圆周运动中的临界问题
第五讲:圆周运动临界问题
第五讲:圆周运动临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态,分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2 r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.例、如图所示,质量相等的A、B物体置于粗糙的圆盘上,圆盘的摩擦因数为μ,A、B通过轻绳相连,随圆盘一起做圆周运动且转动的角速度ω由0逐渐增大,A的转动半径为r,B的转动半径为2r,重力加速度为g,分析:①A、B滑动的临界角速度大小;①此时若A、B间轻绳被拉断,分析A、B的运动情况.【解析】①方法一:整体法:2μmg=mrω2+m·2r·ω2方法二:等效质点法:质心在AB的中点处【例题】如图所示,A、B、C三个物体放在旋转的水平圆盘面上,物体与盘面间的最大静摩擦力均是其重力的k倍,三物体的质量分别为2m、m、m,它们离转轴的距离分别为R、R、2R.当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确的是()A.A的向心加速度最大B.B和C所受摩擦力大小相等C.当圆盘转速缓慢增大时,C比A先滑动D.当圆盘转速缓慢增大时,B比A先滑最大静摩擦力提供向心力:2μmg =2m·32r·ω2,故临界角速度:ω=μg 3r. ①绳断瞬间:A 的向心力小于最大静摩擦力,故仍做圆周运动;B 的向心力大于最大静摩擦力,B 做离心运动.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零. (2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例、如图所示,用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,重力加速度为g ,分析:F T 随ω2变化的图像.【解析】情况一:a ≤g tan θ,小球与锥面接触,对小球受力分析,将向心加速度分解到沿绳方向和垂直绳方向.则有:T =m g cos θ+ml sin 2θω2,N =mg sin θ-12ml sin2θω2情况二:a >g tan θ,小球离开锥面,绳力T =mlω2 故T 与ω2的函数图像如图所示.【例题】一转动轴垂直于一光滑水平面,交点O 的上方h 处固定一细绳的一端,细绳的另一端固定一质量为m 的小球B ,绳长AB =l >h ,小球可随转动轴转动,并在光滑水平面上做匀速圆周运动,如图所示,要使小球不离开水平面,转动轴的转速的最大值是(重力加速度为g )( )A.12πg hB.πghC.12πg l针对训练题型1:摩擦力有关的临界问题1.如图,细绳一端系着质量M=0.6kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N,现使此平面绕中心轴线转动,问角速度ω在什么范围m会处于静止状态?(g 取10m/s2)(多选)2.如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω<时,绳子没有弹力B.当ω>时,A、B仍相对于转盘静止C.ω在<ω<范围内时,B所受摩擦力大小不变D.ω在0<ω<范围内增大时,A所受摩擦力大小先不变后增大(多选)3.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmgB.此时A所受摩擦力方向沿半径指向圆外C.此时圆盘的角速度为D.此时烧断绳子,A仍相对盘静止,B将做离心运动4.如图所示,表面粗糙的水平圆盘上叠放着质量相等的两物块A、B,两物块到圆心O的距离r=0.2m,圆盘绕圆心旋转的角速度ω缓慢增加,两物块相对圆盘静止可看成质点.已知物块A与B间的动摩擦因数μ1=0.2,物块B与圆盘间的动摩擦因数μ2=0.1,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,则下列说法正确的是()A.根据f=μF N可知,B对A的摩擦力大小始终等于圆盘对B的摩擦力大小B.圆盘对B的摩擦力大小始终等于B对A的摩擦力大小的2倍C.圆盘旋转的角速度最大值ωmax=rad/sD.如果增加物体A、B的质量,圆盘旋转的角速度最大值增大(多选)5.如图所示,水平转盘可绕竖直中心轴转动,盘上叠放着质量均为1kg的A、B两个物块,B物块用长为0.25m的细线与固定在转盘中心处的力传感器相连,两个物块和传感器的大小均可不计。
圆周运动中的临界问题
向心力最小时,角速度最小
向心力最大时,角速度最大
m
四、实例分析
例4:如图,长为L的绳子,下端连着质量为m的小球,上端接于天花 板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。此时小球静止于光
三、解决圆周运动中临界问题的一般方法
1、对物体进行受力分析 2、找到其中可以变化的力以及它的临界值 3、求出向心力(合力或沿半径方向的合力)的临界值
4、用向心力公式求出运动学量(线速度、角速度、周期、 半径等)的临界值
四、实例分析
例1:如图,在质量为M的电动机的飞轮上,固定着一个 质量为m的重物(m的体积和大小可忽略),重物m到飞 轮中心距离为R,飞轮匀速转动时,为了使电动机的底 座不离开地面,转动的角速度ω最大为多少?
