圆周运动中的临界问题和周期性问题
圆周运动——临界问题
mg
F1
此时最低点的速度为:
问:当v2的速度等于0时,杆对球的支持力为多少?
F支=mg
此时最低点的速度为:
结论:使小球能做完整的圆周运动在最低点的速度
拓展:物体在管型轨道内的运动
如图,有一内壁光滑、竖直放置的管型轨道,其半径为R,管内有一质量为m的小球有做圆周运动,小球的直径刚好略小于管的内径。
四、圆周运动的周期性 利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。
例:长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,则下列说法中正确的是:( ) A.小球过最高点时速度为零 B.小球开始运动时绳对小球的拉力为m C.小球过最高点时绳对小的拉力mg D.小球过最高点时速度大小为
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A、B的质量均为m,它们到转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求: (1)当细线上开始出现张力,圆盘的角速度; (2)当A开始滑动时,圆盘的角速度
思考:在最高点时,什么时候外管壁对小球有压力,什么时候内管壁对小球有支持力什么时候内外管壁都没有压力?小球在最低点的速度v至少多大时,才能使小球在管内做完整的圆周运动?
2025高考物理总复习圆周运动中的临界极值问题
2
对 a 有 kmg-FT=ml2 ,对 b 有 FT+kmg=m·
2l2 ,解得 ω2=
2
。
3
拓展变式 2
把典题1中装置改为如图所示,木块a、b用轻绳连接(刚好拉直)。(1)当ω为
多大时轻绳开始有拉力?(2)当ω为多大时木块a所受的静摩擦力为零?
答案 (1)
2
(2)
解析 (1)在 b 的静摩擦力达到最大时,轻绳刚要产生拉力,对 b 有
的间隙可忽略不计。已知放置在圆盘边缘的小物体与圆盘的动摩擦因数
为μ1=0.6,与餐桌的动摩擦因数为μ2=0.225,餐桌离地高度为h=0.8 m。设小
物体与圆盘以及餐桌之间的最大静摩擦力等于滑动摩擦力,重力加速度g
取10 m/s2。
(1)为使小物体不滑到餐桌上,圆盘的角速度ω的最大值为多少?
(2)缓慢增大圆盘的角速度,小物体从圆盘上甩出,
滑动的末速度 vt',由题意可得 vt'2-0 2 =-2ax'
由于餐桌半径为 R'= 2r,所以 x'=r=1.5 m
解得 vt'=1.5 m/s
设小物体做平抛运动的时间为 t,则
1 2
h=2gt ,解得
t=
小物体做平抛运动的水平位移为 x1=vt't=0.6 m。
2ℎ
=0.4
s
审题指导
关键词句
在圆周运动最高点和最低点的临界条件分析。
题型一
水平面内圆周运动的临界问题
1.水平面内圆周运动的临界、极值问题通常有两类,一类是与摩擦力有关
的临界问题,一类是与弹力有关的临界问题。
2.解决此类问题的一般思路
高中物理圆周运动的临界问题(含答案)
1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。
二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。
【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。
若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。
它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。
圆周运动中的临界问题
圆周运动的临界问题【例1】如图所示,半径为0.5 m 的光滑细圆管轨道固定在底座上,底座放在水平地面上两地桩之间,不能左右移动,圆管轨道和底座的总质量为5 kg 。
在圆管最低点静置一个质量为1 kg 的小球(直径略小于圆管内径),给小球一个水平方向的初速度v 0,小球能在圆管内做完整的圆周运动,整个过程中底座不会脱离地面,重力加速度g 取10 m/s 2。
(1)若小球运动到圆管最高点时,对圆管恰好无作用力,则初速度v 0多大?(2)若小球运动到圆管最高点时,底座对地面的压力不超过55 N ,求初速度v 0应满足的条件。
【例2】一个质量为m 的小物块(可视为质点)放在一水平圆盘上,圆盘可绕过圆 心O 的竖直轴转动,物块到转轴的距离为r ,物块与圆盘间的动摩擦因数为μ, 设最大静摩擦力等于滑动摩擦力。
当圆盘以角速度ω0匀速转动时,物块与圆盘保持相对静止,则此时物块受到的摩擦力大小为_____________;要使物块与圆 盘始终保持相对静止,圆盘转动的角速度应满足的条件是_____________。
【例3】用一根长为L 的不可伸长的轻绳一端固定在悬点O ,另一端拴住一个质量为m 的小球(可视为质点),开始时用外力使小球静止在最低点,然后释放小球,同时给小球一个水平方向的初速度v 0,使小球在竖直平面内运动,空气阻力不计,重力加速度为g 。
