人教版一元二次方程单元测试题(A)
2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)
2022-2023学年人教版九年级数学上册《第21章一元二次方程》单元综合测试题(附答案)一.选择题(共8小题,满分40分)1.关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,则()A.a>0B.a≠0C.a≠1D.a=12.若关于x的方程x2+2ax+4a=0有一个根为﹣3,则a的值是()A.9B.4.5C.3D.﹣33.方程(x﹣3)2=4的根为()A.x1=x2=5B.x1=5,x2=1C.x1=x2=1D.x1=7,x2=﹣1 4.若把方程x2﹣6x﹣4=0的左边配成完全平方的形式,则正确的变形是()A.(x﹣3)2=5B.(x﹣3)2=13C.(x﹣3)2=9D.(x+3)2=5 5.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7B.﹣1C.7或﹣1D.﹣5或36.定义运算:m※n=mn2﹣2mn﹣1,例如:4※2=4×22﹣2×4×2﹣1=﹣1.若关于x的方程a※x=0有实数根,则a的取值范围为()A.﹣1≤a≤0B.﹣1≤a<0C.a≥0或a≤﹣1D.a>0或a≤﹣1 7.受益于电商普及和交通运输的快速发展,快递业务量持续增长.我市2019年的快递业务量为1.1亿件,2021年,我市快递业务量增加到1.4亿件,设快递业务量的年平均增长率为x,则下列方程正确的是()A.1.1(1+x)=1.4B.1.1(1+x)2=1.4C.1.1x2=1.4D.1.1(1+2x)=1.48.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm,动点P,Q分别从点A,B同时开始移动(移动方向如图所示),点P的速度为1cm/s,点Q的速度为2cm/s,点Q移动到点C后停止,点P也随之停止运动,若使△PBQ的面积为15cm2,则点P运动的时间是()A.2s B.3s C.4s D.5s二.填空题(共8小题,满分40分)9.已知关于x的方程(m﹣1)x+2x﹣3=0是一元二次方程,则m的值为.10.已知m,n为一元二次方程x2﹣4x﹣3=0的两个实数根,则(m﹣2)(n﹣2)的值为.11.用配方法解一元二次方程2x2﹣5x﹣3=0,可以写成(x+h)2=k的形式,则.12.已知关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,则该方程的根是.13.如果关于x的方程2x2﹣3x+m=0有两个实数根,那么m满足.14.要利用一面很长的围墙和100米长的隔离栏建三个如图所示的矩形羊圈,若计划建成的三个羊圈总面积为400平方米,则羊圈的边长AB为多少米?设AB=x米,根据题意可列出方程的为.15.已知三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,则这个三角形的周长是.16.请阅读下列材料:解方程:(x2﹣1)2﹣5(x2﹣1)+4=0.解法如下:将x2﹣1视为一个整体,然后设x2﹣1=y,则(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.(1)当y=1时,x2﹣1=1,解得x=±;(2)当y=4时,x2﹣1=4,解得x=±.综合(1)(2),可得原方程的解为x1=,x2=﹣,x3=,x4=﹣.参照以上解法,方程x4﹣x2﹣6=0的解为.三.解答题(共6小题,满分40分)17.解方程:(1)x(2x﹣3)=4x﹣6;(2)2x2﹣4x﹣5=0.18.已知关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0.(1)求m的值;(2)求此时一元二次方程的解.19.我们知道:若一元二次方程ax2+bx+c=0(a≠0)的两根分别为x1,x2,则x1+x2=﹣,x1•x2=,试利用上述知识解决下列问题:已知x2+2020x﹣1=0的两根分别为α和β,求代数式(α2+2021α+1)(β2+2021β+1)的值.20.已知关于x的一元二次方程x2+(2﹣m)x+1﹣m=0.(1)求证:该方程总有两个实数根;(2)若m<0,且该方程的两个实数根的差为3,求m的值.21.根据下列问题,列出关于x的方程,并将其化为一般形式.(1)某印刷厂3月份印刷了50万册书籍,5月份印刷了72万册书籍,如果每月印刷的增长率都相同,求每月印刷的增长率x;(2)一个微信群里共有x个好友,每个好友都分别给其他好友发了一条消息,这样一共产生132条消息.22.某服装厂生产一批服装,2019年该类服装的出厂价是200元/件,2020年,2021年连续两年改进技术,降低成本,2021年该类服装的出厂价调整为162元/件.(1)这两年此类服装的出厂价下降的百分比相同,求平均下降率.(2)2021年某商场从该服装厂以出厂价购进若干件此类服装,以200元/件销售时,平均每天可销售20件.为了减少库存,商场决定降价销售.经调查发现,单价每降低5元,每天可多售出10件,如果每天盈利1150元,单价应降低多少元?参考答案一.选择题(共8小题,满分40分)1.解:∵关于x的方程(a﹣1)x2﹣3x+2=0是一元二次方程,∴a﹣1≠0,a≠1,故选:C.2.解:把x=﹣3代入方程得9﹣6a+4a=0,解得a=4.5.故选:B.3.解:方程(x﹣3)2=4,开方得:x﹣3=2或x﹣3=﹣2,解得:x1=5,x2=1.故选:B.4.解:x2﹣6x﹣4=0x2﹣6x=4x2﹣6x+9=13(x﹣3)2=13,故选:B.5.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,∴(x2﹣x+2)(x2﹣x﹣6)=0,∴x2﹣x+2=0或x2﹣x﹣6=0,∴x2﹣x=﹣2或x2﹣x=6.当x2﹣x=﹣2时,x2﹣x+2=0,∵b2﹣4ac=1﹣4×1×2=﹣7<0,∴此方程无实数解.当x2﹣x=6时,x2﹣x+1=7故选:A.6.解:由题意可知:a※x=ax2﹣2ax﹣1=0,当a=0时,原来方程变形为﹣1=0,方程无解;当a≠0时,∵关于x的方程a※x=0有实数根,∴Δ=4a2+4a=4a(a+1)≥0,解得a≤﹣1或a>0.故选:D.7.解:依题意得:1.1(1+x)2=1.4.故选:B.8.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.二.填空题(共8小题,满分40分)9.解:由一元二次方程的定义得:m2+1=2,且m﹣1≠0,解得:m=﹣1.故答案为:﹣1.10.解:根据题意得m+n=4,mn=﹣3,所以(m﹣2)(n﹣2)=mn﹣2(m+n)+4=﹣3﹣2×4+4=﹣7.故答案为﹣7.11.解:原方程可以化为:x2﹣x=,等式的两边同时加上一次项系数一半的平方,得x2﹣x+=+,配方,得(x﹣)2=.故答案为:(x﹣)2=.12.解:∵关于x的方程ax2﹣bx﹣c=0(a≠0)的系数满足a﹣b﹣c=0,且4a+2b﹣c=0,∴该方程的根是x1=1,x2=﹣2.故答案为:x1=1,x2=﹣2.13.解:∵关于x的方程2x2﹣3x+m=0有两个实数根,∴Δ=b2﹣4ac=(﹣3)2﹣4×2×m=9﹣8m≥0,解得:m≤.故答案为:m≤.14.解:设AB的长度为x,则BC的长度为(100﹣4x)米.根据题意得(100﹣4x)x=400,故答案为:(100﹣4x)x=400.15.解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2,x2=5,∵三角形两边的长分别是2和5,第三边的长是方程x2﹣7x+10=0的根,∴第三条边长的取值范围是:3<第三边的长<7,∴第三边长为:5,故这个三角形的周长是:2+5+5=12.故答案为:12.16.解:设x2=y,则原方程可化为:y2﹣y﹣6=0,解得:y1=3,y2=﹣2,(1)当y=3时,x2=3,解得x1=,x2=﹣,(2)当y=﹣2.时,x2=﹣2,此方程无实数根,综合(1)(2),可得原方程的解是:x1=,x2=﹣,故答案为:x1=,x2=﹣.三.解答题(共6小题,满分40分)17.解:(1)∵x(2x﹣3)=4x﹣6,∴x(2x﹣3)﹣2(2x﹣3)=0,∴(2x﹣3)(x﹣2)=0,则2x﹣3=0或x﹣2=0,解得x1=1.5,x2=2;(2)∵2x2﹣4x﹣5=0,∴2x2﹣4x=5,则x2﹣2x=,∴x2﹣2x+1=+1,即(x﹣1)2=,∴x﹣1=±,∴x1=1+,x2=1﹣.18.解:(1)由题意,得:m2﹣3m+2=0解之,得m=2或m=1①,由m﹣1≠0,得:m≠1②,由①,②得:m=2;(2)当m=2时,代入(m﹣1)x2+5x+m2﹣3m+2=0,得x2+5x=0,x(x+5)=0解得:x1=0,x2=﹣5.19.解:把x=α和x=β分别代入方程得:α2+2020α﹣1=0,β2+2020﹣1=0,∴α2+2020α=1,β2+2020=1,根据根与系数的关系得:α+β=﹣2020,αβ=﹣1,则原式=(α2+2020α+α+1)(β2+2020β+β+1)=(α+2)(β+2)=αβ+2(α+β)+4=﹣1﹣4040+4=﹣4037.20.(1)证明:∵Δ=(2﹣m)2﹣4×1×(1﹣m)=m2≥0,∴原方程有两个相等的实数根或两个不等的实数根,即该方程总有两个实数根;(2)设方程的较大的实数根为x1,较小的实数根为x2,依题意得:x1﹣x2=3,x1+x2=m﹣2,x1x2=1﹣m,∴(x1﹣x2)2=32,x12﹣2x1x2+x22=9,x12+x22=9+2x1x2=9+2(1﹣m)=11﹣2m,∵(x1+x2)2=(m﹣2)2,∴x12+2x1x2+x22=m2﹣4m+4,∴11﹣2m+2(1﹣m)=m2﹣4m+4,整理得:m2=9,解得:m=3或m=﹣3,∵m<0,∴m=﹣3.21.解:(1)设每月印刷的增长率都为x,根据题意得:50(1+x)2=72.化为一般形式为25x2+50x﹣11=0;(2)设有x个好友,依题意得x(x﹣1)=132,化为一般形式为x2﹣x﹣132=0.22.解:(1)设平均下降率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均下降率为10%.(2)设单价应降低m元,则每件的销售利润为(200﹣m﹣162)=(38﹣m)元,每天可售出20+×10=(20+2m)件,依题意得:(38﹣m)(20+2m)=1150,整理得:m2﹣28m+195=0,解得:m1=15,m2=13.∵要减少库存,∴m=15.答:单价应降低15元.。
【5套打包】邯郸市初三九年级数学上(人教版)第21章《一元二次方程》测试题(含答案)
人教版九年级数学上册第 21 章一元二次方程单元检测题(有答案)(6)一、选择题1.已知 x=1 是一元二次方程 x 2-2mx+1=0 的一个解,则 m 的值是()A .1B . 0C .0或 1D .0 或 -12.已知 a 、b 为一元二次方程 x 2 2x 9 0 的两个根, 那么 a 2 a b 的值为()(A )- 7(B )0(C )7(D ) 113.依据以下表格中二次函数yax 2 bxc 的自变量 x 与函数值 y 的对应值,判断方程ax 2 bx c0 ( a 0,a ,b , c 为常数)的一个解 x 的范围是( )x6.176.186.19 6.20y ax 2 bxc0.030.010.020.04A. 6x 6.17B. 6.17 x 6.18C. 6.18 x 6.19D. 6.19 x 6.204.等腰三角形的底和腰是方程x 2-6x+8=0 的两根,则这个三角形的周长为()A.8B.10C.8 或 10D.不可以确立5.新能源汽车节能、环保,愈来愈受花费者喜欢,各样品牌接踵投放市场,我国新能源汽车近几年销量全世界第一,2016 年销量为 50.7 万辆,销量逐年增添, 到 2018 年销量为 125.6 万辆.设年均匀增添率为x ,可列方程为( )A . 50.7( 1+x ) 2= 125.6B . 125.6( 1﹣ x ) 2= 50.7C . 50.7( 1+2x )= 125.62D . 50.7( 1+x )= 125.66.现定义某种运算 a b a(ab) ,若 (x 2) x 2 x 2 ,那么 x 的取值范围是 ()(A ) 1x 2 ( B ) x2 或 x1 (C ) x 2( D ) x17、已知 a , b 是对于 x 的一元二次方程x2nx 10 的两实数根,则式子ba的值是a b( )A . n 22B . n 22C . n 2 2D . n 228、已知 a , b 是对于 x 的一元二次方程x2nx 10 的两实数根,则式子ba的值是a b( )A . n 22B . n 22C . n 2 2D . n 229、对于 x 的一元二次方程 2x221 0 的一个根为2,则 a 的值是()3 x aA . 1B . 3C . 3D .310、一个等腰三角形的底边长是6,腰长是一元二次方程x 2﹣8x+15= 0 的一根, 则此三角形的周长是( )A . 16B .12C . 14D .12 或 16二、填空题11.已知一元二次方程有一个根是2,那么这个方程能够是(填上你以为正确的一个方程即可).12.已知实数 x 知足 4x2-4x+l=O ,则代数式2x+ 1的值为 ________.2x13.假如、是一元二次方程 x23x 1 0的两个根,那么2 +2的值是___________14.已知23是一元二次方程 x24x c0 的一个根,则方程的另一个根是.15.已知a0,a b, x 1是方程ax2bx10 0 的一个解,则a2b2的值是.2a 2b16.在实数范围内定义一种运算“*”,其规则为a* b a 2b2,依据这个规则,方程( x 2)*50 的解为17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,此中有一个数学识题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60 步,问它的长比宽多多少步?依据题意得,长比宽多步.18、已知三个连续奇数,此中较大的两个数的平方和比最小数的平方的 3 倍还小 25,则这三个数分别为 _________19、甲、乙两同学解方程22 和 7;乙看错了常数x +px+q=0,甲看错了一次项系数,得根为项,得根为 1 和 -10,则原方程为20、如图 1,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为 1 米的正方形后,剩下的部分恰好能围成一个容积为15 米3的无盖长方体箱子,且此长方体箱子的底面长比宽多 2 米,现已知购置这类铁皮每平方米需20 元钱,问张大叔购回这张矩形铁皮共花了元钱?1 米1 米图 1三、解答题21、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你以为适合的方法解这个方程.① x23x 1 0 ;② ( x 1)2 3 ;③ x23x 0 ;④ x22x 4 .22、关 x 的一元二次方程(x-2)(x-3)=m有两个不相等的实数根x1、 x2,则 m 的取值范围是;若 x1、x2满《一元二次方程》单元检测试题(含答案)一、选一选,慧眼识金(每题 3 分,共 24 分)1.在一元二次方程x 2x 6x 5中,二次项系数、一次项系数、常数项分别是() .A . 1、- 1、 5B . 1、 6、5C . 1、- 7、 5D .1、- 7、- 52.用配方法解方程x 2x 2 ,方程的两边应同时() .11A .加上B .加上42C .减去1D .减去 1423.方程 (x - 5)( x - 6)=x - 5 的解是()A . x=5B . x=5 或 x=6C . x=7D . x=5 或 x=74.