豆原理中动点轨迹直线型最值问题以及逆向构造【专题说明】近些年的中考中,经常出现动点的运动轨迹类问题,通常出题以求出轨迹的长度或最值最为常见。
瓜豆原理解析

瓜豆原理解析(总16页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--最值系列之瓜豆原理在辅助圆问题中,我们了解了求关于动点最值问题的方式之一——求出动点轨迹,即可求出关于动点的最值.本文继续讨论另一类动点引发的最值问题,在此类题目中,题目或许先描述的是动点P,但最终问题问的可以是另一点Q,当然P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值,为常规思路.一、轨迹之圆篇引例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.考虑:当点P在圆O上运动时,Q点轨迹是A OQP【分析】观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.PQA MO【小结】确定Q点轨迹圆即确定其圆心与半径,由A、Q、P始终共线可得:A、M、O三点共线,由Q为AP中点可得:AM=1/2AO.Q点轨迹相当于是P点轨迹成比例缩放.根据动点之间的相对位置关系分析圆心的相对位置关系;根据动点之间的数量关系分析轨迹圆半径数量关系.引例2:如图,P 是圆O 上一个动点,A 为定点,连接AP ,作AQ ⊥AP 且AQ =AP .考虑:当点P 在圆O 上运动时,Q 点轨迹是OP QA【分析】Q 点轨迹是个圆,可理解为将AP 绕点A 逆时针旋转90°得AQ ,故Q 点轨迹与P 点轨迹都是圆.接下来确定圆心与半径.考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .MA QPO引例3:如图,△APQ 是直角三角形,∠PAQ =90°且AP =2AQ ,当P 在圆O 运动时,Q 点轨迹是OPQA【分析】考虑AP ⊥AQ ,可得Q 点轨迹圆圆心M 满足AM ⊥AO ; 考虑AP :AQ =2:1,可得Q 点轨迹圆圆心M 满足AO :AM =2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.OPQM A【模型总结】为了便于区分动点P 、Q ,可称点P 为“主动点”,点Q 为“从动点”.此类问题的必要条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).αA QPOααOPQMA【结论】(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角: ∠PAQ =∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比: AP :AQ =AO :AM ,也等于两圆半径之比.按以上两点即可确定从动点轨迹圆,Q 与P 的关系相当于旋转+伸缩.古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.【思考1】:如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为一边作等边△APQ .考虑:当点P 在圆O 上运动时,Q 点轨迹是OPA Q【分析】Q 点满足(1)∠PAQ =60°;(2)AP =AQ ,故Q 点轨迹是个圆: 考虑∠PAQ =60°,可得Q 点轨迹圆圆心M 满足∠MAO =60°;考虑AP =AQ ,可得Q 点轨迹圆圆心M 满足AM =AO ,且可得半径MQ =PO . 即可确定圆M 位置,任意时刻均有△APO ≌△AQM .60°MQAPO【小结】可以理解AQ 由AP 旋转得来,故圆M 亦由圆O 旋转得来,旋转角度与缩放比例均等于AP 与AQ 的位置和数量关系.【思考2】如图,P 是圆O 上一个动点,A 为定点,连接AP ,以AP 为斜边作等腰直角△APQ .考虑:当点P 在圆O 上运动时,如何作出Q 点轨迹OPQA【分析】Q 点满足(1)∠PAQ =45°;(2)AP :AQ 1,故Q 点轨迹是个圆.连接AO ,构造∠OAM =45°且AO :AM:1.M 点即为Q 点轨迹圆圆心,此时任意时刻均有△AOP ∽△AMQ .即可确定点Q 的轨迹圆.MOPQA【练习】如图,点P (3,4),圆P 半径为2,A (,0),B (,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.OyxA B CM P【分析】M 点为主动点,C 点为从动点,B 点为定点.考虑C 是BM 中点,可知C 点轨迹:取BP 中点O ,以O 为圆心,OC 为半径作圆,即为点C 轨迹.OOyxABC M P当A 、C 、O 三点共线且点C 在线段OA 上时,AC 取到最小值,根据B 、P 坐标求O ,利用两点间距离公式求得OA ,再减去OC 即可.OPMCBAxyO【2016武汉中考】如图,在等腰Rt △ABC 中,AC =BC =P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________.A BC MP【分析】考虑C 、M 、P 共线及M 是CP 中点,可确定M 点轨迹:取AB 中点O ,连接CO 取CO 中点D ,以D 为圆心,DM 为半径作圆D 分别交AC 、BC 于E 、F 两点,则弧EF 即为M 点轨迹.DEF OABCM P当然,若能理解M 点与P 点轨迹关系,可直接得到M 点的轨迹长为P 点轨迹长一半,即可解决问题.【2018南通中考】如图,正方形ABCD 中,AB ,O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.OABCDE F【分析】E 是主动点,F 是从动点,D 是定点,E 点满足EO =2,故E 点轨迹是以O 为圆心,2为半径的圆.FE DCBAO考虑DE ⊥DF 且DE =DF ,故作DM ⊥DO 且DM =DO ,F 点轨迹是以点M 为圆心,2为半径的圆.OABCDEFM直接连接OM ,与圆M 交点即为F 点,此时OF 最小.可构造三垂直全等求线段长,再利用勾股定理求得OM ,减去MF 即可得到OF 的最小值.OABCDE FM【练习】△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.AB CDE O【分析】考虑到AB 、AC 均为定值,可以固定其中一个,比如固定AB ,将AC 看成动线段,由此引发正方形BCED 的变化,求得线段AO 的最大值.根据AC =2,可得C 点轨迹是以点A 为圆心,2为半径的圆.OEDCBA接下来题目求AO 的最大值,所以确定O 点轨迹即可,观察△BOC 是等腰直角三角形,锐角顶点C 的轨迹是以点A 为圆心,2为半径的圆,所以O 点轨迹也是圆,以AB 为斜边构造等腰直角三角形,直角顶点M 即为点O 轨迹圆圆心.E DM ABCO连接AM 并延长与圆M 交点即为所求的点O ,此时AO 最大,根据AB 先求AM ,再根据BC 与BO 的比值可得圆M 的半径与圆A 半径的比值,得到MO ,相加即得AO .OCBAM DE此题方法也不止这一种,比如可以如下构造旋转,当A 、C 、A ’共线时,可得AO 最大值.AB CDEOA'或者直接利用托勒密定理可得最大值.二、轨迹之线段篇引例:如图,P 是直线BC 上一动点,连接AP ,取AP 中点Q ,当点P 在BC 上运动时,Q 点轨迹是PQABC【分析】当P 点轨迹是直线时,Q 点轨迹也是一条直线.可以这样理解:分别过A 、Q 向BC 作垂线,垂足分别为M 、N ,在运动过程中,因为AP =2AQ ,所以QN 始终为AM 的一半,即Q 点到BC 的距离是定值,故Q 点轨迹是一条直线.N CBAQP M【引例】如图,△APQ 是等腰直角三角形,∠PAQ =90°且AP =AQ ,当点P 在直线BC 上运动时,求Q 点轨迹CBAQP【分析】当AP 与AQ 夹角固定且AP :AQ 为定值的话,P 、Q 轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q 点的位置,连线即可,比如Q 点的起始位置和终点位置,连接即得Q 点轨迹线段.Q 2Q 1ABC【模型总结】 必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值); 主动点、从动点到定点的距离之比是定量(AP :AQ 是定值).