B A
O’
四、实例分析
例3:在以角速度ω匀速转动的转台上放着一质量为M的物体,通过一 条光滑的细绳,由转台中央小孔穿下,连接着一m的物体,如图所示。 设M与转台平面间的最大静摩擦力为压力的k倍,且转台不转时M不能 相对转台静止。求:
(1)如果物体M离转台中心的距离保持R不变,其他条件相同,则转台转动
A A
30°
30°
B
45°Biblioteka B 45°CCO
A
O’
水平转盘上放有质量为m的物快,当物块到转 轴的距离为r时,若物块始终相对转盘静止,物 块和转盘间最大静摩擦力是正压力的μ倍,求 转盘转动的最大角速度是多大?
物体与圆筒壁的动摩擦因数为μ ,圆筒的半 径为R,若要物体不滑下,圆筒的角速度至少 为多少?
圆周运动_临界问题
当v=v0,对轨道刚好无压力,小球刚好能够通过最高点;
当v>v0,对轨道有压力,小球能够通过最高点; 当v<v0,小球偏离原运动轨道,不能通过最高点。
要保证过山车在最高点不掉下来,此时的速度必须满足:v gr
规律总结:无支持物
物体在圆周运动过最高点时,轻绳对物体只能产生沿绳收 缩方向向下的拉力,或轨道对物体只能产生向下的弹力; 若速度太小物体会脱离圆轨道——无支持物模型
①临界条件:绳子或轨道对小球恰好没有弹力的 作用,重力提供向心力,即 mg=mvR2临界, 解得小球恰能通过最高点的临界速度为: v = 临界 Rg. ②能过最高点的条件:v≥ gR,当 v> gR时,绳对 球产生拉力,轨道对球产生压力.
③不能过最高点的条件:V<V临界(实际上小球尚未到达 最高点时就脱离了轨道).
能使小球在管内做完整的圆周运动?
临界速度:F 0,v0 gR
当v<v0,内壁对球有向上的支持力;
当v>v0,外壁对球有向下的压力。
使小球能做完整的圆周运动在最低点的速度:
vA>2
gr
过最高 点的临 界条件 最低点 的临界
速度
轻绳模型 由 mg=mvr2 得 v 临= gr 由机械能守恒可得
,v2
gL
由牛顿第三定律,B球对O轴的L 拉力 T v24mg ,竖直向下。 ⑵杆对B球无作用力,对A球:T mg m ,T mg
由牛顿第三定律,A球对O轴的拉力 T 2Lmg ,竖直向下。
⑶在杆的转速逐渐变化的过程中,能否出现O轴不 受力的情况?请计算说明。
v2
若B球在上端A球在下端,对B球:T 2mg 2mg
(1)若m在最高点时突然与电机脱离, 它将如何运动? (2)当角速度ω为何值时,铁块在最高 点与电机恰无作用力? (3)本题也可认为是一电动打夯机的原 理示意图。若电机的质量为M,则ω多大 图3-5 时,电机可以“跳”起来?此情况下,对 地面的最大压力是多少?