餐桌桌面是长 160cm ,宽为 100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2 倍,且使周围垂下的边等宽, 小刚设周围垂下的边宽为 xcm ,则应列得的方程为 ().A .( 160+ x )( 100+ x )=160× 100× 2B .(160+ 2x )(100+ 2x ) =160× 100× 2C .( 160+ x )(100+ x ) =160× 100D .(160+ 2x )( 100+ 2x ) =160×1005.电流经过导线会产生热量,设电流强度为 I (安培),电阻为 R (欧姆),1 秒产生的热量为 Q (卡),则有 Q=0.24I 2R ,此刻已知电阻为 0.5 欧姆的导线, 1 秒间产生 1.08 卡的热量,则该导线的电流是() .A .2 安培B .3 安培C . 6安培D .9 安培6.对于 x 的方程 ax 2bx c0 ( a ≠0, b ≠ 0)有一根为- 1 ,则 b 的值为()a cA . 1B .- 1C . 22D .- 27.对于 x 的一元二次方程 (2m 3)x m 2 0 根的状况是() .xA .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的状况没法确立8.在解二次项系数为1 的一元二次方程时,马虎的甲、乙两位同学解同一道题,甲看错了常数项,获得两根分别是4 和 5;乙看错了一次项系数,获得的两根分别是-3 和- 2,则方程是()A . x 2 9 x 6 0B . x 2 9x 6 0C . x 29x 6 0D . x 29 x 6二、填一填,点睛之笔(每题 3 分,共 18 分)9.对于 x 的方程 (m2) x m 22(3 m)x2 0 是一元二次方程,则 m 的值为 _______.10.若对于 x 的一元二次方程x 2mx n0 有两个相等的实数根,则切合条件的一组m ,n 的实数值能够是m =_________, n =________.11.第二象限内一点 A ( x1 , x 2- 3),其对于 x 轴的对称点为B ,已知 AB=12,则点 A 的坐标为 __________.12.跟着人们收入的不停提升及汽车家产的迅速发展,汽车已愈来愈多地进入了一般家庭,成为居民花费新的增添点.据某市交通部门统计, 2008 年末全市汽车拥有量为 150 万 辆,而截止到 2010 年末,全市的汽车拥有量已达 216 万辆.则 2008 年末至2010 年末该市汽车拥有量的年均匀增添率为__________.13.拂晓同学在演算某正数的平方时,将这个数的平方误写成它的2 倍,使答案少了35,则这个数为 __________.a b a b14.将 4 个数 a ,b ,c , d 排成 2 行、2 列,两边各加一条竖直线记成d,定义dc cad bc ,上述记号就叫做 2 x 1 x 1______.阶队列式.若xx6 ,则 x1 1三、做一做,牵手成功(共58 分)15.(每题 3 分,共 9 分)用适合方法解以下方程:( 1)( x - 4) 2- 81=0;( 2) 3x ( x - 3) =2( x - 3);( 3) 2 x 2 1 6 x .16.( 5 分)已知 y 1 x 2x 3 , y 25( x 1) ,当 x 为什么值时, y 1 y 2 .17.( 6 分)飞机腾飞时,要先在跑道上滑行一段行程,这类运动在物理中叫做匀加快直线运动,其公式为 s v 0 t1at 2 ,若某飞机在腾飞前滑行了 400m 的距离,此中 v 0=30m/s ,2a=20m/s 2,求所用的时间 t .18.( 7 分)阅读资料:为解方程( x 2 1)2 5( x 2 1) 4 0 ,我们能够将 x 2 1 看作一个整体,而后设 x 21 y ,那么原方程可化为y 2 5y 40 ① .解得 y 1=1, y 2=4.当 y 1时, x 2 1 1 ,∴ x 2 2 ,∴ x 2 ;当 y4 时, x 2 1 4 ,∴ x 25 ,∴ x5 .故原方程的解为 x 12 , x 22 , x 22 , x 45 .解答问题:( 1)上述解题过程, 在由原方程获得方程①的过程中,利用 ________法达到认识方程的目的,表现了转变的数学思想;( 2)请利用以上知识解方程x 4- x 2- 6=0.19.( 7 分)设 a 、 b 、 c 是△ ABC 的三条边,对于 x 的方程 x 22 bx 2c a0 有两个相等的实数根,且方程 3cx 2b 2a 的根为 0.( 1)求证:△ ABC 为等边三角形;( 2)若 a 、 b 为方程 x 2mx 3m 0 的两根,求 m 的值 .20.( 7 分)在国家的宏观调控下,某市的商品房成交价由今年5 月份的14000元 /人教版九年级数学上册第21 章一元二次方程单元检测题(有答案) (10)一、选择题 (本大题共 6 小题, 每题 2 分,共 12 分.在每题所给出的四个选项中,恰 有一项为哪一项切合题目要求的,请将正确选项前的字母代号填涂在答题卡相应地点上)1.( 2 分)计算 218 5 的结果是()。
2024-2025学年人教版九年级数学上册第二十一章 一元二次方程单元测试卷(含答案)
第二十一章一元二次方程一、选择题1.下列方程中,是一元二次方程的是( )A.x−1=0B.x2−x−1=0C.x2−y=0D.1x+x−1=02.一元二次方程x2−4x+1=0配方后,可化为( )A.(x−2)2=3B.(x+2)2=3C.(x−2)2=4D.(x+2)2=43.若x=1是方程x2+mx+1=0的一个解,则m的值为( )A.1B.2C.−1D.−24.方程x(x−2)=0的解是( )A.0B.2C.−2D.0或25.如果关于x的一元二次方程k x2−4x+2=0有实数根,则k的取值范围是( )A.k≤2B.k≤2且k≠0C.k<2且k≠0D.k≥2且k≠06.若x1+x2=3,x1x2=2,则以x1,x2为根的一元二次方程是( )A.x2−3x+2=0B.x2+3x−2=0C.x2+3x+2=0D.x2−3x−2=07.学校要组织一场篮球联赛,赛制为单循环形式,即每两队之间比赛一场,计划安排15场比赛,应邀请多少个队参加比赛?设应邀请x个球队参加比赛,下列算式正确的是( )A.x(x+1)=15B.x(x−1)=15C.12x(x+1)=15D.12x(x−1)=158.若m,n是关于x的一元二次方程x2+2x−5=0的两个根,则m2+mn−2n的值为( )A.−6B.6C.−4D.4二、填空题9.若关于x的方程(m+1)x2﹣3x+2=0是一元二次方程,则m的取值范围是 .10.将关于x的一元二次方程x2−6x−5=0化成(x+a)2=b的形式,则b= .11.方程3x2−6x=0的解是 12.已知关于x的方程(a−2)x2−2x+1=0有实数根,则a的取值范围是 13.若x1,x2是一元二次方程x2−x−6=0的两个实数根,则1x1+1x2的值为 .三、计算题14.解方程:(1)3x2−10x+6=0;(2)5(x+3)2=2(x+3).15.已知关于x的一元二次方程x2−(2k+1)x+k2+k=0 .(1)求证:方程有两个不相等的实数根.(2)若 Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,第三边BC的长为5,求 k 的值.16.已知关于x的一元二次方程x2+(2m+1)x+m2−1=0有两个不相等的实数根.(1)求m的取值范围.(2)设x1,x2分别是方程的两个根,且x21+x22+x1x2−17=0,求m的值.17.交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率.(2)若此种头盔的进价为30元/个,经测算,此种头盔在市场中,当售价为40元/个时,月销售量为600个,在此基础上售价每上涨1元/个,则月销售量将减少10个.现希望该头盔每月销售利润为10 000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.B 2.A 3.D 4.D 5.B 6.A 7.D 8.D 9.m≠-1 10.1411.x1=0,x2=212.a≤313.−1614.(1)解:3x2−10x+6=0,∵a=3,b=−10,c=6,∴b2−4ac=(−10)2−4×3×6=28>0,∴x=−b±b2−4ac2a =10±286=5±73,∴x1=5+73,x2=5−73;(2)解:5(x+3)2=2(x+3),5(x+3)2−2(x+3)=0,(x+3)(5x+13)=0,x+3=0或5x+13=0,解得x1=−3,x2=−135.15.(1)证明:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴Δ=[−(2k+1)]2−4(k2+k)=4k2+4k+1−4k2−4k=1>0,∴关于x的一元二次方程x2−(2k+1)x+k2+k=0有两个不相等的实数根;(2)解:∵关于x的一元二次方程为x2−(2k+1)x+k2+k=0,∴(x−k)[x−(k+1)]=0,解得:x1=k,x2=k+1.∵ Rt△ABC的两边AB,AC的长分别是这个方程的两个实数根,分两种情况讨论如下:当BC=5为直角边时,k2+52=(k+1)2,解得:k=12;当BC=5为斜边时,k2+(k+1)2=52,解得:k1=3,k2=−4(根据边长为正判断不合题意,舍去),∴k=12或k=3.16.(1)解:∵一元二次方程有两个不相等的实根∴(2m+1)2−4×1×(m2−1)=4m2+4m+1−4m2+4=4m+5>0,解得m>−54;(2)解:∵ x1,x2分别是方程的两个根∴x1+x2=−(2m+1)=−2m−1,x1·x2=m2−1;∵x12+x22+x1x2−17=0,配方后可得(x1+x2)2−x1x2−17=0;将x1+x2=−(2m+1)=−2m−1和x1·x2=m2−1代入,可得:(−2m−1)2−(m2−1)−17=0,化简可得3m2+4m−15=0;解得m=53或-3(舍去);∴m的值为53.17.(1)设该品牌头盔销售量的月增长率为x,依题意,得:150(1+x)2=216,解得:x1=0.2=20%,x2=−2.2(不合题意,舍去).答:该品牌头盔销售量的月增长率为20%;(2)设该品牌头盔的实际售价为y元,依题意,得:(y−30)(600−y−400.5×5)=10000,整理,得:y2−130y+4000=0,解得:y1=80(不合题意,舍去),y2=50,∵尽可能让顾客得到实惠,∴该品牌头盔的实际售价应定为50元,答:该品牌头盔的实际售价应定为50元.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
第二十一章 一元二次方程 单元测试(含答案) 2024-2025学年人教版九年级数学上册
第二十一章一元二次方程一、选择题(每题3分,共24分)1.在一元二次方程x2−2x−3=0中,一次项系数是( )A.1B.0C.−2D.−3 2.若x=−1是关于x的方程x2+ax=0的一个根,则a的值为( )A.1B.2C.3D.43.用配方法解方程x2-6x-1=0时,配方结果正确的是( )A.(x-3)2=10B.(x-3)2=8C.(x-6)2=10D.(x-3)2=1 4.一元二次方程x2−2x=0的解是( )A.x1=3,x2=1B.x1=2,x2=0C.x1=3,x2=−2D.x1=−2,x2=−15.一元二次方程x(x−1)=2(x−1)的解完全正确的是( )A.x=2B.x1=2,x2=1C.x1=−2,x2=1D.x1=3,x2=−1 6.若关于x的一元二次方程(k−1)x2−4x−1=0有实数根,则k的取值范围( )A.k>−3B.k≥−3且k≠1C.k>−3且k≠0D.k≤−37.若一元二次方程2x2+3x﹣6=0的两个根分别为x1,x2,则x1•x2的值等于( )A.﹣6B.6C.﹣3D.38.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x人,经过两轮传染后共有256人感染了“甲流”.则关于x的方程为( )A.x+x(x+1)=256B.x2+x=256C.1+x+x(x+1)=256D.(x+1)+(x+1)2=256二、填空题(每题4分,共20分)9.若方程(m−1)x2+6x−1=0是关于x的一元二次方程,则m的取值范围是 .10.用配方法解一元二次方程x2+6x+3=0时,将它化为(x+m)2=n的形式,则m−n的值为 .11.已知关于x的一元二次方程2m x2−4x+1−5n=0有两个相等的实数根,则2m+5n的值为 .12.已知三角形两边的长分别是2和5,第三边的长是方程x2-7x+10=0的根,则这个三角形的周长是 .13.已知m,n是方程x2+4x−3=0的两个实数根,则m2+5m+n+2024的值是 .三、计算题(共10分)14.解方程:(1)x2−4x−12=0;(2)x(x−9)=8(9−x).四、解答题(共46分)15.关于x的一元二次方程2x2−4x+(2m−1)=0有两个不相等的实数根.(1)求m的取值范围;(2)若方程有一个根为x=3+1,求m的值和另一根.16.已知关于x的一元二次方程x2−(m+2)x+m−1=0.(1)求证:无论m取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为x1,x2,且x21+x22−x1x2=9,求m的值.17.为了提升居民生活质量,完善社区公共区域配套设施,今年夏天长春市在多个城区实施了旧城改造工程.已知某工程队在开始施工的7月份为某小区翻新道路12000m2,为了在入冬前完成道路翻新工程,之后加快了工程进度,结果9月份为该小区翻新道路14520 m2.(1)求这两个月该工程队工作效率的月平均增长率.(2)若10月份该工程队的工作效率按此增长率增长,估计到10月末该工程队能否完成该小区共55000m2的道路翻新任务?18.某超市销售一种衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该超市准备适当降价,经过一段时间测算,发现每件衬衫每降价1元,平均每天可多售出2件.(1)若每件衬衫降价4元,平均每天可售出多少件衬衫? 此时每天销售获利多少元?(2)在每件盈利不少于 25元的前提下,要使该衬衫每天销售获利为1 200元,问每件衬衫应降价多少元?(3)该衬衫每天的销售获利能达到 1 300 元吗?如果能,请写出降价方案;如果不能,请说明理由.1.C2.A3.A4.B5.B6.B7.C8.C9.m≠110.−311.112.1213.202314.(1)解:x2−4x−12=0 x2−4x=12x2−4x+4=12+4(x−2)2=16x−2=±4即:x−2=4或x−2=−4∴x1=6,x2=−2(2)解:x(x−9)=8(9−x)解:x(x−9)−8(9−x)=0x(x−9)+8(x−9)=0(x−9)(x+8)=0即:x−9=0或x+8=0∴x1=9,x2=−815.(1)解:∵方程2x2−4x+(2m−1)=0有两个不相等的实数根,∴Δ=16−8(2m−1)=24−16m>0解得m<32;∵方程有一个根x=3+1,∴2×(3+1)2−4×(3+1)+(2m−1)=0解得m=−32,则2x2−4x−4=0,x2−2x−2=0∵x1+x2=2,∴x2=2−(1+3)=1−3,则x1=1+3,x2=1−3,即m的值是−32,另一根是1−3.16.(1)证明:Δ=[−(m+2)]2−4×1×(m−1)=m2+8,∵无论m取何值,m2+8>0,恒成立,∴无论m取何值,方程都有两个不相等的实数根;(2)解:∵x1,x2是方程x2−(m+2)x+m−1=0的两个实数根,∴x1+x2=m+2,x1⋅x2=m−1,∵x21+x22−x1x2=(x1+x2)2−3x1x2=9,∴(m+2)2−3(m−1)=9解得:m1=1或m2=−2.17.(1)解:设该工程队工作效率的月平均增长率为x,根据题意,得12000(1+x)2=14520.解这个方程,得x1=0.1,x2=−2.1(不合题意舍去).答:该工程队工作效率的月平均增长率为10%.(2)解:8月的工程量为:13200m2;10月的工程量为:15972m2;12000+13200+14520+15972=55692>55000.所以该工程队能完成该小区的道路翻新任务.18.(1)解:由题意可得,每件衬衫降价4元,平均每天可售出衬衫的数量为:20+4×2=28(件);此时每天获取的利润为(40-4)×28=1008(元);(2)解:设每件衬衫降价x元(0≤x≤15),由题意可得(20+2x)×(40-x)=1200,整理得x2-30x+200=0,解得x1=10,x2=20(舍),答:在每件盈利不少于25元的前提下,要使该衬衫每天销售获利为1200元,每件衬衫应降价10元;(3)解:该衬衫每天的销售获利不能达到1300元,理由如下:设每件衬衫降价y元,由题意可得(20+2y)×(40-y)=1300,整理得y2-30y+250=0,∵b2-4ac=302-4×1×250=-100<0,∴此方程没有实数根,即该衬衫每天的销售获利不能达到1300元.。