(1)若小球能做完整的圆周运动,则初速度v 0至少为多少?(2)若在空间加上场强大小为E 、方向向下的匀强电场,同时让小球带上q (q >0)的电荷,轻绳绝缘,则(1)的结果又为多少?O练习1:A 、B 、C 三个质量分别为m 、3m 、m 的小物块(均可视为质点)放在一水平圆盘上,圆盘可绕过圆心O 的竖直轴转动。
已知物块A 和B 到转轴的距离均为r ,物块C 到转轴的距离为2r ,如图所示。
三物块与圆盘间的动摩擦因数均相同,设最大静摩擦力等于滑动摩擦力。
当圆盘以角速度ω0匀速转动时,三物块与圆盘均保持相对静止,则物块________受到的静摩擦力最大;若逐渐增大圆盘转动的角速度,则物块________最先开始相对圆盘滑动。
圆周运动中的临界问题(全)
圆周运动中的“临界问题”总结一、“绳”模型——“最高点处有临界,最低点时无选择”一轻绳系一小球在竖直平面内做圆周运动.小球“刚好”“恰好”过最高点的条件是:此时,只有小球的 提供向心力,即 =m rv 2,这时的速度是做圆周运动的最小速度,vmin = . V= 是“绳”模型中小球能否顺利通过最高点继续做圆周运动的临界速度。
类此模型:竖直平面内的内轨道巩固1:游乐园里过山车原理的示意图如图所示。
设过山车的总质量为m =60kg ,由静止从斜轨顶端A 点开始下滑,恰好过半径为r=2.5m 的圆形轨道最高点B 。
求在圆形轨道最高点B 时的速度大小。
巩固2:杂技演员在做水流星表演时,用绳系着装有水的水桶,在竖直平面内做圆周运动,若水的质量m =0.5 kg ,绳长l=60cm ,求:(1)最高点水不流出的最小速率。
(2)水在最高点速率v =3 m /s 时,水对桶底的压力.巩固3:公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,也叫“过水路面”。
如图所示,汽车通过凹形桥的最低点时A .车的加速度为零,受力平衡B .车对桥的压力比汽车的重力大C .车处于超重状态D .车的速度越大,车对桥面的压力越小二、“杆”模型————“最高点处有临界,最低点时无选择” 一轻杆系一小球在竖直平面内做圆周运动,注意v=0和v=gr 两个速度。
①当v =0时,杆对小球的支持力 小球的重力;②当0<v <gr 时,杆对小球产生 力,且该力 于小球的重力;③当v =gr 时,杆对小球的支持力 于零;④当v >gr 时,杆对小球产生 力。
V= 是“杆”模型中杆对小球是“推”“拉”的临界。
类此模型:竖直平面内的管轨道.巩固4:如图所示,长为L 的轻杆一端有一个质量为m 的小球,另一端有光滑的固定轴O ,现给球一初速度,使球和杆一起绕O 轴在竖直平面内转动,不计空气阻力,则( )A.小球到达最高点的速度必须大于gLB .小球到达最高点的速度要大于0C.小球到达最高点受杆的作用力一定为拉力D.小球到达最高点受杆的作用力一定为支持力 三、“拱形桥”模型——“最高点处有临界”小球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点时,若小球与球面间弹力为零,则有 = ,v= 。
(完整版)圆周运动中的临界问题(最新整理)
圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。
1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。
()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。
1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。
临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。
gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。
圆周运动中的临界问题和周期性问题高中物理
圆周运动中的临界问题和周期性问题一、圆周运动问题的解题步骤:1、确定研究对象2、画出运动轨迹、找出圆心、求半径3、分析研究对象的受力情况,画受力图4、确定向心力的来源5、由牛顿第二定律r Tm r m r v m ma F n n 222)2(πω====……列方程求解 二、临界问题常见类型:1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动三、竖直面内的圆周运动的临界问题1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2)A 、最高点水不留出的最小速度?B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。
圆周运动中的临界问题
3 rad/s 1.0 rad/s
0.5 rad/s
• 在质量为M的电动机的飞轮上,固定 着一个质量为m的重物,重物到转轴 的距离为r,如图所示,为了使放在地 面上的电动机不会跳起,电动机飞轮 的角速度不能超过( )
