圆周运动中的临界问题
高中物理圆周运动的临界问题(含答案)
1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
圆周运动的临界问题
圆周运动的临界问题【例1】如图所示,水平转盘的中心有个竖直小圆筒,质量为m的物体A放在转盘上,A到竖直筒中心的距离为r.物体A通过轻绳、无摩擦的滑轮与物体B相连,B与A质量相同.物体A与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A才能随盘转动.【正解】由于A在圆盘上随盘做匀速圆周运动,所以它所受的合外力必然指向圆心,而其中重力、支持力平衡,绳的拉力指向圆心,所以A所受的摩擦力的方向一定沿着半径或指向圆心,或背离圆心.当A将要沿盘向外滑时,A所受的最大静摩擦力指向圆心,A的向心力为绳的拉力与最大静摩擦力的合力.即F+F m′=m21ωr ①由于B静止,故F=mg ②由于最大静摩擦力是压力的μ倍,即F m′=μF N=μmg ③由①②③式解得ω1=rg/)1(μ+当A将要沿盘向圆心滑时,A所受的最大静摩擦力沿半径向外,这时向心力为F-F m′=m22ωr ④由②③④式解得ω2=rg/)1(μ-要使A随盘一起转动,其角速度ω应满足rg/)1(μ-≤ω≤rg/)1(μ+【思维提升】根据向心力公式解题的关键是分析做匀速圆周运动物体的受力情况,明确哪些力提供了它所需要的向心力.【例2】如图所示是电动打夯机的示意图,电动机带动质量为m的重锤(重锤可视为质点)绕转轴O匀速转动,重锤转动半径为R。
电动机连同打夯机底座的质量为M,重锤和转轴O之间连接杆的质量可以忽略不计,重力加速度为g(1)重锤转动的角速度为多大时,才能使打夯机底座刚好离开地面?(2)若重锤以上述的角速度转动,当打夯机的重锤通过最低位置时,打夯机对地面的压力为多大?【答案】(1)()mRgM m+【例3】如图所示,小球质量m =0.8kg,用两根长L =0.5m的细绳拴住并系在竖直杆上的A、B两点,AB=0.8m.当直杆转动带动小球在水平面内绕杆以ω=40rad/s的角速度匀速转动时,求上、下两根绳上的张力.【例4】如图所示,在匀速转动的水平圆盘上,沿半径方向放置用长L =0.1m 的细线相连接的A 、B 两小物块.已知A 距轴心O 的距离r l =0.2m ,A 、B 的质量均为m =1kg ,它们与盘面间相互作用的摩擦力最大值为其重力的0.3倍( g 取 10m/s 2).试求:(1)当细线刚要出现拉力时,圆盘转动的角速度0ω为多大?(2)当 A 、B 与盘面间刚要发生相对滑动时,细线受到的拉力为多大?【例5】如图所示,一光滑圆锥体固定在水平面上,OC ⊥AB ,θ=30°,一条不计质量、长L 且平行于圆锥体的绳一端固定在顶点O 点,另一端拴一质量为m 的物体,物体以速度v 绕圆锥体的轴线OC 在水平面内做匀速圆周运动.当 6gl v =和32gl v =时,分别求出绳对物体的拉力答案:(1)T 1=1.03mg (2)T 2=2mg【例6】如图所示,在水平固定的光滑平板上,有一质量为M 的质点P ,与穿过中央小孔H 的轻绳一端连着。
圆周运动的临界问题
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题
圆周运动中的临界问题(全)
圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
(完整版)圆周运动中的临界问题(最新整理)
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。
()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。
gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
圆周运动中的临界问题专题(最新整理)