结论:P 、Q 两点轨迹所在直线的夹角等于∠PAQ (当∠PAQ ≤90°时,∠PAQ 等于MN 与BC 夹角)M NααPQ A BCP 、Q 两点轨迹长度之比等于AP :AQ (由△ABC ∽△AMN ,可得AP :AQ =BC :MN )M NααA BC【2017姑苏区二模】如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.ABCDE FP【分析】根据△DPF 是等边三角形,所以可知F 点运动路径长与P 点相同,P 从E 点运动到A 点路径长为8,故此题答案为8.【2013湖州中考】如图,已知点A 是第一象限内横坐标为的一个定点,AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.yxN MPACBO【分析】根据∠PAB =90°,∠APB =30°可得:AP:AB ,故B 点轨迹也是线段,且P 点轨迹路径长与B ,P点轨迹长ON 为,故B 点轨迹长为【练习】如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.POABxy【分析】求OP 最小值需先作出P 点轨迹,根据△ABP 是等边三角形且B 点在直线上运动,故可知P 点轨迹也是直线.取两特殊时刻:(1)当点B 与点O 重合时,作出P 点位置P 1;(2)当点B 在x 轴上方且AB 与x 轴夹角为60°时,作出P 点位置P 2.连接P 1P 2,即为P 点轨迹.P 2P 1y xBAO根据∠ABP =60°可知:12PP 与y 轴夹角为60°,作OP ⊥12PP ,所得OP 长度即为最小值,OP 2=OA =3,所以OP =32.PP 2P 1y xBAO【2019宿迁中考】如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE =1,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .GABCDEF【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG 最小值,可以将F 点看成是由点B 向点A 运动,由此作出G 点轨迹:考虑到F 点轨迹是线段,故G 点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G 点在1G 位置,最终G 点在2G 位置(2G 不一定在CD 边),12G G 即为G 点运动轨迹.G 2G 1ED CBACG 最小值即当CG ⊥12G G 的时候取到,作CH ⊥12G G 于点H ,CH 即为所求的最小值.根据模型可知:12G G 与AB 夹角为60°,故12G G ⊥1EG . 过点E 作EF ⊥CH 于点F ,则HF =1G E =1,CF =1322CE , 所以CH =52,因此CG 的最小值为52.FHG 2G 1ED CBA三、轨迹之其他图形篇所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.【2016乐山中考】如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数k y x=的图像上运动,若tan ∠CAB =2,则k 的值为( )CBAOyxA .2B .4C .6D .8【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k =4×2=8.NM xyOABC【思考】若将条件“tan ∠CAB =2”改为“△ABC 是等边三角形”,k 会是多少【练习】如图,A (-1,1),B (-1,4),C (-5,4),点P 是△ABC 边上一动点,连接OP ,以OP 为斜边在OP 的右上方作等腰直角△OPQ ,当点P 在△ABC 边上运动一周时,点Q 的轨迹形成的封闭图形面积为________.QCxyOA B P【分析】根据△OPQ 是等腰直角三角形可得:Q 点运动轨迹与P 点轨迹形状相同,根据OP :OQ,可得P 点轨迹图形与Q 点轨迹图形相似,故面积比为2:1,△ABC 面积为1/2×3×4=6,故Q 点轨迹形成的封闭图形面积为3.【小结】根据瓜豆原理,类似这种求从动点轨迹长或者轨迹图形面积,根据主动点轨迹推导即可,甚至无需作图.【练习】如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.ABCDP【分析】固定AB 不变,AC =2,则C 点轨迹是以A 为圆心,2为半径的圆,以BC 为斜边作等腰直角三角形BCD ,则D 点轨迹是以点M 为圆为半径的圆EMPD CBA考虑到AP =2AD ,故P 点轨迹是以N 为圆心,PB 的取值范围.NEA BCD PM。
中考专题:最值问题之瓜豆原理

中考专题 ----- 路径之瓜豆原理知识必备一、旋转及性质1.旋转的定义:一个图形绕点沿定方向旋转定的角度;2.旋转三要素:①旋转中心(绕哪个点转);②旋转方向(顺时针或逆时针);③旋转角度;3.旋转的性质:①旋转不改变图形的大小与形状,只改变图形的位置,即旋转前后图形全等;②对应点与旋转中心所连线段间的夹角等于旋转角.二、位似及性质1.位似的定义:若两个图形F和F的点之间可以建立一对应关系,并且满足:①每组对应点的连线所在的直线都经过同一点O;②每组对应点都在点O的同侧或异侧;③对每组对应点A 和OAA',有4 k(k为常数),则称图形F和F位似,k叫位似比;OA2.位似三要素:①位似中心(关于哪个点位似);②位似方向(同侧或异侧);③位似比(等于相似比);3.位似的性质:成位似的两个图形必相似:把一个几何图形变换成与之位似的图形,叫做位似变换;利用位似变换可把一个图形放大或缩小,若位似比大于1,则通过位似变换把原图形放大;若位似比小于1.则通过位似变换把原图形缩小。
方法提炼一.旋转作图问题1:在平面内有两点A.B.请将点B绕点人按顺时针方向旋转40°.二、位似作图1问题2:如图:.已知线段AB,请以点A为位似中心1为位似比,在同侧将线段AB进行位似3变换。
「三、模型建立1 / 13(一)旋转变换问题3:(1)如图14-2-5,已知等腰Rt^APQ.其中A为定点,根据旋转作图的经验,请你说说: 点Q可以看作点P经过怎样的变换得到?(2)如图14-2-6.若改为等边AAPQ呢?⑶如图1-27.若改为任意等腰4APQ(其顶角为o)呢?问题4:在问题3中,若点P在一条定直线l上运动,其他条件不变如图14-2-8至图14-2-10 所示,请问:点Q的运动路径是什么?它可以看作点P的路径如何而来?问题5:在问题4中,若将“定直线1”改为“定。
0〃 .其他条件不变,结果如何?反思:这里是“圆生圆”;注意:点Q所在的轨迹圆圆心0’也是原来的圆心0定点A经过相应的旋转而来;2 / 13总结:这里仅牵扯到“旋转变换”不妨称P 为主动点。
2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)

2024年中考数学复习几何专项练习:动点运动路径之瓜豆原理(含答案解析)一、填空题1.如图,等边三角形ABC 中,AB =4,高线AHD 是线段AH 上一动点,以BD 为边向下作等边三角形BDE ,当点D 从点A 运动到点H 的过程中,点E 所经过的路径为线段CM ,则线段CM 的长为,当点D 运动到点H ,此时线段BE 的长为.【答案】2【分析】由“SAS ”可得△ABD ≌△CBE ,推出AD =EC ,可得结论,再由勾股定理求解2,BH =当,D H 重合时,2,BE BH ==从而可得答案.【详解】解:如图,连接EC .∵△ABC ,△BDE 都是等边三角形,∴BA =BC ,BD =BE ,∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,在△ABD 和△CBE 中,BA BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBE (SAS ),∴AD =EC ,∵点D 从点A 运动到点H ,∴点E的运动路径的长为CM AH ==,当,D H 重合,而BDE △(即BHE )为等边三角形,,BE BH \=4,,AB AH AH BC ==^Q2,BH ==2,BE ∴=故答案为:.