圆周运动临界问题

合集下载

第五讲:圆周运动临界问题

第五讲:圆周运动临界问题

第五讲:圆周运动临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态,分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=m v2 r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.例、如图所示,质量相等的A、B物体置于粗糙的圆盘上,圆盘的摩擦因数为μ,A、B通过轻绳相连,随圆盘一起做圆周运动且转动的角速度ω由0逐渐增大,A的转动半径为r,B的转动半径为2r,重力加速度为g,分析:①A、B滑动的临界角速度大小;①此时若A、B间轻绳被拉断,分析A、B的运动情况.【解析】①方法一:整体法:2μmg=mrω2+m·2r·ω2方法二:等效质点法:质心在AB的中点处【例题】如图所示,A、B、C三个物体放在旋转的水平圆盘面上,物体与盘面间的最大静摩擦力均是其重力的k倍,三物体的质量分别为2m、m、m,它们离转轴的距离分别为R、R、2R.当圆盘旋转时,若A、B、C三物体均相对圆盘静止,则下列说法正确的是()A.A的向心加速度最大B.B和C所受摩擦力大小相等C.当圆盘转速缓慢增大时,C比A先滑动D.当圆盘转速缓慢增大时,B比A先滑最大静摩擦力提供向心力:2μmg =2m·32r·ω2,故临界角速度:ω=μg 3r. ①绳断瞬间:A 的向心力小于最大静摩擦力,故仍做圆周运动;B 的向心力大于最大静摩擦力,B 做离心运动.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零. (2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.例、如图所示,用一根细线一端系一小球(可视为质点),另一端固定在一光滑圆锥顶上,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,重力加速度为g ,分析:F T 随ω2变化的图像.【解析】情况一:a ≤g tan θ,小球与锥面接触,对小球受力分析,将向心加速度分解到沿绳方向和垂直绳方向.则有:T =m g cos θ+ml sin 2θω2,N =mg sin θ-12ml sin2θω2情况二:a >g tan θ,小球离开锥面,绳力T =mlω2 故T 与ω2的函数图像如图所示.【例题】一转动轴垂直于一光滑水平面,交点O 的上方h 处固定一细绳的一端,细绳的另一端固定一质量为m 的小球B ,绳长AB =l >h ,小球可随转动轴转动,并在光滑水平面上做匀速圆周运动,如图所示,要使小球不离开水平面,转动轴的转速的最大值是(重力加速度为g )( )A.12πg hB.πghC.12πg l针对训练题型1:摩擦力有关的临界问题1.如图,细绳一端系着质量M=0.6kg的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg的物体,M的中点与圆孔距离为0.2m,并知M和水平面的最大静摩擦力为2N,现使此平面绕中心轴线转动,问角速度ω在什么范围m会处于静止状态?(g 取10m/s2)(多选)2.如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L 的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω<时,绳子没有弹力B.当ω>时,A、B仍相对于转盘静止C.ω在<ω<范围内时,B所受摩擦力大小不变D.ω在0<ω<范围内增大时,A所受摩擦力大小先不变后增大(多选)3.如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmgB.此时A所受摩擦力方向沿半径指向圆外C.此时圆盘的角速度为D.此时烧断绳子,A仍相对盘静止,B将做离心运动4.如图所示,表面粗糙的水平圆盘上叠放着质量相等的两物块A、B,两物块到圆心O的距离r=0.2m,圆盘绕圆心旋转的角速度ω缓慢增加,两物块相对圆盘静止可看成质点.已知物块A与B间的动摩擦因数μ1=0.2,物块B与圆盘间的动摩擦因数μ2=0.1,最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,则下列说法正确的是()A.根据f=μF N可知,B对A的摩擦力大小始终等于圆盘对B的摩擦力大小B.圆盘对B的摩擦力大小始终等于B对A的摩擦力大小的2倍C.圆盘旋转的角速度最大值ωmax=rad/sD.如果增加物体A、B的质量,圆盘旋转的角速度最大值增大(多选)5.如图所示,水平转盘可绕竖直中心轴转动,盘上叠放着质量均为1kg的A、B两个物块,B物块用长为0.25m的细线与固定在转盘中心处的力传感器相连,两个物块和传感器的大小均可不计。

圆周运动——临界问题

圆周运动——临界问题
当v>v0,杆对球有向下的拉力。
mg
F1
此时最低点的速度为:
问:当v2的速度等于0时,杆对球的支持力为多少?
F支=mg
此时最低点的速度为:
结论:使小球能做完整的圆周运动在最低点的速度
拓展:物体在管型轨道内的运动
如图,有一内壁光滑、竖直放置的管型轨道,其半径为R,管内有一质量为m的小球有做圆周运动,小球的直径刚好略小于管的内径。
四、圆周运动的周期性 利用圆周运动的周期性把另一种运动(例如匀速直线运动、平抛运动)联系起来。圆周运动是一个独立的运动,而另一个运动通常也是独立的,分别明确两个运动过程,注意用时间相等来联系。在这类问题中,要注意寻找两种运动之间的联系,往往是通过时间相等来建立联系的。同时,要注意圆周运动具有周期性,因此往往有多个答案。
例:长为L的细绳,一端系一质量为m的小球,另一端固定于某点,当绳竖直时小球静止,现给小球一水平初速度v0,使小球在竖直平面内做圆周运动,并且刚好过最高点,则下列说法中正确的是:( ) A.小球过最高点时速度为零 B.小球开始运动时绳对小球的拉力为m C.小球过最高点时绳对小的拉力mg D.小球过最高点时速度大小为
【答案】 2.9 rad/s≤ω≤6.5 rad/s
如图所示,匀速转动的水平圆盘上,沿半径方向两个用细线相连的小物体A、B的质量均为m,它们到转轴的距离分别为rA=20cm,rB=30cm。A、B与圆盘间的最大静摩擦力均为重力的0.4倍,(g=10m/s2)求: (1)当细线上开始出现张力,圆盘的角速度; (2)当A开始滑动时,圆盘的角速度
思考:在最高点时,什么时候外管壁对小球有压力,什么时候内管壁对小球有支持力什么时候内外管壁都没有压力?小球在最低点的速度v至少多大时,才能使小球在管内做完整的圆周运动?