课题28圆周运动中的临界问题一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:特点:绳对小球,轨道对小球只能产生指向圆心的弹力①临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界= (可理解为恰好转过Rg 或恰好转不过的速度)即此时小球所受重力全部提供向心力注意:如果小球带电,且空间存在电、磁场时,临界条件应是小球重力、电场力和洛伦兹力的合力提供向心力,此时临界速度V 临≠Rg ②能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.Rg Rg ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高gR 310度(距离底部)的说法中正确的是( )A 、一定可以表示为B 、可能为 g v 2203R C 、可能为R D 、可能为R 35【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动,因为桥gr v 面不能对汽车产生拉力.(2)如右图所示,小球过最高点时,轻质杆(管)对球产生的弹力情况:特点:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力.①当v =0时,F N =mg (N 为支持力)②当 0<v <时, F N 随v 增大而减小,且mg >F N >0,Rg F N 为支持力.③当v =时,F N =0Rg ④当v >时,F N 为拉力,F N随v 的增大而增大(此时F N 为拉力,方向指向圆心)Rg典例讨论1.圃周运动中临界问题分析,应首先考虑达到临界条件时物体所处的状态,然后分析该状态下物体的受力特点.结合圆周运动的知识,列出相应的动力学方程【例题2】在图中,一粗糙水平圆盘可绕过中心轴OO /旋转,现将轻质弹簧的一端固定在圆盘中心,另一端系住一个质量为m 的物块A ,设弹簧劲度系数为k ,弹簧原长为L 。
圆周运动中的临界问题
3 rad/s 1.0 rad/s
0.5 rad/s
• 在质量为M的电动机的飞轮上,固定 着一个质量为m的重物,重物到转轴 的距离为r,如图所示,为了使放在地 面上的电动机不会跳起,电动机飞轮 的角速度不能超过( )
A. C.
M m g mr M m g mr
B. D. Mg
mr
M m g mr
m R O
v0 N
M
如图所示,质量为m的物体随水平传送带 一起匀速运动,A为传送带的终端皮带轮, 皮带轮半径为r,要使物体通过终端时, 能水平抛出,皮带轮的转速至少为:( )
A
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固 定对称轴以恒定的角速度ω转动,盘面上离转轴 距离2.5m处有一小物体与圆盘始终保持相对静 止。物体与盘面间的动摩擦因数为 /2(设最 大静摩擦力等于滑动摩擦力),盘面与水平面的 夹角为30°,g取10m/s2。则ω的最大值是 A 5 rad/s B C D
gr
N=0
v2 mg m r
v gr
在最高点时速 度应不小于
gr
V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn
在最高点速度 应大于等于0 在最高点速度 应大于等于0
临界问题:由于物体在竖直平面内做圆周运动 的依托物(绳、轨道、轻杆、管道等)不同, 所以物体恰好能通过最高点的临界条件也不同。
3.如图所示,竖直圆筒内壁光滑,半径 为R,顶部有一个入口,在的正下方 处 有一个出口,一质量为 m的小球沿切线 方向的水平槽射入圆筒内,要使小球从 B处飞出,小球射入入口的速度 满足什 么条件? 在运动过程中球对筒的压力 多大?
例析圆周运动中的临界问题
对圆周运动中临界问题的探讨圆周运动中临界状态及临界条件的分析是圆周运动中的一类重要问题,其主要有临界速度、临界受力、临界约束等。
下面对此作简单的阐述。
一、圆周运动中的临界速度问题变速圆周运动中的某些特殊位置上,常存在着最小(或最大)的速度,小于(或大于)这个速度,物体就不能再继续作圆周运动了,这个速度常称为临界速度。
若物体的受力发生变化对,其运动状态随之变化。
当作圆周运动的物体所受的力突然变为某一值时,就会出现相应的临界速度。
如绳子突然断裂、支持物的作用力突然变化、静摩擦力充当向心力时突然消失或达最大值等,就有这种情况出现。
对没有支持物的质点(如绳系小球),在竖直面内的圆周运动的最高点只受重力mg 时,即为向心力的最小值,由牛顿第二定律mg =mv 2/R ,可得临界速度v =Rg ,此速度是质点恰好能通过最高点的临界速度;若v >Rg 时,质点可通过最高点(此时还受绳的约束);当v <Rg 时,质点不能运动到最高点,在达到最高点之间就已经脱离了圆轨道。
对在水平转台上靠静摩擦力提供向心力作圆周运动的物体,当转台的转速逐渐增大时,静摩擦力随之增大,静摩擦力达到最大值时,对应有临界速度(或临界角速度)。
