圆周运动中的临界问题专题

合集下载

23_第4讲 圆周运动中的临界问题

23_第4讲 圆周运动中的临界问题
答案 AC 小球过最高点时的临界速度满足mg=mv2 ,得v= gR ,此时
r
绳中张力为零,小球过最高点时绳子对小球的作用力不可能与球所受重 力方向相反,故答案为A、C。
深化拓展 栏目索引
深化拓展
考点一 水平面圆周运动的临界问题 考点二 竖直面圆周运动的临界问题
深化拓展
深化拓展 栏目索引
考点一 水平面圆周运动的临界问题
gr 时,FN=0 v2
gr 时,FN+mg=m r ,FN指向圆心并随v
的增大而增大
深化拓展 栏目索引
2-1 如图所示,质量为m的小球在竖直平面内的光滑圆环轨道上做圆周 运动。圆环半径为R,小球经过圆环最高点时刚好不脱离圆环,则其通过
最高点时 ( C )
A.小球对圆环的压力大小等于mg B.小球受到的向心力等于0 C.小球的线速度大小等于 gR D.小球的向心加速度大小等于2g
(1)过最高点时,v≥ gr ,FN+mg=m v2 ,绳、轨 r
道对球产生弹力FN
(2)不能过最高点,v< gr ,在到达最高点前小 球已经脱离了圆轨道
(1)当v=0时,FN=mg,FN为支持力,沿半径背离圆 心
(2)当0<v<
gr
时,-FN+mg=m
v2 r
,FN背向圆心,
随v的增大而减小
(3)当v= (4)当v>
夯基提能作业 栏目索引
第4讲 圆周运动中的临界问题
同理,当车速高于vc,且不超出某一最高限度,车辆可能只是有向外侧滑
动的趋势,不一定能够滑动,当超过最大静摩擦力时,才会向外侧滑动,故
选项C正确;当路面结冰时,只是最大静摩擦力变小,vc值不变,D错误。

圆周运动中的临界问题

圆周运动中的临界问题
的角速度ω满足什么条件,物体M才能随转台转动? (2)物体M随转台一起以角速度ω匀速转动时,物体离转台中心的最大距 离和最小距离。 M
向心力最小时,角速度最小
向心力最大时,角速度最大
m
四、实例分析
例4:如图,长为L的绳子,下端连着质量为m的小球,上端接于天花 板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光
三、解决圆周运动中临界问题的一般方法
1、对物体进行受力分析 2、找到其中可以变化的力以及它的临界值 3、求出向心力(合力或沿半径方向的合力)的临界值
4、用向心力公式求出运动学量(线速度、角速度、周期、 半径等)的临界值
四、实例分析
例1:如图,在质量为M的电动机的飞轮上,固定着一个 质量为m的重物(m的体积和大小可忽略),重物m到飞 轮中心距离为R,飞轮匀速转动时,为了使电动机的底 座不离开地面,转动的角速度ω最大为多少?
B A
O’
四、实例分析
例3:在以角速度ω匀速转动的转台上放着一质量为M的物体,通过一 条光滑的细绳,由转台中央小孔穿下,连接着一m的物体,如图所示。 设M与转台平面间的最大静摩擦力为压力的k倍,且转台不转时M不能 相对转台静止。求:
(1)如果物体M离转台中心的距离保持R不变,其他条件相同,则转台转动
A A
30°
30°
B
45°Biblioteka B 45°CCO
A
O’
水平转盘上放有质量为m的物快,当物块到转 轴的距离为r时,若物块始终相对转盘静止,物 块和转盘间最大静摩擦力是正压力的μ倍,求 转盘转动的最大角速度是多大?
物体与圆筒壁的动摩擦因数为μ ,圆筒的半 径为R,若要物体不滑下,圆筒的角速度至少 为多少?

