圆周运动中的临界问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动中的临界问题
1、在竖直平面内作圆周运动的临界问题
⑴如图1、图2所示,没有物体支承的小球,在竖直平面作圆周运动过最高点的情况
①临界条件:绳子或轨道对小球没有力的作用 v 临界=Rg
②能过最高点的条件:v ≥Rg ,当v >Rg 时,绳对球产生拉力,轨道对球产生压力。
③不能过最高点的条件:v <v 临界(实际上球没到最高点时就脱离了轨道)。 ⑵如图3所示情形,小球与轻质杆相连。杆与绳不同,它既能产生拉力,也能产生压力
①能过最高点v 临界=0,此时支持力N =mg
②当0<v <Rg 时,N 为支持力,有0<N <mg ,且N 随v 的增大而减小 ③当v =Rg 时,N =0
④当v >Rg ,N 为拉力,有N >0,N 随v 的增大而增大
例1 (99年高考题)如图4所示,细杆的一端与一小球相连,可绕过O 的水平轴自由转动。现给小球一初速度,使它做圆周运动。图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球作用力可能是 ( )
A 、a 处为拉力,b 处为拉力
B 、a 处为拉力,b 处为推力
C 、a 处为推力,b 处为拉力
D 、a 处为推力,b 处为推力
图 1
v 0
图
2
图 3
例2 长度为L =0.5m 的轻质细杆OA ,A 端有一质量为m =3.0kg 的小球,如图5所示,小球以O 点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0m /s ,g 取10m /s 2,则此时细杆OA 受到 ( )
A 、6.0N 的拉力
B 、6.0N 的压力
C 、24N 的拉力
D 、24N 的压力
例3 长L =0.5m ,质量可以忽略的的杆,其下端固定于O 点,上端连接着一个质量m =2kg 的小球A ,A 绕O 点做圆周运动(同图5),在A 通过最高点,试讨论在下列两种情况下杆的受力:
①当A 的速率v 1=1m /s 时 ②当A 的速率v 2=4m /s 时
2、在水平面内作圆周运动的临界问题
在水平面上做圆周运动的物体,当角速度ω变化时,物体有远离或向着圆心运动的(半径有变化)趋势。这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时方向朝哪(特别是一些接触力,如静摩擦力、绳的拉力等)。
例4 如图6所示,两绳系一质量为m =0.1kg 的小球,上面绳长L =2m ,两端都拉直时与轴的夹角分别为30°与45°,问球的角速度在什么范围内,两绳始终张紧,当角速度为3 rad /s 时,上、下两绳拉力分别为多大?
图 5
C
图 6
例5 如图7所示,细绳一端系着质量M =0.6kg 的物体,静止在水平肌,另一端通过光滑的小孔吊着质量m =0.3kg 的物体,M 的中与圆孔距离为0.2m ,并知M 和水平面的最大静摩擦力为2N 。现使此平面绕中心轴线转动,问角速度ω在什么范围m 会处于静止状态?(g =10m /s 2)说明:一般求解“在什么范围内……”这一类的问题就是要分析两个临界状态。
3、巩固练习
1、汽车通过拱桥颗顶点的速度为10 m /s 时,车对桥的压力为车重的3
4 。如果使汽
车驶至桥顶时对桥恰无压力,则汽车的速度为 ( )
A 、15 m /s
B 、20 m /s
C 、25 m /s
D 、30m /s
2、如图8所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。物体和转盘间最大静摩擦力是其下压力的μ倍。求:
⑴当转盘角速度ω1=μg
2r
时,细绳的拉力T 1。 ⑵当转盘角速度ω2=3μg
2r
时,细绳的拉力T 2。 三、小结
1、解圆周运动的问题时,一定要注意找准圆心,绳子的悬点不一定是圆心。
2、把临界状态下的某物理量的特征抓住是关键。如速度的值是多大、某个力恰好存在还是不存在以及这个力的方向如何。
图 8
图 7
答案
例1分析:答案A是正确的,只要小球在最高点b的速度大于gL ,其中L是杆的长;答案B也是正确的,此时小球的速度有0<v<gL ;答案C、D肯定是错误的,因为小球在最低点时,杆对小球一定是拉力。
例2解法:小球在A点的速度大于gL 时,杆受到拉力,小于gL 时,杆受压力。
V0=gL =10×0.5 m/s= 5 m/s
由于v=2.0 m/s< 5 m/s,我们知道:过最高点时,球对细杆产生压力。
小球受重力mg和细杆的支持力N
由牛顿第二定律mg-N=m v2 L
N=mg-m v2
L=6.0N故应选B。
例3
解法一:(同上例)小球的速度大于 5 m/s时受拉力,小于 5 m/s时受压力。
①当v1=1m/s< 5 m/s时,小球受向下的重力mg和向上的支持力N
由牛顿第二定律mg-N=m v2 L
N=mg-m v2
L=16N
即杆受小球的压力16N。
②当v2=4m/s> 5 m/s时,小球受向下的重力mg和向下的拉力F
由牛顿第二定律mg+F=m v2 L
F=m v2
L-mg=44N
即杆受小球的拉力44N。
解法二:小球在最高点时既可以受拉力也可以受支持力,因此杆受小球的作用力也可以是拉力或者是压力。我们可不去做具体的判断而假设一个方向。如设杆竖直向下拉小球A,则小球的受力就是上面解法中的②的情形。
由牛顿第二定律mg+F=m v2 L
得到F=m(v2
L-g
)
N