A. C.
M m g mr M m g mr
B. D. Mg
mr
M m g mr
m R O
v0 N
M
如图所示,质量为m的物体随水平传送带 一起匀速运动,A为传送带的终端皮带轮, 皮带轮半径为r,要使物体通过终端时, 能水平抛出,皮带轮的转速至少为:( )
A
如图所示,一倾斜的匀质圆盘绕垂直于盘面的固 定对称轴以恒定的角速度ω转动,盘面上离转轴 距离2.5m处有一小物体与圆盘始终保持相对静 止。物体与盘面间的动摩擦因数为 /2(设最 大静摩擦力等于滑动摩擦力),盘面与水平面的 夹角为30°,g取10m/s2。则ω的最大值是 A 5 rad/s B C D
gr
N=0
v2 mg m r
v gr
在最高点时速 度应不小于
gr
V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn V>=0 F向>=0 F向=FT+mg 或F向=mg-Fn
在最高点速度 应大于等于0 在最高点速度 应大于等于0
临界问题:由于物体在竖直平面内做圆周运动 的依托物(绳、轨道、轻杆、管道等)不同, 所以物体恰好能通过最高点的临界条件也不同。
3.如图所示,竖直圆筒内壁光滑,半径 为R,顶部有一个入口,在的正下方 处 有一个出口,一质量为 m的小球沿切线 方向的水平槽射入圆筒内,要使小球从 B处飞出,小球射入入口的速度 满足什 么条件? 在运动过程中球对筒的压力 多大?
专题:圆周运动中的临界问题
专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。
如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。
2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。
(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。
a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。
例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。
当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。
解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。
(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。
圆周运动临界问题汇总
圆周运动临界问题汇总作者:李文强来源:《文理导航·教育研究与实践》2016年第03期圆周运动的临界问题是曲线运动中的一个重要知识,也是高考中的高频考点,现在我把它归纳为以下几种情况供大家参考。
一、水平面内的临界问题在水平面内圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动(半径有变化)的趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时的方向如何(特别是一些接触力如静摩擦力,绳的拉力等)例1:如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a与转轴OO′的距离为L,b与转轴的距离为2L。
木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=是b开始滑动的临界角速度D.当ω=时,a所受摩擦力的大小为kmg解析:小木块都随水平转盘做匀速圆周运动时,在发生相对滑动之前,角速度相等,静摩擦力提供向心力即f静=mrω2,由于木块b的半径大,所以发生相对滑动前木块b的静摩擦力大,选项B错。
随着角速度的增大,当静摩擦力等于滑动摩擦力时木块开始滑动,则有f静=mrω2=kmg,代入两个木块的半径,小木块a开始滑动时的角速度ωa=,木块b开始滑动时的角速度ωb=,选项C对。
根据ωa>ωb,所以木块b先开始滑动,选项A对。
当角速度ω=,木块b已经滑动,但是ω=二、竖直面内的临界问题(1)线球模型(高中阶段只要求分析特殊位置最高点、最低点)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况:注意:绳对小球只能产生沿绳收缩方向的拉力。
①临界条件:绳子或轨道对小球没有力的作用:mg=mv2/R→v临界=(可理解为恰好转过或恰好转不过的速度)②能过最高点的条件:v≥,当V>时,绳对球产生拉力,轨道对球产生压力。
