竖直面内的变速圆周运动及临界状态

合集下载

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

圆周运动中的临界问题

圆周运动中的临界问题
m gmR 2 v临界 Rg (2)小球能过最高点条件: v rg
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练

圆周运动中的临界问题专题(最新整理)

圆周运动中的临界问题专题(最新整理)

课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过Rg 或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg ②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.Rg Rg ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高gR 310度(距离底部)的说法中正确的是( )A 、一定可以表示为B 、可能为 g v 2203R C 、可能为R D 、可能为R 35【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥gr v 面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v =0时,F N =mg (N 为支持力)②当 0<v <时, F N 随v 增大而减小,且mg >F N >0,Rg F N 为支持力.③当v =时,F N =0Rg ④当v >时,F N 为拉力,F N随v 的增大而增大(此时F N 为拉力,方向指向圆心)Rg典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。

如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。

2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。

(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。

a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。

例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。

当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。

解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。

(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。

圆周运动临界问题

圆周运动临界问题

圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。

在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。

以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。

当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。

在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。

在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。

根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。

需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。

此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。

竖直面内圆周运动的临界问题分析

竖直面内圆周运动的临界问题分析

ʏ赵世渭 吕志华当物体从一种特性变化为另一种特性时,发生质的飞跃的转折状态,叫临界状态㊂出现临界状态时,即可理解为 恰好出现 ,也可理解为 恰好不出现 ㊂竖直面内圆周运动的临界问题主要包括绳(环)约束模型㊁杆(管)约束模型和拱桥模型等,下面举例说明㊂一㊁绳(环)约束模型绳(环)约束模型的特点是绳(环)对物体只能产生指向圆心的弹力作用㊂图11.临界条件:在最高点绳(环)对物体恰好没有弹力作用㊂此时重力提供向心力,即m g =m v 2m i nr,解得v m i n =g r (可理解为恰好通过或恰好不通过最高点的速度)㊂2.能够通过最高点的条件:物体在最高点的速度v ȡg r ,绳(环)产生弹力作用㊂3.不能通过最高点的条件:物体在最高点的速度v <g r (实际上物体还没运动到最高点就已经脱离圆周做斜抛运动)㊂ 图2例1 如图2所示,长度均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A ㊁B 两点,A ㊁B 两点间的距离也为L ,重力加速度大小为g ㊂现使小球在竖直面内以A B 连线为轴做圆周运动,当小球在最高点的速率为v 时,两根绳的拉力恰好均为零,则小球在最高点的速率为2v 时,两根绳的拉力大小均为( )㊂A .3m g B .23m gC .3m gD .433m g当两根绳的拉力恰好均为零时,重力提供向心力;当小球在最高点的速率为2v 时,重力和两根绳拉力的合力提供向心力㊂根据等边三角形的几何关系可得,小球做圆周运动的半径r =32L ㊂当小球在最高点的速率为v 时,根据牛顿第二定律得m g =m v2r㊂当小球在最高点的速率为2v 时,设两根绳的拉力大小均为F ,根据牛顿第二定律得m g +2F c o s30ʎ=m(2v )2r㊂联立以上各式解得F =3m g ㊂答案:A解决本题的关键是清楚小球运动到最高点时的临界状态,抓住小球做圆周运动所需向心力的来源,结合牛顿第二定律列式求解㊂二㊁杆(管)约束模型物体在轻杆作用下的运动,或在管道中运动时,随着速度的变化,轻杆或管道对物体的作用力可以是支持力,也可以是压力,还可能为零㊂图31.