圆周运动的临界问题
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题
圆周运动中的临界问题(全)
圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
圆周运动中的临界问题
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练
圆周运动中的临界问题
3 rad/s 1.0 rad/s
0.5 rad/s
• 在质量为M的电动机的飞轮上,固定 着一个质量为m的重物,重物到转轴 的距离为r,如图所示,为了使放在地 面上的电动机不会跳起,电动机飞轮 的角速度不能超过( )
A. C.
M m g mr M m g mr
B. D. Mg
mr
M m g mr
m R O
v0 N
M
如图所示,质量为m的物体随水平传送带 一起匀速运动,A为传送带的终端皮带轮, 皮带轮半径为r,要使物体通过终端时, 能水平抛出,皮带轮的转速至少为:( )
A
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固 定对称轴以恒定的角速度ω转动,盘面上离转轴 距离2.5m处有一小物体与圆盘始终保持相对静 止。物体与盘面间的动摩擦因数为 /2(设最 大静摩擦力等于滑动摩擦力),盘面与水平面的 夹角为30°,g取10m/s2。则ω的最大值是 A 5 rad/s B C D
gr
N=0
v2 mg m r
v gr
在最高点时速 度应不小于
gr
V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn
在最高点速度 应大于等于0 在最高点速度 应大于等于0
临界问题:由于物体在竖直平面内做圆周运动 的依托物(绳、轨道、轻杆、管道等)不同, 所以物体恰好能通过最高点的临界条件也不同。
3.如图所示,竖直圆筒内壁光滑,半径 为R,顶部有一个入口,在的正下方 处 有一个出口,一质量为 m的小球沿切线 方向的水平槽射入圆筒内,要使小球从 B处飞出,小球射入入口的速度 满足什 么条件? 在运动过程中球对筒的压力 多大?
圆周运动的临界问题-高考物理复习
力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水
圆周运动临界问题
圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。
在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。
以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。
当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。
在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。
在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。
根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。
需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。
此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。
圆周运动中的临界问题
圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。
圆周运动的临界问题
解:在最高点F向=G+T, 即G+T=mv2/r
T=mv2/r-mg≥0
小球经过最高点的速度:v gr
线或绳
讨论:
①、当 v gr 时,细绳对小球没有拉力作用。向心
力只由小球所受重力提供。
②、如果 v> gr ,轻绳对小球存在拉力。
③、如果 v< gr ,小球无法到达圆周的最高点
练习:如图,在“水流星”表演中,绳长为 1m,水桶的质量为2kg,若水桶通过最高点的 速度为4m/s,求此时绳受到的拉力大小。
变式训练2:如图所示,一个光滑的圆锥体固定在水平桌面上,其
轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端 拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆 锥体的轴线做水平匀速圆周运动。
⑴当v= gl 6
时,求绳对物体的拉力;
练习:长L=0.5m,质量可以忽略的的杆,其下端 固定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动,在A通过最高点时,试讨论在下列 两种情况下杆的受力:
①当A的速率v1=1m/s时 ②当A的速率v2=4m/s时
A
L
O
小结:
一.水平面内的圆周运动的临界问题