第01章 一元二次方程单元测试卷(A卷)
一元二次方程单元测试卷(A 卷)一.选择题(共10小题,满分30分,每小题3分)1.下列方程中是一元二次方程的是( )A .210x +=B .21x y +=C .220x +=D .211x x+= 2.一元二次方程232x x -=的二次项系数、一次项系数、常数项分别是( )A .1,2-,3-B .1,2-,3C .1,2,3D .1,3-,23.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是()A .2500(12)12000x +=B .22500(1)1200x +=C .25002500(1)2500(12)12000x x ++++=D .225002500(1)2500(1)12000x x ++++=4.已知关于x 的方程260x kx -+=有两个实数根,则k 的值不可能是( )A .5B .8-C .D .4 5.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为()A .0B .1±C .1D .1- 6.若α、β是一元二次方程2260x x +-=的两根,则11αβ+的值是( ) A .13- B .13 C .3-D .3 7.代数式242019x x --的最小值是( )A .2017-B .2019-C .2021-D .2023-8.若方程27120x x -+=的两个实数根恰好是直角ABC ∆的两边的长,则ABC ∆的周长为( )A .12B .7C .12或7D .119.把方程212330x x -+=化成2()x m n +=的形式,则式子m n +的值是( )A .9B .9-C .3-D .310.已知1x ,2x 是关于x 的方程22(22)(2)0x m x m m --+-=的两根,且满足12122()1x x x x ++=-,那么m的值为( )A .1-或3B .3-或1C .3-D .1二.填空题(共8小题,满分24分,每小题3分)11.当m 满足条件 时,关于x 的方程22(4)30m x mx -++=是一元二次方程.12.把方程3(1)(2)(2)9x x x x -=+-+化成20ax bx c ++=的形式为 .13.如果一元二次方程240x x k -+=经配方后,得2(2)1x -=,那么k = .14.关于x 的一元二次方程2(1)210m x x ---=有两个实数根,则实数m 的取值范围是 .15.若a 是方程2210x x --=的解,则代数式2242019a a -+的值为 .16.某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x 个班级参赛,根据题意,可列方程为 .17.已知1x ,2x 是关于x 的一元二次方程2210x x k ++-=的两个实数根,且22121213x x x x +-=,则k 的值为 .18.若实数x ,y 满足2222()(4)5x y x y ++-=,则22x y += .三.解答题(共5小题,满分46分)19.用指定方法解下列一元二次方程.(1)2360x -=(直接开平方法) (2)242x x -=(配方法)(3)22510x x -+=(公式法) (4)2(1)8(1)160x x ++++=(因式分解法)20.已知关于x 的一元二次方程210x mx +-=.(1)求证:无论实数m 取何值,方程总有两个不相等的实数根;(2)若方程的一个根是1-,求m 的值和方程的另一个根.21.已知关于x 的方程22210x x k -+-=有实数根.(1)求k 的取值范围;(2)设方程的两根分别是1x 、2x ,且211212x x x x x x +=,试求k 的值.22.某中学课外兴趣活动小组准备围建一个矩形的苗圃圆.其中一边靠墙,另外三边用长为40m 的篱笆围成.已知墙长为18m (如图所示),设这个苗圃园垂直于墙的一边AB 为xm()I 用含有x 的式子表示AD ,并写出x 的取值范围; (Ⅱ)若苗圃园的面积为2192m 平方米,求AB 的长度.23.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已经成为国内外游客最喜欢的旅游目的地城市之一,在著名“网红打卡地”磁器口,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经过测算知,该小面成本为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天可多售30碗.(1)若该小面店每天至少卖出360碗,则每碗小面的售价不超过多少元?(2)为了更好的维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元.。
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
人教版九年级数学上册第二十一章一元二次方程单元测试卷-(含答案及解析)
保密★启用前人教版九年级数学上册单元测试卷第二十一章 一元二次方程考试范围:一元二次方程;考试时间:120分钟;试卷总分:120分一、单选题(共30分,每小题3分) 1.下列是一元二次方程的是( )A .2230x x --=B .25x y +=C .112xx += D .10x +=2.方程4x 2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是( )A .4,0,81B .﹣4,0,81C .4,0,﹣81D .﹣4,0,﹣81 3.方程2690x x +-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个根为1-D .没有实数根4.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-5.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定6.已知23-=x x ,则代数式()()()323210x x x x +-+-的值为( ).A .34B .14C .26D .77.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x+k =0的两个实数根,则k 的值是( )A .8B .9C .8或9D .128.用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( ) A .(x ﹣4)2=8B .(x ﹣4)2=40C .(x ﹣8)2=8D .(x ﹣8)2=409.设m 、n 是一元二次方程x 2+3x ﹣7=0的两个根,则m 2+4m +n =( ) A .﹣3 B .4 C .﹣4 D .5 10.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=182二、填空题(共24分,每小题3分) 11.一元二次方程230x -=的解为_______.12.方程220x x -+=与方程2610x x --=的所有实数根的和是______.13.已知m ,n 是方程2310x x +-=的两个根,则22m n +=_________.14.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.15.若关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的最大整数值是__________.16.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程220x x --=是“倍根方程”;①若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=;①若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”;①若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.17.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是__.18.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程 .三、解答题(共66分) 19.解方程:(共8分)(1)()2140x --= (2)()2236x x -=-20.阅读下列材料,解答问题.(共6分)222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.21.方程2ax 10x ++=与方程2x a 0x --=有且只有一个公共根,求a 的值(共6分)22.已知:关于x的方程x2﹣(k+2)x+2k=0(共8分)(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求①ABC的周长.23.一个两位数,个位上的数字比十位上的数字小4,且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.(共6分)24.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为250m的矩形场地?(共6分)25.某单位通过旅行社组织职工去上海世博会.下面是领队与旅行社导游收费标准的一段话:领队:每人的收费标准是多少?导游:如果人数不超过30人,人均旅游费用为120元.领队:超过30人怎样优惠呢?导游:如果超过30人,每增加1人,人均旅游费用就降低2元,但人均旅游费用不得低于90元.该单位按旅行社的收费标准组团参观世博会后,共支付给旅行社4000元.请你根据上述信息,求该单位这次参观世博会的共有几人?(共8分)26.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(共8分)(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?27.如图,长方形ABCD 中(长方形的对边平行且相等,每个角都是90°),AB =6cm ,AD =2cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以2cm/s 的速度向终点B 移动,点Q 以1cm/s 的速度向点D 移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t (s ),问:(共10分)(1)当t =1s 时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t = s 时,以点P ,Q ,D 为顶点的三角形是等腰三角形.(直接写出答案)参考答案:1.A2.C3.B4.D5.A6.C7.B8.D9.B10.B11.1x 2x = 12.6 13.11 14.4a <且0a ≠15.0 16.①①① 17.13 18.x (x +12)=86419.(1)13x =,21x =-;(2)12x =,25x =(1)()2140x --= ()214x -=12x -=或12x -=-13x =,21x =-(2)()2236x x -=- ()()22320x x ---=()()250x x --=20=或50x -=12x =,25x =20.x 1=54,x 2=23 解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,①4x -5=0,3x -2=0,①x 1=54,x 2=23. 21.-2解:∵有且只有一个公共根∴22ax 1x a x x ++=--∴ax 10x a +++=①当a=-1时两个方程完全相同,故a≠-1,①()11a x a -+=+∴1x =-当1x =-时,代入第一个方程可得1-a+1=0解得:2a =22.(1)见解析;(2)5(1)证明:由题意知:Δ=(k +2)2﹣4•2k =(k ﹣2)2,①(k ﹣2)2≥0,即①≥0,①无论取任何实数值,方程总有实数根;(2)解:当b =c 时,Δ=(k ﹣2)2=0,则k =2,方程化为x 2﹣4x +4=0,解得x 1=x 2=2,①①ABC 的周长=2+2+1=5;当b =a =1或c =a =1时,把x =1代入方程得1﹣(k +2)+2k =0,解得k =1,方程化为x 2﹣3x +2=0,解得x 1=1,x 2=2,不符合三角形三边的关系,此情况舍去,①①ABC 的周长为5.23.这个两位数为84.设十位上的数字为x ,则个位上的数字为(x ﹣4).可列方程为:x 2+(x ﹣4)2=10x +(x ﹣4)﹣4解得:x 1=8,x 2=1.5(舍),①x ﹣4=4,①10x +(x ﹣4)=84.答:这个两位数为84.24.用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m )解:设与墙垂直的篱笆长为x m ,则与墙平行的篱笆长为()202x -m ,根据题意,得(202)50x x -=,整理得,210250x x -+=,解得125x x ==,()202202510x m ∴-=-⨯=.答:用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m ).25.30X120="3600" ①3600小于4000,①参观的人数大于30人设共有x 人,则人均旅游费为【120-2(x-30)】元由题意得:x 【120-2(x-30)】=4000整理得:x 1=40,x 2=50当x=40时,120—2(40-30)=100大于90当x=50时,120—2(50.30)=80.小于90(不合,舍去)答:该单位这次参观世博会共又40人30×120=3600.①3600<4000,∴参观的人数大于30人,设共有x 人,则人均旅游费为[120﹣2(x ﹣30)]元,由题意得:x [120﹣2(x ﹣30)]=4000解得:x 1=40,x 2=50.当x =40时,120﹣2(40﹣30)=100>90;当x =50时,120﹣2(50﹣30)=80<90(不合,舍去).答:该单位这次参观世博会共有40人.26.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;①21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ①y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,①让顾客得到更大的实惠,①9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.27.(1)5cm 2;(2;(365 解:(1)如图,①四边形ABCD 是矩形,①AB =CD =6,AD =BC =2,①A =①B =①C =①D =90°. ①CQ =1cm ,AP =2cm ,①AB =6﹣2=4(cm ).①S =()14252+⨯=(cm 2). 答:四边形BCQP 面积是5cm 2;(2)如图1,作QE ①AB 于E ,①①PEQ =90°,①①B =①C =90°,①四边形BCQE 是矩形,①QE =BC =2cm ,BE =CQ =t (cm ).①AP =2t (cm ),①PE =6﹣2t ﹣t =(6﹣3t )cm .在Rt △PQE 中,由勾股定理,得(6﹣3t )2+4=9,解得:t 如图2,作PE ①CD 于E ,①①PEQ=90°.①①B=①C=90°,①四边形BCQE是矩形,①PE=BC=2cm,BP=CE=6﹣2t.①CQ=t,①QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t综上所述:t(3)如图3,当PQ=DQ时,作QE①AB于E,①①PEQ=90°,①①B=①C=90°,①四边形BCQE是矩形,①QE=BC=2cm,BE=CQ=t(cm).①AP=2t,①PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.①PQ=DQ,①PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t如图4,当PD=PQ时,作PE①DQ于E,①DE=QE=12DQ,①PED=90°.①①A=①D=90°,①四边形APED是矩形,①PE=AD=2cm.DE=AP=2t,①DQ=6﹣t,①DE=62t-.①2t=62t-,解得:t=65;如图5,当PD=QD时,①AP=2t,CQ=t,①DQ=6﹣t,①PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1t2.综上所述:t 6565。