2025高考物理总复习圆周运动中的临界极值问题

2025高考物理总复习圆周运动中的临界极值问题
2
2
对 a 有 kmg-FT=ml2 ,对 b 有 FT+kmg=m·
2l2 ,解得 ω2=
2

3
拓展变式 2
把典题1中装置改为如图所示,木块a、b用轻绳连接(刚好拉直)。(1)当ω为
多大时轻绳开始有拉力?(2)当ω为多大时木块a所受的静摩擦力为零?
答案 (1)

2
(2)


解析 (1)在 b 的静摩擦力达到最大时,轻绳刚要产生拉力,对 b 有
的间隙可忽略不计。已知放置在圆盘边缘的小物体与圆盘的动摩擦因数
为μ1=0.6,与餐桌的动摩擦因数为μ2=0.225,餐桌离地高度为h=0.8 m。设小
物体与圆盘以及餐桌之间的最大静摩擦力等于滑动摩擦力,重力加速度g
取10 m/s2。
(1)为使小物体不滑到餐桌上,圆盘的角速度ω的最大值为多少?
(2)缓慢增大圆盘的角速度,小物体从圆盘上甩出,
滑动的末速度 vt',由题意可得 vt'2-0 2 =-2ax'
由于餐桌半径为 R'= 2r,所以 x'=r=1.5 m
解得 vt'=1.5 m/s
设小物体做平抛运动的时间为 t,则
1 2
h=2gt ,解得
t=
小物体做平抛运动的水平位移为 x1=vt't=0.6 m。
2ℎ
=0.4

s
审题指导
关键词句
在圆周运动最高点和最低点的临界条件分析。
题型一
水平面内圆周运动的临界问题
1.水平面内圆周运动的临界、极值问题通常有两类,一类是与摩擦力有关
的临界问题,一类是与弹力有关的临界问题。
2.解决此类问题的一般思路

专题圆周运动中的临界专题课件-高一物理人教版(2019)必修第二册

专题圆周运动中的临界专题课件-高一物理人教版(2019)必修第二册
度。
◆知识总结◆
临界问题:由于物体在竖直平面内做圆周运动的依托物(绳、轨道、轻杆、管道
等)不同,所以物体恰好能通过最高点的临界条件也不同。
N
mg
O

mg
O
内轨道
mg
O

物体在最高点的最小速度取决于该点所受的最小合外力。
N
mg
O
管道
物理情景
最高点无支撑
最高点有支撑
实例
球与绳连接、水流星、沿内轨
道运动的“过山车”等
且摩擦力方向同向.
第二、与弹力有关的临界极值问题
①压力、支持力的临界条件是物体间的弹力恰好为零;
②绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最
大承受力等。
02
竖直面内圆周运动的临界问题
竖直平面内的圆周运动,一般情况下是变速圆周运动,物体能否通过最高点是
有条件的。
1、轻绳(或内轨道)——小球组成无支撑的物理模型(称为“轻绳模型”)
(1)临界条件:最高点时,绳子或轨道对小球没有力的作用
v2
mg=m R ⇒v 临界= Rg.
(2)能过最高点的条件:v≥ Rg,当 v> Rg时,绳对球产生拉力,轨道对球产
生压力.
(3)不能过最高点的条件:v<v
做斜抛运动).
临界
(实际上球还没到最高点时就脱离了轨道而
(4)小球在最低点时:绳对小球产生竖直向上的拉力(若是内轨道则产生竖直向
题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值
,这个极值点也往往对应着临界状态。
②确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态
出现的条件,并以数学形式表达出来。