圆周运动中的临界问题
圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。
圆周运动的临界问题
解:在最高点F向=G+T, 即G+T=mv2/r
T=mv2/r-mg≥0
小球经过最高点的速度:v gr
线或绳
讨论:
①、当 v gr 时,细绳对小球没有拉力作用。向心
力只由小球所受重力提供。
②、如果 v> gr ,轻绳对小球存在拉力。
③、如果 v< gr ,小球无法到达圆周的最高点
练习:如图,在“水流星”表演中,绳长为 1m,水桶的质量为2kg,若水桶通过最高点的 速度为4m/s,求此时绳受到的拉力大小。
变式训练2:如图所示,一个光滑的圆锥体固定在水平桌面上,其
轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端 拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆 锥体的轴线做水平匀速圆周运动。
⑴当v= gl 6
时,求绳对物体的拉力;
练习:长L=0.5m,质量可以忽略的的杆,其下端 固定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动,在A通过最高点时,试讨论在下列 两种情况下杆的受力:
①当A的速率v1=1m/s时 ②当A的速率v2=4m/s时
A
L
O
小结:
一.水平面内的圆周运动的临界问题
处理这类问题的关键是分析出静摩擦力的变化,从 而结合其他力分析出指向圆心的合外力的变化,以 确定圆周运动的其他物理量的变化范围。
mgt0 am n ω 1 2L 3s0 i3n00
B
30 0
45 0
C
将已知代入解得ω1=2.4 rad/s
②当角速度ω继续增大时TAC减小,TBC
增大。设角速度达到ω2时,TAC=0,则③ω=3 rad/s,此时两绳拉
圆周运动中的临界问题(最新整理)
C、24N 的拉力
D、24N 的压力
m
A L O
例 3 长 L=0.5m,质量可以忽略的的杆,其下端固定于 O 点, 上端连接着一个质量 m=2kg 的小球 A,A 绕 O 点做圆周运动(同 图 5),在 A 通过最高点,试讨论在下列两种情况下杆的受力:
①当 A 的速率 v1=1m/s 时 ②当 A 的速率 v2=4m/s 时
离圆心,大小等于最大静摩擦力 2N。 此时,对 M 运用牛顿第二定律。
M
ro
有
T-fm=Mω12r
且 T=mg
解得 ω1=2.9 rad/s
m
第5页
图 7
当ω为所求范围最大值时,M 有背离圆心运动的趋势,水平面对 M 的静摩擦力的方向向着圆
心,大小还等于最大静摩擦力 2N。
再对 M 运用牛顿第二定律。
有
T+fm=Mω22r
解得 ω2=6.5 rad/s
所以,题中所求ω的范围是: 2.9 rad/s<ω<6.5 rad/s
第6页
注意:解题时注意圆心的位置(半径的大小)。
如果ω<2.4 rad/s 时,TBC=0,AC 与轴的夹角小于 30°。 如果ω>3.16rad/s 时,TAC=0,BC 与轴的夹角大于 45
例 5 解析:要使 m 静止,M 也应与平面相对静止。而 M 与平面静止时有两个临界状态:
当ω为所求范围最小值时,M 有向着圆心运动的趋势,水平面对 M 的静摩擦力的方向背
①当 v1=1m/s< 5m/s 时,小球受向下的重力 mg 和向上的支持力 N v2
由牛顿第二定律 mg-N=m L v2
N=mg-m =16N L
专题七 圆周运动的临界问题
几何分析
目的是确定圆周运动的圆心、半径等
运动分析
目的是确定圆周运动的线速度、角速度、向心加速度等
受力分析
目的是通过力的合成与分解,表示出物体做圆周运动时,外界所提供的向心力
条件分析
①绳的临界:张力 ;②接触面滑动的临界: ;③接触面分离的临界: .分析时一般先假设达到临界状态后,再分析结论.
C
A.小球通过最高点时的最小速度 B.小球通过最高点时的最小速度 C.小球在水平线 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线 以上的最高点的速度可以为零,故A、B错误;小球在水平线 以下的管道中运动时,由外侧管壁对小球的作用力 与小球重力在背离圆心方向的分力 的合力提供向心力,即 ,因此外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,C正确;小球在水平线 以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.