人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(有答案解析)
一、选择题1.某口罩厂六月份的口罩产量为100万只,由于市场需求量减少,八月份的产量减少到81万只,则该厂七八月份的口罩产量的月平均减少率为 ( )A .10%B .29%C .81%D .14.5%2.x = ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=3.已知a ,b ,c 分别是三角形的三边长,则关于x 的方程()()220a b x cx a b ++++=根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有且只有一个实数根D .没有实数根 4.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==- 5.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y += B .21()12y -= C .211()22y += D .213()24y -= 6.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .9 7.若方程()200++=≠ax bx c a 中,,,a b c 满足420a b c ++=和420a b c -+=,则方程的根是( )A .1,0B .1,0-C .1,1-D .2,2- 8.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 9.若关于x 的方程(m ﹣1)x 2+mx ﹣1=0是一元二次方程,则m 的取值范围是( ) A .m ≠1B .m =1C .m ≥1D .m ≠0 10.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 11.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-202012.若()()2222230xy x y ++--=,则22x y +的值是( ) A .3 B .-1 C .3或1 D .3或-1 二、填空题13.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______14.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____15.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.16.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场17.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.18.若方程()22110a x ax -+-=的一个根为1x =,则a =_______.19.当x=______时,−4x 2−4x+1有最大值.20.关于x 的一元二次方程有两个根0和3,写出这个一元二次方程的一个一般式为______.参考答案三、解答题21.已知关于x 的方程x 2﹣8x ﹣k 2+4k +12=0.(1)求证:无论k 取何值,这个方程总有两个实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.22.解方程:(1)()2316x -=(2)22410x x --=(用公式法解)23.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.24.某玩具店购进一批甲、乙两款乐高积木,它们的进货单价之和是720元.甲款积木零售单价比进货单价多80元.乙款积木零售价比进货单价的1.5倍少120元,按零售单价购买甲款积木4盒和乙款积木2盒,共需要2640元.(1)分别求出甲乙两款积木的进价.(2)该玩具店平均一个星期卖出甲款积木40盒和乙款积木24盒,经调查发现,甲款积木零售单价每降低2元,平均一个星期可多售出甲款积木4盒,商店决定把甲款积木的零售价下降()0m m >元,乙款积木的零售价和销量都不变.在不考虑其他因素的条件下,为了顾客能获取更多的优惠,当m 为多少时,玩具店一个星期销售甲、乙两款积木获取的总利润恰为5760元.25.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.26.阅读下列材料,解答问题.222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+, 原方程可化为222()m n m n +=+,0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设该厂七八月份的口罩产量的月平均减少率为x ,根据该厂六月份及八月份的口罩产量,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设该厂七八月份的口罩产量月平均减少率为x ,根据题意得,()2100181x -=,解得10.110%x ==,2 1.9x =(不合题意,舍去).故选A .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 2.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为x =D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 3.D解析:D【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.而()()2(2)4c a b a b =-++,根据三角形的三边关系即可判断.【详解】∵a ,b ,c 分别是三角形的三边,∴a+b >c .∴c+a+b >0,c-a-b <0,∴()()2(2)4c a b a b =-++2244()c a b =-+()()40c a b c a b =++--<,∴方程没有实数根.故选:D .【点睛】本题主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对2244()c a b -+进行因式分解.4.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.5.A解析:A【分析】根据配方法解一元二次方程的步骤计算可得.【详解】解:∵2304y y +-=, ∴y 2+y=34, 则y 2+y+14=34+14, 即(y+12)2=1, 故选:A .【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax 2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边; ③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.D解析:D【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论.【详解】解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c =故选:D .【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.7.D解析:D【分析】联立420a b c ++=和420a b c -+=,前式减后式,可得0b =,前式加后式,可得4c a =-,将a 、c 代入原方程计算求出方程的根.【详解】∵根据题意可得:420420a b c a b c ++=⎧⎨-+=⎩①②, ①-②=40b =,得0b =,①+②=820a c +=,∴解得:0b =,4c a =-.将a 、b 、c 代入原方程()200++=≠ax bx c a 可得, ∵240ax bx a +-=,240ax a -=24ax a =∴2x =±故选:D .【点睛】本题考查解一元二次方程,联立关于a 、b 、c 的方程组,由方程组推出a 、b 、c 的数量关系是解题关键.8.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 9.A解析:A【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】解:由题意得:m ﹣1≠0,解得:m≠1,故选:A .【点睛】本题考查了一元二次方程的定义,注意掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.10.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.11.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.12.A解析:A【分析】用22a x y =+,解出关于a 的方程,取正值即为22x y +的值是.【详解】解:令22a x y =+,则(2)30a a --=,即2230a a --=,即(3)(1)0a a ,解得13a =,21a =-,又因为220a x y =+>,所以3a =故22x y +的值是3,故选:A .【点睛】本题考查解一元二次方程,掌握换元思想可以使做题简单,但需注意220a x y =+>. 二、填空题13.1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的 解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.14.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 15.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.16.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 17.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 18.或【分析】分类讨论方程为一元一次和一元二次把x=1代入方程计算即可求出a 的值【详解】解:若方程为一元一次方程此时此时解得当时方程的解是满足条件当时方程的解是不满足题意;若方程为一元二次方程此时此时此 解析:1或2-【分析】分类讨论方程为一元一次和一元二次,把x =1代入方程计算即可求出a 的值.【详解】解:若方程为一元一次方程,此时210a -=,此时解得±1a =,当1a =时,方程的解是1x =满足条件,当1a =-时,方程的解是1x =-不满足题意;若方程为一元二次方程,此时210a -≠,此时±a ≠1,此时将1x =代入方程可得2110a a -+-=解得122,1()a a =-=舍综上所述,a =1或-2故答案为:1或2-【点睛】本题主要考查方程的相关定义,分类讨论是解题的关键.19.【分析】先根据完全平方公式将原式配方进而利用非负数的性质求出即可【详解】解:∵-4x2-4x+1=-(4x2+4x-1)=-(2x+1)2+2-(2x+1)2≤0∴当x=-时4x2-4x+1有最大值 解析:12- 【分析】先根据完全平方公式将原式配方,进而利用非负数的性质求出即可.【详解】解:∵-4x 2-4x+1=-(4x 2+4x-1)=-(2x+1)2+2,-(2x+1)2≤0,∴当x=-12时,4x 2-4x+1有最大值是2. 故答案为:-12. 【点睛】此题主要考查了配方法的应用以及非负数的性质,正确配方得出是解题关键.20.【分析】根据方程的解的定义可以得到方程【详解】解:根据题意知方程符合题意即:故答案是:【点睛】本题主要考查了一元二次方程的解的定义熟悉相关性质是解题的关键解析:230x x -=【分析】根据方程的解的定义可以得到方程-=(3)0x x .【详解】解:根据题意,知方程-=(3)0x x 符合题意,即:230x x -=.故答案是:230x x -=.【点睛】本题主要考查了一元二次方程的解的定义,熟悉相关性质是解题的关键.三、解答题21.(1)证明见解析;(2)k 的值为2或1或3.【分析】(1)先计算出△=4(k ﹣2)2,然后根据判别式的意义即可得到结论;(2)先利用因式分解法求出方程的解为x 1=﹣k +6,x 2=k +2,然后分类讨论:当AB =AC 或AB =BC 或AC =BC 时△ABC 为等腰三角形,然后求出k 的值.【详解】解:(1)证明:∵△=(﹣8)2﹣4(﹣k 2+4k +12)=4(k ﹣2)2≥0,∴无论k 取何值,这个方程总有两个实数根;(2)解:x 2﹣8x ﹣k 2+4k +12=0,(x +k ﹣6)(x ﹣k ﹣2)=0,解得:x 1=﹣k +6,x 2=k +2,当AB =AC 时,﹣k +6=k +2,则k =2;当AB =BC 时,﹣k +6=5,则k =1;当AC =BC 时,则k +2=5,解得k =3,综合上述,k 的值为2或1或3.【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0)的根的判别式△=b 2-4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了三角形三边的关系以及等腰三角形的性质.22.(1)11x =21x =-2)11x =+,21x =. 【分析】(1)两边除以3后再开方,即可得出两个一元一次方程,求解即可;(2)求出24b ac -的值,代入公式求出即可.【详解】解:(1)()2316x -=方程两边除以3,得:()212x -=,两边开平方,得:1x -=则:11x =+21x =(2)22410x x --=∵2a =,4b =-,1c =-,∴()()224442124b ac -=--⨯⨯-=∴x ==,∴112x =+,212x =-; 【点睛】 本题考查了解一元二次方程的应用,熟悉相关的解法是解题的关键.23.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.24.(1)(1)甲款每盒400元,乙款每盒320元;(2)40.【分析】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,列出二元一次方程组计算即可;(2)根据题意得出()()8040224405760m m -++⨯=,计算即可;【详解】(1)设甲款积木的进价为每盒x 元,乙款积木的进价为每盒y 元,则()()72048021.51202640x y x y +=⎧⎨++-=⎩, 解得:400320x y =⎧⎨=⎩. 答:甲款积木的进价为每盒400元,乙款积木的进价为每盒320元.(2)由题可得:()()8040224405760m m -++⨯=,解得120m =,240m =,因为顾客能获取更多的优惠,所以40m =.【点睛】本题主要考查了一元二次方程的应用,结合二元一次方程组求解计算是解题的关键. 25.(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.26.x 1=54,x 2=23【分析】 设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,代入后求出mn =0,即可得出(4x -5)(3x -2)=0,求出即可.【详解】解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,∴4x -5=0,3x -2=0,∴x 1=54,x 2=23. 【点睛】 本题考查了解一元二次方程,能把一元二次方程转化成(4x -5)(3x -2)=0是解此题的关键.。