临界条件:物体在最高点的速度v =0㊂2.物体运动到最高点:当m g =mv2r,即v =g r 时,轻杆或管道对物体的作用力F =0;当v >g r 时,轻杆或管道对物体产生向下的拉力;当v <g r 时,轻杆或管道对物体产生向上的弹力㊂例2 如图4所示,一轻杆一端A 固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,重力33物理部分㊃知识结构与拓展高一使用 2021年3月图4加速度为g ㊂下列说法中正确的是( )㊂A .小球过最高点时,轻杆受到的弹力可以等于零B .小球过最高点的最小速度是g RC .小球过最高点时,轻杆对小球的作用力一定随速度的增大而增大D .小球过最高点时,轻杆对小球的作用力一定随速度的增大而减小小球过最高点时,当m g =mv2R,即v =g R 时,轻杆对小球的作用力F =0,根据牛顿第三定律可知,轻杆受到的弹力为零,选项A 正确㊂因为轻杆能够支撑小球,所以小球过最高点的速度最小可以为零,选项B 错误㊂当小球在最高点的速度v <g R 时,轻杆对小球产生向上的弹力,根据牛顿第二定律得m g -F =m v 2R ,变形得F =m g -m v2R,因此当v 增大时,F 减小,选项C 错误㊂当小球在最高点的速度v >g R 时,轻杆对小球产生向下的拉力,根据牛顿第二定律得m g +F =m v2R,变形得F =mv2R-m g ,因此当v 增大时,F 增大,选项D 错误㊂答案:A轻绳模型与轻杆模型的临界条件不同,对于轻绳模型来说物体能通过最高点的临界速度是v 临=gR ,对轻杆模型来说物体过最高点的临界速度是v 临=0㊂三㊁拱桥模型图5当汽车通过拱形桥顶部的速度v =g R 时,根据m g -N =mv2R可知,汽车对弧顶的压力N =0,汽车将脱离桥面做平抛运动,因此汽车过拱形桥时需限速,即v ɤg R ㊂例3如图6所示,半径为R 的光滑半 图6圆球固定在水平面上,顶部有一可视为质点的物体,现给它一个水平初速度v 0=g R ,则该物体将( )㊂A .沿球面下滑至M 点B .先沿球面下滑至某点N ,然后离开球面做斜下抛运动C .立即离开球面做平抛运动,且水平射程为2R D .立即离开球面做平抛运动,且水平射程为2R假设物体在最高点受重力和球面的支持力N 作用做圆周运动,根据牛顿第二定律得m g -N =mv 2R,解得N =0,即物体只受重力作用,因此物体将立即离开球面做平抛运动㊂根据平抛运动规律可得,物体做平抛运动的时间t =2Rg,水平位移x =v 0t =2R ,因此物体做平抛运动的轨迹曲率半径大于半圆球的半径,物体不可能中途落在球面上㊂答案:C解决本题的关键是利用牛顿第二定律分析出物体在最高点时受到的球面对它的支持力为零,进而判断出物体仅受重力作用,且初速度方向水平,物体离开球面做平抛运动,然后利用平抛运动规律求物体的水平射程㊂拓展:倾斜面内圆周运动的临界问题㊂在斜面上做圆周运动的物体,可能由静摩擦力提供向心力,也可能由轻绳或轻杆的作用力提供向心力㊂ 图7例4 如图7所示,一块足够大的光滑平板放置在水平面上,绕水平固定轴MN 可以调节其与水平面间的夹角㊂平板上一根长度l =0.8m 的轻质细绳的一43 物理部分㊃知识结构与拓展 高一使用 2021年3月端系住一质量m=0.2k g的小球,另一端固定在平板上的O点㊂当平板的倾角固定为α时,将小球拉至最高点,然后给小球一沿着平板并与细绳垂直的初速度v0=2m/s㊂(取g=10m/s2)(1)若小球能保持在板面内做圆周运动,倾角α的值应在什么范围内?(2)若细绳所能承受的最大拉力F= 8N,则当平板的倾角α最大时,小球经过最高点的速度最多多大小球在运动过程中,受重力㊁细绳拉力和斜面支持力作用㊂小球运动到最高点时,由细绳的拉力和小球的重力沿斜面分力的合力提供向心力㊂(1)小球恰好能过最高点的临界条件是细绳的拉力F=0,设此时平板的倾角为α0,根据牛顿第二定律得m g s i nα0=m v20l,解得α0=30ʎ,即小球能保持在板面内做圆周运动,平板的倾角α的值应满足0<αɤ30ʎ㊂(2)设小球经过最高点时的最大速度为v m a x,由(1)得平板的最大倾角α0=30ʎ,根据牛顿第二定律得F+m g s i nα0=m v2m a x l,解得v m a x=6m/s㊂与分析竖直面内圆周运动问题类似,分析斜面上的圆周运动问题也是先分析物体在最高点的受力情况,再根据牛顿第二定律列式求解㊂注意:在进行受力分析时,一般需要先将立体图转化为平面图,这是解斜面上圆周运动临界问题的难点㊂图81.如图8所示,一根轻绳系着装有水的小桶,在竖直面内绕O点做圆周运动,小桶的质量M=1k g,水的质量m=0.5k g,绳长L=0.6m,取g=10m/s2㊂求:(1)要使水桶运动到最高点时水不流出,最小速率多大(2)如果水桶运动到最高点时的速率v=3m/s,那么水桶对轻绳的拉力多大?(3)如果水桶运动到最低点时的速率v=3m/s2,那么水对桶底的压力多大?图92.如图9所示,将内壁光滑的导管弯成半径为R的圆周轨道竖直放置,其质量为2m,质量为m的小球在管内滚动㊂当小球运动到最高点时,导管刚好要离开地面,此时小球的速度多大?图103.如图10所示,质量为m的小物体(可视为质点)随水平传送带运动,A为终端皮带轮㊂已知皮带轮半径为r,传送带与皮带轮间不会打滑,当小物体可被水平抛出时()㊂A.传送带的最小速度为g rB.传送带的最小速度为g rC.皮带轮每秒的转数最少是12πg rD .皮带轮每秒的转数最少是12πg r图114.如图11所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5m处有一小物体与圆盘始终保持相对静止㊂小物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面间的夹角为30ʎ,取g=10m/s2㊂求ω的最大值㊂参考答案:1.(1)v m i n=6m/s;(2)T=7.5N;(3)N'=12.5N㊂2.v=3g R㊂3.A C4.ωm a x=1r a d/s㊂作者单位:山东省青州第一中学(责任编辑张巧)53物理部分㊃知识结构与拓展高一使用2021年3月。