【点睛】本题考查等边三角形的性质,全等三角形的判定和性质,动点的轨迹等知识,解题的关键是正确寻找全等三角形解决问题.2.如图,正方形ABCD 的边长为4,E 为BC 上一点,且1BE =,F 为AB 边上的一个动点,连接EF ,以EF 为边向右侧作等边EFG∆,连接CG ,则CG 的最小值为.【答案】52【分析】由题意分析可知,点F 为主动点,G 为从动点,所以以点E 为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG 最小值.【详解】由题意可知,点F 是主动点,点G 是从动点,点F 在线段上运动,点G 也一定在直线轨迹上运动将EFB ∆绕点E 旋转60︒,使EF 与EG 重合,得到EFB EHG ∆≅∆,从而可知EBH ∆为等边三角形,点G 在垂直于HE 的直线HN 上,作CM HN ⊥,则CM 即为CG 的最小值,作EP CM ⊥,可知四边形HEPM 为矩形,则1351222CM MP CP HE EC =+=+=+=.故答案为52.【点睛】本题考查了线段极值问题,分清主动点和从动点,通过旋转构造全等,从而判断出点G 的运动轨迹,是本题的关键.3.如图,等边ABC 中,8AB =,O 是BC 上一点,且14BO BC =,点M 为AB 边上一动点,连接OM ,将线段OM 绕点O 按逆时针方向旋转60︒至ON ,连接BN CN 、,则BCN △周长的最小值为.【答案】8+8【分析】过点N 作ND BC ⊥于点D ,过点O 作OH BM ⊥于点H ,则90OHM ODN ∠=∠=︒,证明HOM DNO ≌,可得DN OH =,从而得到点N 的运动轨迹是直线,且该直线与直线BC 平行,在BC 的左侧,与BCC 关于该直线的对称点E ,连接BE 交该直线于N ,即当点B ,N ,E 三点共线时,BCN △的周长最小,连接CE 交该直线于G ,则22CE CG DN ===CE BC ⊥,求出BE ,即可求解.【详解】解:如图,过点N 作ND BC ⊥于点D ,过点O 作OH BM ⊥于点H ,则90OHM ODN ∠=∠=︒,∵ABC 为等边三角形,∴60ABC ∠=︒,8BC AB ==,∴120BMO BOM ∠+∠=︒,根据题意得:60MON ∠=︒,OM ON =,∴120NOD BOM ∠+∠=︒,∴NOD BMO ∠=∠,∴HOM DNO ≌,∴DN OH =,∵14BO BC =,∴2BO =,∵60ABC ∠=︒,∴30BOH ∠=︒,∴112BH OB ==,∴DN OH ==∴点N 的运动轨迹是直线,且该直线与直线BC 平行,在BC 的左侧,与BC作点C 关于该直线的对称点E ,连接BE 交该直线于N ,即当点B ,N ,E 三点共线时,BCN △的周长最小,连接CE 交该直线于G ,则22CE CG DN ===,CE BC ⊥,∴BE =∴△ACN 的周长的最小值为8+故答案为:8+.【点睛】本题考查旋转变换,全等三角形的判定和性质,轴对称,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考填空题中的压轴题.4.如图,正方形ABCD 的边长为P 是CD 边上的一动点,连接AP ,将AP 绕点A 顺时针方旋转60︒后得到AQ ,连接CQ ,则点P 在整个运动过程中,线段CQ 所扫过的图形面积为.【答案】3-【分析】根据题意画出点P 在CD 上移动的过程,线段CQ 所扫过的面积就是COQ 的面积,根据正方形的性质,等边三角形的性质以及全等三角形的判定和性质,得出线段CQ 所扫过的图形面积()12ACQ AOQ S S S =- ,再根据等边三角形,等腰直角三角形面积的计算方法进行计算即可.【详解】解:如图,当点P 在点D 时,相应的点Q 落在点O ,当点P 移动到点C 时,相应的点Q 在点Q ,CQ 扫过的面积就是COQ 的面积,由题意可知,AOD △、ACQ 都是等边三角形,AO DO AD ∴===AQ CQ AC ====,四边形ABCD 是正方形,AOD △是等边三角形,906030ODC ∴∠=︒-︒=︒,45ACD ∠=︒,OD CD = ,18030752DOC DCO ︒-︒∴∠=∠==︒,754530ACO ∴∠=︒-︒=︒,45607530QCO QCD DCO ∠=∠-∠=︒+︒-︒=︒,ACO QCO ∴∠=∠,AC QC = ,CO CO =,AOC ∴ ≌()SAS QOC ,AO QO ∴=,604515CQO CAO ∠=∠=︒-︒=︒,()3601801530290AOQ ∴∠=︒-︒-︒-︒⨯=︒,即AOQ △是等腰直角三角形,∴线段CQ 所扫过的图形面积()12ACQ AOQ S S S =- 111222⎛=⨯⨯⨯ ⎝3=,故答案为:3.【点睛】本题考查正方形、等边三角形,等腰直角三角形以及全等三角形的判定和性质,掌握正方形、等边三角形,等腰直角三角形以及全等三角形的判定和性质是正确解答的前提.5.如图,点D 是等边ABC 边AB 上的一动点(不与端点重合),点D 绕点C 引顺时针方向旋转60 得点E ,所得的CDE 边DE 与BC 交于点F ,则CF DE的最小值为.【分析】由旋转的性质得CDE 为等边三角形,由CEF CAD ∽△△得到CF CE CD AC =,即CF CD DE AC =,从而得到当CD 最小时,比值最小,再由“垂线段最短”得到当CD AB ⊥时,CD 值最小,作出对应图形,利用“ACD 是含30︒角的直角三角形”求出CD AC,从而得解.【详解】解:由旋转的性质得:CD CE =,60DCE ∠=︒,CDE ∴ 为等边三角形,DE CD CE ∴==,60A DEC ∠=∠=︒60ACD DCB ∠+∠=︒60DCB ECF ∠+∠=︒ACD ECF∴∠=∠∵60A DEC ∠=∠= ,ACD ECF∠=∠CEF CAD∴ ∽CF CE CD AC ∴=,即CF CD DE AC=AC 为定值,∴当CD 最小时,比值最小.根据“垂线段最短”可知:当CD AB ⊥时,CD 值最小,过点C 作CD AB ⊥于D ,并补全图形如下:ABC 是等边三角形,CD AB ⊥,60ACB ∠=︒∴1302ACD ACB ∠=∠=︒设AC 2a =,则12AD AC a ==∴CD ==,∴此时CF CD DE AC ==即CF DE 的最小值为2.故答案为:2.【点睛】此题考查图形的旋转变化与性质,等边三角形的判定和性质,相似三角形的判定与性质,含30︒角的直角三角形的性质,垂线段最短,理解“垂线段最短”和利用相似三角形的性质将CF DE转化为CD AC 是解题的关键.6.如图,在ACB △中,60ACB ∠=︒,75BAC ∠=︒,12AC =,点D 是边BC 上的一动点,连接AD ,将线段AD 绕点A 按逆时针方向旋转75︒得到线段AE ,连接CE ,则线段CE 长度的最小值是.【答案】/-【分析】过点A 作AF BC ⊥于点F ,在AB 上取点N ,使12AN AC ==,连接DN ,过点N 作点NM BD ⊥于点M ,证明()SAS NAD DAE ≌,求出CE DN =,得出当DN 最小时,CE 最小,根据垂线段最短,得出当点D 与点M 重合时,DN 最小,则CE 最小,求出最小结果即可.【详解】解:过点A 作AF BC ⊥于点F ,在AB 上取点N ,使12AN AC ==,连接DN ,过点N 作点NM BD ⊥于点M ,如图所示:根据旋转可知,AD AE =,75DAE ∠=︒,∵75BAC DAE ==︒∠∠,∴BAC DAC DAE DAC ∠-∠=∠-∠,即NAD CAE =∠∠,∵AN AC =,AD AE =,∴()SAS NAD CAE ≌,∴CE DN =,∴当DN 最小时,CE 最小,∵垂线段最短,∴当点D 与点M 重合时,DN 最小,则CE 最小,∵90AFC ∠=︒,60BCA ∠=︒,∴906030CAF ∠=︒-︒=︒,∴162CF AC ==,∴AF ==,∵45BAF BAC CAF =-=︒∠∠∠,90AFB ∠=︒,∴904545B ∠=︒-︒=︒,∴B BAF ∠=∠,∴BF AF ==∴AB ==∴12BN AB AN =-=-,∵90BMN ∠=︒,45B ∠=︒,∴904545BNM =︒-︒=︒∠,∴B BNM =∠∠,∴BM NM =,∵222BN NM BM =+,∴()22212NM =-,解得:NM =-,∴CE 的最小值为-.故答案为:【点睛】本题主要考查了全等三角形的判定和性质,勾股定理,等腰三角形的判断和性质,直角三角形的性质,垂线段最短,解题的关键是作出辅助线,构造全等三角形,证明CE DN =.7.