例1、如图1所示,用细绳一端系着的质量为M =0.6kg的物体A 静此在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m =0.3kg 的小球B ,A 到O 点的距离为0.2m.。
若A 与转盘间的最大静摩擦力为F m =2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取舍范围。
(取g =10m/s ) 解析:要使B 静止,A 必须相对于转盘静止,即具有与转盘相同的角速度。
A 需要的向心力由绳拉力和静摩擦力合成,角速度取最大值时,A 有离心趋势,静摩擦力指向圆心O ;角速度取最小值时,A 有向心运动的趋势,静摩擦力背离圆心O ,设F T =mg ,则角速度取最大值时有:F T +F m =Mr ω12角速度取最小值时有:F T -F m =Mr ω22代入数据可解得:ω1=6.5rad/s ω2=2.9rad/s所以角速度ω的取值范围为:2.9rad/s ≤ω≤6.5rad/s二、圆周运动中双向约束的临界受力问题物体(如小球)在轻杆作用下或在管道中作圆周运动时,由于小球的速度变化,杆和管道对其弹力随之发生变化。
圆周运动临界问题
圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。
在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。
以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。
当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。
在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。
在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。
根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。
需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。
此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。
圆周运动中的临界问题
圆周运动中的临界问题第 2 页圆周运动中的临界问题1、在竖直平面内作圆周运动的临界问题 ⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情况 ①临界条件:绳子或轨道对小球没有力的作用v 临界=Rg②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。
⑵如图3所示情形,小球与轻质杆相连。
杆与绳不同,它既能产生拉力,也能产生压力 ①能过最高点v 临界=0,此时支持力N=图 1v图2图 3第 3 页mg②当0<v <Rg 时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小 ③当v =Rg 时,N =0④当v >Rg ,N 为拉力,有N >0,N 随v 的增大而增大例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。
现给小球一初速度,使它做圆周运动。
图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( )A 、a 处为拉力,b 处为拉力B 、a 处为拉力,b 处为推力C 、a 处为推力,b 处为拉力D 、a 处为推力,b 处为推力 例2 长度为L =0.5m 的轻质a图4图 5细杆OA,A端有一质量为m=3.0kg的小球,如图5所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s,g取10m/s2,则此时细杆OA受到()A、6.0N的拉力B、6.0N的压力C、24N的拉力D、24N的压力例3长L=0.5m,质量可以忽略的的杆,其下端固定于O点,上端连接着一个质量m=2kg的小球A,A绕O点做圆周运动(同图5),在A通过最高点,试讨论在下列两种情况下杆的受力:①当A的速率v1=1m/s时②当A的速率v2=4m/s时第 4 页第 5 页2、在水平面内作圆周运动的临界问题 在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。
圆周运动的临界问题