向心力计算

向心力计算

1.解答竖直面内的圆周运动问题时,首先要搞清 是绳模型还是杆模型,在最高点绳模型小球的最小 速度是 R;g 而杆模型小球在最高点的最小速度为零, 要注意根据速度的大小判断是拉力还是支持力。
2.向心力公式F=mv2/R=m2R,既适用于匀速圆
周运动,又适用于变速圆周运动,对于变速圆周运
动来说,式中的v和是做圆周运动的物体在那一时
刻的瞬时线速度和瞬时角速度。对于任何圆周运动 的物体来说,将物体所受到的所有外力沿半径方向 和垂直于半径方向分解后,所有在半径方向上的合 力就是向心力。
如图所示,LMPQ是光滑轨道,LM水平,长为5.0 m, MPQ是一半径为R=1.6 m的半圆,QOM在同一竖直线上, 在恒力F作用下,质量m=1 kg的物体A由静止开始运动, 当达到M时立即停止用力。欲使A刚好能通过Q点,则力F 大小为多少?
【解析】物体A经过Q点时,其受力情况如图所示。 由牛顿第二定律得
mg+FN=mv2/R 物体A刚好过Q点时有
FN=0 解得v= gR =4 m/s 对物体从L到Q的全过程,由动能定理得
FxLM-2mgR=(1/2)mv2 解得F=8 N
(1) 正确理解A物体“刚好能通过Q点”的含义是解决本题的关键。常用来表达临界状态 的词语还有“恰好”“恰能”“至少”“至多”等,同学们在审题时必须高度注意。小球沿 圆弧M→P→Q通过最高点Q时,应从圆周运动的规律,即应从向心力与线速度的关系求解小 球经过Q点的临界速度。
mg=mv2/R v临界= Rg 。
②能过最高点的条件:v≥ Rg,当v> Rg时,向心力F向=mv2/R≥mg,则
绳对球产生拉力,轨道对球产生压力。 ③不能过最高点的条件:v<v临界= Rg (实际上球还没到最高点时,就脱

圆周运动的临界问题

圆周运动的临界问题

圆周运动的临界问题圆周运动的临界问题圆周运动中的临界问题的分析方法是首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。

竖直平面内作圆周运动的临界问题是典型的变速圆周运动。

一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。

在绳模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-1所示。

小球能过最高点的临界条件为绳子和轨道对小球刚好没有力的作用,即mg=mv^2/R,从而得到小球能过最高点的条件为v≥√(Rg),不能过最高点的条件为v<√(Rg)。

在杆模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-2所示。

小球能过最高点的临界条件为v=0,F=mg(F为支持力),当0F>0(F为支持力),当v=Rg时,F=0,当v>Rg时,F随v增大而增大,且F>0(F为拉力)。

拱桥模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=√(Rg)时,F_N=0,物体将飞离最高点做平抛运动。

若是从半圆顶点飞出,则水平位移为s=2R。

细线模型中,如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O在竖直平面内转动,不计空气阻力,用F表示球到达最高点时细线对小球的作用力,则F可能是拉力、推力或等于零。

最后,对于一个质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取210m/s。

可以利用向心力公式和受力分析,求出小杯通过最高点的临界条件。

1.长度为0.5m的细杆OA,A端挂着一个质量为3.0kg的小球,在竖直平面内做圆周运动。

求小球通过最高点时细杆OA所受的力。

答案:C。

24N的拉力2.在竖直放置的光滑圆形管道内,质量为m的小球做圆周运动。

竖直面内圆周运动的临界问题分析

竖直面内圆周运动的临界问题分析

竖直面内圆周运动的临界问题分析竖直面内圆周运动特点:1、运动特点:速率时刻在改变,物体在最高点处的速率最小,在最低点处的速率最大。

---变速率圆周运动2、受力特点: 实质:沿半径方向的合力提供向心力,产生向心加速度,即牛顿第二定律在曲线运动中的运用。

F n 合=ma n = mv 2/r=mr 2ω1)过最低点:所需的向心力是向上,而重力向下,据:F -mg = mv 2/r 得:F >mg 所以弹力(拉力、支持力)必然向上且大于重力。

2)过最高点:所需的向心力是向下,而重力也向下,所以弹力的方向就不能确定了,要分三种情况进行讨论临界问题。

讨论: 的意义:例题1:(07理科综合)如图所示,质量为m 的小物块位于半径为R 的半球物体顶端,若给小物体水平速度 ,则物块( )A 、立即做平抛运动, BC 、落地速度大小为 ;D 、落地速度方向与地成450。