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动的临界问题【例1】如图所示,半径为0.5 m 的光滑细圆管轨道固定在底座上,底座放在水平地面上两地桩之间,不能左右移动,圆管轨道和底座的总质量为5 kg 。

在圆管最低点静置一个质量为1 kg 的小球(直径略小于圆管内径),给小球一个水平方向的初速度v 0,小球能在圆管内做完整的圆周运动,整个过程中底座不会脱离地面,重力加速度g 取10 m/s 2。

(1)若小球运动到圆管最高点时,对圆管恰好无作用力,则初速度v 0多大?(2)若小球运动到圆管最高点时,底座对地面的压力不超过55 N ,求初速度v 0应满足的条件。

【例2】一个质量为m 的小物块(可视为质点)放在一水平圆盘上,圆盘可绕过圆 心O 的竖直轴转动,物块到转轴的距离为r ,物块与圆盘间的动摩擦因数为μ, 设最大静摩擦力等于滑动摩擦力。

当圆盘以角速度ω0匀速转动时,物块与圆盘保持相对静止,则此时物块受到的摩擦力大小为_____________;要使物块与圆 盘始终保持相对静止,圆盘转动的角速度应满足的条件是_____________。

【例3】用一根长为L 的不可伸长的轻绳一端固定在悬点O ,另一端拴住一个质量为m 的小球(可视为质点),开始时用外力使小球静止在最低点,然后释放小球,同时给小球一个水平方向的初速度v 0,使小球在竖直平面内运动,空气阻力不计,重力加速度为g 。

(1)若小球能做完整的圆周运动,则初速度v 0至少为多少?(2)若在空间加上场强大小为E 、方向向下的匀强电场,同时让小球带上q (q >0)的电荷,轻绳绝缘,则(1)的结果又为多少?O练习1:A 、B 、C 三个质量分别为m 、3m 、m 的小物块(均可视为质点)放在一水平圆盘上,圆盘可绕过圆心O 的竖直轴转动。

已知物块A 和B 到转轴的距离均为r ,物块C 到转轴的距离为2r ,如图所示。

三物块与圆盘间的动摩擦因数均相同,设最大静摩擦力等于滑动摩擦力。

当圆盘以角速度ω0匀速转动时,三物块与圆盘均保持相对静止,则物块________受到的静摩擦力最大;若逐渐增大圆盘转动的角速度,则物块________最先开始相对圆盘滑动。

圆周运动的临界问题

圆周运动的临界问题
√D.汽车能安全转弯的向心加速度不超过7.0 m/s2
汽车转弯时所受的力有重力、弹力、摩擦力,向
心力是由摩擦力提供的,A错误; 汽车转弯的速度为 20 m/s 时,根据 Fn=mvR2,得所需的向心力为 1.0×104 N,没有超过最大静摩擦力,所以汽车不会发生侧滑,B、C 错误; 汽车安全转弯时的最大向心加速度为 am=Fmf=7.0 m/s2,D 正确.
ω越大时,小物体在最高点处受到的摩擦力一定越大
√B.小物体受到的摩擦力可能背离圆心 √C.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 1.0 rad/s
D.若小物体与盘面间的动摩擦因数为 23,则 ω 的最大值是 3 rad/s
当物体在最高点时,也可能受到重力、支持力与 摩擦力三个力的作用,摩擦力的方向可能沿斜面 向上(即背离圆心),也可能沿斜面向下(即指向圆 心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受 到的摩擦力越小,故A错误,B正确; 当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时 小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向 圆心的摩擦力,由沿斜面的合力提供向心力,支持力FN=mgcos 30°, 摩擦力Ff=μFN=μmgcos 30°,又μmgcos 30°-mgsin 30°=mω2R,解 得ω=1.0 rad/s,故C正确,D错误.
例2 (多选)如图所示,两个质量均为m的小木块a和b(可视为质点)放在 水平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l.木块与圆盘 间的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g.若圆盘从 静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大 静摩擦力等于滑动摩擦力,下列说法正确的是
竖直面内圆周运动的临界问题

(完整版)圆周运动中的临界问题(最新整理)

(完整版)圆周运动中的临界问题(最新整理)

圆周运动中的临界问题一、水平面内圆周运动的临界问题关于水平面内匀速圆周运动的临界问题,涉及的是临界速度与临界力的问题,具体来说,主要是与绳的拉力、弹簧的弹力、接触面的弹力和摩擦力有关。

1、与绳的拉力有关的临界问题例1 如图1示,两绳系一质量为的小球,kg m 1.0=上面绳长,两端都拉直时与轴的夹角分别为m l 2=与,问球的角速度在什么范围内,两绳始终张紧,o 30o45当角速度为时,上、下两绳拉力分别为多大?s rad /32、因静摩擦力存在最值而产生的临界问题例2 如图2所示,细绳一端系着质量为kg M 6.0=的物体,静止在水平面上,另一端通过光滑小孔吊着质量为的物体,的中心与圆孔距离为kg m 3.0=M m 2.0并知与水平面间的最大静摩擦力为,现让此平面M N 2绕中心轴匀速转动,问转动的角速度满足什么条件ω可让处于静止状态。

()m 2/10s m g =3、因接触面弹力的有无而产生的临界问题二、竖直平面内圆周运动的临界问题对于物体在竖直平面内做变速圆周运动,中学物理中只研究物体通过最高点和最低点的情况,并且也经常会出现临界状态。

1、轻绳模型过最高点如图所示,用轻绳系一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直平面内光滑轨道内侧做圆周运动过最到点的情况相似,都属于无支撑的类型。

临界条件:假设小球到达最高点时速度为,此时绳子的拉力(轨道的弹力)0v C图1图2刚好等于零,小球的重力单独提供其做圆周运动的向心力,即,rvm mg 20=,式中的是小球过最高点的最小速度,即过最高点的临界速度。

gr v =00v (1) (刚好到最高点,轻绳无拉力)0v v =(2) (能过最高点,且轻绳产生拉力的作用)0v v >(3) (实际上小球还没有到最高点就已经脱离了轨道)0v v <例4、如图4所示,一根轻绳末端系一个质量为的小球,kg m 1=绳的长度, 轻绳能够承受的最大拉力为,m l 4.0=N F 100max =现在最低点给小球一个水平初速度,让小球以轻绳的一端为O 圆心在竖直平面内做圆周运动,要让小球在竖直平面内做完整的圆周运动且轻绳不断,小球的初速度应满足什么条件?(10m g =2、轻杆模型过最高点如图所示,轻杆末端固定一小球在竖直平面内做圆周运动过最高点的情况,与小球在竖直放置的圆形管道内过最到点的情况相似,都属于有支撑的类型。

圆周运动中的临界问题

圆周运动中的临界问题
m gmR 2 v临界 Rg (2)小球能过最高点条件: v rg
(当 v rg 时,绳对球产生拉力,轨道对球产生压力)
(3)不能过最高点条件: v rg
(实际上球还没有到最高点时,就脱离了轨道)
如图所示,固定在竖直平点为轨道最高点,DB为竖
特点
在最高点时,没有物体支 撑,只能产生拉力
轻杆对小球既能产生拉 力,又能产生支持力
圆周运动的临界问题
1.竖直平面内的圆周运动 ①轻绳模型 :
能过最高点的临界条件:
小球在最高点时绳子的拉力刚好 等于0,小球的重力充当圆周运 动所需的向心力。
m gmR 2 v临界 Rg
轻绳模型
(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没 有力的作用:
B、的压力 D、24N的压力
例3:长L=,质量可以忽略的的杆,其下端
固定于O点,上端连接着一个质量m=2kg的小 球A,A绕O点做圆周运动(同图5),在A通过 最高点,试讨论在下列两种情况下杆的受力:
①当A的速率v1=1m/s时:
②当A的速率v2=4m/s时:
变式训练
.一轻杆下端固定一质量为M的小球,上端连在轴 上,并可绕轴在竖直平面内运动,不计轴和空气阻 力,在最低点给小球水平速度v0时,刚好能到达最 高点,若小球在最低点的瞬时速度从v0不断增大,
2
双体转动模型
如图所示,轻细杆可绕光滑的水平轴O在竖直 面内转动,杆的两端固定有质量均为m=1kg的 小球A和B,球心到轴O的距离分别为,。已知 A球转到最低点时速度为vA=4m/s,问此时A、B 球对杆的作用力的大小和方向?
B
vB
vA
A
谢谢观赏
N
fA AB mg
变式训练