九年级上册数学《一元二次方程》单元检测题含答案
人教版数学九年级上学期《一元二次方程》单元测试(满分120分,考试用时120分钟)一.选择题(共10小题)1.若关于x的方程是一元二次方程,则( )A. B. C. D.2.方程﹣5x2=1的一次项系数是( )A. 3B. 1C. ﹣1D. 03.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是( )A. ﹣3B. 3C. 0D. 0或34.一元二次方程x2﹣4=0的解是( )A. x1=2,x2=﹣2B. x=﹣2C. x=2D. x1=2,x2=05.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A. x2﹣2x=5B. x2+4x=5C. 2x2﹣4x=5D. 4x2+4x=56.x=是下列哪个一元二次方程的根( )A. 3x2+5x+1=0B. 3x2﹣5x+1=0C. 3x2﹣5x﹣1=0D. 3x2+5x﹣1=07.方程x(x+2)=0的解是( )A. x=0B. x=2C. x=0或x=2D. x=0或x=﹣28.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是( )A. x1=﹣1,x2=﹣3.5B. x1=1,x2=﹣3.5C. x1=1,x2=3.5D. x1=﹣1,x2=3.59.关于x的一元二次方程x2﹣2x﹣(m﹣1)=0有两个不相等的实数根,则实数m的取值范围是( )A. m>0且m≠1B. m>0C. m≥0且m≠1D. m≥010.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是( )A. 2(1+x)2=2.88B. 2x2=2.88C. 2(1+x%)2=2.88D. 2(1+x)+2(1+x)2=2.88二.填空题(共8小题)11.m是方程2x2+3x﹣1=0的根,则式子4m2+6m+2018的值为_____.12.方程(n﹣3)x|n|﹣1+3x+3n=0 是关于x 的一元二次方程,n=_____.13.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是_____.14.如果一元二次方程x2﹣4x+k=0经配方后,得(x﹣2)2=1,那么k=_____.15.2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.16.用长为14的铁丝围成一个面积是12的矩形,这个矩形相邻的两边长分别是_____.17.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=_____.18.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_____三.解答题(共7小题)19.选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x20.已知x=n是关于x的一元二次方程mx2﹣4x﹣5=0的一个根,若mn2﹣4n+m=6,求m的值.21.当m为何值时,关于x的方程为一元二次方程,并求这个一元二次方程的解.22.已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.23.某种服装平均每天可销售20件,每件盈利44元,若每件降价1元,每天可多售5件,若设每件降价x元.(1)根据题意,填表:每件利润(元) 销售量(件) 利润(元)降价前44 20 880降价后①②(2)若每天盈利1600元,则每件应降价多少元?24.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?25.商场某种商品平均每天可销售30 件,每件盈利50 元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价 1 元,商场平均每天可多售出 2 件.(1)若某天该商品每件降价3 元,当天可获利多少元?(2)设每件商品降价x 元,则商场日销售量增加件,每件商品,盈利元(用含x 的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000 元?参考答案一.选择题(共10小题)1.若关于x的方程是一元二次方程,则( )A. B. C. D.【答案】A【解析】【分析】根据一元二次方程的定义求解,即只含有一个未知数,且未知数最高次数为2的方程叫做一元二次方程(二次项系数不为0).【详解】由一元二次方程的定义可得a-2≠0,可解出a≠2.故答案为A【点睛】一元二次方程的概念是考点,关键点是二次项系数不为0.2.方程﹣5x2=1的一次项系数是( )A. 3B. 1C. ﹣1D. 0【答案】D【解析】【分析】方程整理为一般形式,找出一次项系数即可.【详解】方程整理得:-5x2-1=0,则一次项系数为0,故选D.【点睛】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c 是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是( )A. ﹣3B. 3C. 0D. 0或3【答案】A【解析】【分析】根据一元二次方程解的定义把x=1代入x2+mx+2=0得到关于m的方程,然后解关于m的方程即可.【详解】解:把x=1代入方程x2+mx+2=0得1+m+2=0,解得m=-3.故选A.【点睛】本题主要考查了一元二次方程的解,解决本题的关键是要熟练掌握一元二次方程解的定义.4.一元二次方程x2﹣4=0的解是( )A. x1=2,x2=﹣2B. x=﹣2C. x=2D. x1=2,x2=0【答案】A【解析】试题解析:x2-4=0x2=4两边开方得:x=±2故选A.考点:解一元二次方程-直接开平方法.5.用配方法解下列方程,其中应在方程左右两边同时加上4的是( )A. x2﹣2x=5B. x2+4x=5C. 2x2﹣4x=5D. 4x2+4x=5【答案】B【解析】【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】A、因为本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;B、因为本方程的一次项系数是4,所以等式两边同时加上一次项系数一半的平方4;故本选项正确;C、将该方程的二次项系数化为x 2 -2x= ,所以本方程的一次项系数是-2,所以等式两边同时加上一次项系数一半的平方1;故本选项错误;D、将该方程的二次项系数化为x 2 +x= ,所以本方程的一次项系数是1,所以等式两边同时加上一次项系数一半的平方;故本选项错误;故选B.【点睛】本题考查的知识点是配方法解一元二次方程,解题关键是注意选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.x=是下列哪个一元二次方程的根( )A. 3x2+5x+1=0B. 3x2﹣5x+1=0C. 3x2﹣5x﹣1=0D. 3x2+5x﹣1=0【答案】D【解析】【分析】根据一元二次方程的求根公式进行求解.【详解】一元二次方程的求根公式是,对四个选项一一代入求根公式,正确的是 D.所以答案选D.【点睛】本题的解题关键是掌握一元二次方程求根公式.7.方程x(x+2)=0的解是( )A. x=0B. x=2C. x=0或x=2D. x=0或x=﹣2【答案】D【解析】【分析】原方程化为x=0或x+2=0,后解一次方程即可.【详解】由题意,得:x=0或x+2=0,解得x=0或x=-2;故选D.【点睛】本题考查的知识点是解一元二次方程-因式分解法,解题关键是熟记解一元二次方程的方法.8.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是( )A. x1=﹣1,x2=﹣3.5B. x1=1,x2=﹣3.5C. x1=1,x2=3.5D. x1=﹣1,x2=3.5【答案】A【解析】∵x2+3x﹣4=0的解是x1=1,x2=﹣4,(2x+3)2+3(2x+3)﹣4=0,∴2x+3=1或2x+3=-4,∴x1=-1,x2=-3.5,故选A.9.关于x的一元二次方程x2﹣2x﹣(m﹣1)=0有两个不相等的实数根,则实数m的取值范围是( )A. m>0且m≠1B. m>0C. m≥0且m≠1D. m≥0【答案】B【解析】【分析】根据一元二次方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m>0,∴m>0.故选B.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.10.某市从2018年开始大力发展旅游产业.据统计,该市2018年旅游收入约为2亿元.预计2020年旅游收入约达到2.88亿元,设该市旅游收入的年平均增长率为x,下面所列方程正确的是( )A. 2(1+x)2=2.88B. 2x2=2.88C. 2(1+x%)2=2.88D. 2(1+x)+2(1+x)2=2.88【答案】A【解析】【分析】设该市旅游收入的年平均增长率为x,根据该市2018年旅游收入及2020年旅游预计收入,即可得出关于x的一元二次方程,即可得出结论.【详解】设该市旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88故选A.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共8小题)11.m是方程2x2+3x﹣1=0的根,则式子4m2+6m+2018的值为_____.【答案】2020【解析】【分析】根据一元二次方程的解的定义,将x=m代入已知方程后即可求得所求代数式的值.【详解】把x=m代入2x2+3x﹣1=0,得:2m2+3m﹣1=0,则2m2+3m=1.所以4m2+6m+2018=2(2m2+3m)+2018=2+2018=2020.故答案为:2020.【点睛】本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.12.方程(n﹣3)x|n|﹣1+3x+3n=0 是关于x 的一元二次方程,n=_____.【答案】-3【解析】分析:根据一元二次方程的定义求出n的值即可得出答案.详解:∵是关于x的一元二次方程,∴|n|-1=2,n-3≠0,解得:n=-3,故答案为:-3.点睛:本题考查一元二次方程的定义,属于基础题,只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程;同时注意掌握一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.13.如果关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,那么k的取值范围是_____.【答案】k≤且k≠﹣2【解析】【分析】因为一元二次方程有实数根,所以△≥0且k+2≠0,得关于k的不等式,求解即可.【详解】∵关于x的一元二次方程(k+2)x2﹣3x+1=0有实数根,∴△≥0且k+2≠0,即(﹣3)2﹣4(k+2)×1≥0且k+2≠0,整理得:﹣4k≥﹣1且k+2≠0,∴k且k≠﹣2.故答案为:k且k≠﹣2.【点睛】本题考查了一元二次方程根的判别式.解决本题的关键是能正确计算根的判别式.本题易忽略二次项系数不为0.14.如果一元二次方程x2﹣4x+k=0经配方后,得(x﹣2)2=1,那么k=_____.【答案】3【解析】【分析】先移项得到x2﹣4x=﹣k,再把方程两边加上4得到(x﹣2)2=4﹣k,从而得到4﹣k=1,然后解关于k的方程即可.【详解】x2﹣4x=﹣k,x2﹣4x+4=4﹣k,(x﹣2)2=4﹣k,所以4﹣k=1,解得:k=3.故答案为:3.【点睛】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.15.2018﹣2019赛季中国男子篮球职业联赛(CBA),继续采用双循环制(每两队之间都进行两场比赛),总比赛场数为380场.求有多少支队伍参加比赛?设参赛队伍有x支,则可列方程为_____.【答案】x(x﹣1)=380【解析】【分析】设参赛队伍有x支,根据参加篮球职业联赛的每两队之间都进行两场比赛,共要比赛380场,可列出方程.【详解】设参赛队伍有x支,根据题意得:x(x﹣1)=380故答案为:x(x﹣1)=380.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是根据总比赛场数做为等量关系列方程求解.16.用长为14的铁丝围成一个面积是12的矩形,这个矩形相邻的两边长分别是_____.【答案】4,3【解析】【分析】设矩形的长为x,则宽为(7﹣x),根据矩形的面积公式,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设矩形的长为x,则宽为(7﹣x),根据题意得:x(7﹣x)=12解得:x1=4,x2=﹣3(舍去).当x=4时,∴7﹣x=3.故答案为:4,3.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.设a、b是一元二次方程x2+2x﹣7=0的两个根,则a2+3a+b=_____.【答案】5【解析】【分析】根据根与系数的关系可知a+b=﹣2,又知a是方程的根,所以可得a2+2a﹣7=0,最后可将a2+3a+b变成a2+2a+a+b,即可得到答案.