如图,点A 的坐标为3⎫⎪⎪⎝⎭,点B 是x 轴正半轴上的一点,将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC .若点C 的坐标为(,4)k ,则k 的值为.【分析】连接BC ,过A 点作AF x ⊥轴于F ,C 作CD x ⊥轴于点D ,CE AF ⊥于点E ,则四边形DCEF 是矩形,根据将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC ,可得ABC 是等边三角形,AB AC BC ==,由点A 的坐标为,(,4)C k ,有AC ==,而BD ==FB ==OF BF BD OD k ++==,可得k =,解方程可得答案.【详解】解:连接BC ,过A 点作AF x ⊥轴于F ,C 作CD x ⊥轴于点D ,CE AF ⊥于点E ,则四边形DCEF 是矩形,如图:∵将线段AB 绕点A 按逆时针方向旋转60︒得到线段AC ,∴AB AC =,60BAC ∠=︒,∴ABC 是等边三角形,∴AB AC BC ==,∵点A 的坐标为,(,4)C k ,,∴3CE k FD =-=,4CD =,3AF =,∴1AE EF AF CD AF =-=-=,∴AC BC AB ====,在Rt BCD 中,BD =,在Rt AFB 中,FB =∵OF BF BD OD k ++==,∴3k =,设k x =x =,化简变形得:42346490x x -=-,解得21x =-(舍去)或2493x =,∴3x =或3x =-(不符合题意,舍去),∴k ,∴k =,.【点睛】本题考查直角坐标系中的旋转变换,解题的关键是熟练应用勾股定理,用含k 的代数式表示相关线段的长度.8.如图,在边长为6的等边ABC 中,直线AD BC ⊥,E 是AD 上的一个动点连接EC ,将线段EC 绕点C 逆时针方向旋转60︒得到FC ,连接DF ,则点E 运动过程中,DF 的最小值是.【答案】32【分析】取线段AC 的中点G ,连接EG ,根据等边三角形的性质可得出CD CG =以及FCD ECG Ð=Ð,由旋转的性质可得出EC FC =,由此即可利用全等三角形的判定定理SAS 证出FCD ≌ECG ,进而即可得出DF GE =,再根据点G 为AC 的中点,即可得出EG 的最小值,此题得解.【详解】解:取线段AC 的中点G ,连接EG ,如图所示.ABC 为等边三角形,6AC BC ==,且AD 为ABC 的对称轴,132CD CG AB ∴===,60ACD ∠=︒,60ECF =︒∠ ,FCD ECG \Ð=Ð.FCD ∴ ≌()ECG SAS ,DF GE ∴=.当EG BC ∥时,EG 最小,点G 为AC 的中点,∴此时1133222EG DF CD ===⨯=.故答案为:32.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出DF GE =.9.如图,在ABC ∆中,90ACB ︒∠=,点D 在BC 边上,5BC =,2CD =,点E 是边AC 所在直线上的一动点,连接DE ,将DE 绕点D 顺时针方向旋转60︒得到DF ,连接BF ,则BF 的最小值为.【答案】72【分析】当E 与点C 重合时,点F 与等边三角形CDG 的点G 重合,当点F 开始运动时,△ECD ≌△FGD ,故点F 在线段GF 上运动,根据垂线段最短原理,当BF ⊥GF 时,BF 有最小值,根据直角三角形的性质计算即可.【详解】当E与点C重合时,点F与等边三角形CDG的点G重合,∵DE绕点D顺时针方向旋转60 得到DF,∴△DEF是等边三角形,∴∠GDC=∠FDE=60°,ED=FD,∴∠GDC-∠GDE=∠FDE-∠GDE,∴∠EDC=∠FDG,∵△DEF是等边三角形,∴CD=GD,∴△ECD≌△FGD,∴EC=GF,∠ECD=∠FGD=90°,∴点F在线段GF上运动,根据垂线段最短原理,当BF⊥GF时,BF有最小值,如图,当旋转到BF∥DG 时,BF⊥GF,垂足为F,过点D作DH⊥BF,垂足为H,∵∠FGD=90°,∴四边形FGDH是矩形,∴∠GDH=90°,GD=FH=2,∵∠GDC=60°,∴∠BDH=30°,∵BD=BC-CD=5-2=3,∴BH=1232 BD=,∴BF=FH+BH=2+32=72,故答案为:7 2.【点睛】本题考查了等边三角形的判定和性质,矩形的判定和性质,垂线段最短,直角三角形的性质,熟练掌握等边三角形的判定,灵活运用直角的判定和直角三角形的性质是解题的关键.10.如图,正方形ABCD的边长为4,E为BC上一点,且1BE=,F为AB边上的一个动点,连接EF,将EF 烧点E顺时什旋转60°得到EG,连接CG,则CG的最小值为.【答案】5 2【分析】由题意分析可知,点F为主动点,G为从动点,所以以点E为旋转中心构造全等关系,得到点G 的运动轨迹,之后通过垂线段最短构造直角三角形获得CG最小值.【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EBH为等边三角形,△EBF≌△EHG,∴∠EHG=∠ABC=90°,HE=BE=1,∠BEH=60°,∴点G在垂直于HE的直线HN上.作CM⊥HN,则CM即为CG的最小值,作EP⊥CM,可知四边形HEPM为矩形,∴∠CEP=180°-60°-90°=30°,∴CP=12CE=12×(4-1)=32,则CM=MP+CP=35122 HE PC+=+=,即CG的最小值为5 2.故答案为5 2.【点睛】本题考查了旋转的性质,线段最值问题,全等三角形的性质,正方形的性质,矩形的判定与性质,含30°角的直角三角形的性质,以及垂线段最短等知识,分清主动点和从动点,通过旋转构造全等,从而判断出点G的运动轨迹,是本题的关键,之后运用垂线段最短,构造图形计算,是极值问题中比较典型的类型.11.如图,△ABC是边长为4的等边三角形,点D是AB上异于A,B的一动点,将△ACD绕点C逆时针旋转60°得△BCE,则旋转过程中△BDE周长的最小值【答案】.【分析】由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD ,由垂线段最短得到当CD ⊥AB 时,△BDE 的周长最小,于是得到结论.【详解】∵将△ACD 绕点C 逆时针方向旋转60°得到△BCE ,∴∠DCE=60°,DC=EC ,∴△CDE 是等边三角形,由旋转的性质得,BE=AD ,∴C △DBE =BE+DB+DE=AB+DE=4+DE ,∵△CDE 是等边三角形,∴DE=CD ,∴C △DBE =CD+4,由垂线段最短可知,当CD ⊥AB 时,△BDE 的周长最小,此时,∴△BDE 的最小周长,故答案为.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,熟练掌握旋转的性质是解题的关键.12.如图,在ABC 中,8AC BC ==,60BCA ∠= ,直线AD BC ⊥,E 是AD 上的一个动点,连接EC ,将线段EC 绕点C 按逆时针方向旋转60 得到FC ,连接DF ,则点E 运动过程中,DF 的最小值是.【答案】2【分析】根据题意取线段AC 的中点G ,连接EG ,根据等边三角形的性质以及角的计算即可得出CD=CG 以及∠FCD=∠ECG ,由旋转的性质可得出EC=FC ,由此即可利用全等三角形的判定定理SAS 证出△FCD ≌△ECG ,进而即可得出DF=GE ,再根据点G 为AC 的中点,即可得出EG 的最小值.【详解】取线段AC 的中点G ,连接EG,如图所示.8AC BC == ,60BCA ∠= ,ABC ∴为等边三角形,且AD 为ABC 的对称轴,142CD CG AB ∴===,60ACD ∠= ,60ECF ∠= ,FCD ECG ∴∠=∠.在FCD 和ECG 中,FC EC FCD ECG DC GC =⎧⎪∠=∠⎨⎪=⎩,FCD ∴ ≌()ECG SAS ,DF GE ∴=.当//EG BC 时,EG 最小,点G 为AC 的中点,∴此时11224EG DF CD BC ====.故答案为2.【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,解题的关键是通过全等三角形的性质找出.DF GE =本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键.13.