圆周运动的临界问题圆周运动的临界问题圆周运动中的临界问题的分析方法是首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。
竖直平面内作圆周运动的临界问题是典型的变速圆周运动。
一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。
在绳模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-1所示。
小球能过最高点的临界条件为绳子和轨道对小球刚好没有力的作用,即mg=mv^2/R,从而得到小球能过最高点的条件为v≥√(Rg),不能过最高点的条件为v<√(Rg)。
在杆模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-2所示。
小球能过最高点的临界条件为v=0,F=mg(F为支持力),当0F>0(F为支持力),当v=Rg时,F=0,当v>Rg时,F随v增大而增大,且F>0(F为拉力)。
拱桥模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=√(Rg)时,F_N=0,物体将飞离最高点做平抛运动。
若是从半圆顶点飞出,则水平位移为s=2R。
细线模型中,如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O在竖直平面内转动,不计空气阻力,用F表示球到达最高点时细线对小球的作用力,则F可能是拉力、推力或等于零。
最后,对于一个质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取210m/s。
可以利用向心力公式和受力分析,求出小杯通过最高点的临界条件。
1.长度为0.5m的细杆OA,A端挂着一个质量为3.0kg的小球,在竖直平面内做圆周运动。
求小球通过最高点时细杆OA所受的力。
答案:C。
24N的拉力2.在竖直放置的光滑圆形管道内,质量为m的小球做圆周运动。
圆周运动的临界问题结论总结
圆周运动的临界问题结论总结引言圆周运动是物理学中一个重要的研究对象,它广泛应用于机械、电子、核物理等领域。
在圆周运动中,存在着临界问题,即在达到一定条件下,系统会出现特殊的运动状态。
本文将对圆周运动的临界问题进行总结和讨论,探究其背后的原理和应用。
圆周运动简介圆周运动是物体绕着一个固定点以相同的速度做匀速运动的过程。
在圆周运动中,我们经常涉及到的几个重要概念包括角速度、圆周位移、向心加速度等。
圆周运动的临界问题在圆周运动中,当某些条件达到一定数值时,系统会出现特殊的运动状态,即临界状态。
以下是几个常见的圆周运动的临界问题:1. 临界速度临界速度是指物体在圆周运动中的最小速度,即达到这个速度后,物体将能够保持圆周运动而不会脱离。
临界速度的计算可以通过向心加速度和半径之间的关系得到。
2. 临界半径临界半径是指物体在圆周运动中最大的半径,即当半径超过这个值时,物体将无法保持圆周运动。
临界半径的计算可以通过向心加速度和速度之间的关系得到。
3. 同步转速同步转速是指当一个物体在圆周运动中与另一个物体由于某种相互作用而达到相同的转速。
同步转速常见于机械传动系统中,应用于传感器、电机等设备。
4. 切向加速度的临界条件在圆周运动中,物体的切向加速度也扮演着重要的角色。
临界条件是切向加速度的大小是否足够让物体保持圆周运动,当切向加速度小于临界值时,物体将离开圆周运动。
圆周运动的应用圆周运动的临界问题在实际应用中具有重要意义。
以下是几个典型的应用:1. 离心力的利用离心力是圆周运动中一种重要的力,它的大小与向心加速度成正比。
在很多设备中,我们会利用离心力进行分离、过滤、加速等操作。
2. 地球绕太阳的运动地球绕太阳做圆周运动,正是由于地球的临界速度和太阳的引力,地球才能在太阳系中稳定运动。
3. 卫星轨道维持人造卫星在轨道上运行时,需要使用推进器进行修正,使卫星维持在临界半径内,避免脱离圆周运动。
4. 强化材料的测试在材料科学中,可以通过使材料在高速旋转的离心机中达到临界速度,来测试材料的强度和耐久性。
圆周运动中的临界问题
圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。
圆周运动的临界问题
解:在最高点F向=G+T, 即G+T=mv2/r
T=mv2/r-mg≥0
小球经过最高点的速度:v gr
线或绳
讨论:
①、当 v gr 时,细绳对小球没有拉力作用。向心