处理这类问题的关键是分析出静摩擦力的变化,从 而结合其他力分析出指向圆心的合外力的变化,以 确定圆周运动的其他物理量的变化范围。
mgt0 am n ω 1 2L 3s0 i3n00
B
30 0
45 0
C
将已知代入解得ω1=2.4 rad/s
②当角速度ω继续增大时TAC减小,TBC
增大。设角速度达到ω2时,TAC=0,则③ω=3 rad/s,此时两绳拉
(完整版)圆周运动中的临界问题
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为kg m 1.0=的小球, 上面绳长m l 2=,两端都拉直时与轴的夹角分别为o30与o45,问球的角速度在什么范围内,两绳始终张紧,当角速度为s rad /3时,上、下两绳拉力分别为多大?2、因静摩擦力存在最值而产生的临界问题 例2 如图2所示,细绳一端系着质量为kg M 6.0= 的物体,静止在水平面上,另一端通过光滑小孔吊着 质量为kg m 3.0=的物体,M 的中心与圆孔距离为m 2.0并知M 与水平面间的最大静摩擦力为N 2,现让此平面 绕中心轴匀速转动,问转动的角速度ω满足什么条件 可让m 处于静止状态。
(2/10s m g =)3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为0v ,此时绳子的拉力(轨道的弹力)C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即rvm mg 20=,gr v =0,式中的0v 是小球过最高点的最小速度,即过最高点的临界速度。
(1)0v v = (刚好到最高点,轻绳无拉力)(2)0v v > (能过最高点,且轻绳产生拉力的作用) (3)0v v < (实际上小球还没有到最高点就已经脱离了轨道) 例4、如图4所示,一根轻绳末端系一个质量为kg m 1=的小球, 绳的长度m l 4.0=, 轻绳能够承受的最大拉力为N F 100max =, 现在最低点给小球一个水平初速度,让小球以轻绳的一端O 为 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
圆周运动中的临界问题
圆周运动中的临界问题圆周运动中的临界问题的分析方法:首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=(可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力 注意1能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.2不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高度(距离底部)的说法中正确的是( )A、一定可以表示为 B 、可能为 C 、可能为R D 、可能为R答案:BC【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.【例5】如图所示,赛车在水平赛道上作900转弯,其内、外车道转弯处的半径分别为r1和r2,车与路面间的动摩擦因数和静摩擦因数都是μ.试问:竞赛中车手应选图中的内道转弯还是外道转弯?在上述两条弯转路径中,车手做正确选择较错误选择所赢得的时间是多少?分析:赛车在平直道路上行驶时,其速度值为其所能达到的最大值,设为v m。
转弯时,车做圆周运动,其向心力由地面的静摩擦力提供,则车速受到轨道半径和向心加速度的限制,只能达到一定的大小.为此,车在进入弯道前必须有一段减速过程,以使其速度大小减小到车在弯道上运行时所允许的速度的最大值,走完弯路后,又要加速直至达到v m。
圆周运动中的临界问题
(1)不滑动
质量为m的物体在水平面上做圆周运动或随圆盘一起转动(如图甲、乙所
示)时,静摩擦力提供向心力,当静摩擦力达到最大值Ffm时,物体运动的速
度也达到最大,即Ffm=m
vm2 r
,解得vm=m
Ffm r m
。
• 这就是物体以半径r做圆周运动的临界速度。
圆周运动中的临界问题
创新微课
(2)绳子被拉断
创新微课 现在开始
圆周运动中的临界问题
圆周运动中的临界问题
圆周运动中的临界问题
当物体从某种特性变化为另一 种特性时,发生质的飞跃的转折状 态,通常叫做临界状态,出现临界 状态时,即可理解为“恰好出 现”,也可理解为“恰好不出现”
创新微课
圆周运动中的临界问题
创新微课
1.水平面内圆周运动的临界问题
圆周运动中的临界问题
• 解析:设物体M和水平面保持相对静止,当ω具有最 小值时,M有向圆心运动的趋势。所以M受到的静摩 擦力方向沿半径向外,且等于最大静摩擦力,隔离 M分析受力有
• T-fm=Mω2r,又T=mg • 0.3×10-2=0.6ω×0.2,ω1=2.9rad/s • 当ω具有最大值,M有离开圆心趋势。M受的最大静
的来源。
圆周运动中的临界问题
用长L=0.6m的绳系着装有m=0.5kg水的小桶,在竖直平面内做 圆周运动,成为“水流星”。g=10m/s2。求:
(1)最高点水不流出的最小速度为多少? (2)若过最高点时速度为3m/s,此时水对桶底的压力多大?