考向二 “杆-球”模型
例4 如图甲所示,轻杆一端固定在 点,另一端固定一小球,现让小球在竖直平面内做半径为 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为 ,小球在最高点的速度大小为 ,其 图像如图乙所示.则( )
A.小球的质量为 B.当地的重力加速度大小为 C. 时,在最高点杆对小球的弹力方向向上D. 时,在最高点杆对小球的弹力大小为
√
√
√
变式2 如图所示,相同的物块 、 用沿半径方向的细线相连放置在水平圆盘上.当圆盘绕转轴转动时,物块 、 始终相对圆盘静止.下列关于物块 所受的摩擦力 随圆盘角速度的平方 的变化关系正确的是( )
D
A. B. C. D.
[解析] 角速度慢慢增大,一定是长绳挂着的那个球先离开圆锥筒,选项A正确,B错误;设小球离开圆锥筒后,绳子的拉力为 ,绳子长度为 ,与竖直方向的夹角为 ,由 , ,联立解得 ,而 ,为小球到圆锥筒顶点的高度,所以两个球都离开圆锥筒后,它们的高度一定相同,选项C正确;而细绳中拉力 ,即两个球都离开圆锥筒时两端绳子的拉力不一定相同,选项D错误.
临界问题
θ
11.如图,两绳AC BC系一质量m=0.1kg 的小球,且AC绳长l=2m,两绳都拉直时 与竖直轴的夹角分别为300和450,当小球 以ω=4rad/s绕AB轴转动时,上下两绳拉 力分别是多少? ω ω ω ω A A A A B C B C B C B C
h
0
L
α 0’
15、如图所示,已知mA=2mB=2mC,它 们距轴的关系是rA=rC=1/2rB,三物体与转 盘表面的动摩擦因数相同,当转盘的转 速逐渐增加时 A、物体A先滑动 B、物体B先滑动 A C B C、物体C先滑动 D、B与C同时开始滑动
15、如图所示,已知mA=2mB=2mC,它 们距轴的关系是rA=rC=1/2rB,三物体与转 盘表面的动摩擦因数相同,当转盘的转 速逐渐增加时 A、物体A先滑动 B、物体B先滑动 A C B C、物体C先滑动 D、B与C同时开始滑动
O M
m
6.如图,半径为R的洗 衣机圆筒,绕竖直中心 AB转动,小橡皮块a靠 在圆筒内壁上,它与圆 筒的动摩擦因数为μ, 现要使a不落下,则圆 筒转动的角速度ω至少 为多少?
A
a
B
7.如图所示,光滑平台上的小球A通过 一根不可伸长的细绳穿过小孔系一个 小球B,小球A的质量为mA=100g,A 球在平台上做匀速圆周运动,稳定后 小球A的线速度为5m/s。A球到小孔的 距离r=0.2m,求B球的质量。(取 g=10m/s2)
A
B
9.如图,半径为R的半球形碗内,有一个具 有一定质量的物体A,A与碗壁间的摩擦不计。 当碗绕竖直轴OO1匀速转动时,物体A在离 碗底高为h处紧贴着碗随碗一起匀速转动而 不发生相对滑动,求碗转动的角速度。
圆周运动临界态和周期性问题
圆
例2:如图所示:在半径为R的水平圆
周 板绕中心轴匀速转动,其正上方高h处的A点
运
水平抛出一个小球。已知当圆板的半径OB转 到与小球的初速度方向平行时,将小球开始
动 抛出,不计空气阻力,如果小球与圆板只碰
的 周
一次且落点为B,则小球的初速度多大?圆 板转动的角速度ω应为多少?