力只由小球所受重力提供。
②、如果 v> gr ,轻绳对小球存在拉力。
③、如果 v< gr ,小球无法到达圆周的最高点
练习:如图,在“水流星”表演中,绳长为 1m,水桶的质量为2kg,若水桶通过最高点的 速度为4m/s,求此时绳受到的拉力大小。
变式训练2:如图所示,一个光滑的圆锥体固定在水平桌面上,其
轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端 拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆 锥体的轴线做水平匀速圆周运动。
⑴当v= gl 6
时,求绳对物体的拉力;
练习:长L=0.5m,质量可以忽略的的杆,其下端 固定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动,在A通过最高点时,试讨论在下列 两种情况下杆的受力:
①当A的速率v1=1m/s时 ②当A的速率v2=4m/s时
A
L
O
小结:
一.水平面内的圆周运动的临界问题
处理这类问题的关键是分析出静摩擦力的变化,从 而结合其他力分析出指向圆心的合外力的变化,以 确定圆周运动的其他物理量的变化范围。
mgt0 am n ω 1 2L 3s0 i3n00
B
30 0
45 0
C
将已知代入解得ω1=2.4 rad/s
②当角速度ω继续增大时TAC减小,TBC
增大。设角速度达到ω2时,TAC=0,则③ω=3 rad/s,此时两绳拉
高中物理必修二--5.15圆周运动中的临界问题
;3
2g r
(1)FA
10 7
mg;FB
0
(2)FA
FB
5 7
mg
(3)FA
0;FB
5 2
mg
例题5 :如图所示,V形细杆A0B能绕其竖直的对 称轴00’转动,V形杆的两臂与转轴间的夹角均为 α=450.质量均为m=0.1kg的小环,分别套在V形 杆的两臂上,并用长为L=1.2m、能承受最大拉 力Fmax=4.5N的轻质细线连结,环与臂间的最大静 摩擦力等于两者间弹力的0.2倍.当杆以角速度ω 转动时,细线始终处于水平状态,取g=10m/s2. ⑴求杆转动角速度ω0的最小值; ⑵将杆的角速度从ω0最小值开始 缓慢增大,直到细线断裂,写出
fmax沿杆向下时,有:FN sin 45 fmax cos 45 mg
∴ω2=5rad/s
FN cos 45 fmax sin 45 m22r
当细线拉力达到最大时,有:FN sin 45 fmax cos 45 mg
FN cos 45 fmax sin 45 Fmax m32r
5.14 圆周运动的临界问题
1、临界问题:
物体做圆周运动时,物体的受力、半径等因素 发生突变时的状态叫临界状态。
2、解决临界问题基本方法
⑴明确题意,抓住题目的关键词语,确定临界 状态。
⑵对圆周运动的过程进行动态分析(如角速度的 变化、半径的变化引起的系列变化)判断会发 生突变的物理量和这些物理量如何变化,并确 定临界条件。
只有B物体作匀速圆周运动,当绳子的拉力达到最大
值时的角速度为ω3,则,
3
Tmax 1mg
mr
圆周运动中的临界问题
(1)不滑动
质量为m的物体在水平面上做圆周运动或随圆盘一起转动(如图甲、乙所
示)时,静摩擦力提供向心力,当静摩擦力达到最大值Ffm时,物体运动的速
度也达到最大,即Ffm=m
vm2 r
,解得vm=m
Ffm r m
。
• 这就是物体以半径r做圆周运动的临界速度。
圆周运动中的临界问题
创新微课
(2)绳子被拉断
创新微课 现在开始
圆周运动中的临界问题
圆周运动中的临界问题
圆周运动中的临界问题
当物体从某种特性变化为另一 种特性时,发生质的飞跃的转折状 态,通常叫做临界状态,出现临界 状态时,即可理解为“恰好出 现”,也可理解为“恰好不出现”
创新微课
圆周运动中的临界问题
创新微课
1.水平面内圆周运动的临界问题
圆周运动中的临界问题
• 解析:设物体M和水平面保持相对静止,当ω具有最 小值时,M有向圆心运动的趋势。所以M受到的静摩 擦力方向沿半径向外,且等于最大静摩擦力,隔离 M分析受力有
• T-fm=Mω2r,又T=mg • 0.3×10-2=0.6ω×0.2,ω1=2.9rad/s • 当ω具有最大值,M有离开圆心趋势。M受的最大静
的来源。
圆周运动中的临界问题
用长L=0.6m的绳系着装有m=0.5kg水的小桶,在竖直平面内做 圆周运动,成为“水流星”。g=10m/s2。求:
(1)最高点水不流出的最小速度为多少? (2)若过最高点时速度为3m/s,此时水对桶底的压力多大?