如图,等边△AOB 的边长为4,点P 从点O 出发,沿OA 以每秒1个单位的速度向点A 匀速运动,当点P 到达点A 时停止运动,设点P 运动的时间是t 秒.将线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,点C 随点P 的运动而运动,连接CP 、CA .在点P 从O 向A 运动的过程中,当△PCA 为直角三角形时t 的值为.【答案】2或83【详解】如图(1)过点P 作PD ⊥OB 于点D ,过C 作CE ⊥OA 于E ,∴∠PDO=∠PEC=90°,∵∠O=60°,∴∠OPD=30°,∴OD=12t ,∴BD=4-12t ,,∵线段BP 的中点绕点P 按顺时针方向旋转60°得点C ,∴∠BPC=60°,BP=2PC ,∵∠OPD=30°,∴∠BPD+∠CPE=90°,∴∠DBP=∠CPE ,∴△PCE ∽△BPD ,∴CE PE PC PD BD PB==,11242PE t ==-,∴,PE=2-14t ,OE=2+34t ,如图(2)当∠PCA=90度时,作CF ⊥PA ,∴△PCF ∽△ACF ,∴△PCF ∽△ACF ,∴PF CF CF AF =,∴CF 2=PF•AF ,∵PF=2-14t ,AF=4-OF=2-34t ,,)2=(2-14t )(=2-34t ),∴t=2,这时P 是OA 的中点;如图(3)当∠CAP=90°时,此时OA=OE ,∴2+34t=4,∴t=83,故答案为2或83.【点睛】本题考查了相似三角形的判定与性质,勾股定理的运用,等边三角形的性质,直角三角形的性质,旋转的性质等,正确地添加辅助线,求出OE 的长是解题的关键.二、解答题14.在平面直角坐标系中,A (a ,0)、B (b ,0),且a ,b 满足26930a a b -+++=,C 、D 两点分别是y 轴正半轴、x 轴负半轴上的两个动点;(1)如图1,若C (0,4),求△ABC 的面积;(2)如图1,若C (0,4),BC =5,BD=AE ,且∠CBA=∠CDE ,求D 点的坐标;(3)如图2,若∠CBA =60°,以CD 为边,在CD 的右侧作等边△CDE ,连接OE ,当OE 最短时,求A ,E 两点之间的距离.【答案】(1)△ABC 的面积为12;(2)D 点的坐标为(-2,0);(3)A ,E 两点之间的距离为32【分析】(1)利用完全平方式和绝对值的性质求出a ,b ,然后确定A 、B 两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出CBD DAE △≌△,从而得到CB AD =,然后利用勾股定理求出CB ,及可求出结论;(3)首先根据“双等边”模型推出DCB ECA ≌,得到120DBC EAC ∠=∠=︒,进一步推出AE BC ∥,从而确定随着D 点的运动,点E 在过点A 且平行于BC 的直线PQ 上运动,再根据点到直线的最短距离为垂线段的长度,确定OE 最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.【详解】解:(1)∵26930a a b -+++=,∴()2330a b -++=,由非负性可知,3030a b -=⎧⎨+=⎩,解得:33a b =⎧⎨=-⎩,∴()3,0A ,()3,0B -,()336AB =--=,∵()0,4C ,∴4OC =,∴11641222ABC S AB OC ==⨯⨯= ;(2)由(1)知()3,0A ,()3,0B -,∴OA OB =,∵OC AB ⊥,∴90AOC BOC ∠=∠=︒,在AOC 和BOC 中,OA OB AOC BOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴()AOC BOC SAS △≌△,∴CBO CAO ∠=∠,∵CDA CDE ADE BCD CBA ∠=∠+∠=∠+∠,CBA CDE ∠=∠,∴ADE BCD ∠=∠,在BCD △和ADE V 中,BCD ADE CBD DAE BD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BCD ADE AAS ≌,∴CB AD =,∵()3,0B -,()0,4C ,∴3OB =,4OC =,∴5BC ==,∴5AD BC ==,∵()3,0A ,∴()2,0D -;(3)由(2)可知CB =CA ,∵∠CBA =60°,∴△ABC 为等边三角形,∠BCA =60°,∠DBC =120°,∵△CDE 为等边三角形,∴CD =CE ,∠DCE =60°,∵∠DCE =∠DCB +∠BCE ,∠BCA =∠BCE +∠ECA ,∴∠DCB =∠ECA ,在△DCB 和△ECA 中,CD CE DCB ECA CB CA =⎧⎪∠=∠⎨⎪=⎩∴()DCB ECA SAS ≌,∴120DBC EAC ∠=∠=︒,∵12060180EAC ACB ∠+∠=︒+︒=︒,∴AE BC ∥,即:随着D 点的运动,点E 在过点A 且平行于BC 的直线PQ 上运动,∵要使得OE 最短,∴如图所示,当OE ⊥PQ 时,满足OE 最短,此时∠OEA =90°,∵120DBC EAC ∠=∠=︒,60CAB ∠=︒,∴60OAE EAC CAB ∠=∠-∠=︒,30AOE ∠=︒,∵()3,0A ,∴3OA =,∴1322AE OA ==,∴当OE 最短时,A ,E 两点之间的距离为32.【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使用全等三角形的判定与性质是解题关键.15.在▱ABCD中,∠ABC=60°,AB=4,BC=6.点E'在BC边上且BE'=4,将B E'绕点B逆时针旋转a°得到BE(0°<a<180°).(1)如图1,当∠EBA=90°时,求S△BCE;(2)如图2,在旋转过程中,连接CE,取CE中点F,作射线BF交直线AD于点G.①求线段BF的取值范围;②当∠EBF=120°时,求证:BC﹣DG=2BF;(3)如图3.当∠EBA=90°时,点S为线段BE上一动点,过点E作EM⊥射线AS于点M,N为AM中点,直接写出BN的最大值与最小值.=6;【答案】(1)S△BCE(2)①1<BF<5;②证明见解答;(3)BNBN的最大值为【分析】(1)如图1,过点E 作EF ⊥BC 交CB 的延长线于点F ,根据题意求得∠EBF =180°-∠EBA -∠ABC =180°-90°-60°=30°,再根据特殊直角三角形的性质进而求得BC 上的高EF =2,代入面积公式算出结果;(2)①如图,在线段FG 上截取FK =BF ,连接EK 、CK ,可证得四边形BCKE 是平行四边形,得出:BE =CK =BE '=4,BC =6,再运用三角形三边关系即可求得答案;②可证△EKB ≌△BGA (AAS ),得出BK =AG ,由AG =AD -DG ,即可推出结论;(3)连接AE ,取AE 的中点P ,PA 的中点Q ,连接BP 、NP 、NQ 、BQ ,可证△ABE 是等腰直角三角形,得出:AE AB P 是AE 的中点,可得:BP ⊥AE ,且BP =AP =EP ,利用勾股定理得BQ,当B 、Q 、N 三点共线时,BN 的最小值=BQ -NQ,当点S 与点E 重合时,EM =0,PN =0,此时,BN 的最大值=BP 【详解】(1)解:如图1,过点E 作EH ⊥BC 交CB 的延长线于点H ,∴∠EHC =90°,∵∠ABC =60°,∠EBA =90°,∴∠EBH =180°-∠EBA -∠ABC =180°-90°-60°=30°,∵点E '在BC 边上且BE '=4,将B E '绕点B 逆时针旋转α°得到BE ,∴BE =B E '=4,∴EH =12BE =12×4=2,又∵BC =6,∴S △BCE =12BC •EH =12×6×2=6;(2)解:①如图,在线段FG 上截取FK =BF ,连接EK 、CK ,∵EF=FC,BF=FK,∴四边形BCKE是平行四边形,∴BE=CK=BE'=4,BC=6,在△BCK中,BC-CK<BK<BC+CK,∴6-4<BK<6+4,即2<2BF<10,∴1<BF<5;②证明:∵四边形ABCD是平行四边形,且∠ABC=60°,AB=4,∴∠A=180°-∠ABC=180°-60°=120°,AD∥BC,AD=BC,BE=AB,∵∠EBF=120°,即∠EBK=120°,∴∠EBK=∠A,∵EK∥BC,∴EK∥AD,∴∠EKB=∠BGA,在△EKB和△BGA中,EKB