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题

专题:圆周运动中的临界问题一、竖直平面内的圆周运动 1.受力分析 小球用轻绳拉着在竖直平面内做圆周运动是典型的变速圆周运动。

如图所示,把重力分解可知,除最高点和最低点外,其他各点,小球切线方向加速度均不为零,因此小球做变速(速度、方向)圆周运动。

2.最高点的临界状态分析 (1)“绳模型”(或单圆形轨道,球在轨道内做圆周运动模型,此处简称为“单轨模型”)a.小球能通过最高点的临界条件为:mg =m Rv 2得:v =gR ,此时物体处于完全失重状态,绳上没有拉力;b.当v >gR ,小球能过最高点,绳上有拉力;c.当v <gR故球不能过最高点。

(2)“杆模型”(或双圆形轨道,球在双轨道内部运动,此处简称为“双轨模型”)因轻杆可以产生拉力,也可产生支持力,双轨模型时,内轨可产生支持力,外轨产生向下的压力。

a.小球能通过最高点的临界条件为:v =0,F =mg (F 为支持力);b.当0<v <gR 时,v 增大,F 减小且0<F<mg (F 方向沿半径向外),mg -F =m Rv 2 ;c. 当v =gR 时,F=0 ,完全失重状态;d.当v >gR 时,F 方向沿半径向内, F +mg =m Rv 2;最低点时,对于各种模型,都是拉力(或者支持力N )T -mg =m Rv 2。

例1、长L=0.5m ,质量可忽略不计的轻杆,其一端固定于O 点,另一端连有质量m =2kg 的小球,它绕O 点在竖直平面内做圆周运动。

当通过最高点时,如图所示,求下列情况下杆对小球的作用力(计算大小,并说明是拉力还是支持力) (1)当v =1m/s 时,大小为 16 N ,是 支持 力; (2)当v =4m/s 时,大小为 44 N ,是 拉力 力。

解析: 此题先求出v =gR =5.010⨯m/s =5m/s 。

(1)因为v =1m/s <5m/s ,所以轻杆作用给小球的是支持力,有mg -F =m R v 2得:F =16N ;(2)因为v =4m/s >5m/s ,所以轻杆作用给小球的是拉力,有mg +F =m Rv 2得:F =44N ;3.竖直平面内的匀速圆周运动 如果某物体固定在电动机或其他物体上绕水平轴匀速转动,则该物体将做匀速圆周运动,此时电动机或转动体对该物体的作用力与物体的重力的合力提供向心力,向心力大小不变,方向始终指向圆心。

圆周运动的临界问题-高考物理复习

圆周运动的临界问题-高考物理复习

力提供向心力,有μmg=mω2lsin θ,解得 ω= 4gl,可得
当 ω≤ 4gl时绳子无张力,ω> 4gl时绳子有张力,故 A、B 正确;圆台对木箱恰好无支持力时,有 mgtan θ=mω2lsin θ,
解得 ω= 53gl ,即当 ω≥ 故 C 正确,D 错误。
53gl 时,圆台对木箱无支持力,
目录
研透核心考点
2.解题技巧 (1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律 方程。 (2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系。 (3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛 顿第三定律求出压力。
目录
研透核心考点
2.(2024·北京丰台高三期中)如图5甲所示,小球在竖直放置的光滑圆形管道内做 圆周运动。当小球运动到圆形管道的最高点时,管道对小球的弹力与过最高点 时小球速度的平方的关系如图乙所示(取竖直向下为正方向)。MN为通过圆心的 一条水平线。不计小球半径、管道的粗细,重力加速度为g。下列说法正确的
0.5 kg的小球(可视为质点),用长为0.4 m的轻绳拴着在
竖直平面内做圆周运动,g=10 m/s2,下列说法不正确
的是( D )
A.小球要做完整的圆周运动,在最高点的速度至少为 2 m/s
图3
B.当小球在最高点的速度为 4 m/s 时,轻绳拉力为 15 N
C.若轻绳能承受的最大张力为 45 N,小球的最大速度不能超过 4 2 m/s
目录
研透核心考点
1.(多选)如图2所示,在水平圆台的转轴上的O点固定一根结实的细绳,细绳长度为l, 细绳的一端连接一个小木箱,木箱里坐着一只玩具小熊,此时细绳与转轴间的夹 角为θ=53°,且处于恰好伸直的状态。已知小木箱与玩具小熊的总质量为m,木箱 与水平圆台间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,sin 53°=0.8, cos 53°=0.6,重力加速度为g,不计空气阻力。在可调速电动机的带动下,让水

圆周运动临界问题

圆周运动临界问题

圆周运动的临界问题通常涉及到物体在竖直平面内做变速圆周运动的情况,如轻绳模型过最高点或最低点的情况,以及物体通过其他特殊点的情况。

在这些情况下,临界状态通常是由于圆周运动的向心力和离心力的平衡状态被打破所导致的。

以轻绳模型过最高点为例,当物体通过最高点时,轻绳对物体的拉力与物体的重力相等,即T = mg。

当拉力大于或小于重力时,物体将处于超重或失重状态,并可能出现临界情况。

在这种情况下,可以通过牛顿第二定律和向心力公式来求解物体的运动状态。

在求解时,首先根据题意确定物体通过最高点时的受力情况,然后根据牛顿第二定律列式,最后根据向心力公式求解出物体在最高点时的速度。

根据速度的大小,可以判断出物体是否处于临界状态,并求出相应的临界条件。

需要注意的是,在圆周运动的临界问题中,物体的运动状态可能会发生突变,因此需要特别注意物体的加速度和速度的变化情况。

此外,在求解临界条件时,需要将物体的运动状态与受力情况结合起来考虑,并灵活运用向心力和牛顿第二定律进行求解。

【高考物理】圆周运动的动力学临界问题

【高考物理】圆周运动的动力学临界问题

圆周运动的动力学临界问题圆周运动动力学的临界问题——比如小球过竖直平面内圆周轨道最高点、物块随水平桌面转动而不外滑等,很多同学在最初接触这个问题时,都感觉很难理解,各种情形下的结论也常常混淆,究其根本,问题还是出在对圆周运动的径向动力学的理解不深入,对圆周运动动力学临界问题的类型和分析技巧不熟悉。

一、圆周运动的动力学之供需关系问题圆周运动的临界问题的正确分析,需要从供需匹配角度深入理解圆周运动的径向动力学——供需匹配,物体就做圆周运动,供需不匹配,物体就要离开圆周轨道做离心、近心运动。