创新微课
圆周运动中的临界问题
小
结
处理临界问题的解题步骤
摩擦力2N、指向圆心,隔离M受力分析有
• T+fm=Mω2r • 又T=mg,0.3×10+2=0.6ω×0.2,ω2=6.5rad/s • 所以ω的范围是2.9rad/s≤ω≤6.5rad/s。
圆周运动中的临界问题(最新整理)
C、24N 的拉力
D、24N 的压力
m
A L O
例 3 长 L=0.5m,质量可以忽略的的杆,其下端固定于 O 点, 上端连接着一个质量 m=2kg 的小球 A,A 绕 O 点做圆周运动(同 图 5),在 A 通过最高点,试讨论在下列两种情况下杆的受力:
①当 A 的速率 v1=1m/s 时 ②当 A 的速率 v2=4m/s 时
离圆心,大小等于最大静摩擦力 2N。 此时,对 M 运用牛顿第二定律。
M
ro
有
T-fm=Mω12r
且 T=mg
解得 ω1=2.9 rad/s
m
第5页
图 7
当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对 M 的静摩擦力的方向向着圆
心,大小还等于最大静摩擦力 2N。
再对 M 运用牛顿第二定律。
有
T+fm=Mω22r
解得 ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s
第6页
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s 时,TBC=0,AC 与轴的夹角小于 30°。 如果ω>3.16rad/s 时,TAC=0,BC 与轴的夹角大于 45
例 5 解析:要使 m 静止,M 也应与平面相对静止。而 M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对 M 的静摩擦力的方向背
①当 v1=1m/s< 5m/s 时,小球受向下的重力 mg 和向上的支持力 N v2
由牛顿第二定律 mg-N=m L v2
N=mg-m =16N L
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动的临界问题【例1】如图所示,半径为0.5 m 的光滑细圆管轨道固定在底座上,底座放在水平地面上两地桩之间,不能左右移动,圆管轨道和底座的总质量为5 kg 。
在圆管最低点静置一个质量为1 kg 的小球(直径略小于圆管内径),给小球一个水平方向的初速度v 0,小球能在圆管内做完整的圆周运动,整个过程中底座不会脱离地面,重力加速度g 取10 m/s 2。
(1)若小球运动到圆管最高点时,对圆管恰好无作用力,则初速度v 0多大?(2)若小球运动到圆管最高点时,底座对地面的压力不超过55 N ,求初速度v 0应满足的条件。
【例2】一个质量为m 的小物块(可视为质点)放在一水平圆盘上,圆盘可绕过圆 心O 的竖直轴转动,物块到转轴的距离为r ,物块与圆盘间的动摩擦因数为μ, 设最大静摩擦力等于滑动摩擦力。
当圆盘以角速度ω0匀速转动时,物块与圆盘保持相对静止,则此时物块受到的摩擦力大小为_____________;要使物块与圆 盘始终保持相对静止,圆盘转动的角速度应满足的条件是_____________。
【例3】用一根长为L 的不可伸长的轻绳一端固定在悬点O ,另一端拴住一个质量为m 的小球(可视为质点),开始时用外力使小球静止在最低点,然后释放小球,同时给小球一个水平方向的初速度v 0,使小球在竖直平面内运动,空气阻力不计,重力加速度为g 。
(1)若小球能做完整的圆周运动,则初速度v 0至少为多少?(2)若在空间加上场强大小为E 、方向向下的匀强电场,同时让小球带上q (q >0)的电荷,轻绳绝缘,则(1)的结果又为多少?O练习1:A 、B 、C 三个质量分别为m 、3m 、m 的小物块(均可视为质点)放在一水平圆盘上,圆盘可绕过圆心O 的竖直轴转动。
已知物块A 和B 到转轴的距离均为r ,物块C 到转轴的距离为2r ,如图所示。
三物块与圆盘间的动摩擦因数均相同,设最大静摩擦力等于滑动摩擦力。