BGAEBK ABE AB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EKB≌△BGA(AAS),∴BK=AG,由①知:BK=2BF,又∵AG=AD-DG,∴2BF =BC -DG ;(3)解:连接AE ,取AE 的中点P ,PA 的中点Q ,连接BP 、NP 、NQ 、BQ ,∵∠ABE =90°,AB =BE =4,∴△ABE 是等腰直角三角形,∴AE ,∵点P 是AE 的中点,∴BP ⊥AE ,且BP =AP =EP ,∵N 是AM 的中点,P 是AE 的中点,∴PN 是△AEM 的中位线,∴PN ∥EM ,∴∠ANP =∠AME =90°,∵点Q 是AP 的中点,∴QN =PQ =12AP在Rt △BPQ 中,BQ =当B 、Q 、N 三点共线时,BN 的最小值=BQ -NQ 当点S 与点E 重合时,EM =0,PN =0,此时,BN 的最大值=BP 【点睛】本题是几何变换综合题,主要考查了旋转的性质,平行四边形的性质,等腰直角三角形的性质,全等三角形的判定与性质,三角形中位线定理及勾股定理等知识,解题的关键是灵活运用所学知识解决问题.16.如图,线段AB =10cm ,C 是线段AB 上的一个动点(不与A 、B 重合),在AB 上方分别以AC 、BC 为边作正△ACD 和正△BCE ,连接AE ,交CD 于M ,连接BD ,交CE 于N ,AE 、BD 交于H ,连接CH .(1)求sin ∠AHC ;(2)连接DE ,设AD =x ,DE =y ,求y 与x 之间的函数关系式;(3)把正△BCE 绕C 顺时针旋转一个小于60°的角,在旋转过程中H 到△DCE 的三个顶点距离和最小,即HC +HD +HE 的值最小,HC +HD +HE 的值总等于线段BD 的长.若AC =,旋转过程中某一时刻2AH =3DH ,此刻△ADH 内有一点P ,求PA +PD +PH 的最小值.【答案】(1)2;(2)y0<x <10);【分析】(1)过点C 作CT ⊥AE 于点T ,CR ⊥BD 于点R ,先证△ACE ≌△DCB 得∠CAM =∠HDM ,由直角三角函数可得sin sin =CT CA CAM CD HDM CR ∠=∠= ,从而得CH 平分∠AHB ,进而求得∠AHC =∠BHC =60°即可求解;(2)如图2中,如图,过点D 作DP ⊥CE 于点P ,先由三角函数求得CP =12CD =12x ,DP =2x ,又由AB =10cm ,得CE =CB =(10﹣x )cm ,进而得PE =|10﹣x ﹣12x |=|10﹣32x |,最后由勾股定理即可求得y 与x 之间的函数关系式;(3)如图3中,以AD 为边向外作等边△ADW ,连接WH ,由题意WH 是PA +PD +PH .过点D 作DS ⊥AH 于H ,过点W 作WG ⊥AD 于点G ,过点H 作HK ⊥AD 于K ,过点W 作WQ ⊥HK 于点Q .假设AH =3k ,DH =2k ,由勾股定理得AH =6,DH =4,DSHKDKWQ =KGGW =KWHQWH 的长即PA +PD +PH 的最小值.【详解】(1)解:过点C 作CT ⊥AE 于点T ,CR ⊥BD 于点R.∵△ADC ,△ECB 都是等边三角形,∴CA =CD ,CE =CB ,∠ACD =∠ECB =60°,∴∠ACE =∠DCB ,在△ACE 和△DCB 中,CA CD ACE DCB CE CB =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠CAM =∠HDM ,∵CT ⊥AE ,CR ⊥BD ,∴sin sin =CT CA CAM CD HDM CR ∠=∠= ,∴CH 平分∠AHB ,∵∠AMC =∠DMH ,∴∠AHM =∠ACM =60°,∴∠AHC =∠BHC =60°,∴sin ∠AHC =2;(2)解:如图2中,如图,过点D 作DP ⊥CE 于点P .∵AC =CD =x (cm ),∠DCE =60°,∴CP =12CD =12x ,DP ,∵AB =10cm ,∴BC =AB ﹣AC =(10﹣x )cm ,∴CE =CB =(10﹣x )cm ,∴PE =|10﹣x ﹣12x |=|10﹣32x |,∴y =DE (0<x <10);(3)解:如图3中,以AD 为边向外作等边△ADW ,连接WH ,由题意WH 是PA +PD +PH .过点D 作DS ⊥AH 于H ,过点W 作WG ⊥AD 于点G ,过点H 作HK ⊥AD 于K ,过点W 作WQ ⊥HK 于点Q .∵2AH =3DH ,∴可以假设AH =3k ,DH =2k ,∵∠DHS =60°,DS ⊥AH ,∴SH =12DH =k ,DS ,AM =2k ,∵AD 2=AS 2+DS 2,∴()2=(2k )2+)2,∴k =2(负根已经舍弃),∴AH =6,DH =4,DS∵12•AH •DS =12•AD •HK ,∴HK =7,DK 7,∵AG =DG WQKG 是矩形,∴WQ =KG GW =KW∴HQ =KH +KQ =7,∴WH =∴PA +PD +PH 的最小值为【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,解直角三角形等知识,添加常用辅助线,构造直角三角形解决问题是解本题的关键.17.在学习了图形的旋转知识后,某数学兴趣小组对教材中有关图形旋转的问题进行了进一步探究.(1)问题梳理,问题呈现:如图1,点D 在等边ABC 的边BC 上,过点C 画AB 的平行线l ,在l 上取CE BD =,连接AE ,则在图1中会产生一对旋转图形.请结合问题中的条件,证明:ABD ACE ≌△△;(2)初步尝试:如图2,在ABC 中,AB AC =,点D 在BC 边上,且BD DC <,将ABD △沿某条直线翻折,使得AB 与AC 重合,点D 与BC 边上点F 重合,再将ACF △沿AC 所在直线翻折,得到ACE △,则在图2中会产生一对旋转图形.若30BAC ∠=︒,6AD =,连接DE ,求ADE V 的面积;(3)深入探究:如图3,在ABC 中,60ACB ∠=︒,75BAC ∠=︒,6AC =,点D 是边BC 上的任意一点,连接AD ,将线段AD 绕点A 按逆时针方向旋转75°,得到线段AE ,连接CE ,求线段CE 长度的最小值.【答案】(1)见解析;(2)9;(3)【分析】(1)根据△ABC 是等边三角形,可得AB =AC ,∠BAC =∠B =60°,进而利用SAS 可证明△ABD ≌△ACE .(2)如图2,过点E 作EH ⊥AD 于H ,由翻折可得△ACE ≌△ABD ≌△ACF ,可得AE =AD =6,EH =3,再运用S △ADE =12×AD ×EH ,即可求得答案.(3)如图3中,在AB 上截取AN =AC ,连接DN ,作NH ⊥BC 于H ,作AM ⊥BC 于M .利用SAS 证明△EAC ≌△DAN ,推出当DN 的值最小时,EC 的值最小,求出HN 的值即可解决问题.【详解】(1)如图1,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠B =60°,∵CE ∥AB ,∴∠ACE =∠BAC =60°,∴∠B =∠ACE ,在△ABD 和△ACE 中,AB AC B ACE BD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );(2)如图2,过点E 作EH ⊥AD 于H,∵由翻折可得:△ACF ≌△ABD ,△ACE ≌△ACF ,∴△ACE ≌△ABD ≌△ACF ,∴AE =AD =6,∠CAE =∠BAD ,∴∠DAE =∠BAC =30°,∵EH ⊥AD ,∴EH =12AE =3,∴S △ADE =12×AD ×EH =12×6×3=9;(3)如图3中,在AB 上截取AN =AC ,连接DN ,作NH ⊥BC 于H ,作AM ⊥BC 于M.∵∠CAB =∠DAE ,∴∠EAC =∠DAN ,∵AE =AD ,AC =AN ,∴△EAC ≌△DAN (SAS ),∴CE =DN ,∴当DN 的值最小时,EC 的值最小,在Rt △ACM 中,∵∠ACM =60°,AC =6,∴30CAM ∠=︒,∴132CM AC ==,∴AM∵∠MAB =∠BAC −∠CAM =75°−30°=45°,∴AMB 为等腰直角三角形,∴AB=,∴NB =AB −AN =−6,在Rt △NHB 中,∵∠B =45°,∴NBH △为等腰直角三角形,∴NH根据垂线段最短可知,当点D 与H 重合时,DN 的值最小,∴CE 的最小值为.