若给小物体水平速度 ;则小物块对半球物体顶端的压力 。

例题2:杂技演员表演的“水流星”,是一根细长绳的一端系着一个盛了水的容器,以绳的另一端不圆心,使容器在竖直平面内做半径为R 的圆周运动,N 为圆周最低点,M 为圆周最低点,若“水流星”通过最低点的速度为 ,则下列说法正确的是( ) 。

A 、“水流星”过最高点速度为0;gR v =gR v 2=gR v 2=gR v 5=2gR v =B 、“水流星”过最高点时,有水从容器中流出;C 、“水流星”过最高点时,水对容器底没有压力;D 、“水流星”过最高点时,绳对容器有向下的拉力。

③弹力既可能向上又可能向下,如管内转、杆连球、环穿球类(有支撑)。

这种情况下,速度大小v 可以取任意值。

但可以进一步讨论:①当v= 时,②当 时,③当v= 时,④当 时,例题3:(04年理综)轻杆的一端有一个小球,另一端有光滑的固定轴O ,现给球一初速度,使和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力,则( )。

竖直平面内的圆周运动临界问题超级全面公开课获奖课件

竖直平面内的圆周运动临界问题超级全面公开课获奖课件


A、)B
A、a处为拉力,b处为拉力
B、a处为拉力,b处为推力
C、a处为推力,b处为拉力
D、a处为推力,b处为推力
b
a
第13页
例:长度为L=0.5m轻质细杆OA,A端有一质
量为m=3.0kg小球,如图5所示,小球以O点
为圆心在竖直平面内做圆周运动,通过最高
点时小球速率是2.0m/s,g取10m/s2,则此
( BCD )
A.小球对圆环压力大小等于mg B.小球向心力等于重力 C.小球线速度大小等于 Rg D.小球向心加速度大小等于g
第6页
例:用长为l细绳,拴着质量为m小球,在竖直 平面内做圆周运动,则如下说法中对旳是 () A.小球在最高点所受向心力一定是重力 B.小球在最高点绳拉力也许为零 C.小球在最低点绳子拉力一定不小于重力 D.若小球恰好能在竖直平面内做圆周运动,则 它在最高点速率为零
使小球在竖直面内做半径为R圆周运
O
动,如下说法对旳是:
BC
A、小球过最高点时起码速度为 ;Rg
B、小球过最高点时,杆所受弹力可以等于零;
C、小球过最高点时,杆对球作用力可以与球所受 重力方向 相反,此时重 力 一定不小于杆对球作用力;
D、小球过最高点时,杆对球作用力一定与小球所 受重力方向相反。
第33页
第21页
图所示为模拟过山车试验装置,小球从左侧 最高点释放后可以通过竖直圆轨道而抵达右 侧.若竖直圆轨道半径为R,要使小球能顺利 通过竖直圆轨道,则小球通过竖直圆轨道最 高点时角速度最小为( )
第22页
杂技演员演出“水流星”,在长为1.6 m细绳一端,系一种与水总质量为m=0.5 kg盛
水容器,以绳另一端为圆心,在竖直平面内做圆周运动,如图所示,若“水流星”通过

竖直面内的圆周运动(解析版)

竖直面内的圆周运动(解析版)

竖直面内的圆周运动一、竖直平面内圆周运动的临界问题——“轻绳、轻杆”模型1.“轻绳”模型和“轻杆”模型不同的原因在于“轻绳”只能对小球产生拉力,而“轻杆”既可对小球产生拉力也可对小球产生支持力。

2.有关临界问题出现在变速圆周运动中,竖直平面内的圆周运动是典型的变速圆周运动,一般情况下,只讨论最高点和最低点的情况。

物理情景最高点无支撑最高点有支撑实例球与绳连接、水流星、沿内轨道的“过山车”等球与杆连接、球在光滑管道中运动等图示异同点受力特征除重力外,物体受到的弹力方向:向下或等于零除重力外,物体受到的弹力方向:向下、等于零或向上受力示意图力学方程mg+F N=mv2R mg±F N=mv2R临界特征F N=0mg=mv2minR即v min=gRv=0即F向=0F N=mg过最高点的条件在最高点的速度v≥gR v≥0【典例1】如图甲所示,轻杆一端固定在O点,另一端固定一小球,现让小球在竖直平面内做半径为R 的圆周运动。

小球运动到最高点时,杆与小球间弹力大小为F,小球在最高点的速度大小为v,其F-v2图象如图乙所示,则()A .小球的质量为aRbB .当地的重力加速度大小为RbC .v 2=c 时,小球对杆的弹力方向向上D .v 2=2b 时,小球受到的弹力与重力大小相等 【答案】: ACD【典例2】用长L = 0.6 m 的绳系着装有m = 0.5 kg 水的小桶,在竖直平面内做圆周运动,成为“水流星”。

G =10 m/s 2。

求:(1) 最高点水不流出的最小速度为多少?(2) 若过最高点时速度为3 m/s ,此时水对桶底的压力多大? 【答案】 (1) 2.45 m/s (2) 2.5 N 方向竖直向上【解析】(1) 水做圆周运动,在最高点水不流出的条件是:水的重力不大于水所需要的向心力。