当圆盘以角速度ω0匀速转动时,三物块与圆盘均保持相对静止,则物块________受到的静摩擦力最大;若逐渐增大圆盘转动的角速度,则物块________最先开始相对圆盘滑动。
练习2:如图所示,放在水平地面上的光滑直轨道AB 和光滑半圆轨道CD 处于同一竖直平面内,两轨道与水平地面平滑连接,其端点B 和C 相距1.2 m ,半圆轨道两端点的连线CD 与地面垂直。
今有一质量为0.1 kg 的小球从轨道AB 上距离地面高度为4.2 m 处无初速度释放,已知小球运动到C 点时的速度为45m/s ,g 取10 m/s 2,空气阻力不计。
(1)若要使小球恰能到达半圆轨道CD 的最高点D ,半圆形轨道的半径应为多少?(2)若半圆轨道CD 的半径就是(1)中求得的值,现在B 点正上方某处固定一根垂直纸面的细杆,若要使小球恰好能从细杆上越过,细杆所在位置到B 点的高度差h 应满足什么条件?此时小球在轨道AB 上的释放点距离地面高度H 又为多少?(用h 表示)练习3:如图所示,一端弯曲的光滑绝缘杆ABC 固定在竖直平面内,AB 段水平,BC 段是半径为R 的半圆弧。
一电荷量为Q (Q >0)的点电荷固定在圆心O 处;一质量为m 、电荷量为q (q >0)的带电小环套在光滑绝缘杆上,在水平恒力F 作用下从AB 段上距离B 点34R 的D 点由静止开始运动,到B 点时撤去力F ,小环继续向上运动。
根据电学知识,在某一空间放置一电荷量为Q 的点电荷时,距离该点电荷为r 处的某点的电势φ=k rQ,k 为静电力常量,规定无穷远处电势为零。
(1)若要使小环能运动到绝缘杆的最高点C ,求力F 的最小值F 1; (2)若力F 的大小为F 2(F 2大于(1)中的F 1),求小环运动到C 点时,绝缘杆对小环的弹力大小和方向。
作业:1.用一不可伸长的轻绳系一小球(可视为质点),另一端固定在一光滑圆锥的顶部。
现使小球在水平面内做角速度为ω的匀速圆周运动,则轻绳的拉力F 随ω2的变化图像应是 ( )2.有两个相同小球A 、B 分别拴在细绳的两端,绳子穿过一根光滑管子,B 球在水平面上作半径为r的匀速圆周运动,A 球静止不动,则( ) A .B 球受到绳的拉力等于A 球受到绳的拉力 B .若A 球静止在较高位置时,B 球角速度较小 C .若A 球静止在较低位置时,B 球角速度较小D .B 球角速度改变时,A 球可以不升高也不降低3.光滑管形圆轨道半径为R (管内径远小于R ),小物块a 、b (均可视为质点)质量均为m ,厚度略小于管内径,能在管中无摩擦运动。
两物块先后以相同速度v 通过轨道最低点,且当a 在最低点时,b 恰好在最高点,以下说法正确的是 ( ) A .当b 在最高点对轨道无压力时,a 比b 所需向心力大5mg B .当v =5gR 时,b 在轨道最高点对轨道无压力C .速度v 至少为5gR ,才能使两物块在管内做完整的圆周运动D .只要v ≥5gR ,a 对轨道最低点的压力比b 对轨道最高点的 压力都大6mg4.如图所示,不可伸长的轻绳一端系着一个质量为M 的物体(可视为质点),另一端通过光滑小孔吊着质量为m 的物体(可视为质点)。
已知M 到小孔O 的距离为r ,与平面间的最大静摩擦力为F m (F m <mg )。
现使M 和平面一起绕中心竖直轴OO ′ 以角速度ω匀速转动。
重力加速度为g ,空气阻力不计,则(1)当ω为多少时,M 与平面间无相对滑动的趋势?(2)为了保证M 和平面相对静止,角速度ω的取值范围是多少?5.湖南省电视台“智勇大冲关”游乐节目中,选手需要借助悬挂在高处的绳飞越到水面的浮台上,小明和小阳观看后对此进行了讨论。
如图所示,他们将选手简化为质量m =60 kg 的质点,选手抓住绳子末端由静止开始摆动,此时绳与竖直方向夹角α=53°,绳长l =2 m 的悬挂点O 距水面的高度为H =3 m 。
不考虑空气阻力和绳的质量,浮台露出水面的高度不计,水足够深。
取g =10 m/s 2,sin53°=0.8,cos53°=0.6。