微专题23 圆周运动的其他临界问题-2025版高中物理微专题

微专题23  圆周运动的其他临界问题-2025版高中物理微专题

微专题23圆周运动的其他临界问题【核心要点提示】五种典型临界条件(1)物体离开接触面的临界条件:两物体相接触或脱离,临界条件是:弹力F N =0.(2)相对滑动的临界条件:两物体相接触且处于相对静止时,常存在着静摩擦力,则相对滑动的临界条件是:静摩擦力达到最大值.(3)绳子断裂与松弛的临界条件:绳子所能承受的张力是有限度的,绳子断与不断的临界条件是绳中张力等于它所能承受的最大张力,绳子松弛的临界条件是:F T =0.(4)加速度变化时,速度达到最值的临界条件:当加速度变为0时.(5)物块与弹簧脱离的临界条件:弹力F N =0,速度相等,加速度相等【微专题训练】【例题】在高速公路的拐弯处,通常路面都是外高内低.如图所示,在某路段汽车向左拐弯,司机左侧的路面比右侧的路面低一些.汽车的运动可看作是做半径为R 的圆周运动.设内外路面高度差为h ,路基的水平宽度为d ,路面的宽度为L .已知重力加速度为g .要使车轮与路面之间的横向摩擦力(即垂直于前进方向)等于零,则汽车转弯时的车速应等于()A.gRhL B.gRhd C.gRLh D.gRdh【解析】考查向心力公式.汽车做匀速圆周运动,向心力由重力与斜面对汽车的支持力的合力提供,且向心力的方向水平,向心力大小F 向=mg tan θ,根据牛顿第二定律:F 向=m v 2R ,tan θ=h d,解得汽车转弯时的车速v =gRh d,B 对.【答案】B【变式】(2018·辽宁师大附中高三上学期期末)如图所示,水平转台上有一个质量为m 的小物块。

用长为L 的轻细绳将物块连接在通过转台中心的转轴上。

细绳与竖直转轴的夹角为θ,系统静止时细绳绷直但张力为零。

物块与转台间动摩擦因数为μ(μ<tan θ),设最大静摩擦力等于滑动摩擦力。

当物块随转台由静止开始缓慢加速转动且未离开转台的过程中(CD )A .物块受转台的静摩擦力方向始终指向转轴B.至绳中出现拉力时,转台对物块做的功为μmgL sinθ2C.物块能在转台上随转台一起转动的最大角速度为gL cosθD.细绳对物块拉力的瞬时功率始终为零[解析]由题可知,物体做加速圆周运动,所以开始时物体受到的摩擦力必定有一部分的分力沿轨迹的切线方向。

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

圆周运动的临界问题

圆周运动的临界问题
√D.汽车能安全转弯的向心加速度不超过7.0 m/s2
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题

圆周运动中的临界问题(全)

圆周运动中的临界问题(全)

圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。

类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。

设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。

求在圆形轨道最高点B 时的速度大小。

巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。

(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。

如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。

①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。

V= 是“杆”模型中杆对小球是“推”“拉”的临界。

类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。

(完整版)圆周运动中的临界问题(最新整理)

(完整版)圆周运动中的临界问题(最新整理)

圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。

1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。

()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。

1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。

临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。

gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。

如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。

2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。

(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。

a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。

例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。

当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。

解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。

(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。

圆周运动的临界问题-高考物理复习

圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题
②当 0 p v gR 时,F 表现为支持力: F随v的增大而减小
③当 v = gR
④当 v f
时,F=0;
gR 时,F为拉力:
F随v的增大而增大
总结:
物体在没有支撑物时: 在竖直平面内做圆周运动过最高点的临界条件是: 2 v0 物体的重力提供向心力即 mg m r
临界速度是:v0 gr 在其它位置要能做圆周运动,也必须满足F供=F需。 物体在有支撑物时: 物体恰能达到最高点的v临=0
定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动(同图5),在A通过最高点,试 讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时: ②当A的速率v2=4m/s时:
例4 如图所示,固定在竖直平面内的光滑圆弧形轨 道ABCD,其A点与圆心等高,D点为轨道最高点,DB为 竖直线,AC为水平线,AE为水平面,今使小球自A点 正上方某处由静止释放,且从A点进入圆形轨道运动, 通过适当调整释放点的高度,总能保证小球最终通过 最高点D,则小球在通过D点后(A ) A.会落到水平面AE上 B.一定会再次落到圆轨道上 C.可能会落到水平面AE上 D.可能会再次落到圆轨道上
专题:
圆周运动中的临界问题
一、竖直平面内的圆周运动
对于物体在竖直面内做的圆周运动是一种典 型的变速曲线运动,该类运动常有临界问 题,并伴有“最大”“最小”“刚好”等 词语,常分析两种模型——轻绳模型和轻杆 模型
1.轻绳模型 :
(1)特点:在最高点时,没有物 体支撑,轻绳只能产生拉力 (2)分析:
最高点:
T mg m
2
R
v越大,T越大, v越小,T越小, 当T=0时,v = v临
mg m