创新微课
圆周运动中的临界问题
小
结
处理临界问题的解题步骤
摩擦力2N、指向圆心,隔离M受力分析有
• T+fm=Mω2r • 又T=mg,0.3×10+2=0.6ω×0.2,ω2=6.5rad/s • 所以ω的范围是2.9rad/s≤ω≤6.5rad/s。
圆周运动的临界问题
圆周运动的临界问题临界问题是高考考查的热点,特别是圆周运动中的临界问题,知识覆盖面广,题型多样,并且与生活实际息息相关,是同学们必须重点掌握的知识.1.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.2.竖直平面内作圆周运动的临界问题(1)绳模型如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点。
①临界条件:绳子或轨道对小球没有力的作用:mg=m v2/R→v临界=Rg(可理解为恰好转过或恰好转不过的速度)②能过最高点的条件:v≥Rg,当v>Rg时,绳对球产生拉力,轨道对球产生压力.③不能过最高点的条件:v<v临界(实际上球还没到最高点时就脱离了轨道)注意:绳对小球只能产生沿绳收缩方向的拉力(2)杆模型如图,球过最高点时,轻质杆(管)对球产生的弹力情况:①当v=0时,N=mg(N为支持力)②当0<v<Rg时,N随v增大而减小,且mg>N>0,N为支持力.③当v=Rg时,N=0④当v>Rg时,N为拉力,N随v的增大而增大(此时N为拉力,方向指向圆心)注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=rg 时,F N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s= 2R。
例1长度为L=0.5 m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是 2.0m/s,g取10m/s2,则此时细杆OA受到()A.6.0N的拉力B.6.0N的压力C.24N的拉力D.24N的压力解析小球在A点的速度大于gL时,杆受到拉力,小于gL时,杆受压力。
v0=gL=10×0.5 m/s= 5 m/s由于v=2.0 m/s< 5 m/s,我们知道过最高点时,球对细杆产生压力。
圆周运动中的临界问题
v2
vm
同样的道理可以推得车走内车道所用的总 时间为 r 2v m t1= g -(2- 2) g 另一方面,对内车道和外车道所历路程的 直线部分进行比较,由图可见,车往内车 道多走了长度 ΔL= r2- rl 同时,在直线道上车用于加速和减速的行 程中,车往内道也多走了长度 Δx=2x1-2x2= r2- rl 由ΔL和Δx相等,可知车在内道多走得直线距离ΔL 即为加减速通过的距离,两车vm匀速行驶的距离的 距离相同.只需要比较t1和t2知道谁用时较少。显然, 车手应选择走外道,由此赢得的时间为 Δt=t1-t2= (2 ) r r
某兴趣小组设计了如图所示的玩具轨道,其中“2008” 四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖 直平面内(所有数字均由圆或半圆组成,圆半径比细管 的内径大得多),底端与水平地面相切.弹射装置将一个 小物体(可视为质点)以va=5 m/s的水平初速度由a 点弹出,从b点进入轨道,依次经过“8002”后从p点水 平抛出.小物体与地面ab段间的动摩擦因数μ =0.3,不 计其它机械能损失.已知ab段长L=1.5 m,数字“0”的 2.求: 半径R=0.2m,小物体质量m=0.01kg,g=10 m/s 0.8
h=1.5R
F (6 2 3)mg
N
如图,长r的细绳系一质量为m小球在竖直平 面内做圆周运动 (1)若加一竖直方向匀强电场E,小球带电 量+q,则小球要在竖直平面内做圆周运动, 其在最高点时的速度有什么要求? (2)若将电场改成水平方向,情况又如何?