我们以一个具体的例子来说明这个问题。

如图2-12-1所示,光滑水平桌面上,用一根细绳拴着一个小球绕O 点做圆周运动,则由圆周运动动力学可知,小球所受径向合力,即绳中拉力满足rv m F 2=。

现若将绳从O 点完全松开,绳中张力变为0,即0=F ,则小球将由于惯性而沿原圆周轨道切线方向做直线运动离开圆周轨道;若并不是完全放松,而只是适当的减小一些绳中拉力,即rv m F 2<,则绳中拉力虽然没能够将小球拉回原来的圆周轨道,但也将小球的轨迹拉弯了——夹在沿切线的直线和原圆周轨道之间,做离心运动;若不仅没松开绳,而且还用更大的力拉绳,即rv m F 2>,则小球将被绳拉到原圆周轨道内侧来,做近心运动。

圆周运动径向动力学的供需匹配问题,可以从上述例子中总结出来:1、径向合力为零:0n =F ,物体沿切线方向做直线运动。

2、径向合力不为零:0n ≠F ,物体偏离切线方向向径向合力一侧做曲线运动。

(1)径向合力小于所需的向心力:r m rv m F 22n ω=<,物体相对原圆周轨道做离心运动;(2)径向合力等于所需的向心力:r m rv m F 22n ω==,物体沿原圆周轨道继续做圆周运动;(3)径向合力大于所需的向心力:r m rv m F 22n ω=>,物体相对原圆周轨道做近心运动。

进一步可以这样理解:物体由于惯性,总有沿着切线做离心运动的趋势;物体转动的线速度、角速度越大,离心运动的趋势越大,越有可能做离心运动;线速度、角速度越小,离心运动的趋势越小,越有可能被径向合力拉近圆心而做近心运动;只有径向合力正好等于所需向心力大小时,径向合力刚好抵消物体的离心运动趋势,物体才能沿固定半径轨道做圆周运动。

圆周运动的临界问题

圆周运动的临界问题

圆周运动的临界问题圆周运动的临界问题圆周运动中的临界问题的分析方法是首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值。

竖直平面内作圆周运动的临界问题是典型的变速圆周运动。

一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。

在绳模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-1所示。

小球能过最高点的临界条件为绳子和轨道对小球刚好没有力的作用,即mg=mv^2/R,从而得到小球能过最高点的条件为v≥√(Rg),不能过最高点的条件为v<√(Rg)。

在杆模型中,小球在竖直平面内做圆周运动过最高点的情况如图6-11-2所示。

小球能过最高点的临界条件为v=0,F=mg(F为支持力),当0F>0(F为支持力),当v=Rg时,F=0,当v>Rg时,F随v增大而增大,且F>0(F为拉力)。

拱桥模型与杆模型类似,但因可以离开支持面,在最高点当物体速度达v=√(Rg)时,F_N=0,物体将飞离最高点做平抛运动。

若是从半圆顶点飞出,则水平位移为s=2R。

细线模型中,如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O在竖直平面内转动,不计空气阻力,用F表示球到达最高点时细线对小球的作用力,则F可能是拉力、推力或等于零。

最后,对于一个质量为0.5kg的小杯里盛有1kg的水,用绳子系住小杯在竖直平面内做“水流星”表演,转动半径为1m,小杯通过最高点的速度为4m/s,g取210m/s。

可以利用向心力公式和受力分析,求出小杯通过最高点的临界条件。

1.长度为0.5m的细杆OA,A端挂着一个质量为3.0kg的小球,在竖直平面内做圆周运动。

求小球通过最高点时细杆OA所受的力。

答案:C。

24N的拉力2.在竖直放置的光滑圆形管道内,质量为m的小球做圆周运动。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题一.竖直面内的临界问题: a 无支撑模型:1、如图所示,没有物体支撑的小球,在竖直平面内做圆周运动过最高点的情况:①临界条件:小球达最高点时绳子的拉力(或轨道的弹力)刚好等于零,小球的重力提供其做圆周运动的向心力,即mg=rmv 2临界上式中的v 临界是小球通过最高点的最小速度,通常叫临界速度,v 临界=rg .②能过最高点的条件:v ≥v 临界. 此时小球对轨道有压力或绳对小球有拉力mg rv m N -=2③不能过最高点的条件:v<v 临界(实际上小球还没有到最高点就已脱离了轨道). b 有支撑模型:2、如图所示,有物体支持的小球在竖直平面内做圆周运动过最高点的情况:①临界条件:由于硬杆和管壁的支撑作用,小球恰能达到最高点的临界速度 v 临界=0.②图(a )所示的小球过最高点时,轻杆对小球的弹力情况是当v=0时,轻杆对小球有竖直向上的支持力N ,其大小等于小球的重力,即N=mg ;当0<v<rg 时,杆对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小;其取值范围是mg>N>0. 当v=rg 时,N=0;当v>rg 时,杆对小球有指向圆心的拉力mg rv m N -=2,其大小随速度的增大而增大. ③图(b )所示的小球过最高点时,光滑硬管对小球的弹力情况是当v=0时,管的下侧内壁对小球有竖直向上的支持力,其大小等于小球的重力,即N=mg.当0<v<rg 时,管的下侧内壁对小球有竖直向上的支持力rv m mg N 2-=,大小随速度的增大而减小,其取值范围是mg>N>0. 当v=gr 时,N=0.当v>gr 时,管的上侧内壁对小球有竖直向下指向圆心的压力mg rv m N -=2,其大小随速度的增大而增大.④图(c)的球沿球面运动,轨道对小球只能支撑,而不能产生拉力.在最高点的v 临界=gr .当v>gr 时,小球将脱离轨道做平抛运动.c 类似问题扩展如图所示,在倾角为θ的光滑斜面上,有一长为l 的细线,细线的一端固定在O 点,另一端拴一质量为m 的小球,现使小球恰好能在斜面上做完整的圆周运动,已知O 点到斜面底边的距离s OC =L ,求:小球通过最高点A 时的速度v A .二.平面内的临界问题 如图所示,用细绳一端系着的质量为M=0.6kg 的物体A 静止在水平转盘上,细绳另一端通过转盘中心的光滑小孔O 吊着质量为m=0.3kg 的小球B ,A 的重心到O 点的距离为0.2m .若A 与转盘间的最大静摩擦力为f=2N ,为使小球B 保持静止,求转盘绕中心O 旋转的角速度ω的取值范围.(取g=10m/s 2)三.绳的特性引发的临界问题如图所示,质量为m =0.1kg 的小球和A 、B 两根细绳相连,两绳固定在细杆的A 、B 两点,其中A 绳长L A =2m ,当两绳都拉直时,A 、B 两绳和细杆的夹角θ1=30°,θ2=45°,g =10m/s 2.求: (1)当细杆转动的角速度ω在什么范围内,A 、B 两绳始终张紧? (2)当ω=3rad/s 时,A 、B 两绳的拉力分别为多大?模型一 圆周运动中的渐变量和突变量例1:如图所示,细线栓住的小球由水平位置摆下,达到最低点的速度为v ,当摆线碰到钉子P 的瞬时( )A .小球的速度突然增大B .线中的张力突然增大P 小球C O B A θ θ ωAB 30°45°CC .小球的向心加速度突然增大D .小球的角速度突然增大模型二 圆周运动与平抛运动相结合例2:如图所示,竖直平面内的3/4圆弧形光轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 点在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点。