这是最小速度即是过最高点的临界速度v 0。

以水为研究对象, mg =m v 20L解得v 0=Lg =0.6×10 m/s ≈ 2.45 m/s(2) 因为 v = 3 m/s>v 0,故重力不足以提供向心力,要由桶底对水向下的压力补充,此时所需向心力由以上两力的合力提供。

专题_竖直平面内的圆周运动详解

专题_竖直平面内的圆周运动详解

(1).当V1=1m/s时,F1=? (2).当V2=4m/s时,F2=? (3).通过最低点时,情况又如何呢? (4).如果和小球相连的是细绳而 不是细杆,情况又如何呢?
V
.
O
例2.一细杆与水桶相连,水桶中装有水,水桶与细杆一起在竖 直平面内做圆周运动,如右图所示,水的质量是m=0.5kg,水 的重心到转轴的距离L=50cm. (1).若在最高点时水不流出来,求桶的最小速度; (2).若在最高点时水桶的速率V=3m/s,求水对桶底的压力.
二.小球有支撑(在竖直平面内过最高点的情况)
V
V
r杆


1.临界条件: 由于轻杆和管壁的支撑作用,小球恰好能到达 最高点的临界速度V临界=0
2.如图丙所示,小球过最高点时,轻杆对小球的弹力情况:
(1).V=0时,轻杆对小球有竖直向上的支持力FN,且FN=mg
(2).0<V< gr 时, 轻杆对小球有竖直向上的支持力FN, 大小随速度的增大而减小,取值范 围:0<FN<mg
施力 特点
拉力
v gr v gr v gr
不可 通过
T=0
恰好通过 最高点
拉力
拉力
支持力 N=0
支持力
拉力
支持力
安全过 桥
N=0 恰好离 开桥
离开桥
三.例题
例1.长L=0.5m、质量可以忽略的杆,其下端固定于O点,上 端连有质量=2㎏的小球,它绕O点在竖直平面内做匀速圆周 运动.当通过最高点时,如图所示,在下列情况下,求杆受到 的力.(g=10m/s2)
o B
2.如图所示,一个人用一根长为1m、只能承受46N拉力的绳子拴着 一个质量为1kg的小球在竖直平面内做圆周运动.已知圆心O离地 面的高度H=6m,转动中,小球在最低点时绳子断了,g=10m/s2,求: (1).绳子断时小球运动的角速度 (2).绳子断后小球落地点与抛出点的水平距离

浅析竖直平面内的圆周运动的临界问题

浅析竖直平面内的圆周运动的临界问题

浅析竖直平面内的圆周运动的临界问题竖直平面内的圆周运动往往是在一些理想模型约束下进行的,常见的有轻绳、轻杆、轨道、管道等, 下面将对这类临界状态问题进行综合分析。

一、轻绳模型绳或光滑圆轨道的内侧。

如图所示,它的特点是:在运动到最高点时均没有物体支撑着小球。

下面讨论小球(质量为m)在竖直平面内做圆周运动(半径为R)通过最高点时的情况:1.临界条件:小球到达最高点时受到绳子的拉力恰好等于零,这时小球做圆周运动所需要的向心力仅由小球的重力提供。

根据牛顿第二定律得,mg=m,即v临界=Rg。

这个速度可理解为小球恰好通过最高点或恰好通不过最高点时的速度;也可认为是小球通过最高点时的最小速度,通常叫临界速度。

2.小球能通过最高点的条件:当v>Rg时,这时绳子对球有作用力,称为拉力。

当v=Rg 时,小球刚好能通过最高点,此时绳子对球不产生作用力。

3.小球不能通过最高点的条件:v<Rg时,实际上小球还没有到达最高点就已经脱离了轨道(如图)。

二、轻杆模型杆和光滑管道。

如图所示,它的特点是:在运动到最高点时有物体支撑着小球。

下面讨论小球(质量为m)在竖直平面内做圆周运动(半径为R)通过最高点时的情况:1.临界条件:由于硬杆的支撑作用,小球恰能到达最高点,临界速度是:v临界=0。

此时,硬杆对物体的支持力恰等于小球的重力mg。

2.如上图所示的小球通过最高点时,硬杆对小球的弹力情况为:当v=0时,硬杆对小球有竖直向上的支持力FN,其大小等于小球的重力,即FN=mg;当0<v<Rg时,杆对小球的支持力竖直向上,大小随速度的增加而减小,其取值范围为0<FN<mg;当v=Rg时,FN=0。