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。

专题 圆周运动临界问题

专题     圆周运动临界问题

专题 圆周运动的临界问题一.水平转台上与静摩擦力有关的临界问题在转台上做圆周运动的物体,若有静摩擦力参与,当转台的转速变化时,静摩擦力也会随之变化。

关键:(1)找出与最大静摩擦力对应的临界条件 (2)牢记“静摩擦力大小有个范围,方向可以改变1.单个物体做圆周运动【例1】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:⑴当转盘角速度ω1=μg 2r 时,细绳的拉力T 1 ⑵当转盘角速度ω2=3μg 2r时,细绳的拉力T 22.绳子连接两个物体在圆心的一侧做圆周运动【例2】一圆盘可以绕其竖直轴在图所示水平面内转动,A 、B 物体质量均为m ,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L 的轻绳连在一起。

若将A 放在距轴心为L 的位置,A 、B 之间连线刚好沿半径方向被拉直,随着圆盘角速度ω的增加,摩擦力或绳子拉力会出现不同的状态,(两物体均看作质点)求:(1)ω1=Lg 3μ时,细绳的拉力T 1和A 所受的摩擦力f 1(2)ω1=Lg 53μ时,细绳的拉力T 2和A 所受的摩擦力f 23.绳子连接两个物体分别在圆心的两侧做圆周运动【例3】(多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时A 所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动【针对训练1】如图所示,水平转台上的小物体A 、B 通过轻绳连接,转台静止时绳中无拉力,A 、B 的质量分别为m 、2m ,A 、B 与转台间的动摩擦因数均为μ, A 、B 离转台中心的距离分别为1.5r 、r ,当两物体随转台一起匀速转动时,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .绳中无拉力时,A 、B 物体受到的摩擦力大小相等B .当绳中有拉力时,转台转动的角速度应大于√μg rC .若转台转动的角速度为√6μg r ,则A 、B 一起相对转台向B 离心的方向滑动D .物体A 所受的摩擦力方向一定指向圆心【针对训练2】(多选)如图所示,圆盘可以绕其竖直轴在水平面内转动。

圆周运动中的临界问题

圆周运动中的临界问题

专题:圆周运动的临界问题一、竖直平面内作圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。

一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。

1.“绳模型”如图所示,小球在竖直平面内做圆周运动过最高点情况。

(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2v m R ⇒ v 临界=(2)小球能过最高点条件:v ≥(当v 时,绳对球产生 ,轨道对球产生 )(3)不能过最高点条件:v<(实际上球还没有到最高点时,就脱离了轨道)例、如图,质量为0.5kg 的小杯里盛有1kg 的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s ,g 取10m/s 2,求:(1) 在最高点时,绳的拉力? (2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少? 2.“杆模型”如图所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。

(1)小球能最高点的临界条件:v = ,F = (F 为支持力) (2)当0< v F 随v 增大而减小,且mg > F > 0(F 为支持力)(3)当v =F =(4)当v F 随v 增大而 ,且F >0(F 为 )注意:管壁支撑情况与杆一样。

杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.例、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A .g mrm M + B .g mr mM +C .g mr m M - D .mrMg由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论.一、滑动与静止的临界问题例、如图所示,用细绳一端系着的质量为M 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m 的小球B ,A 的重心到O 点的距离为L ,为使小球B 保持静止,求: 1)盘面光滑,A 绕转盘中心O 旋转的角速度ω的值?2)A 与转盘间的摩擦因数为μ,且mg 〈Mg μ, 求转盘与A 一起旋转的角速度ω 的取值范围? (3 ) A 与转盘间的摩擦因数为μ,且mg 〉Mg μ, 求转盘与A 一起旋转的角速度ω 的取值范围?如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A 、B 的质量均为m ,它们rA=20cm ,rB=30cm 。