圆周运动的临界问题

圆周运动的临界问题

解:在最高点F向=G+T, 即G+T=mv2/r
T=mv2/r-mg≥0
小球经过最高点的速度:v gr
线或绳
讨论:
①、当 v gr 时,细绳对小球没有拉力作用。向心
力只由小球所受重力提供。
②、如果 v> gr ,轻绳对小球存在拉力。
③、如果 v< gr ,小球无法到达圆周的最高点
练习:如图,在“水流星”表演中,绳长为 1m,水桶的质量为2kg,若水桶通过最高点的 速度为4m/s,求此时绳受到的拉力大小。
变式训练2:如图所示,一个光滑的圆锥体固定在水平桌面上,其
轴线沿竖直方向,母线与轴线之间的夹角为θ=30°,一条长度为L 的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端 拴着一个质量为m的小物体(物体可看质点),物体以速率v绕圆 锥体的轴线做水平匀速圆周运动。
⑴当v= gl 6
时,求绳对物体的拉力;
练习:长L=0.5m,质量可以忽略的的杆,其下端 固定于O点,上端连接着一个质量m=2kg的小球A,A 绕O点做圆周运动,在A通过最高点时,试讨论在下列 两种情况下杆的受力:
①当A的速率v1=1m/s时 ②当A的速率v2=4m/s时
A
L
O
小结:
一.水平面内的圆周运动的临界问题
处理这类问题的关键是分析出静摩擦力的变化,从 而结合其他力分析出指向圆心的合外力的变化,以 确定圆周运动的其他物理量的变化范围。
mgt0 am n ω 1 2L 3s0 i3n00
B
30 0
45 0
C
将已知代入解得ω1=2.4 rad/s
②当角速度ω继续增大时TAC减小,TBC
增大。设角速度达到ω2时,TAC=0,则③ω=3 rad/s,此时两绳拉

高中物理圆周运动的临界问题(含答案)

高中物理圆周运动的临界问题(含答案)

1圆周运动的临界问题一 .与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力,如果只是摩擦力提供向心力,则有F m =m rv 2,静摩擦力的方向一定指向圆心;如果除摩擦力以外还有其他力,如绳两端连物体,其中一个在水平面上做圆周运动时,存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心。

二 与弹力有关的临界极值问题压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力等。

【典例1】 (多选)(2014·新课标全国卷Ⅰ,20) 如图1,两个质量均为m 的小木块a 和b ( 可视为质点 )放在水平圆盘上,a 与转轴OO′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g 。

若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是 ( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=lkg2是b 开始滑动的临界角速度 D .当ω=lkg32 时,a 所受摩擦力的大小为kmg 答案 AC解析 木块a 、b 的质量相同,外界对它们做圆周运动提供的最大向心力,即最大静摩擦力F f m =km g 相同。

它们所需的向心力由F 向=mω2r知,F a < F b ,所以b 一定比a 先开始滑动,A 项正确;a 、b 一起2绕转轴缓慢地转动时,F 摩=mω2r ,r 不同,所受的摩擦力不同,B 项错;b 开始滑动时有kmg =mω2·2l ,其临界角速度为ωb =l kg 2 ,选项C 正确;当ω =lkg32时,a 所受摩擦力大小为F f =mω2 r =32kmg ,选项D 错误【典例2】 如图所示,水平杆固定在竖直杆上,两者互相垂直,水平杆上O 、A 两点连接有两轻绳,两绳的另一端都系在质量为m 的小球上,OA =OB =AB ,现通过转动竖直杆,使水平杆在水平面内做匀速圆周运动,三角形OAB 始终在竖直平面内,若转动过程OB 、AB 两绳始终处于拉直状态,则下列说法正确的是( )A .OB 绳的拉力范围为 0~33mg B .OB 绳的拉力范围为33mg ~332mg C .AB 绳的拉力范围为33mg ~332mg D .AB 绳的拉力范围为0~332mg 答案 B解析 当转动的角速度为零时,OB 绳的拉力最小,AB 绳的拉力最大,这时两者的值相同,设为F 1,则2F 1cos 30°=mg , F 1=33mg ,增大转动的角速度,当AB 绳的拉力刚好等于零时,OB 绳的拉力最大,设这时OB 绳的拉力为F 2,则F 2cos 30°=mg ,F 2 =332mg ,因此OB 绳的拉力范围为33mg ~332mg ,AB 绳的拉力范围为 0~33mg ,B 项正确。

专题 圆周运动临界问题

专题     圆周运动临界问题

专题 圆周运动的临界问题一.水平转台上与静摩擦力有关的临界问题在转台上做圆周运动的物体,若有静摩擦力参与,当转台的转速变化时,静摩擦力也会随之变化。

关键:(1)找出与最大静摩擦力对应的临界条件 (2)牢记“静摩擦力大小有个范围,方向可以改变1.单个物体做圆周运动【例1】如图所示,水平转盘上放有质量为m 的物块,当物块到转轴的距离为r 时,连接物块和转轴的绳刚好被拉直(绳上张力为零)。

物体和转盘间最大静摩擦力是其下压力的μ倍。

求:⑴当转盘角速度ω1=μg 2r 时,细绳的拉力T 1 ⑵当转盘角速度ω2=3μg 2r时,细绳的拉力T 22.绳子连接两个物体在圆心的一侧做圆周运动【例2】一圆盘可以绕其竖直轴在图所示水平面内转动,A 、B 物体质量均为m ,它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用一根长为L 的轻绳连在一起。

若将A 放在距轴心为L 的位置,A 、B 之间连线刚好沿半径方向被拉直,随着圆盘角速度ω的增加,摩擦力或绳子拉力会出现不同的状态,(两物体均看作质点)求:(1)ω1=Lg 3μ时,细绳的拉力T 1和A 所受的摩擦力f 1(2)ω1=Lg 53μ时,细绳的拉力T 2和A 所受的摩擦力f 23.绳子连接两个物体分别在圆心的两侧做圆周运动【例3】(多选)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m 的两个物体A 和B ,它们分居圆心两侧,与圆心距离分别为R A =r ,R B =2r ,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是( )A .此时绳子张力为3μmgB .此时A 所受摩擦力方向沿半径指向圆内C .此时圆盘的角速度为2μg rD .此时烧断绳子,A 仍相对盘静止,B 将做离心运动【针对训练1】如图所示,水平转台上的小物体A 、B 通过轻绳连接,转台静止时绳中无拉力,A 、B 的质量分别为m 、2m ,A 、B 与转台间的动摩擦因数均为μ, A 、B 离转台中心的距离分别为1.5r 、r ,当两物体随转台一起匀速转动时,设最大静摩擦力等于滑动摩擦力,下列说法中正确的是( )A .绳中无拉力时,A 、B 物体受到的摩擦力大小相等B .当绳中有拉力时,转台转动的角速度应大于√μg rC .若转台转动的角速度为√6μg r ,则A 、B 一起相对转台向B 离心的方向滑动D .物体A 所受的摩擦力方向一定指向圆心【针对训练2】(多选)如图所示,圆盘可以绕其竖直轴在水平面内转动。