这时小球的重力恰好提供小球做圆周运动的向心力;当v>Rg时,硬杆对小球有指向圆心(即方向向下)的拉力,其大小随速度的增大而增大。

三、两种模型分析比较1.轻绳模型:均是没有支撑的小球,由mg=m得v临=gr。

竖直平面内的圆周运动

竖直平面内的圆周运动

分析:
F2
A
最高点:
V1(V2)
v mg F1 m R

2 1
v mg F2 m R
2 2
F1 G
;
R
F3
V3 G
v 最低点: F3 mg m R
思考:小球在最高点的最小速度 可以是多少?什么时候外管壁对 小球有压力,什么时候内管壁对 小球有支持力?什么时候内外管 壁都没有压力?
要通过最高点,此时轻杆的拉力需要大 于等于5mg,速度 V 5gR
拓展:物体在管型轨道内的运动
如图,有一内壁光滑竖直放 置的管型轨道半径为R,内 有一质量为m的小球,沿其 竖直方向上的做变速圆周运 动,小球的直径刚好与管的 内径相等
(1)小球在运动到最高点的时候速度与受力 的关系是怎样的? (2)小球运动到最低点的时候速度与受力的 关系又是怎样?
练习5
杆长为 L ,球的质量为 m ,杆连球在竖直平面内绕 轴 O 自由转动,已知在最高点处,杆对球的弹力大小 为F=1/2mg,求这时小球的速度大小。 解:小球所需向心力向下,本题中 F=1/2mg<mg, 所以弹力的方向可能向上,也可能向下。
⑴若F 向上,则
mv 2 mg F , L
⑵若F 向下,则
v vmin gr

当质点的速度小于这一值时,质点将运动不到最
2、最低点: 最低点的向心力方程:
mV FN mg R
2
V
可知此时绳子的拉力不可能为零,其最小值为 mg,速度为零,但不能通过最高点。 要通过最高点,此时绳子的拉力需要大于等 于6mg,速度 V 5gR
拓展:物体沿竖直内轨运动
练习1
绳系着装有水的桶,在竖直平面内做圆周运动, 水的质量为0.5Kg,绳长60Cm,求: (1)最高点水不流出的最小速率; (2)水在最高点速率为3m/s时,水对桶底的压力。

高三物理 圆周运动的临界条件 知识精讲

高三物理 圆周运动的临界条件 知识精讲

高三物理 圆周运动的临界条件 知识精讲在竖直平面内,圆周运动的临界条件:1. 绳拉小球在竖直平面内的运动,是变速运动,在上端v v 小大,在下端BA 位置v AGN小球受到重力G ,绳的拉力为T ,A 位置的向心力F mg N mg N mv RA =++=2/mg N 重力与运动状态无关,为轨道对物体的弹力,该力的大小与运动状态有关。

N mv R mg A =-2/ (1)当时绳提供弹力向下,是N mv R mg A >>02/由绳的形变而引起的,小球维持圆周运动。

()当时重力提供向心力,202N mv R mg A ==/小球与绳间无相互作用。

()当时除提供向心力外还有余力,302N mv R mg mg A <</必须由绳提供,向上拉力以抵消该余力,这是绳所做不到的,所以,受力大于向心力而下落。

A. 该时v 称为临界速度,是小球刚好越过顶点,作圆周运动速度的最小值。

B. 临界速度与物体质量⋅⋅无关,只取决于竖直平面内,绳长和重力加速度gC. 当v v <临,小球下落,v v ≥临,小球保持⋅⋅圆周运动。

尚未达到最高点,作抛体运动。

在B 位置重力为mg 为切向力,使小球在切向加速,T 提供力作为向心力 T mv R B =2/在C 位置重力为mg ,拉力为T 在一条直线上,合力指向圆心,充当向心力T mg mv R C -=2/TmgvD. 如果在该题中,绳拉球,改为球在单侧内轨道运动,物体做圆周运动情况相同。

物体在绳,单侧轨道上竖直平面内,否则物体能做圆周运动的速度条件为v gR ≥在最高点。

2. 杆带球在竖直平面内作圆周运动,可以做到是匀速圆周运动。

CA 位置N mgv小球受到重力,杆的拉力N ,A 位置的向心力,F mg N =+ N F mg mv R mg A =-=-2/mg 与运动状态无关,N 与运动状态有关。

(1)当N mv R mg >>02,/ 杆提供向下弹力,是由于杆对球拉力,可以做到。

竖直面内圆周运动问题

竖直面内圆周运动问题

竖直面内圆周运动问题物体在竖直面内做的圆周运动是一种典型的变速曲线运动,该类运动常有临界问题,并有“最大”、“最小”、“刚好”等词语,常有两种模型——轻绳模型和轻杆模型,分析比较如下:v 2[例](2013·重庆模拟)如图4-3-8所示,半径为R 、内径很小的光滑半圆管竖直放置,两个质量均为m 的小球A 、B 以不同的速度进入管内。