专题七 圆周运动的临界问题

专题七 圆周运动的临界问题
水平面内圆周运动临界问题的分析方法
几何分析
目的是确定圆周运动的圆心、半径等
运动分析
目的是确定圆周运动的线速度、角速度、向心加速度等
受力分析
目的是通过力的合成与分解,表示出物体做圆周运动时,外界所提供的向心力
条件分析
①绳的临界:张力 ;②接触面滑动的临界: ;③接触面分离的临界: .分析时一般先假设达到临界状态后,再分析结论.
C
A.小球通过最高点时的最小速度 B.小球通过最高点时的最小速度 C.小球在水平线 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线 以上的最高点的速度可以为零,故A、B错误;小球在水平线 以下的管道中运动时,由外侧管壁对小球的作用力 与小球重力在背离圆心方向的分力 的合力提供向心力,即 ,因此外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,C正确;小球在水平线 以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.
考向二 “杆-球”模型
例4 如图甲所示,轻杆一端固定在 点,另一端固定一小球,现让小球在竖直平面内做半径为 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为 ,小球在最高点的速度大小为 ,其 图像如图乙所示.则( )
A.小球的质量为 B.当地的重力加速度大小为 C. 时,在最高点杆对小球的弹力方向向上D. 时,在最高点杆对小球的弹力大小为



变式2 如图所示,相同的物块 、 用沿半径方向的细线相连放置在水平圆盘上.当圆盘绕转轴转动时,物块 、 始终相对圆盘静止.下列关于物块 所受的摩擦力 随圆盘角速度的平方 的变化关系正确的是( )
D
A. B. C. D.
[解析] 角速度慢慢增大,一定是长绳挂着的那个球先离开圆锥筒,选项A正确,B错误;设小球离开圆锥筒后,绳子的拉力为 ,绳子长度为 ,与竖直方向的夹角为 ,由 , ,联立解得 ,而 ,为小球到圆锥筒顶点的高度,所以两个球都离开圆锥筒后,它们的高度一定相同,选项C正确;而细绳中拉力 ,即两个球都离开圆锥筒时两端绳子的拉力不一定相同,选项D错误.

圆周运动中的临界问题专题

圆周运动中的临界问题专题

课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg 〔可理解为恰好转过或恰好转不过的速度〕即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界〔实际上球还没到最高点时就脱离了轨道做斜抛运动〕 [例题1]如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 310,则有关小球能够上升到最大高度〔距离底部〕的说法中正确的是〔 〕 A 、一定可以表示为gv 220B 、可能为3RC 、可能为RD 、可能为35R[延展]汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度gr v 时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.〔2〕如右图所示,小球过最高点时,轻质杆〔管〕对球产生的弹力情况: 特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. ①当v =0时,F N =mg 〔N 为支持力〕②当 0<v <Rg 时, F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =Rg 时,F N =0④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大〔此时F N 为拉力,方向指向圆心〕 典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程[例题2]在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在OR圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤gR 310,则有关小球能够上升到最大高度(距离底部)的说法中正确的是( ) A 、一定可以表示为gv 220B 、可能为3RC 、可能为RD 、可能为35R【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度gr v 时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况: 特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力. ①当v =0时,F N =mg (N 为支持力)②当 0<v <Rg 时, F N 随v 增大而减小,且mg >F N >0,F N 为支持力. ③当v =Rg 时,F N =0④当v >Rg 时,F N 为拉力,F N 随v 的增大而增大(此时F N 为拉力,方向指向圆心) 典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定O ORR在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。