圆周运动中的临界问题

圆周运动中的临界问题

圆周运动中的临界问题圆周运动中的临界问题的分析方法:首先明确物理过程,对研究对象进行正确的受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找到临界值. 一、竖直面内圆周运动的临界问题(1)如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点的情况: 特点:绳对小球,轨道对小球只能产生指向圆心的弹力 ① 临界条件:绳子或轨道对小球没有力的作用:mg=mv 2/R →v 临界=(可理解为恰好转过或恰好转不过的速度)即此时小球所受重力全部提供向心力 注意1能过最高点的条件:v ≥,当v >时,绳对球产生拉力,轨道对球产生压力.2不能过最高点的条件:v <V 临界(实际上球还没到最高点时就脱离了轨道做斜抛运动) 【例题1】如图所示,半径为R 的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬时得到一个水平初速v 0,若v 0≤,则有关小球能够上升到最大高度(距离底部)的说法中正确的是( )A、一定可以表示为 B 、可能为 C 、可能为R D 、可能为R答案:BC【延展】汽车过拱形桥时会有限速,也是因为当汽车通过半圆弧顶部时的速度时,汽车对弧顶的压力F N =0,此时汽车将脱离桥面做平抛运动, 因为桥面不能对汽车产生拉力.【例5】如图所示,赛车在水平赛道上作900转弯,其内、外车道转弯处的半径分别为r1和r2,车与路面间的动摩擦因数和静摩擦因数都是μ.试问:竞赛中车手应选图中的内道转弯还是外道转弯?在上述两条弯转路径中,车手做正确选择较错误选择所赢得的时间是多少?分析:赛车在平直道路上行驶时,其速度值为其所能达到的最大值,设为v m。

转弯时,车做圆周运动,其向心力由地面的静摩擦力提供,则车速受到轨道半径和向心加速度的限制,只能达到一定的大小.为此,车在进入弯道前必须有一段减速过程,以使其速度大小减小到车在弯道上运行时所允许的速度的最大值,走完弯路后,又要加速直至达到v m。

圆周运动中的临界问题

圆周运动中的临界问题

(1)不滑动
质量为m的物体在水平面上做圆周运动或随圆盘一起转动(如图甲、乙所
示)时,静摩擦力提供向心力,当静摩擦力达到最大值Ffm时,物体运动的速
度也达到最大,即Ffm=m
vm2 r
,解得vm=m
Ffm r m

• 这就是物体以半径r做圆周运动的临界速度。
圆周运动中的临界问题
创新微课
(2)绳子被拉断
创新微课 现在开始
圆周运动中的临界问题
圆周运动中的临界问题
圆周运动中的临界问题
当物体从某种特性变化为另一 种特性时,发生质的飞跃的转折状 态,通常叫做临界状态,出现临界 状态时,即可理解为“恰好出 现”,也可理解为“恰好不出现”
创新微课
圆周运动中的临界问题
创新微课
1.水平面内圆周运动的临界问题
圆周运动中的临界问题
• 解析:设物体M和水平面保持相对静止,当ω具有最 小值时,M有向圆心运动的趋势。所以M受到的静摩 擦力方向沿半径向外,且等于最大静摩擦力,隔离 M分析受力有
• T-fm=Mω2r,又T=mg • 0.3×10-2=0.6ω×0.2,ω1=2.9rad/s • 当ω具有最大值,M有离开圆心趋势。M受的最大静
的来源。
圆周运动中的临界问题
用长L=0.6m的绳系着装有m=0.5kg水的小桶,在竖直平面内做 圆周运动,成为“水流星”。g=10m/s2。求:
(1)最高点水不流出的最小速度为多少? (2)若过最高点时速度为3m/s,此时水对桶底的压力多大?
创新微课
圆周运动中的临界问题


处理临界问题的解题步骤
摩擦力2N、指向圆心,隔离M受力分析有
• T+fm=Mω2r • 又T=mg,0.3×10+2=0.6ω×0.2,ω2=6.5rad/s • 所以ω的范围是2.9rad/s≤ω≤6.5rad/s。

考点6——圆周运动的临界极值问题(答案)

考点6——圆周运动的临界极值问题(答案)

考点6——圆周运动的临界极值问题(答案)1.答案:B解析:由于A 和A 、B 整体受到的静摩擦力均提供向心力,故对A ,有μ1m A g ≥m A ω2r ,对A 、B 整体,有(m A +m B )ω2r ≤μ2(m A +m B )g ,解得ω≤√2 rad/s,故选项B 正确。

2.答案:B解析:在最高点过山车对轨道的压力为零时,重力提供向心力,有mg =mv 2r.代入题中数据可得过山车在N 、P 最高点的速度分别为:v 1=gr 1,v 2=gr 2.故v 1v 2=r 1r 2,故选B. 3.答案:C解析:小球恰好能通过圆轨道最高点,由m 2g=m 2v 2R ,得v=√gR ,A 项错误;当小球恰通过圆轨道最高点b 时,悬线拉力为0,此时对人受力分析,得出台秤对人的支持力F=m 1g ,在a 、c 两处时小球受重力和水平指向圆心的拉力,台秤对人的支持力也为F=m 1g ,即台秤的示数也为m 1g ,故C 项正确;小球在a 、c 连线以上(不包括b 点)时,人受到悬线斜向上的拉力,人对台秤的压力小于m 1g ,在a 、c 连线以下时,人受到悬线斜向下的拉力,人对台秤的压力大于m 1g ,人处于平衡状态,人没有超、失重现象,B 、D 两项错误。

4.答案:D解析:物块向右匀速运动时,绳中的张力等于物块的重力Mg ,因为2F 为物块与夹子间的最大静摩擦力,物块做匀速运动时所受的静摩擦力小于2F ,A 项错误;当小环碰到钉子P 时,由于不计夹子的质量,因此绳中的张力等于夹子与物块间的静摩擦力,即小于或等于2F ,B 项错误;如果物块上升的最大高度不超过细杆,则根据机械能守恒可知,Mgh =12Mv 2,即上升的最大高度h =v 22g,C 项错误;当物块向上摆动的瞬时,如果物块与夹子间的静摩擦力刚好为2F ,此时的速度v 是最大速度,则2F -Mg =M v 2L,解得v =2F -Mg L M,D 项正确. 5.答案:C解答:解:设绳长为L ,锥面与竖直方向夹角为θ,当ω=0时,小球静止,受重力mg 、支持力N 和绳的拉力T 而平衡,T=mgcosθ≠0,所以A 项、B 项都不正确;ω增大时,T 增大,N 减小,当N=0时,角速度为ω0.当ω<ω0时,由牛顿第二定律得,Tsinθ-Ncosθ=mω2Lsinθ,Tcosθ+Nsinθ=mg , 解得T=mω2Lsin2θ+mgcosθ;当ω>ω0时,小球离开锥子,绳与竖直方向夹角变大,设为β,由牛顿第二定律得Tsinβ=mω2Lsinβ,所以T=mLω2,可知T-ω2图线的斜率变大,所以C 项正确,D 错误.故选:C.6.答案:CD7.答案:(1)12π√μgR(2)3μmgRkR-4μmg解析:(1)若圆盘转速较小,则静摩擦力提供向心力,当圆盘转速较大时,弹力与摩擦力的合力提供向心力。