A 通过最高点C 时,对管壁上部压力为3 mg ,B 通过最高点C 时,对管壁下部压力为0.75 mg ,求A 、B 两球落地点间的距离。

[解析] A 球通过最高点时,由牛顿第二定律F N A +mg =m v 2AR已知F N A =3mg ,得v A =2RgB 球通过最高点时,由牛顿第二定律 mg -F N B =m v 2B R已知 F N B =0.75mg ,得v B =12Rg 平抛落地时间t = 4R g故两球落地点间的距离Δl =(v A -v B )t 解得Δl =3R练习1.(2013·佛山模拟)如图所示,小球在竖直放置的光滑圆形管道内做圆周运动,内侧壁半径为R ,小球半径为r ,则下列说法正确的是( )A .小球通过最高点时的最小速度v min =g (R +r )B .小球通过最高点时的最小速度v min =0C .小球在水平线ab 以下的管道中运动时,内侧管壁对小球一定无作用力D .小球在水平线ab 以上的管道中运动时,外侧管壁对小球一定有作用力解析:选BC 小球沿管上升到最高点的速度可以为零,故A 错误,B 正确;小球在水平线ab 以下的管道中运动时,由外侧管壁对小球的作用力F N 与球重力在背离圆心方向的分力F mg 的合力提供向心力,即:F N -F mg =m v 2R +r ,因此,外侧管壁一定对球有作用力,而内侧壁无作用力,C 正确;小球在水平线ab 以上的管道中运动时,小球受管壁的作用力与小球速度大小有关,D 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一物理 习题课:竖直面内的变速圆周运动及临界状态
(2014-3-12)
【学习目标】 对竖直面内变速圆周运动能正确分析受力,明确其临界状态
【发展目标】
通过实例体会物理在生活中的应用,培养学生学习物理的兴趣 【重、难点】
根据牛顿第二定律利用向心力公式解决实际问题 【学习过程】
对于物体在竖直平面内做变速圆周运动的问题,中学物理中只研究物体通过最高点和最低点的情况,并且经常出现临界状态,下面对这类问题进行分析:
一、没有物体支撑的小球
1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动在最高点的情况 (1)球在最高点向心力是由什么力提供的?
(2)若绳长为r ,小球质量为m ,小球运动到最高点时的速度为v ,求绳对球的拉力?
(3)由(2)的结果分析当小球速度减小,绳中拉力如何变化?
2、若小球在光滑轨道内侧做圆周运动,轨道对小球的弹力情况 与上述情况类似,同学们试试自己分析一下。

〖归纳总结〗
“绳模型”如图所示,小球在竖直平面内做圆周运动过最高点情况。

注意:a 中绳对小球只能提供拉力,方向向下。

(b 中轨道对小球只能提供弹力,方向向下)
(1)小球能过最高点的临界条件:绳子的拉力(或轨道的弹力)刚好等于零
mg =2
v m r
v 临界=
(2)小球能过最高点条件:v 当v
(3)不能过最高点条件:v (实际上球还没有到最高点时,就脱离了轨道)
【例1】长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一个水平初速度,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是
A .球过最高点时,速度为零
B .球过最高点时,绳的拉力为mg
C .开始运动时,绳的拉力为2v m L
D a
b
二、有物体支撑的小球
1、如图所示,轻杆的一端固定一小球在竖直面内做圆周运动,
(1)球在最高点的向心力是由什么力提供的?
(2)若杆长为r,小球质量为m,小球运动到最高点时的速度为v,求杆对球的弹力?
(3)由(2)的结果分析当小球速度减小,杆中弹力如何变化?可按以下思路进行:
a、当v=0时,轻杆对小球有的,其大小等于。

b、当0<v
时,杆对小球的力的方向,其大小随速度的增大
而,其取值范围是:。

c、当v
=时,F N= 。

d、当v
时,杆对小球有指向圆心的,其大小随速度的增大而。

2、如下图所示的小球通过光滑双轨道最高点时,轨道对小球的弹力情况与上述情况类似。

a、当v=0时,管的内壁侧(填“上”或“下”)对小球有向的,
其大小等于。

b、当0<v
时,管的内壁侧对小球有向的,
其大小随速度的增大而,其取值范围是:。

c、当v
时,F N=。

d、当v
>时,管的内壁侧对小球有向的,其大小随速度的增大
而。

〖归纳总结〗
“杆模型”如图所示,小球在竖直平面内做圆周运动过最高点情况
注意:轻杆和细线不同,轻杆a对小球既提供拉力,又能产生提供力。

(双轨和单轨不同,双轨b对小球既能提供向下的弹力,又能提供向上的弹力)
(1)小球能最高点的临界条件:v = 0,此时F = mg(F为支持力)
(2)当0< v
F随v增大而减小,且F <mg(F为支持力)(3)当v
时,F=0
(4)当v
时,F随v增大而增大,且F >0(F为拉力)
【例2】如图所示,一轻杆一端固定质量为m的小球,以另一端O为圆心,使小球做半径为R 的圆周运动,以下说法正确的是
A.球过最高点时,杆所受的弹力可以等于零
B
C.球过最高点时,杆对球的弹力一定与球的重力方向相反
D.球过最高点时,杆对球的弹力可以与球的重力反向,此时重力一定大于杆对球的弹力
b
〖教师点拨〗
圆周运动临界问题
(一)水平面内圆周运动的临界问题:
做圆周运动的物体,其向心力可能由弹力、摩擦力等提供,常涉及绳的张紧与松弛、接触面间相对滑动、接触面分离等临界状态,并伴有“最大”“最小”“刚好”等词语。