(完整word版)圆周运动的临界问题
圆周运动的临界问题要点提示一.圆周运动中的临界问题的分析方法首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值.二.竖直平面内作圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。
(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2vmRv临界(2)小球能过最高点条件:v(当v(3)不能过最高点条件:v(实际上球还没有到最高点时,就脱离了轨道)2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况(注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。
)(1)小球能最高点的临界条件:v = 0,F = mg(F为支持力)(2)当0< vF随v增大而减小,且mg > F > 0(F为支持力)图6-11-1a b图6-11-2(3)当v =Rg时,F=0(4)当v >Rg时,F随v增大而增大,且F >0(F为拉力)注意:管壁支撑情况与杆一样。
杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.由于两种模型过最高点的临界条件不同,所以在分析问题时首先明确是哪种模型,然后再利用条件讨论.(3)拱桥模型如图所示,此模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=rg时,F N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s= 2R。
【典型题目】竖直平面内作圆周运动的临界问题(1)绳模型1、如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O在竖直平面内转动,不计空气阻力,用F表示球到达最高点时细线对小球的作用力,则F可能()A.是拉力B.是推力C.等于零D.可能是拉力,可能是推力,也可能等于零2、如图,质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取10m/s2,求:(1) 在最高点时,绳的拉力?(2) 在最高点时水对小杯底的压力?(3) 为使小杯经过最高点时水不流出, 在最高点时最小速率是多少?(2)杆模型1、长度为L=0.5 m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m/s,g 取10m/s2,则此时细杆OA受到()ALO mA.6.0N 的拉力B.6.0N 的压力C.24N 的拉力D.24N 的压力2、如图所示,小球m 在竖直放置的光滑圆形管道内做圆周运动,下列说法中正确的有:A .小球通过最高点的最小速度为B .小球通过最高点的最小速度为零C .小球在水平线ab 以下管道中运动时,外侧管壁对小球一定有作用力D .小球在水平线ab 以上管道中运动时,内侧管壁对小球一定有作用力3、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( ) A .g mr m M + B .g mr mM + C .g mrm M - D .mr Mg(3)拱桥模型1、如图4-3-1所示,汽车车厢顶部悬挂一个轻质弹簧,弹簧下端拴一个质量为m 的小球,当汽车以某一速率在水平地面上匀速行驶时弹簧长度为L 1;当汽车以同一速度匀速率通过一个桥面为圆弧形凸形桥的最高点时,弹簧长度为L 2,下列答案中正确的是( ) A .L 1=L 2 B .L 1>L 2C .L 1<L 2D .前三种情况均有可能2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动中的临界问题
1、在竖直平面内作圆周运动的临界问题
⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点
的情况
①临界条件:绳
子或轨道对小球没有力的作用
v 临界=
②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。
⑵如图3所示情形,小球与轻质杆相连。
杆与绳不同,它既能产生拉力,也能
产生压力
①能过最高点v 临界=0,此时支持力N =mg
②当0<v <时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小
③当v =时,N =0
④当v >,N 为拉力,有N >0,N 随v 的增大而增大
例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。
现给小球一初速度,使它做圆周运
动。
图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作
用力可能是 ( )
A 、a 处为拉力,b 处为拉力
图 1 v
图
2 图 3
a
图 4
B 、a 处为拉力,b 处为推力
C 、a 处为推力,b 处为拉力
D 、a 处为推力,b 处为推力
例2 长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图5所示,小球以O 点为圆心在竖直平面内做圆周
运动,通过最高点时小球的速率是2.0m /s ,g 取10m /s 2,则此
时细杆OA 受到
( )
A 、6.0N 的拉力
B 、6.0N 的压力
C 、24N 的拉力
D 、24N 的压力
例3 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨
论在下列两种情况下杆的受力:
①当A 的速率v 1=1m /s 时
②当A 的速率v 2=4m /s 时
2、在水平面内作圆周运动的临界问题
在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
这时,要根据物体的受力
情况,判断物
体受某个力是否存在以及这个力存在时方向朝哪(特别是一
些接触力,如静摩擦力、绳的拉力等)。
例4 如图6所示,两绳系一质量为m =0.1kg
的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3rad /s 时,上、下两绳
拉力分别为多大?