专题七 圆周运动的临界问题

专题七 圆周运动的临界问题
水平面内圆周运动临界问题的分析方法
几何分析
目的是确定圆周运动的圆心、半径等
运动分析
目的是确定圆周运动的线速度、角速度、向心加速度等
受力分析
目的是通过力的合成与分解,表示出物体做圆周运动时,外界所提供的向心力
条件分析
①绳的临界:张力 ;②接触面滑动的临界: ;③接触面分离的临界: .分析时一般先假设达到临界状态后,再分析结论.
C
A.小球通过最高点时的最小速度 B.小球通过最高点时的最小速度 C.小球在水平线 以下的管道中运动时,内侧管壁对小球一定无作用力D.小球在水平线 以上的最高点的速度可以为零,故A、B错误;小球在水平线 以下的管道中运动时,由外侧管壁对小球的作用力 与小球重力在背离圆心方向的分力 的合力提供向心力,即 ,因此外侧管壁对小球一定有作用力,而内侧管壁对小球一定无作用力,C正确;小球在水平线 以上的管道中运动时,小球受管壁的作用力情况与小球速度大小有关,D错误.
考向二 “杆-球”模型
例4 如图甲所示,轻杆一端固定在 点,另一端固定一小球,现让小球在竖直平面内做半径为 的圆周运动.小球运动到最高点时,杆与小球间弹力大小为 ,小球在最高点的速度大小为 ,其 图像如图乙所示.则( )
A.小球的质量为 B.当地的重力加速度大小为 C. 时,在最高点杆对小球的弹力方向向上D. 时,在最高点杆对小球的弹力大小为



变式2 如图所示,相同的物块 、 用沿半径方向的细线相连放置在水平圆盘上.当圆盘绕转轴转动时,物块 、 始终相对圆盘静止.下列关于物块 所受的摩擦力 随圆盘角速度的平方 的变化关系正确的是( )
D
A. B. C. D.
[解析] 角速度慢慢增大,一定是长绳挂着的那个球先离开圆锥筒,选项A正确,B错误;设小球离开圆锥筒后,绳子的拉力为 ,绳子长度为 ,与竖直方向的夹角为 ,由 , ,联立解得 ,而 ,为小球到圆锥筒顶点的高度,所以两个球都离开圆锥筒后,它们的高度一定相同,选项C正确;而细绳中拉力 ,即两个球都离开圆锥筒时两端绳子的拉力不一定相同,选项D错误.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

竖直平面内的圆周运动的临界问题竖直平面内的圆周运动是典型的变速圆周运动。

一般情况下,只讨论最高点和最低点的情况,常涉及过最高点时的临界问题。

临界问题的分析方法:首先明确物理过程,正确对研究对象进行受力分析,然后确定向心力,根据向心力公式列出方程,由方程中的某个力的变化与速度变化的对应关系,从而分析找出临界值。

1.“绳模型”如图6-11-1所示,小球在竖直平面内做圆周运动过最高点情况。

(注意:绳对小球只能产生拉力)(1)小球能过最高点的临界条件:绳子和轨道对小球刚好没有力的作用mg =2v m Rv 临界(2)小球能过最高点条件:v(当v(3)不能过最高点条件:v(实际上球还没有到最高点时,就脱离了轨道)2.“杆模型”如图6-11-2所示,小球在竖直平面内做圆周运动过最高点情况 (注意:轻杆和细线不同,轻杆对小球既能产生拉力,又能产生推力。

)(1)小球能最高点的临界条件:v = 0,F = mg (F 为支持力)(2)当0< v时,F 随v 增大而减小,且mg > F > 0(F 为支持力) (3)当v=时,F =0(4)当vF 随v 增大而增大,且F >0(F 为拉力)【案例剖析】例1.长为L 的细绳,一端系一质量为m 的小球,另一端固定于某点,当绳竖直时小球静止,再给小球一水平初速度0v ,使小球在竖直平面内做圆周运动,并且刚好能过最高点,则下列说法中正确的是 ( )图6-11-1a b图6-11-2 bA .球过最高点时,速度为零B .球过最高点时,绳的拉力为mgC .开始运动时,绳的拉力为2v m LD解析:开始运动时,由小球受的重力mg 和绳的拉力F 的合力提供向心力,即20v F mg m L-=,20v F m mg L=+,可见C 不正确;小球刚好过最高点时,绳拉力为0,2v mg m L =,v =以,A 、B 、C 均不正确。

故选:D例2:如图6-11-3所示,一轻杆一端固定质量为m 的小球,以另一端 O 为圆心,使小球做半径为R 的圆周运动,以下说法正确的是 ( )A .球过最高点时,杆所受的弹力可以等于零B.球过最高点时,最小速度为C .球过最高点时,杆对球的弹力一定与球的重力方向相反D .球过最高点时,杆对球的弹力可以与球的重力反向,此时重力一定大于杆对球的弹力 解析:小球用轻杆支持过最高点时,0v =临,故B 不正确;当v =时,F = 0故A 正确。

当0< vmg > F > 0,F 为支持力故D 正确。

当vF >0,F 为拉力,故C 不正确。

故选:A 、D例3.绳系着装水的水桶,在竖直平面内做圆周运动,水的质量m = 0.5kg ,绳长L = 40cm ,求:(1)为使桶在最高点时水不流出,桶的最小速率? (2)桶在最高点速率v = 3m/s 时,水对桶底的压力? 解析:(1)在最高点水不流出的条件是重力不大于水做圆周运动所需的向心力。

即:20v mg m R≤,则最小速率0v ==(2)水在最高点速率大于v 0 时,只靠重力提供向心力已不足,此时水桶底对水有一向下的压力,设为F ,由牛顿第二定律有F + mg =2v m R, F = 2v m R -mg = 6.25N ,由牛顿第三定律知,水对桶底的作用力F / =F = 6.25N ,方向竖直向上。

【知识链接】如图6-11-4所示,地球可以看作一个巨大的拱形桥,桥面的半径就是地球半径R (约为6400km )。

地面上有一辆汽车,重量是G = mg ,地面对它的支持力是F 。

汽车沿南北方向行驶,不断加速。

根据上面的分析,汽车速度越大,地 面对它的支持力就越小,会不会出现这样的情况:速度大到一定程度时,地面对车的支持力是零?这时驾驶员与座椅之间的压力是多少?驾驶员身体各部分之间的压力是多少?他这时可能有什么感觉?(g 取10m/s 2)【目标达成】1.如图6-11-5所示,细线的一端有一个小球,现给小球一初速度,使小球绕细线另一端O 在竖直平面内转动,不计空气阻力,用F 表示球到达最高点时细线对小球的作用力,则F 可能 ( )A .是拉力图6-11-4图6-11-3B .是推力C .等于零D .可能是拉力,可能是推力,也可能等于零解析:到最高点临界速度为v =临v v =临界时,F =0;当v v >临界时,F 为拉力。