将物块置于离圆心R 处,R >L ,圆盘不动,物块保持静止。

现使圆盘从静止开始转动,并使转速ω逐渐增大,物块A 相对圆盘始终未惰动。

当ω增大到()54k R l mRω-=A 是否受到圆盘的静摩擦力,如果受到静摩擦力,试确定其方向。

【解析]对物块A ,设其所受静摩擦力为零时的临界角度为ω0,此时向心力仅为弹簧弹力;若ω>ω0,则需要较大的向心力,故需添加指向圆心的静摩擦力;若ω<ω0,则需要较小的向心力,物体受到的静摩擦力必背离圆心。

依向心力公式有m ω02R=k(R -L),所以()0k R l mRω-=,故()54k R l mRω-=,得ω>ω0。

可见物块所受静摩擦力指向圆心。

【例3】如图所示,细绳长为L ,一端固定在O 点,另一端系一质量为m 、电荷量为+q 的小球,置于电场强度为E 的匀强电场中,欲使小球在竖直平面内做圆周运动,小球至最高点时速度应该是多大?解析:小球至最高点时能以L 为半径做圆周运动,所需向心力最小时绳子无拉力,则Mg +Eq=mv 02/L ,得()m L Eq mg v /0+=,故小球在竖直平面内能够做圆周运动时,小球至最高点的速度 ()m L Eq mg v /+≥拓展:该题中物理最高点与几何最高点是重合的,物理最高点是在竖直平面内做圆周运动的物体在该点势能最大,动能最小,若把该题中的电场变为水平向右.如图,当金属球在环内做圆周运动时,则物理最高点为A 点,物理最低点为B 点,而几何最高点为C 点,几何最低点为D 点(这种情况下,两个最高点已不再重合,两个最低点也不再重合). A 处速度的最小值(临界速度)应满足:()()222/Eq mg F R mv A +==合思考:物体恰能到达几何最高点时,绳的拉力为多少?【例4】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。

A 球的质量为m 1,B 球的质量为m 2。

它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0。

设A 球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m 1,m 2,R 与v 0应满足怎样的关系式?解析:首先画出小球运动达到最高点和最低点的受力图,如图所示。

A 球在圆管最低点必受向上弹力N 1,此时两球对圆管的合力为零,m 2必受圆管向下的弹力N 2,且N 1=N 2。

据牛顿第二定律A 球在圆管的最低点有ΛΛRv m g m N 20111=-① Em ,q L ·O同理m 2在最高点有ΛΛRv m N g m 21222=+② m 2球由最高点到最低点机械能守恒Λ202212221212v m v m R g m =+③又N 1=N 2……④【小结】 比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。

找出其中的联系就能很好地解决问题。

【例5】如图所示,赛车在水平赛道上作900转弯,其内、外车道转弯处的半径分别为r 1和r 2,车与路面间的动摩擦因数和静摩擦因数都是μ.试问:竞赛中车手应选图中的内道转弯还是外道转弯?在上述两条弯转路径中,车手做正确选择较错误选择所赢得的时间是多少? 分析:赛车在平直道路上行驶时,其速度值为其所能达到的最大值,设为v m 。

转弯时,车做圆周运动,其向心力由地面的静摩擦力提供,则车速受到轨道半径和向心加速度的限制,只能达到一定的大小.为此,车在进入弯道前必须有一段减速过程,以使其速度大小减小到车在弯道上运行时所允许的速度的最大值,走完弯路后,又要加速直至达到v m 。

车道的选择,正是要根据内外道上的这些对应过程所历时间的比较来确定. 对于外车道,设其走弯路时所允许的最大车速为v 2,则应有mv 22/r 2=μmg 解得v 2=2r g μ如图所示,设车自M 点开始减速,至N 点其速度减为v 2,且刚好由此点进入弯道,此减速过程中加速度的大小为a=μmg/m=μg此减速过程中行驶的路径长度(即MN 的长度)为x 2=av v m 2222-=g v m μ22-22r车沿弯道到达A 点后,由对称关系不难看出,它又要在一段长为x 2的路程上加速,才能达到速度v m 。