【详解】∵设a、b是一元二次方程x2+2x﹣7=0的两个根,∴a+b=﹣2.∵a是原方程的根,∴a2+2a﹣7=0,即a2+2a=7,∴a2+3a+b=a2+2a+a+b=7﹣2=5.故答案为:5.【点睛】本题考查了根与系数的关系,解题的关键是把a2+3a+b转化为a2+2a+a+b的形式,结合根与系数的关系以及一元二次方程的解即可解答.18.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_____【答案】7.【解析】【分析】设另一个根为t,根据根与系数的关系得到3+t=4,然后解一次方程即可.【详解】设另一个根为t,根据题意得3+t=4,解得t=1,则方程的另一个根为1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.三.解答题(共7小题)19.选择适当方法解下列方程(1)(3x﹣1)2=(x﹣1)2(2)3x(x﹣1)=2﹣2x【答案】(1)x1=0,x2=;(2)x1=1,x2=﹣.【解析】【分析】(1)将等号左边的式子移动到等号右边,然后根据平方差公式进行因式分解,再进行解一元一次方程即可求解,(2) 将等号左边的式子移动到等号右边,然后根据提公因式法进行因式分解,再进行解一元一次方程即可求解,【详解】(1)3x﹣1=±(x﹣1),即3x﹣1=x﹣1或3x﹣1=﹣(x﹣1),所以x1=0,x2=;(2)3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣.【点睛】本题主要考查因式分解法解一元二次方程,解决本题的关键是要熟练掌握因式分解的方法.20.已知x=n是关于x的一元二次方程mx2﹣4x﹣5=0的一个根,若mn2﹣4n+m=6,求m的值.【答案】1【解析】【分析】把x=n代入方程求出mn2-4n的值,代入已知等式求出m的值即可.【详解】依题意,得.∴.∵,∴.∴.【点睛】此题考查了一元二次方程的解,以及一元二次方程的定义,熟练掌握运算法则是解本题的关键.21.当m为何值时,关于x的方程为一元二次方程,并求这个一元二次方程的解.【答案】m=﹣2,x1=0,x2=2【解析】【分析】根据一元二次方程的定义,得到关于m的一元二次方程和关于m的不等式,解之即可得到m的值,代入原方程解一元二次方程即可.【详解】根据题意得:解得:m=﹣2.即原方程为:﹣4x2+8x=0,解得:x1=0,x2=2.【点睛】本题考查了一元二次方程的定义,正确掌握一元二次方程的定义是解题的关键.22.已知关于x的一元二次方程x2+x+m﹣1=0.(1)当m=0时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m的取值范围.【答案】(1)x1=,x2=(2)m<【解析】【分析】(1)令m=0,用公式法求出一元二次方程的根即可;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m的不等式,求解不等式即可.【详解】(1)当m=0时,方程为x2+x﹣1=0.△=12﹣4×1×(﹣1)=5>0,∴x,∴x1,x2.(2)∵方程有两个不相等的实数根,∴△>0,即12﹣4×1×(m﹣1)=1﹣4m+4=5﹣4m>0,∴m.【点睛】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b2﹣4ac.23.某种服装平均每天可销售20件,每件盈利44元,若每件降价1元,每天可多售5件,若设每件降价x元.(1)根据题意,填表:每件利润(元) 销售量(件) 利润(元)降价前44 20 880降价后①②(2)若每天盈利1600元,则每件应降价多少元?【答案】(1)见解析(2)降价4元或36元【解析】【分析】(1)根据题意确定出降价后的利润与销售量,以及利润即可;(2)根据盈利的钱数,确定出应降的价即可.【详解】(1)根据题意,填表:(2)根据题意得:(44﹣x)(20+5x)=1600整理得:(x﹣4)(x﹣36)=0解得:x=4或x=36.答:每件应降价4元或36元.【点睛】本题考查了一元二次方程的应用,弄清题中的等量关系是解答本题的关键.24.某钢铁厂计划今年第一季度一月份的总产量为500t,三月份的总产量为720t,若平均每月的增长率相同.(1)第一季度平均每月的增长率;(2)如果第二季度平均每月的增长率保持与第一季度平均每月的增长率相同,请你估计该厂今年5月份总产量能否突破1000t?【答案】(1)20%(2)能【解析】【分析】(1)设第一季度平均每月的增长率为x,根据该厂一月份及三月份的总产量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据五月份的总产量=三月份的总产量×(1+增长率)2,即可求出今年五月份的总产量,再与1000进行比较即可得出结论.【详解】(1)设第一季度平均每月的增长率为x,根据题意得:500(1+x)2=720解得:x1=0.2=20%,x2=﹣2.2(舍去).答:第一季度平均每月的增长率为20%.(2)720×(1+20%)2=1036.8(t).∵1036.8>1000,∴该厂今年5月份总产量能突破1000t.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,求出今年五月份的总产量.25.商场某种商品平均每天可销售30 件,每件盈利50 元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价 1 元,商场平均每天可多售出 2 件.(1)若某天该商品每件降价3 元,当天可获利多少元?(2)设每件商品降价x 元,则商场日销售量增加件,每件商品,盈利元(用含x 的代数式表示);(3)在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000 元?【答案】(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价25元时,商场日盈利可达到2000元.【解析】【分析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为:2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+250=0,解得:x1=10,x2=25,∵商城要尽快减少库存,∴x=25.答:每件商品降价25元时,商场日盈利可达到2000元.【点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).。
数学九年级上册《一元二次方程》单元检测(附答案)
人教版数学九年级上学期《一元二次方程》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、62.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±254.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2 5.(2017全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( )A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=06.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=08.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( ) A.()113802x x -= B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 9.(2019·湖南初三期中)如图,在宽度为20 m ,长为32 m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m 2 , 求道路的宽.如果设小路宽为x m ,根据题意,所列方程正确的是( )A.(20+x )(32+x )=540B.(20﹣x )(32﹣x )=100C.(20﹣x )(32﹣x )=540D.(20-2x )(32﹣2x )=54010.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A.50(1+x )²=182B.50+50(1+x )+50(1+x )²=182C.50(1+2x )=182D.50+50(1+x )+50(1+2x )²=182二、填空题(每小题4分,共24分)11.(2018全国初三期末)把方程3x (x ﹣2)=4(x+1)化为一元二次方程的一般形式是_______; 12.(2019·江苏初三期中)已知(m −3)x 2 −3x + 1 = 0是关于x 的一元二次方程,则m 的取值范围是______. 13.(2019·湖北初三期中)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______. 15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.参考答案一、单选题(每小题3分,共30分)1.(2019·临邑县实验中学初三期中)方程()223x x =-化为一般形式后二次项系数、一次项系数和常数项分别为( )A .1、2、-3B .1、2、-6C .1、-2、6D .1、2、6【答案】C【解析】首先将方程()223x x =-化为一般形式: 2260x x -+=,然后根据此一般形式,即可求得答案. 【详解】解:方程()223x x =-化成一般形式是2260x x -+=, ∴二次项系数为1,一次项系数为-2,常数项为6.所以C 选项是正确的.【点睛】此题考查了一元二次方程的一般形式.注意一元二次方程的一般形式是:ax 2+bx+c=0(a,b,c 是常数且a≠0),其中a,b,c 分别叫二次项系数,一次项系数,常数项.2.(2019·南山第二外国语学校集团海德学校初三期中)若关于 x 的一元二次方程中 20ax bx c ++= 有一个根是-1,则下列结论正确的是( )A .1a b c ++=B .0a b c -+=C .0a b c ++=D .1a b c -+=-【答案】B【解析】把x=-1代入已知方程可以求得a-b+c=0.【详解】依题意,得x=-1满足关于x 的一元二次方程ax 2+bx+c=0,则a-b+c=0.故选B .【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.3.(2019·厦门市第五中学初三期中)方程:x 2﹣25=0的解是( )A .x=5B .x=﹣5C .x 1=﹣5,x 2=5D .x=±25【答案】C【解析】利用直接开平方法解方程即可.【详解】移项得:x 2=25,∴x 1=﹣5,x 2=5.故选C .【点睛】本题考查了解一元二次方程﹣直接开平方法:形如x 2=p 或(nx +m )2=p (p ≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.(2019·湖北初三期中)方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,则( )A.m =±2B.m =2C.m =﹣2D.m ≠±2【答案】C【解析】根据一元二次方程的定义即可得.【详解】解:∵方程(m ﹣2)x |m |+3mx +1=0是关于x 的一元二次方程,∴|m |=2,且m ﹣2≠0.解得:m =﹣2.故选:C .【点睛】本题主要考查一元二次方程的定义,掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解题的关键.5.(2017·全国初三课时练习)方程 229(1)4(1)0x x +--= 正确解法是( ) A .直接开方得 3(1)2(1)x x +=-B .化为一般形式 21350x +=C .分解因式得 [][]3(1)2(1)3(1)2(1)0x x x x ++-+--=D .直接得 x+1=0或 x-1=0【答案】C【解析】A :直接开平方应得到两个方程:3(x+1)=2(x-1)和3(x+1)=-2(x-1),所以A 不正确; B :化成一般形式应是:5x 2+26x+5=0;所以B 不正确;C :方程左边满足平方差形式,可以用平方差公式因式分解为:[3(x+1)+2(x-1)][3(x+1)-2(x-1)]=0,所以C 正确.D :两个完全平方的差为0,不能直接得到两个式子分别是0,只有两个完全平方的和是0,才能直接得到两个式子分别是0,所以D 不对.故选:C .点睛:本题考查的是用因式分解法解一元二次方程,根据题目的结构特点,用平方差公式因式分解.6.(2019·山东初三期中)已知关于的一元二次方程21(2)02m x x -++=有两个不等的实数根,则实数m 的取值范围为 ( )A.52m <B.52m >C.52m <且2m ≠D.52m >且2m ≠ 【答案】D【解析】∵关于x 的一元二次方程21(2)02m x x -++=有两个不等的实数根, ∴220{12(2)0m m -≠∆=--> 解得:52m <且2m ≠ 故选C.7.(2019·广东初三期中)已知α、β满足α+β=5,αβ=6,则以α、β为根的一元二次方程( ) A .x 2+5x +6=0 B .x 2-5x +6=0C .x 2-5x -6=0D .x 2+5x -6=0【答案】B【解析】分析: α 、β为一元二次方程的两根,且α、β满足α+ β=5、αβ=6.所以这个方程的系数应满足两根之和是b a - =5,两根之积是c a=6 ,当二次项系数为”1”时,可直接确定一次项系数、常数项. 本题解析:∵所求一元二次方程的两根是α、β,且α、β满足α+ β=5、αβ=6. ∴这个方程的系数应满足两根之和是b a -=5,两根之积是c a =6. 当二次项系数a=1时,一次项系数b=−5,常数项c=6.故选B8.(2019·江苏东绛实验学校初三期中)过元旦了,全班同学每人互发一条祝福短信,共发了380条,设全班有x 名同学,列方程为( )A.()113802x x -=B.x (x ﹣1)=380C.2x (x ﹣1)=380D.x (x +1)=380 【答案】B【解析】设该班级共有同学x 名,每个人要发(x-1)条短信,根据题意可得等量关系:人数×每个人所发的短信数量=总短信数量.【详解】设全班有x 名同学,由题意得:x(x-1)=380,故选:B.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键是正确理解题意,找出题目中的等量关系,列出方程.9.(2019·湖南初三期中)如图,在宽度为20 m,长为32 m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪,要使草坪的面积为540 m2,求道路的宽.如果设小路宽为x m,根据题意,所列方程正确的是()A.(20+x)(32+x)=540B.(20﹣x)(32﹣x)=100C.(20﹣x)(32﹣x)=540D.(20-2x)(32﹣2x)=540【答案】C【解析】把白色部分经过平移合并成长为32-x,宽为20-x的小长方形,再根据小长方形的面积等于草坪的面积建立等式.【详解】白色部分经过平移合并成长为32-x,宽为20-x的小长方形则小长方形的面积为(20﹣x)(32﹣x)由小长方形的面积等于草坪的面积可得:(20﹣x)(32﹣x)=540故答案为:C.【点睛】本题考查了一元二次方程的应用,解题关键在于把白色部分的图形平行合并成一个小长方形. 10.