故选:A 、C2.(1999年 全国)如图6-11-6所示,细杆的一端与小球相连,可绕过O 点的水平轴自由转动,现给小球一初速度,使它做圆周运动,图中a 、b 分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 ( )A .a 处为拉力,b 处为拉力B .a 处为拉力,b 处为推力C .a 处为推力,b 处为拉力D .a 处为推力,b 处为推力解析:小球到最低点时,向心力向上,此时细杆的作用力与小球的重力的合力提供向心力,细杆作用力向上,一定为拉力;当到最高点时,向心力向下,当0v ≤<时,F mg <向,此时为推力,当v >,F mg >向,此时为拉力。

故选:A 、B3.长为L 的轻杆,一端固定一个小球,另一端与光滑的水平轴相连。

现给小球一个初速度,使小球在竖直平面内做圆周运动,已知小球在最高点时的速度为v ,则下列叙述正确的是 ( )A .vB .v 由零逐渐增大,向心力也逐渐增大C .v 由零逐渐增大,杆对小球的弹力也逐渐增大D .v解析:这是“杆模型”,小球到最高点速度0v ≥, A 错;由2v F m L=向得,v 增大,F 向增大, B 对;当0< vF 随v 减小而增大(F 为支持力),当v时,F 随v 增大而增大(F 为拉力), C 错,D 对。

故选:B 、D4.质量为m 的小球在竖直平面内的圆形轨道的内侧运动,经过最高点而不脱离轨道的临界速度为v ,当小球以2v 的速度经过最高点时,对轨道的压力是 ( )A .0B .mgC .3mgD .5mg解析:到最高点临界速度为v ,则:2v mg m R=;当速度为2v 时,则:2(2)v F mg m R +=(F为压力);由上两式解得:F = 3mg 。

故选:C5.长为L 的细绳一端拴一质量为m 的小球,小球绕细绳另一固定端在竖直平面内做圆周运动并恰能通过最高点,不计空气阻力,设小球通过最低点和最高点时的速度分别为1v 和2v ,细线所受拉力分别为1F 、2F ,则 ( )A .1vB .2v = 0C . 1F = 5mgD .2F = 0解析:小球恰能通过最高点,细线拉力2F = 0,有22v mg m L=,得2v得:221211222mv mg L mv =+,解得:1v 211v F mg m L -=,解得图6-11-616F mg =。

故选:A 、D6.质量可忽略,长为L 的轻棒,末端固定一质量为m 的小球,要使其绕另一端点在竖直平面内做圆周运动,那么小球在最低点时的速度v 必须满足的条件为 ( )A .vB .vC .v ≥D .v解析:小球到最高点速度1v ≥0,由机械能守恒得:22111222mv mg L mv =+,解得:v ≥2C7.如图6-11-7所示,一个高为h 的斜面,与半径为R 的圆形轨道平滑地连接在一起。

现有一小球从斜面的顶端无初速地滑下,若要使小球通过圆形轨道的顶端B 而不落下,则斜面的高度h 应为多大?解析:小球到达顶端B 速度为v ,则:22v mgm R ≤解得:v 2122mgh mg R mv =+ 解得:52h R ≥8.如图6-11-8所示,杆长为L ,杆的一端固定一质量为m 的小球,杆的质量忽略不计,整个系统绕杆的另一端O 在竖直平面内作圆周运动,求:(1)小球在最高点A 时速度A v 为多大时,才能使杆对小球m 的作用力为零?(2)小球在最高点A 时,杆对小球的作用力F 为拉力和推力时的临界速度是多少? (3)如m = 0.5kg, L = 0.5m, A v = 0.4m/s, 则在最高点A 和最低点B 时, 杆对小球m 的作用力各是多大? 是推力还是拉力?解析: (1) 若杆和小球之间相互作用力为零,那么小球作圆周运动的向心力由重力mg 提供,2A mv mg L= 解得:A v =(2) 若小球m 在最高点A 时受拉力F ,则21v F mg m L+= 解得1v =>若小球m 在最高点A 时受推力F ,则22v mg F m L-=解得:2v=可见A v =m 的作用力F在推力和拉力之间突变的临界速度.(3) 杆长L= 0.5m 时,临界速度v ==临,A v = 0.4m/s <v 临,杆对小球有推力A F 。

由2A A v mg F m L -= 解得: 2A A v F mg m L=-=(20.50.40.5100.5⨯⨯-)N = 4.84N ,由A 到B 只有重力做功,机械能守恒,设B 点所处水平面为参考面,则有2211222A B mv mg L mv+=解得:B v ==,在最低点B ,小球m 受拉力BF ,由图6-11-8图6-11-72B B v F mg m L -=解得220.5 4.5(0.510)0.5B B v F mg m L ⨯=+=⨯+N = 25.3N 【拓展提高】9.如图6-11-9所示,固定在竖直平面内的光滑圆弧形轨道ABCD ,其A 点与圆心等高,D 点为轨道最高点,DB 为竖直线,AC 为水平线,AE 为水平面,今使小球自A 点正上方某处由静止释放,且从A 点进入 圆形轨道运动,通过适当调整释放点的高度,总能保证小球最终 通过最高点D ,则小球在通过D 点后 ( )A .会落到水平面AE 上B .一定会再次落到圆轨道上C .可能会落到水平面AE 上D .可能会再次落到圆轨道上 解析:小球刚好能过最高点时速度vD 后作平抛运动,下落高度为R 时间为tx = vt>R ,所以,小球一定落在AE 上。

故选:A 10.如图6-9-10所示,半径为R ,内径很小的光滑半圆管竖直放 置,AB 段平直,质量为m 的小球以水平初速度0v 射入圆管。

(1)若要小球能从C 端出来,初速度0v 多大? (2)在小球从C 端出来瞬间,对管壁压力有哪 几种典型情况,初速度0v 各应满足什么条件?解析:(1)小球恰好能达到最高点的条件是0v 临=,此时需要初速度为0v ,由机械能守恒 :2012R 2mv mg =得0v =因此要使小球能从C 端出来需C 0v >,故入射速度0v >(2)小球从C 出来端出来瞬间,对管壁压力可以有三种典型情况:①刚好对管壁无压力,此时重力恰好充当向心力,由圆周运动知识 2C v mg m R=由机械能守恒定律:220C 112+22mv mg Rmv = 联立解得0v =②对下管壁有压力,此时应有2C v mg m R>,相应的入射速度0v0v <<③对上管壁有压力,此时应有2C v mg mR<,相应的入射速度0v 应满足0v >图6-11-9BA图6-11-10。

相关文档
最新文档