2n0
时,弹簧的伸长量Δx
A
O
R
圆周运动的临 界问题
[例题4]如图所示,一个光滑的圆锥体固定在水平桌
面上,其轴线沿竖直方向,母线与轴线之间的夹角
θ=300 ,一条长为L的绳(质量不计),一端固定在
圆锥体的顶点O处,另一端拴着一个质量为m的小物体
(物体可看作质点),物体以速率v绕圆锥体的轴线
做水平匀速圆周运动。
B
迁移应用
[例题4]如图所示,在倾角α=300 的光滑斜面上,有一根 长L=0.8m的细绳,其一端固定在O点,另一端系一质量 m=0.2kg的小球,沿斜面做圆周运动,试计算通过最高点 A的最小速度。(g取10m/s2)
A
L
O
B
α
[例题2]如图所示,细绳一端系着质量为M=0.6kg的物体,静止在水平面上, 另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中心与圆孔距离为 0.2m,并知 M 和水平面的最大静摩擦力为2N,现使此平面绕中心轴转动,问 角速度ω在什么范围内m 处于静止状态?(g取10m/s2) r o M m 圆周运动的临界问题
圆周运动的临界问题
[例题5]杂技演员在做水流星表演时,用绳系着装有水 的桶,在竖直平面内做圆周运动,水的质量m=0.5kg , 绳长L=60cm. 求:(1)最高点水不流出的最小速率; (2)水在最高点速率 v=3m/s 时,水对桶底的压力。
圆周运动中的临界问题和周期性问题
圆周运动中的临界问题和周期性问题一、 圆周运动问题的解题步骤:1、 确定研究对象2、 画出运动轨迹、找出圆心、求半径3、 分析研究对象的受力情况,画受力图4、 确定向心力的来源2小v 22応 25、 由牛顿第二定律 F n 二ma n 二m m •m(——)r 列方程求解 rT二、 临界问题常见类型: 1按力的种类分类:(1 )、与弹力有关的临界问题:接触面间的弹力:从有到无 ,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无(2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1 )、竖直面内的圆周运动 (2)、水平面内的圆周运动 三、 竖直面内的圆周运动的临界问题1单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R 宀v 临界=.Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力② 能过最高点的条件:v > Rg ,当v > . Rg 时,绳对球产生拉力,轨道对球产生压力. ③ 不能过最高点的条件:v v V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动)例1绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为 求:(g 取 10m/s 2) A 、 最高点水不留出的最小速度?B 、 设水在最高点速度为 V=3m/s ,求水对桶底的压力? 答案:(1)、、6m/s (2) 2.5Nl=60cm ,变式1、如图所示,一质量为m的小球,用长为L细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度V = gr时,汽车对弧顶的压力FN=O,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.例2、半径为R的光滑半圆球固定在水平面上,顶部有一小物体,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动中的临界问题和周期性问题一、圆周运动问题的解题步骤:1、确定研究对象2、画出运动轨迹、找出圆心、求半径3、分析研究对象的受力情况,画受力图4、确定向心力的来源5、由牛顿第二定律r Tm r m r v m ma F n n 222)2(πω====……列方程求解 二、临界问题常见类型:1、按力的种类分类: (1)、与弹力有关的临界问题:接触面间的弹力:从有到无,或从无到有绳子的拉力:从无到有,从有到最大,或从有到无 (2)、与摩擦力有关的弹力问题:从静到动,从动到静,临界状态下静摩擦力达到最大静摩擦 2、按轨道所在平面分类: (1)、竖直面内的圆周运动 (2)、水平面内的圆周运动三、竖直面内的圆周运动的临界问题1、单向约束之绳、外轨道约束下的竖直面内圆周运动临界问题: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) 即此时小球所受重力全部提供向心力②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力. ③不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 例1、绳子系着装有水的木桶,在竖直面内做圆周运动,水的质量m=0.5kg ,绳子长度为l=60cm ,求:(g 取10m/s 2)A 、最高点水不留出的最小速度?B 、设水在最高点速度为V=3m/s ,求水对桶底的压力? 