(2019·黑龙江省哈尔滨市第一五六中学初三期中)某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)²=182B.50+50(1+x)+50(1+x)²=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)²=182【答案】B【解析】设二、三月份平均每月的增长率为x,根据某农机厂一月份生产零件50万个,第一季度共生产182万个,可列出方程.【详解】解:设二、三月份平均每月的增长率为x,则二月份生产零件50(1+x)个,三月份生产零件50(1+x)2个,则得:50+50(1+x)+50(1+x)2=182.故选:B.【点睛】本题考查理解题意的能力,关键设出增长率,表示出每个月的生产量,以一季度的产量做为等量关系列出方程.二、填空题(每小题4分,共24分)11.(2018·全国初三期末)把方程3x(x﹣2)=4(x+1)化为一元二次方程的一般形式是_______;【答案】3x2-10x-4=0.【解析】先把一元二次方程3x(x﹣2)=4(x+1)的各项相乘,再按二次项,一次项,常数项的顺序进行排列即可.解:∵一元二次方程3x(x﹣2)=4(x+1)可化为3x2-6x-4x--4=0,∴化为一元二次方程的一般形式为3x2-10x-4=0.12.(2019·江苏初三期中)已知(m−3)x2−3x + 1 = 0是关于x的一元二次方程,则m的取值范围是______.【答案】m≠3【解析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0,由这两个条件得到相应的关系式,再求解即可.【详解】由题意,得m-3≠0.解得m≠3,故答案为:m≠3.【点睛】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.13.(2019·湖北初三期中)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是______.【答案】k<1.【解析】由方程有两个不等实数根可得出关于k的一元一次不等式,解不等式即可得出结论.【详解】∵关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,∴△=2241k 0-⨯⨯>,解得:k 1<,故答案为:k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知”在一元二次方程()2ax bx c 0a 0++=≠中,若方程有两个不相等的实数根,则△=2b 4ac 0->“是解答本题的关键.14.(2019·江西省宜春实验中学初三期中)已知a 、b 为方程x 2+4x+2=0的两实根,则a 3+14b+50=_______.【答案】2【解析】试题解析:∵a 、b 为方程x 2+4x+2=0的两实根,∴a+b=-4,a•b=2,a 2+4a+2=0,∴a 2=-4a-2,∴a 3+14b+50=a (-4a-2)+14b+50=-4a 2-2a+14b+50=-4(a 2+4a+2)+14a+14b+50+8=14(a+b )+58=14×(-4)+58=2.15.(2019·上海市市八初级中学初二月考)已知方程220x kx +-=的一个根是1,则另一个根是_________.【答案】2-【解析】直接利用根与系数的关系求出另外一根即可,【详解】解:设方程的另一根为2x ,根据根与系数的关系得:212x ⋅=-,∴22x =-,故答案为2-.【点睛】本题考查了一元二次方程的根与系数的关系,掌握一元二次方程中根与系数的关系是解题的关键. 16.(2019·江苏初三期中)方程(x -1)(x +2)=0的两根分别为________.【答案】121,2x x ==-【解析】根据A·B=0,则A 、B 中至少有一个为0,化为一元一次方程即可解出方程. 【详解】解:(x -1)(x +2)=0x -1=0或x +2=0解得:121,2x x ==-【点睛】此题考查的是一元二次方程的解法,根据A·B=0,则A 、B 中至少一个为0,掌握将一元二次方程化为一元一次方程的方法是解决此题的关键.三、解答题一(每小题6分,共18分)17.(2019·青浦区华新中学初二月考)解方程:3x 2﹣6x+1=0(用配方法)【答案】x 1,x 2=1 【解析】试题分析:先移项,再将二次项系数化为1,然后配方解出x 即可.试题解析:3x 2-6x +1=0,移项,得3x 2-6x =-1,二次项系数化为1,得x 2-2x =-13, 配方,得x 2-2x +12=-13+12,即(x -1)2=23, 解得,x -1=±3,即x 1,x 2=1. 点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方;(4)解出未知数.18.(2019·河南省实验中学初三月考)已知关于x 的一元二次方程22(1)(2)0x m x m m ---+=.(1)求证:方程总有两个不相等的实数根;(2)若2x =-是此方程的一个根,求方程的另一个根.【答案】(1)证明见解析;(2)方程的另一个根为0或4.【解析】(1)根据根的判别式求出△的值,再进行判断即可;(2)先把x=-2代入方程,然后解关于m 的一元二次方程,即可求出m 的值.【详解】(1)证明:()()222141284m m m m ∆=---⨯⨯-+=+⎡⎤⎡⎤⎣⎦⎣⎦. 20m ≥2840m ∴+>,即>0∆,∴方程总有两个不相等的实数根.(2)当2x =-时,原方程为()()44120m m m +--+=,即2 20m m -=,解得:10m =,22m =.设方程的另一根为1x ,当0m =时,有120x -=,解得:10x =;当2m =时,有128x -=,解得:14x =(将m 代入方程,解方程得到亦可)综上所述:当=-2x 是此方程的一个根时,方程的另一个根为0或4.【点睛】此题考查一元二次方程的根的判别式,解题关键在于利用方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.19.已知关于x 的方程2(1)2(1)0k x k x k +--+=有两个实数根1x ,2x .(1)求k 的取值范围;(2)若12122x x x x +=+,求k 的值.【答案】(1)13k ≤且k 1≠-;(2)4-. 【解析】(1)方程有两个实数根,则0k+10≥≠△,,解出即可;(2)根据根与系数的关系,求出1212x x x x +,的值,解出即可.【详解】解:(1)方程有两个实数根,则0k+10≥≠△,,即[]2=2(1)4(1)0k+10k k k ---+≥≠△,,解得:13k ≤且k 1≠-; (2)()()12211k b x x a k -+=-=+,121c k x x a k ==+,则()()21211k k k k -=+++,解得:4k =-,143-<, 则k 的值为4-.【点睛】本题是对一元二次方程的综合考查,熟练掌握一元二次方程的根的判别式及根与系数的关系是解决本题的关键.四、解答题二(每小题7分,共21分)20.(2019·湖南初三月考)先化简,再求值:32111m m m m +⎛⎫--÷ ⎪++⎝⎭,其中m 满足方程260m m --=. 【答案】1【解析】根据分式的运算法则先化简分式.再解一元二次方程求出m ,代入化简后的式子,注意代入时原分式要有意义,m 不等于-1和-2. 【详解】原式213112m m m m --+=⋅++ (2)(2)112m m m m m +-+=⋅++ 2m =-解方程260m m --=得:3m =或2m =-20m +≠2m ∴≠-当3m =时,原式321=-=【点睛】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,注意代入分式中字母的值必须使分式必须有意义.21.(2019·上海初二期中)解方程:(1)(x-1)(x+3)=5(2)x 2+x-3=0(公式法)【答案】(1)x 1=-4,x 2=2;(2)x 1x 2. 【解析】(1)先把方程化为一般式,然后利用因式分解法解方程;(2)利用求根公式解方程.【详解】(1)x 2+2x-8=0,(x+4)(x-2)=0,所以x 1=-4,x 2=2;(2)△=12-4×1×(-3)=13,,所以x 1x 2. 【点睛】此题考查解一元二次方程-因式分解法,解题关键在于掌握运算法则.22.(2019·农安县前岗乡初级中学初三月考)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元.为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5元,商场平均每天可多售出10件.(1)若每件衬衫降价4元,商场每天可盈利多少元?(2)若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】(1)1008;(2)20【解析】(1)降价4元时,根据题意分别求出单件利润和销量,再根据销售利润问题的等量关系:单件利润×销量=总利润,可求出总利润;(2)设降价x 元,然后根据题意找出单件利润和销量的表达式,再根据销售利润问题的等量关系:单件利润×销量=总利润,列出方程求解,最后根据题意舍去不符合题意的解.【详解】(1)降价4元时,每件盈利为40-4=36元,销量为10204=285+⨯件, ∴总盈利36×28=1008元.(2)设降价x 元,由题意得()104020=12005x x ⎛⎫-+⋅ ⎪⎝⎭化简得2302000x x -+=,解得1=10x ,2=20x ,要尽量减少库存,则取=20x ,所以平均每天要盈利1200元,每件衬衫应降价20元.【点睛】本题考查一元二次方程的应用:销售利润问题,根据等量关系建立方程是解题的关键.五、解答题三(每小题9分,共27分)23.(2019·河南初三月考)已知:如图所示.在△ABC 中,∠B =90°,AB =5cm ,BC =7cm .点P 从点A 开始沿AB 边向点B 以1c m/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2c m/s 的速度移动,当其中一点达到终点后,另外一点也随之停止运动.(1)如果P ,Q 分别从A ,B 同时出发,那么几秒后,△PBQ 的面积等于4cm 2?(2)如果P ,Q 分别从A ,B 同时出发,那么几秒后,PQ 的长度等于5cm ?(3)在(1)中,△PQB 的面积能否等于7cm 2?说明理由.【答案】(1)1;(2)2;(3)不能.【解析】(1)设P 、Q 分别从A 、B 两点出发,x 秒后,AP=xcm ,PB=(5-x )cm ,BQ=2xcm 则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解; (2)利用勾股定理列出方程求解即可;(3)看△PBQ 的面积能否等于7cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的△与0的关系,大于或等于0则可以,否则不可以.【详解】设t 秒后,则:AP =tcm ,BP =(5﹣t )cm ;BQ =2tcm .(1)S △PBQ =BP ×BQ ,即1(5)242x x -⨯=,解得:t =1或4.(t =4秒不合题意,舍去) 故:1秒后,△PBQ 的面积等于4cm 2.(2)PQ =5,则PQ 2=25=BP 2+BQ 2,即25=(5﹣t )2+(2t )2,t =0(舍)或2.故2秒后,PQ 的长度为5cm .(3)令S △PQB =7,即:BP ×2BQ =7,1(5)272x x -=,整理得:t 2﹣5t +7=0. 由于b 2﹣4ac =25﹣28=﹣3<0,则方程没有实数根.所以,在(1)中,△PQB 的面积不等于7cm 2.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解,判断某个三角形的面积是否等于一个值,只需根据题意列出方程,判断该方程是否有解,若有解则存在,否则不存在.24.(2019·上海民办浦东交中初级中学初二月考)阅读材料:用配方法可以解一元二次方程,还可以用它来解决很多问题.例如:因为3a2≥0,所以3a2+1就有最小值1,即3a2+1≥1,只有当a=0时,才能得到这个式子的最小值1.同样,因为-3a2≤0,所以-3a2+1有最大值1,即-3a2+1≤1,只有在a=0时,才能得到这个式子的最大值1.(1)当x=___时,代数式3(x+3)2+4有最小____(填写大或小)值为____.(2)当x=_____时,代数式-2x2+4x+3有最大____(填写大或小)值为____.(3)矩形花园的一面靠墙,另外三面的栅栏所围成的总长度是16m,当花园与墙相邻的边长为多少时,花园的面积最大?最大面积是多少?【答案】(1)-3,小,4;(2)1,大,5;(3)当边长为4米时,花园面积最大为32m2.【解析】(1)由完全平方式的最小值为0,得到x=-3时,代数式的最小值为4;(2)将代数式前两项提取-2,配方为完全平方式,根据完全平方式的最小值为0,即可得到代数式的最大值及此时x的值;(3)设垂直于墙的一边长为xm,根据总长度为16m,表示出平行于墙的一边为(16-2x)m,表示出花园的面积,整理后配方,利用完全平方式的最小值为0,即可得到面积的最大值及此时x的值.【详解】(1)∵(x+3)2≥0,∴当x=-3时,(x+3)2的最小值为0,则当x=-3时,代数式3(x+3)2+4的最小值为4;(2)代数式-2x2+4x+3=-2(x-1)2+5,则当x=1时,代数式-2x2+4x+3的最大值为5;(3)设垂直于墙的一边为xm,则平行于墙的一边为(16-2x)m,∴花园的面积为x(16-2x)=-2x2+16x=-2(x2-8x+16)+32=-2(x-4)2+32,则当边长为4米时,花园面积最大为32m2.【点睛】此题考查配方法的应用,解题关键在于要注意配方法的步骤.注意在变形的过程中不要改变式子的值.25.(2019·江苏初三期中)我们知道:任何有理数的平方都是一个非负数,即对于任何有理数a,都有a2≥0成立,所以,当a=0时,a2有最小值0.(应用):(1)代数式(x-1)2有最小值时,x=___1;(2)代数式m2+3的最小值是____3;(探究):求代数式n2+4n+9的最小值,小明是这样做的:n2+4n+9=n2+4n+4+5=(n+2)2+5∴当n=-2时,代数式n2+4n+9有最小值,最小值为5.请你参照小明的方法,求代数式a2-6a-3的最小值,并求此时a的值.(拓展):(3)代数式m2+n2-8m+2n+17=0,求m+n的值.(4)若y=-4t2+12t+6,直接写出y的取值范围.【答案】(1)1;(2)3;(3)3;(4)y≤15.【解析】(1)由(x-1)2≥0可得x=1时,取得最小值0;(2)由m2≥0知m2+3≥3可得答案;(3)将方程变形为(m-4)2+(n+1)2=0,由非负数性质求得m、n的值即可得;(4)由y=-4t2+12t+6=-4(t-32)2+15知-4(t-32)2+15≤15,从而得出答案.【详解】(1)代数式(x-1)2有最小值时,x=1,故答案为:1;(2)代数式m2+3的最小值是在m=0时,最小值为3,故答案为:3.(3)∵m2+n2-8m+2n+17=0,∴(m-4)2+(n+1)2=0,则m=4、n=-1,∴m+n=3;(4)y=-4t2+12t+6=-4(t2-3t)+6=-4(t2-3t+94-94)+6=-4(t-32)2+15,∵(t-32)2≥0,∴-4(t-32)2≤0,则-4(t-32)2+15≤15,即y≤15.【点睛】此题考查配方法的应用,完全平方公式,非负数的性质,解题的关键是把给出的式子化成完全平方的性质进行解答.。
人教版一元二次方程单元测试卷