上述过程所用的总时间为t 2=t 减速+t 圆弧+t 加速=a v v m 2-+222v r π+av v m 2-=g v m μ2-(2-2π)g r μ2同样的道理可以推得车走内车道所用的总时间为t 1=gv m μ2-(2-2π)g r μ1另一方面,对内车道和外车道所历路程的直线部分进行比较,由图可见,车往内车道多走了长度 ΔL = r 2- r l同时,在直线道上车用于加速和减速的行程中,车往内道也多走了长度 Δx=2x 1-2x 2= r 2- r l由于上述的ΔL 和Δx 刚好相等,可见车在直道上以v m 匀速行驶的路程长度对于内外两道来说是相等的.这样,为决定对内外道的选择,只需比较上述的t 1和t 2即可由于 t 2<t 1,显然,车手应选择走外道,由此赢得的时间为 Δt=t 1一t 2=21(2)2r r gπμ--2.求解范围类极值问题,应注意分析两个极端状态,以确定变化范围【例6】如图,直杆上0102两点间距为L ,细线O 1A 长为3L ,O 2A 长为L,A 端小球质量为m ,要使两根细线均被拉直,杆应以多大的角速度ω转动?解析:当ω较小时线O 1A 拉直,O 2A 松弛,而当ω太大时O 2A 拉直, O 1A 将松弛.设O 2A 刚好拉直,但F O2A 仍为零时角速度为ω1,此时∠O 2O 1A =300,对小球:在竖直方向F O1A ·cos300=mg ……①在水平方向:F O1A ·sin300=213sin 30m L ω⋅……②由①②得123g L ω=设O 1A 由拉紧转到刚被拉直,F O1A 变为零时角速度为ω2对小球:F O2A ·cos600=mg ……③F O2A ·sin600=m ω22L ·sin600………④ 由③④得22g L ω=,故223g g L L ω〈〈【例7】一根长约为L 的均匀细杆可以绕通过其一端的水平轴在竖直平面内转动,杆最初在水平位置。

杆上距O 为a 处放有一个小物体B (可视为质点)。

杆与其上小物体最初均处于静止状态,若此杆突然以匀角速度ω绕O 轴转动,问当ω取什么值时,小物体与杆可能相碰。

【解析】杆开始转动后,两物体的运动状态分别为:A 做匀速转动,B 做自由落体运动。

若B 能与杆相碰,只可能在B 下落的竖直线上,那么,杆转动的高度范围就被确定了,即如图所示的转角范围。

我们分两种情况进行讨论:(1)当杆的转速ω较小时,物体B 有可能追上细杆与细杆相碰。

设物体B 下落到C 作用的时间为t 1,杆转过Φ角所用时间为t 2,两物要能相碰,t 1和t 2就满足下列条件:t 1≤t 2…①又因为L BC =½gt 12,Φ=ωt 2,由几何关系L BC =22a L -,Lcos Φ=a ,所以L BC =½gt 12=22a L -解得t 1=ga L 222-由Φ=ωt 2=arccos α/L 解得t 2=ω1arccos (a/L ) 将t l 、t 2代入①式,得ga L 222- ≤ω1arccos (a/L )解得ω≤2garccos (a/L )/422a L - (2)当杆的转速ω较大时,杆转过一周后有可能追上B 而与物体B 相碰,设杆转过中角所用的时间为t 2/,杆要与B 相碰,t 2/和t l 必须满足下列条件:t l ≥t 2/由2π+Φ=ωt 2/,所以t 2/=(2π+Φ)=(2π+arccos (a/L ))/ω代入得ga L 222-≥(2π+arccos (a/L ))/ω,解得ω≥2garccos (a/L )/422a L - OA aLωB由以上分析可知,当杆转动的角速度满足:ω≤2garccos (a/L )/422a L -或ω≥2garccos (a/L )/422a L -时,物体B 均有可能和细杆相碰。

典例分析杆长为L ,球的质量为m ,杆连球在竖直平面内绕轴O 自由转动,已知在最高点处,杆对球的弹力大小为F =1/2mg ,求这时小球的即时速度大小。

解:小球所需向心力向下,本题中F =1/2mg <mg ,所以弹力的方向可能向上也可能向下。

相关文档
最新文档