.通过受力分析来确定临界状态和临界条件,是较常用的解题方法.常见的如:
绳子的临界:绳子突然松弛——张力T=0
绳子突然断裂——张力T=Tmax
接触面相对滑动的临界:静摩擦力充当向心力时突然消失——摩擦力f=0
静摩擦力充当向心力时达最大值——摩擦力f=fmax 接触面分离的临界:与接触面不挤压——弹力F N=0
(二)竖直面内圆周运动的临界问题:
物体在竖直面内做的圆周运动往往是变速圆周运动,在某些特殊位置上,常存在着最小(或最大)的速度,并伴有“最大”“最小”“刚好”等词语,此速度即为临界速度。

在这个位置,物体的受力必满足特定的条件,这就是临界条件。

首先明确物理过程,对研究对象进行受力分析,,根据牛顿第二定律列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找出临界值——临界速度。

常见的如:
轻绳模型(或单轨内侧、水流星)
轻杆模型(或双轨、管道内部、火车转弯)
拱形桥(或单轨外侧)【反馈练习】
A1.如图所示,细杆的一端与小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是A.a处为拉力,b处为拉力
B.a处为拉力,b处为推力
C.a处为推力,b处为拉力
D.a处为推力,b处为推力
A2.质量为m的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v,当小球以2v的速度经过最高点时,对轨道的压力大小是
A.0 B.mg
C.3mg D.5mg
A3.长为L的轻杆,一端固定一个小球,另一端与光滑的水平轴相连。

现给小球一个初速度,使小球在竖直平面内做圆周运动,已知小球在最高点时的速度为v,则下列叙述正确的是A.v
B.v由零逐渐增大,向心力也逐渐增大
C.v由零逐渐增大,杆对小球的弹力也逐渐增大
D.v
B4.如图所示,固定在竖直平面内的光滑圆弧形轨道ABCD,其A点与圆心等高,D点为轨道最高点,DB为竖直线,AC为水平线,AE为水平面,今使小球自A点正上方某处由静止释放,且从A点进入圆形轨道运动,通过适当调整释放点的高度,总能保证小球最终通过最高点D,则小球在通过D点后
A.会落到水平面AE上
B.一定会再次落到圆轨道上
C.可能会落到水平面AE上
D.可能会再次落到圆轨道上
B5.绳系着装有水的水桶,在竖直平面内做圆周运动,水的质量m=0.5kg ,绳长L=60cm ,g=10m/s 2,求: (1)最高点水不流出的最小速率?
(2)水在最高点速率v=3m/s 时,水对桶底的压力?
B6.长L=0.5m ,质量可以忽略不计的轻杆,一端固定于O 点,另一端连有质量m=2kg 的小球,小球绕O 点做圆周运动,如图所示。

当小球通过最高点时,就下列两种情况讨论杆受到的力多大?并说明是拉力还是压力。

(取g=10m/s 2) (1)在最高点时小球的速度v 1=1m/s ; (2)在最高点时小球的速度v 2=4m/s 。

C7.如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A
放在转盘上,A 到竖直筒中心的距离为r .物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A 与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动?
【错解】当A 将要沿盘向外滑时,A 所受的最大静摩擦力F m ′指向圆心,则F m ′=mωm 2r ①
由于由于最大静摩擦力是压力的μ倍,即F m ′=μF N =μmg ②
由①、②
解得:m ω=
要使A 随盘一起转动,其角速度ω
应满足0ω<【错因】A 物随盘一起做匀速圆周运动提供是绳的拉力和A 物所受的摩擦力的合力,而拉力的
大小始终等于B 物的重力。

【正解】由于A 在圆盘上随盘做匀速圆周运动,所以它所受的合外力必然指向圆心,而其中重力、支持力平衡,绳的拉力指向圆心,所以A 所受的摩擦力的方向一定沿着半径或指向圆心,或背离圆心.当A 将要沿盘向外滑时,A 所受的最大静摩擦力指向圆心,A 的向心力为绳的拉力与最大静摩擦力的合力.即
F +F m ′=mω12r ①
由于B 静止,故F =mg ②
由于最大静摩擦力是压力的μ倍,即F m ′=μF N =μmg ③ 由①、②、③解得
ω1=r g /)1(μ+;
当A 将要沿盘向圆心滑时,A 所受的最大静摩擦力沿半径向外,这时向心力为: F -F m ′=mω22r ④ 由②、③、④得ω2=r g /)1(μ-. 要使A 随盘一起转动,其角速度ω应满足
r g /)1(μ-≤ω≤r g /)1(μ+
【学后反思】。

相关文档
最新文档