答案:(1)s m /6 (2)2.5N变式1、如图所示,一质量为m 的小球,用长为L 细绳系住,使其在竖直面内作圆周运动.(1)若过小球恰好能通过最高点,则小球在最高点和最低点的速度分别是多少?小球的受力情况分别如何?(2)若小球在最低点受到绳子的拉力为10mg ,则小球在最高点的速度及受到绳子的拉力是多少?2、单向约束之内轨道约束下(拱桥模型)的竖直面内圆周运动的临界问题:汽车过拱形桥时会有限速,是因为当汽车通过半圆弧顶部时的速度gr v =时,汽车对弧顶的压力FN=0,此时汽车将脱离桥面做平抛运动,因为桥面不能对汽车产生拉力.例2、半径为 R 的光滑半圆球固定在水平面上,顶部有一小物体, 如图所示。
今给小物体一个水平初速度0v Rg = )A.沿球面下滑至 M 点B.先沿球面下滑至某点N,然后便离开斜面做斜下抛运动 C.按半径大于 R 的新的圆弧轨道做圆周运动 D.立即离开半圆球做平抛运动3、双向约束之轻杆、管道约束下的竖直面内圆周运动的临界问题物体(如小球)在轻杆作用下的运动,或在管道中运动时,随着速度的变化,杆或管道对其弹力发生变化.这里的弹力可以是支持力,也可以是压力,即物体所受的弹力可以是双向的,与轻绳的模型不同.因为绳子只能提供拉力,不能提供支持力;而杆、管道既可以提供拉力,又可以提供支持力;在管道中运动,物体速度较大时可对上壁产生压力,而速度较小时可对下壁产生压力.在弹力为零时即出现临界状态.(一)轻杆模型如图所示,轻杆一端连一小球,在竖直面内作圆周运动.(1)能过最高点的临界条件是:0v =.这可理解为恰好转过或恰好不能转过最高点的临界条件,此时支持力mg N =.(2)当0v Rg <<mg N <<0,N 仍为支持力,且N 随v 的增大而减小,mg O(3)当v Rg =时,N =0,此为轻杆不受弹力的临界条件. (4)当v Rg >时,N 随v 的增大而增大,且N 为拉力指向圆心,例3、如图所示,有一长为L 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在竖直面内做完整的圆周运动。
已知水平地面上的C 点位于O 点正下方,且到O 点的距离为1.9L 。
不计空气阻力。
(1)求小球通过最高点A 时的速度v A ;(2)若小球通过最低点B 时,细线对小球的拉力T 恰好为小球重力的6倍,且小球经过B 点的瞬间让细线断裂,求小球落地点到C 点的距离。
解:(1)小球恰好能做完整的圆周运动,则小球通过A 点时细线的拉力刚好为零,根据向心力公式有:mg=2A v mL解得:A v gL =。
(2)小球在B 点时根据牛顿第二定律有T-mg=m 2B v L其中T=6mg解得小球在B 点的速度大小为vB=5gL细线断裂后,小球从B 点开始做平抛运动,则由平抛运动的规律得:竖直方向上1.9L-L=21gt2(2分) 水平方向上x=vBt(2分) 解得:x=3L(2分)即小球落地点到C 点的距离为3L 。
答案:(1)gL(2)3L㈡管道模型质点(小球)在光滑、竖直面内的圆管中作圆周运动(圆管截面半径r 远小于球的圆周运动的半径R),如图所示.小球达到最高点时对管壁的压力有三种情况:(1)刚好对管壁无压力,此时重力为向心力,临界速度为Rg v =.(2)当Rg v <时,对下管壁有压力,此时Rv m mg N 2-=,故mg N <<0。
(3)当Rg v >时,对上管壁有压力,此时mg Rv m N -=2。
实际上,轻杆和管道两种约束情况可化归为同类的物理模型,即双向约束模型.例4、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R (比细管的半径大得多),圆管中有两个直径与细管内径相同的小球(可视为质点)。
A 球的质量为m 1,B 球的质量为m 2。
它们沿环形圆管顺时针运动,经过最低点时的速度都为v 0。
设A 球运动到最低点时,球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m 1,m 2,R 与v 0应满足关系式是 。
解:首先画出小球运动达到最高点和最低点的受力图,如图4-1所示。
A 球在圆管最低点必受向上弹力N 1,此时两球对圆管的合力为零,m 2必受圆管向下的弹力N 2,且N 1=N 2。