若要求选手摆到最低点时松手,且运动到浮台处离岸水平距离最大,则选手实际的摆线长度l 1应为多少?A BC DR1R2R3AB CDv0第一圆轨道第二圆轨道第三圆轨道LLL1PHCBAOM NDR6.如图所示,一个43圆周的光滑圆轨道ABC放置在竖直平面内,轨道半径为R,在A点与水平地面AD相接,圆心O与地面等高,C为轨道最高点;MN是放在水平地面上长为2R、厚度不计的垫子,左端M正好位于A点。
将一个质量为m的小球(可视为质点)从A处正上方高H的P点由静止释放,重力加速度为g,不计空气阻力。
(1)若小球由圆轨道经C点射出后恰好能打到垫子MN的中点,求小球从C点射出的速度大小;(2)通过分析与计算,推导出小球对C点作用力F的大小随高度H的变化关系;(3)小球由P点静止释放,由圆弧轨道经C点击中垫子,求高度H的取值范围。
7.放置在竖直平面内的光滑绝缘轨道如图所示,其中BC为水平面,斜面AB与BC通过较小光滑圆弧连接,CDF是半径为R(未知)的圆形轨道。
一个质量为m、带电量为-q的小球,从距水平面BC 高h处的P点由静止下滑,小球恰能通过竖直圆形轨道的最高点D而作圆周运动,求:(1)圆形轨道半径R;(2)现在竖直方向加方向竖直向下的足够大的匀强电场,电场强度E=qmg2,若仍从P点由静止释放该小球,试判断小球能否通过圆形轨道的最高点D。
若不能,说明理由;若能,求出小球在D点时对轨道的压力。
8.过山车是游乐场中常见的设施。
下图是一种过山车的简易模型,它由粗糙的水平轨道和在竖直平面内的三个光滑圆形轨道组成;B、C、D分别是三个圆形轨道的最低点,BC间距与CD间距相等,均为L;第一、第二圆轨道的半径分别为R1=2.0 m、R2=1.4 m。
一个质量为m=1.0 kg的小球(视为质点),从水平轨道左侧的A点以v0=12.0 m/s的初速度沿轨道向右运动。
已知A、B间距L1=6.0 m,小球与水平轨道间的动摩擦因数μ=0.2;水平轨道足够长,圆形轨道间不相互重叠。
取g=10 m/s2,计算结果均保留一位小数,求:(1)小球在经过第一圆轨道的最高点时,轨道对小球作用力的大小;(2)如果小球恰能通过第二圆轨道,BC间距L应是多少?(3)在满足(2)的条件下,如果要使小球不能脱离轨道,在第三个圆形轨道的设计中,半径R3应满足的条件。
问题1:已知地球的半径为6400 km,地球的自转角速度为7.3×10-5 rad/s,地面处的重力加速度为9.8 m/s2,地球的第一宇宙速度为7.9 km/s,第三宇宙速度为16.7 km/s,月、地中心距离为3.8×105 km。
假设地球赤道处有一棵苹果树长到了月球那么高,则长在树上的某个苹果受到哪些力作用?方向如何?当一个苹果成熟后从树梢上掉下,之后苹果将怎样运动?问题2:地球可以看做一个巨大的拱形桥,桥面的半径就是地球半径(约为6400 km)。
地面上有一辆汽车在行驶,其重量为mg,地面对它的支持力为F。
根据学过的知识我们知道,汽车行驶的速度越大,支持力F就越小。
那么有没有可能出现这样一种情况:当汽车的速度大到一定程度时,支持力F=0?此时驾驶员与座椅之间的压力多大?驾驶员躯体各部分之间的压力多大?驾驶员会有什么感觉?问题1:已知地球的半径为6400 km,地球的自转角速度为7.3×10-5 rad/s,地面处的重力加速度为9.8 m/s2,地球的第一宇宙速度为7.9 km/s,第三宇宙速度为16.7 km/s,月、地中心距离为3.8×105 km。
假设地球赤道处有一棵苹果树长到了月球那么高,则长在树上的某个苹果受到哪些力作用?方向如何?当一个苹果成熟后从树梢上掉下,之后苹果将怎样运动?问题2:地球可以看做一个巨大的拱形桥,桥面的半径就是地球半径(约为6400 km)。
地面上有一辆汽车在行驶,其重量为mg,地面对它的支持力为F。
根据学过的知识我们知道,汽车行驶的速度越大,支持力F就越小。
那么有没有可能出现这样一种情况:当汽车的速度大到一定程度时,支持力F=0?此时驾驶员与座椅之间的压力多大?驾驶员躯体各部分之间的压力多大?驾驶员会有什么感觉?。