图 5
C 图
例5 如图7所示,细绳一端系着质量M =0.6kg 的物体,静止在水平肌,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。
现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态?(g =10m /s 2)说明:一般求解“在什么范围内……”这一类的问题就是要分析两个临界状
态。
3
1、汽车通过拱桥颗顶点的速度为10m /s 车驶至桥顶时对桥恰无压力,则汽车的速度为(
) A 、15m /s B 、20m /s C 、25m /s
D 、30m /s 2、如图8所示,水平转盘上放有质量为m 的
物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被
拉直(绳上张力为零)。
物体和转盘间最大静摩擦力是其下压力
的μ倍。
求: ⑴当转盘角速度ω1=时,细绳的拉力T 1。
⑵当转盘角速度ω2=时,细绳的拉力T 2。
三、小结
1、解圆周运动的问题时,一定要注意找准圆心,绳子的悬点不一定是圆心。
2、把临界状态下的某物理量的特征抓住是关键。
如速度的值是多大、某个力恰
好存在还是不存在以及这个力的方向如何。
答案
例1分析:答案A 是正确的,只要小球在最高点b 的速度大于,其中L 是杆的长;答案B 也是正确的,此时小球的速度有
0<v <;答案C 、D 肯定是错误的,因为小球在最低点时,杆对小球一定是拉力。
例2解法:小球在A 点的速度大于时,杆受到拉力,小于时,杆受压力。
V 0==m /s =m /s
由于v =2.0m /s <m /s ,我们知道:过最高点时,球对细杆产生压力。
图
图 7
小球受重力mg 和细杆的支持力N
由牛顿第二定律 mg -N =m
N =mg -m =6.0N 故应选 B 。
例3
解法一:(同上例) 小球的速度大于m /s 时受拉力,小于m /s 时受压力。
①当v 1=1m /s <m /s 时,小球受向下的重力mg 和向上的支持力N
由牛顿第二定律 mg -N =m
N =mg -m =16N
即杆受小球的压力16N 。
②当v 2=4m /s >m /s 时,小球受向下的重力mg 和向下的拉力F
由牛顿第二定律 mg +F =m
F =m -mg =44N
即杆受小球的拉力44N 。
解法二:小球在最高点时既可以受拉力也可以受支持力,因此杆受小球的作用力也可以是拉力或者是压力。
我们可不去做具
体的判断而假设一个方向。
如设杆竖直向下拉小球A ,则小球的受力就是上面解法中的②的情形。
由牛顿第二定律 mg +F =m 得到 F =m (-g ) 当v 1=1m /s 时,F 1=-16N F 1为负值,说明它的实际方向与所设的方向相反,即小球受力应向上,为支持力。
则杆应受压力。
当v 2=4m /s 时,F 2=44N 。
F 2为正值,说明它的实际方向与所设的方向相同,即小球受力就是向下的,是拉
力。
则杆也应受拉力。
例4解析:①当角速度ω很小时,AC 和BC 与轴的夹角都很小,BC 并不张紧。
当ω逐渐增大到30°时,BC 才被拉直(这是
一个临界状态),但BC 绳中的张力仍然为零。
设这时的角速度为ω1,则有:
T AC cos30°=mg
T AC sin30°=m ω12Lsin30°
将已知条件代入上式解得 ω1=2.4rad /s
②当角速度ω继续增大时T AC 减小,T BC 增大。
设角速度达到ω2时,T AC =0(这又是一个临界状态),则有: T BC cos45°
=mg
T BC sin45°=m ω22Lsin30°
将已知条件代入上式解得 ω2=3.16rad /s
所以 当ω满足2.4rad /s ≤ω≤3.16rad /s ,AC 、BC 两绳始终张紧。
本题所给条件 ω=3rad /s ,此时两绳拉力T AC 、T BC 都存在。
N
mg
T AC sin30°+T BC sin45°=mω2Lsin30°
T AC cos30°+T BC cos45°=mg
将数据代入上面两式解得T AC=0.27N,T BC=1.09N
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4rad/s时,T BC=0,AC与轴的夹角小于30°。
如果ω>3.16rad/s时,T AC=0,BC与轴的夹角大于45
例5解析:要使m静止,M也应与平面相对静止。
而M与平面静止时有两个临界状态:当ω为所求范围最小值时,M有向着圆心运动的趋势,水平面对M的静摩擦力的方向背离圆心,大小等于最大静
摩擦力
此时,对M
有T-f m=Mω1
解得ω1=
当ω为所求范围最大值时,M有背离圆心运动的趋势,水平面对M的静摩擦力的方向向着圆心,大小还等于最大静摩
图7
擦力2N。
再对M运用牛顿第二定律。
有T+f m=Mω22r
解得ω2=6.5rad/s
所以,题中所求ω的范围是: 2.9rad/s<ω<6.5rad/s。