据牛顿第二定律A 球在圆管的最低点有:R v m mg N 2011=- 同理m 2在最高点有: Rv m mg N 2122=+m 2球由最高点到最低点机械能守恒: 22212221212v m v m gR m =+21N N =由上述方程可得:12120)5(m m gR m m v -+=【小结】 比较复杂的物理过程,如能依照题意画出草图,确定好研究对象,逐一分析就会变为简单问题。
找出其中的联系就能很好地解决问题。
四、水平面内圆周运动中的临界问题: 解决圆周运动中临界问题的一般方法 1、对物体进行受力分析2、找到其中可以变化的力以及它的临界值3、求出向心力(合力或沿半径方向的合力)的临界值4、用向心力公式求出运动学量(线速度、角速度、周期、半径等)的临界值例5、水平转盘上放有质量为m 的物快,当物块到转轴的距离为r 时,若物块始终相对转盘静止,物块和转盘间最大静摩擦力是正压力的μ倍,求转盘转动的最大角速度是多大?解:由r m mg 2ωμ= 得:r gμω=OO’A点评:提供的向心力的临界值决定了圆周运动角速度的临界值变式5、物体与圆筒壁的动摩擦因数为μ ,圆筒的半径为R ,若要物体不滑下,圆筒的角速度至少为多少? 解: 得例6、如图所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad /s 时,上、下两绳拉力分别为多大?解:当ω渐大,AC 绳与杆夹角变大,但BC 绳还没拉直。
当AC 绳与杆夹角为30°时,BC 绳处在虚直状态。
之后ω再增大, BC 绳上也会有拉力。
所以BC 绳虚直为临界状态。
20tan 30sin 30mg m L ω=0 2.4rad/s cos302ω⇒===≈∴0ωω>,BC 绳上有拉力。
分析小球,由牛顿第二定律:2cos30cos 45sin 30sin 45sin 30AC BC AC BC T T mg T T m L ω⎧+=⎨+=⎩221122AC BC AC BC mg T m L ω⎧+=⎪⎪⎨⎪+=⎪⎩1N 10N AC BC T T ⎧=⎪⎪⇒⎨⎪=⎪⎩变式6-1:如图,长为L 的绳子,下端连着质量为m 的小球,上端接于天花板上,当把绳子拉直时,绳与竖直方向夹角θ=60°。
此时小球静止于光滑水平面上。
CCrm F N 2ω=mgF N =μrgμω=(1)当小球以L g=ω 做圆锥摆运动时,绳子张力多大?桌面支持力多大? (2)当小球以L g4=ω 做圆周运动时,绳子张力多大?桌面受到的压力多大?答案:(1)T=mg mg F N 21=(2)T=4mg 0=N F变式6-2、如图所示,一个光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O 处,另一端拴着一个质量为m 的小物体(物体可看质点),物体以速率v 绕圆锥体的轴线做水平匀速圆周运动。
⑴当v =16gL 时,求绳对物体的拉力; ⑵当v =32gL 时,求绳对物体的拉力。
解:物体在水平面内做匀速圆周运动,由重力G 、拉力T 、支持力N 提供向心力,当角速度ω很小时,物体在圆锥体上运动。
2sin cos (1)sin cos sin (2)v T N mL T N mg θθθθθ⎧-=⎪⎨⎪+=⎩由(2)得:sin cos mg N T θθ-=代入(1)得:2tan (tan sin cos )sin v mg N mL θθθθθ-+= 由此可得,当v 增大时,N 减少。
∴当ω大到一定值时,物体将离开锥面,绳与竖直方向的夹角将变大。
显然当球与锥面虚接触(即N=0,θ=30°)时的线速度值为物体的临界速度。
对球分析,由牛顿第二定律:22(3)2(4)v T m L mg ⎧=⎪⎪=3T mg ⇒=0v ⇒=⑴当10v v =,所以N>0。
21sin cos (1)sin cos sin (2)v T N mL T N mg θθθθθ⎧-=⎪⎨⎪+=⎩由(2)得:cos sin mg T N θθ-=代入(1)得:21(sin cot cos )cot sin v T mg mL θθθθθ+-=201cot 6sin 1.03sin cot cos gLmvmmg LL T mg θθθθθ++===≈+⑵当20v v =>,此时N=0,但夹角变大,不为30°2sin (5)sin cos (6)v T mL T mg ααα⎧=⎪⎨⎪=⎩由(6)得:cos mgT α=(7),代入(5)得:2sin cos sin v mg m L ααα= 223sin 2 1.5cos gLv gL gL αα⇒===60α⇒=代入(7)得:2T mg =例7、如图所示,细绳一端系着质量M =0.6kg 的物体,静止在水平面上,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。