【点睛】本题属于几何变换综合题,考查了全等三角形的判定和性质,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用垂线段最短解决最值问题,属于中考压轴题.18.(一)发现探究在△ABC中AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ;【发现】如图1如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=6,∠EDF=60°,∠DEF=90°,P是线段EF上的任意一点连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ请求出线段EQ长度的最小值.【答案】【发现】BQ=PC;【探究】BQ=PC仍然成立,证明见解析;【应用】线段EQ长度的最小值为3.【分析】[发现]先判断出∠BAQ=∠CAP,进而用SAS判断出△BAQ≌△CAP,即可得出结论;[探究]结论BQ=PC仍然成立,理由同【发现】的方法;[应用]在DF上取一点H,使DH=DE,连接PH,过点H作HM⊥EF于M,构造出△DEQ≌△DHP,得出EQ=HP,当HP⊥EF(点P和点M重合)时,EQ最小,求HM即可.【详解】[发现]由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,故答案为:BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠PAQ=∠BAC,∴∠PAQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,【应用】如图3,在DF上取一点H,使DH=DE,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,求EQ最小,就是求HP最小,当HP⊥EF(点P和点M重合)时,HP最小,最小值为HM,∵∠EDF=60°,∠DEF=90°,∴∠F=30°,∵DE=6,∴DF=2DE=12,∵DH=DE=6,∴FH=6,∵∠F=30°,∴HM=3.线段EQ长度的最小值为3..【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,含30°角的直角三角形的性质,恰当的作辅助线,把所求线段转化为与动点P有关的线段,根据垂线段最短确定线段位置是解本题的关键.。
瓜豆原理【模型专题】(含答案解析)

∴OA=AB,
又∵CM=CB,
∴AC= OM,
∴当OM最小时,AC最小,
∴当M运动到M′时,OM最小,
此时AC的最小值= OM′= (OP﹣PM′)= .
考点:1、点与圆的位置关系;2、坐标与图形性质;3、三角形中位线定理
变式1-6:
7.如图,在等腰Rt△ABC中,AC=BC= ,点P在以斜边AB为直径的半圆上,M为PC的中点,当点P沿半圆从点A运动至点B时,点M运动的路径长为________.
变式1-5:
6.如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值是________.
【答案】 ##1.5
【解析】
【分析】
【详解】如图,连接OP交⊙P于M′,连接OM.
∵点P(3,4),A(2.8,0),B(5.6,0),
∴OP= ,AO=2.8,OB=5.6,
【详解】解:如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,
∵∠EDF=∠ODM=90°,
∴∠EDO=∠FDM,
∵DE=DF,DO=DM,
∴△EDO≌△FDM(SAS),
∴FM=OE=2,
∵正方形ABCD中,AB=2 ,O是BC边的中点,
∴OC= ,
∴OD= =5,
∴OM= =5 ,
3.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,D是以点A为圆心,4为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最大值( )
A.14B.7C.9D.6
【答案】B
【解析】
【分析】作AB的中点E,连接EM、CE、AD,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后在 中根据三边关系即可求解.
瓜豆原理与最值问题(解析版)

专题八瓜豆原理中动点轨迹直线型最值问题【专题说明】动点轨迹问题是中考的重要压轴点.受学生解析几何知识的局限和思维能力的束缚,该压轴点往往成为学生在中考中的一个坎,致使该压轴点成为学生在中考中失分的一个黑洞.掌握该压轴点的基本图形,构建问题解决的一般思路,是中考专题复习的一个重要途径.本文就动点轨迹问题的基本图形作一详述.动点轨迹基本类型为直线型和圆弧型.【知识精讲】动点轨迹为一条直线时,利用“垂线段最短”求最值。
(1)当动点轨迹确定时可直接运用垂线段最短求最值(2)当动点轨迹不易确定是直线时,可通过以下三种方法进行确定①观察动点运动到特殊位置时,如中点,端点等位置时是否存在动点与定直线的端点连接后的角度不变,若存在该动点的轨迹为直线。
②当某动点到某条直线的距离不变时,该动点的轨迹为直线。
③当一个点的坐标以某个字母的代数式表示时,若可化为一次函数,则点的轨迹为直线。
如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?【分析】当P点轨迹是直线时,Q点轨迹也是一条直线.可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.【引例】如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?【分析】当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.【模型总结】必要条件:主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);主动点、从动点到定点的距离之比是定量(AP:AQ是定值).结论:P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)【精典例题】1、如图,正方形ABCD的边长为4,E为BC上一点,且BE=1,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为.【分析】同样是作等边三角形,区别于上一题求动点路径长,本题是求CG最小值,可以将F点看成是由点B向点A运动,由此作出G点轨迹:考虑到F点轨迹是线段,故G点轨迹也是线段,取起点和终点即可确定线段位置,初始时刻G点在位置,最终G点在位置(不一定在CD边),即为G点运动轨迹.CG最小值即当CG⊥的时候取到,作CH⊥于点H,CH即为所求的最小值.根据模型可知:与AB夹角为60°,故⊥.过点E作EF⊥CH于点F,则HF==1,CF=,所以CH=,因此CG的最小值为.2、如图,等腰Rt△ABC中,斜边AB的长为2,O为AB的中点,P为AC边上的动点,OQ⊥OP交BC 于点Q,M为PQ的中点,当点P从点A运动到点C时,点M所经过的路线长为()A .24B .22C .1D .2【答案】C【详解】连接OC ,作PE ⊥AB 于E ,MH ⊥AB 于H ,QF ⊥AB 于F ,如图,∵△ACB 为到等腰直角三角形,∴AC=BC=22AB=2,∠A=∠B=45°,∵O 为AB 的中点,∴OC ⊥AB ,OC 平分∠ACB ,OC=OA=OB=1,∴∠OCB=45°,∵∠POQ=90°,∠COA=90°,∴∠AOP=∠COQ ,在Rt △AOP 和△COQ 中A OCQ AO CO AOP COQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴Rt △AOP ≌△COQ ,∴AP=CQ ,易得△APE 和△BFQ 都为等腰直角三角形,3、如图,矩形ABCD 中,4AB =,6BC =,点P 是矩形ABCD 内一动点,且∆∆=PAB PCD S S ,则PC PD +的最小值为________.4、如图,在平面内,线段AB=6,P为线段AB上的动点,三角形纸片CDE的边CD所在的直线与线段AB 垂直相交于点P,且满足PC=PA.若点P沿AB方向从点A运动到点B,则点E运动的路径长为______.5、如图,等边三角形ABC的边长为4,点D是直线AB上一点.将线段CD绕点D顺时针旋转60°得到线段DE,连结BE.(1)若点D在AB边上(不与A,B重合)请依题意补全图并证明AD=BE;(2)连接AE,当AE的长最小时,求CD的长.。
圆的最值模型之瓜豆模型(解析版)(北师大版)

专题10圆的最值模型之瓜豆模型一、模型说明问题1.如图,P 是圆O 上一个动点,A 为定点,连接AP ,Q 为AP 中点.当点P 在圆O 上运动时,Q 点轨迹是?解析:Q 点轨迹是一个圆理由:Q 点始终为AP 中点,连接AO ,取AO 中点M ,则M 点即为Q 点轨迹圆圆心,半径MQ 是OP 一半,任意时刻,均有△AMQ ∽△AOP ,1=2QM AQ PO AP .问题2.如图,△APQ 是直角三角形,∠PAQ=90°且AP=2AQ ,当P 在圆O 运动时,Q 点轨迹是?解析:Q 点轨迹是一个圆理由:∵AP ⊥AQ ,∴Q 点轨迹圆圆心M 满足AM ⊥AO ;又∵AP :AQ =2:1,∴Q 点轨迹圆圆心M 满足AO :AM =2:1.即可确定圆M 位置,任意时刻均有△APO ∽△AQM ,且相似比为2.模型总结:条件:两个定量主动点、从动点与定点连线的夹角是定量(∠PAQ 是定值);主动点、从动点到定点的距离之比是定量(AP:AQ 是定值).结论:(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:∠PAQ=∠OAM ;(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:AP:AQ=AO:AM ,也等于两圆半径之比.二、例题精讲【答案】231+/123+【分析】作COE ,使得CEO ∠COP CED ∽△△,推出OP CP ED CD=90CDP ∠=︒ ,60DCP ∠=︒,CP ∴∴2CO CP CE CD ==,COP CED ∴ ∽,即112ED OP ==(定长),点E 是定点,DE 是定长,【答案】273-【分析】如图所示,延长PB 以AO为斜边在AC下方作【点睛】本题主要考查了等边三角形的性质与判定,解直角三角形,相似三角形的性质与判定,勾股定理,圆外一点到圆上一点的最值问题,解题的关键在于能够熟练掌握瓜豆模型即证明点为3的圆上运动.例3.如图,Rt ABC △中,AB AC ==绕点A 任意旋转的过程中,P 到直线【答案】3632+/323+【分析】数形结合,根据动点的运动情况判断点【详解】解:如图旋转,连接以BC 为直径作O ,以AE 为半径作过点B 作A 的切线交O 于点M ,在ABD △和ACE △中AB AC AD AE BAD CAE =⎧⎪=⎨⎪∠=∠⎩ABD ACE∴ ≌PBC PBA ACB PBC ∴∠+∠+∠=∠+BD CE∴⊥【答案】131+/113+【分析】连接AO,BO,取点D在以E为圆心,以2为半径的圆上运动,连接在以点G为圆心,以1为半径的圆上运动,的长度,取线段OE的中点F【详解】如图所示,连接AO∵D是AB的中点,E是AO的中点,∴DE是ABO的中位线,∴122DE OB==,∴点D在以E为圆心,以2为半径的圆上运动,连接CE,取CE的中点G,连接GM,∵M为CD的中点,G是CE的中点,∵O 的半径为4∴4OA OB ==∵42AC =∵22224432OA OB +=+=,(24AC =∴222O O C A B A +=∴=90AOC ∠︒∵点F 是OE 的中点,点G 是CE 的中点,三、课后训练A .434+【答案】A 【分析】以BC 为边向上作等边三角形点D 的运动轨迹是以点∵60DCA MCB ∠=∠=∴DCA ACM ∠-∠=∠在DCM △和ACB △中,DC AC DCM ACB MC BC =⎧⎪∠=∠⎨⎪=⎩,【答案】3∴BD=2,∴11 BD=.【答案】2【分析】如图,连接CE.首先证明∠BEC 上运动,连接MA交 BC于E′,此时AE 【详解】解:如图,连接CE.∵AP∥BC,∴∠PAC=∠ACB=60°,∴∠CEP=∠CAP=60°,∴∠BEC=120°,∴M 中优弧 BC度数为2BEC ∠=240°,则劣弧∴△BMC 是等腰三角形,∠BMC =120°,∵∠BCM =30°,BC =83,MB MC=221342BN BM MN MN BC ∴=-====∴MB =MC =8,∴连接MA 交 BC于E ′,此时AE ′的值最小.∵∠ACB =60°,∠BCO =30°,∴∠ACM =90°,∴MA =22MC AC +=228610+=,∴AE 的最小值为=1082-=.故答案为:2【点睛】本题考查三角形的外接圆与外心、平行线的性质、圆周角定理、勾股定理,点与圆的位置关系等知识,解题的关键是添加常用辅助线,构造辅助圆解决问题.4.如图,已知O 的半径为2,弦23AB =4【答案】51+【分析】连接OM,根据垂径定理,得到 的半径为1,当点C、E【详解】连接OM,的直径,M为∵AB是O故CM CN CE EN==+【点睛】本题考查了垂径定理,勾股定理,圆的性质,熟练掌握垂径定理,圆的性质是解题的关键.6.如图AB是半圆O的直径,点⊥于点H,连接D作DH AC【答案】221-【分析】如图,取AD的中点在以M为圆心,AD为直径的⊥DH ACAHD︒90∴∠=【答案】2262-【分析】连接CE,取再根据圆周角定理得出据此即可获得答案.【详解】解:连接CE∵4BC =,∴2CF =∵90ACB ∠=︒,AC ∵CD 是O 直径,∴在点D 的运动过程中,∴当点A E F 、、共线时,故答案为:2262-(1)在旋转过程中,当A ′落在线段BC 上时,求A ′B 的长;(2)连接A ′A 、A ′B ,当∠BA ′B '=90°时,求tan ∠A ′AD ;(3)在旋转过程中,若△DAA ′的重心为G ,则CG 的最小值=.【答案】(1)47-;(2)tan ∠A ′AD =3或13;(3)9743-【分析】(1)由四边形ABCD 矩形,AB =3,AD =4得CD =AB =3,BC =AD =4,∠(1)当E在AB的中垂线上时,把射线EA绕点E顺时针旋转90︒后交CD于求EF的长.(2)在(1)的条件下,连接BF,把BEF△绕点B顺时针旋转得到 BHK 的中点,连接AN,求AN的最大值.【答案】(1)8EF=(2)83AE BE=,在Rt DAEV中,利用勾股定理求出∵四边形ABCD 是菱形,且BAD ∠=∴4,60AD AB ABC ADC ==∠=∠=∵BD 为菱形对角线∴30ABE ADE FDE ∠=∠=∠= ,又∵E 在AB 的中垂线上此时:在AMN 在,AM MN AN +≥,当A 、则:在Rt AMC 中,122CM AC ==∵222AM AC CM =-,∴212AM =,∴AM 又∵M 点是BC 的中点,N 是CH 的中点∴1123223MN BH BE ===,∴23AN =+180'∴∠=︒-∠P AC BAC '。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题71 瓜豆原理中动点轨迹不确定型最值问题
【专题说明】
动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中,
(1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。
(2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。
【知识精讲】
所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.
【精典例题】
1、如图,在反比例函数2y x
=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数k y x =
的图像上运动,若tan ∠CAB =2,则k 的值为( )
A .2
B .4
C .6
D .8
【分析】∠AOC =90°且AO :OC =1:2,显然点C 的轨迹也是一条双曲线,分别作AM 、CN 垂直x 轴,垂足分别为M 、N ,连接OC ,易证△AMO ∽△ONC ,∴CN =2OM ,ON =2AM ,∴ON ·CN =4AM ·OM ,故k
=4。