人教版一元二次方程单元测试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 2x = 0的根是()A. x = 0B. x = 2C. x = 0或x = 2D. x = 0或x=-22. 方程(x - 1)(x + 2)=2(x + 2)的根是()A. x = - 2B. x = 3C. x = - 2或x = 3D. x = - 2或x = 13. 一元二次方程x^2-4x+3 = 0的配方结果正确的是()A. (x - 2)^2=7B. (x - 2)^2=1C. (x + 2)^2=1D. (x + 2)^2=74. 关于x的一元二次方程ax^2+bx + c = 0(a≠0),若b^2-4ac>0,则方程()A. 有两个相等的实数根B. 没有实数根C. 有两个不相等的实数根D. 根的情况无法确定。
5. 若关于x的一元二次方程x^2+kx + 4 = 0有两个相等的实数根,则k的值为()A. k = 4B. k=-4C. k=±4D. k = 26. 一元二次方程x^2-3x - 1 = 0与x^2-x + 3 = 0的所有实数根的和等于()A. 2B. -4C. 4D. 37. 已知关于x的方程x^2+mx - 6 = 0的一个根为2,则m的值为()A. 1B. -1C. 2D. -28. 若x = 1是关于x的一元二次方程x^2+ax + b = 0的解,则a + b的值是()A. 1B. -1C. 2D. -29. 把方程x^2-4x - 6 = 0配方成为(x + m)^2=n的形式,结果为()A. (x - 2)^2=10B. (x - 2)^2=2C. (x + 2)^2=10D. (x + 2)^2=210. 某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为()A. 10%B. 15%C. 20%D. 25%二、填空题(每题3分,共18分)11. 方程x^2-3x = 0的解是______。
一元二次方程章末测试题(A)
一元二次方程章末测试题(A )(时间:90分钟,满分:120分)(班级: 姓名: 得分: )一、选择题(每小题3分,共30分)1. 无论a 取何值,下列方程总是关于x 的一元二次方程的是( )A.02=++c bx axB.x x ax -=+221C.0)1()1(222=--+x a x aD.0312=-+-a x x 2. 一元二次方程x 2﹣8x ﹣1=0配方后可变形为( )A.(x +4)2=17B.(x +4)2=15C.(x ﹣4)2=17D.(x ﹣4)2=153. 方程03322=+-x x 的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定4. 已知方程0122=--x x ,则此方程( )A.无实数根B.两根之和为-2C.两根之积为-1D.有一根为15. 方程()()2335+=+x x 的根是( ) A.2=x B.3-=x C 31-=x ,22-=x D.31-=x ,22=x6. 已知方程02=++a bx x 有一个根是()0≠-a a ,则下列代数式的值恒为常数的是( ) A. ab B. ba C.b a + D. b a - 7. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( )A.14k >-B.14k >-且0k ≠C.14k <-D.14k ≥-且0k ≠ 8. 若 x 1,x 2是关于x 的一元二次方程x 2﹣mx +m ﹣2=0的两个实数根,是否存在实数m 使11x +21x =0成立?则正确的是结论是( ) A. m =0时成立 B. m =2时成立 C. m =0或m =2时成立 D. 不存在9. 如图所示是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,l3,14,l5,20,21,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )A. 32B. 126C. 135D. 14410. 某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( )A.(3+x )(4﹣0.5x )=15B.(x +3)(4+0.5x )=15C.(x +4)(3﹣0.5x )=15D.(x +1)(4﹣0.5x )=15二、填空题(每小题3分,共24分)11. 将一元二次方程()x x x -=--352化为一般形式(二次项系数是正数)为__________.12. 已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,则2222a b a b --的值为 .13. 多项式2627x x --可分解成3x +与9x -之积,则一元二次方程26270x x --=的根是_____.14. 若方程x 2﹣2x ﹣1=0的两根分别为x 1,x 2,则x 1+x 2﹣x 1x 2的值为 .15. 已知关于x 的一元二次方程x 2﹣5x+k=0有两个不相等的实数根,则k 可取的最大整数为 .16. 若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab =_____. 17.一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是_______.18. 如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,则羊圈的边AB 的长为_______米(围栏的厚度忽略不计).三、解答题(共66分)19. (6分)已知关于x 的一元二次方程()04322=-++-m x x m 有一根为零,求m 的值. 20.(10分)用适当的方法解下列方程:(1)()()22392+=-x x . (2)()()()93211=++-+x x x .21. (10分)已知关于x 的一元二次方程0122=-++a x x 的两根为1x 和2x ,且02121=⋅-x x x ,求a 的值.22. (10分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长度.23. (10分)已知关于x 的方程01)32()1(2=++-+-k x k x k 有两个不相等的实数根21,x x .(1)求k 的取值范围.(2)是否存在实数k ,使方程两根互为相反数?若存在,求出k 的值;若不存在,说明理由.24. (10分)某校为培育青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏形,如图所示,甲、乙两点分别从直径的两端点A ,B 以顺时针、逆时针的方向同时沿圆周运动,甲运动的路程l (cm )与时间t (s )满足关系:()023212≥+=t t t l ,乙以4 cm/s 的速度匀速运动,半圆的长度为21 cm .(1)甲运动4 s 后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?(第24题)25.(10分)在国家政策的宏观调控下,某市的商品房成交价由今年3月份的每平方米7000元下降到5月份的每平方米6300元.⑴求4,5两月平均每月降价的百分率是多少?(参考数据:95.09.0≈)⑵如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破每平方米5000元?请说明理由.一元二次方程章末测试题(A )参考答案一、1. C 2. C 3. A 4. C 5. D 6. D 7. B 8. A 9. D 10. A二、11. 031122=+-x x 12. 20 13. x 1=-3,x 2=9 14. 3 15. 6 16. 417. 10% 18. 20三、19. 将0=x 代入方程,得042=-m .解得=1m 2,2-2=m .又因为方程为一元二次方程,所以02≠-m .解得2-=m .20.(1)原方程变形为()()[]033222=+--x x . ∴()()[]()()[]0332332=++-+--x x x x ,即()()07411-2-=+x x .所以x 1=211-,x 2=47- . (2)原方程变形得0422=-+x x ,这里a =1,b =2,c =-4.∆=b 2-4ac =22-4×1×(-4)=4+16=20.∴x =2202±-=2522±-. 所以x 1=15-,x 2=-15-.21. 由02121=⋅-x x x ,得()0211=-x x x , 即01=x 或021=-x x .当01=x 时,把01=x 代入0122=-++a x x ,得1=a ;当021=-x x 时,方程有两个相等的实数根,即()0144=--a ,解得2=a .∴a 的值为1或2.22. 由已知,得正五边形周长为5(217x +)cm ,正六边形周长为6(22x x +)cm. 所以22517=2x x x ++()6().整理得212850x x +-=,解得12=5=x x ,-17(舍去). 故正五边形的周长为25517=⨯+()210(cm). 又因为两段铁丝等长,所以这两段铁丝的总长为210×2=420(cm ).答:这两段铁丝的总长为420 cm.23.(1)()()()1312114322+-=+---=∆k k k k . 因为方程有两个不相等的实数根,所以∆>0,即1312+-k >0,解得1213<k . 又因为二次项系数不为零,即0)1(≠-k ,故1≠k .所以k 的取值范围是1213<k ,且1≠k . (2)不存在.理由如下: 因为方程两根互为相反数,所以021=+x x ,即0132=---k k ,解得23=k . 又因为当1213<k 时方程有实数根,所以当23=k 时方程无实数根,所以不存在实数k ,使方程有两根互为相反数.24.(1)当t =4 s 时,146823212=+=+=t t l ,所以,甲运动4 s 后的路程是14 cm.(2)由图可知,甲乙第一次相遇时走过的路程为半圆21 cm , 甲走过的路程为t t 23212+,乙走过的路程为t 4, 所以21423212=++t t t .解得t =3或t =﹣14(不合题意,舍去).答:甲、乙从开始运动到第一次相遇时,它们运动了3 s.(3)由图可知,甲乙第一次相遇时,两者走过的路程为三个半圆:3×21=63(cm ), 所以63423212=++t t t .解得t =7或t =﹣18(不合题意,舍去).答:甲、乙从开始运动到第二次相遇时,它们运动了7 s .25.⑴设4,5月份两月平均每月降价的百分率为x ,列方程,得()6300170002=-x .解得05.01≈x ,95.12≈x (不合题意,舍去).所以4,5月份两月平均每月降价的百分率为5%.⑵不会跌破5000元/米2.理由:∵()75.568505.0163002=->5000,∴7月份该市的商品房成交均价不会跌破5000元/米2.。
(完整版)人教版《一元二次方程》单元测试题
第二十一章《一元二次方程》检测题姓名: 分数:一。
选择与填空(每题3分,共60分)1。
下列方程中,关于x 的一元二次方程是( )A.()()12132+=+x x B 。
02112=-+x xC.02=++c bx axD.21y x +=2。
一元二次方程2(1)2x -=的解是( )A.11x =-21x =-B.11x =21x =C 。
13x =,21x =- D.11x =,23x =-3.方程2x(x —3)=5(x-3)的根是( )A 。
x=25 B.x=3 C 。
x 1=25,x 2=3 D 。
x=-254.方程2220x x --=的根的情况是( )A.方程有两个不相等的实数根 B 。
方程有两个相等的实数根C.方程没有实数根D 。
无法确定5。
关于x 的一元二次方程(a-1)x 2+x+a 2-1=0的一个根是x=0,则a 的值是( )A.1B.-1 C 。
1或—1 D.216.若1—244x x +=9,则x2的值是( ).A.4B.—2C.4或-2D. ±37。
已知m 方程210x x --=的一个根,则代数式2m m -的值等于( )A.-1B.0 C 。
1D.28.一个三角形的两边长为3和6,第三边的边长是方程(2)(4)0x x --=的根,则这个三角形的周长是( )A 。
11B 。
11或13 C.13D.11和139.某商品连续两次降价,每次都降20﹪后的价格为m 元,则原价是( )(A )22.1m 元 (B )1.2m 元 (C )28.0m 元 (D)0.82m 元 10.如果关于x 的方程ax 2+x –1= 0有实数根,则a 的取值范围是( )A .a >–14B .a ≥–14C .a ≥–14且a ≠0 D .a >–14且a ≠011. 使分式2561x x x --+ 的值等于零的x 是( )A.6 B.—1或6C.—1 D 。
—612。
若关于y 的一元二次方程ky 2-4y —3=3y+4有实根,则k 的取值范围是( )A.k>-74B.k ≥—74 且k ≠0 C 。
数学九年级上册《一元二次方程》单元测试卷含答案
人教版数学九年级上学期《一元二次方程》单元测试时间:100分钟满分:100分一.选择题(每题3分,共30分)1.下列方程中,一元二次方程共有()①3x2+x=20 ②2x2﹣3xy+4=0 ③x3﹣x=1 ④x2=1A.1个B.2个C.3个D.4个2.若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1 B.1或﹣1 C.1 D.23.一元二次方程x2+3x﹣1=0的解的情况是()A.没有实数根B.有两个不相等的实数根C.有两个相等的实数根D.只有一个解4.已知关于x的一元二次方程x2﹣x+a2﹣1=0的一个根为0,则a的值为()A.1 B.﹣1 C.±1 D.5.若a≠b,且a2﹣4a+1=0,b2﹣4b+1=0,则的值为()A.B.1 C..4 D.36.已知M=m﹣4,N=m2﹣3m,则M与N的大小关系为()A.M>N B.M=N C.M≤N D.M<N7.如图,在△ABC中,AB⊥BE,BD⊥BC,DE=BE,设BE=a,AB=b,AE=c,则以AD和AC 的长为根的一元二次方程是()A.x2﹣2cx+b2=0 B.x2﹣cx+b2=0C.x2﹣2cx+b=0 D.x2﹣cx+b=08.如图,把长40cm,宽30cm的长方形纸板剪掉2个小正方形和2个小长方形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm (纸板的厚度忽略不计),若折成长方体盒子的表面积是950cm2,则x的值是()A .3cmB .4cmC .4.8cmD .5cm9.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( ) A .5B .10C .11D .1310.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角DA 和DC (两边足够长),再用28m 长的篱笆围成一个面积为192m 2矩形花园ABCD (篱笆只围AB 、BC 两边),在P 处有一棵树与墙CD 、AD 的距离分别是15m 和6m ,现要将这棵树也围在花园内(含边界,不考虑树的粗细),则AB 的长为( )A .8或24B .16C .12D .16或12二.填空题(每题4分,共20分)11.若关于x 的一元二次方程x 2+mx +2n =0有一个根是2,则m +n = .12.已知2是关于x 的方程:x 2﹣2mx +3m =0的一个根,而这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长是 .13.若m ,n 是方程x 2+x ﹣1=0的两个实数根,则mn 的值为 .14.若x 1,x 2是方程x 2﹣2mx +m 2﹣m ﹣1=0的两个根,且x 1+x 2=1﹣x 1x 2,则m 的值为 . 15.如图,EF 是一面长18米的墙,用总长为32米的木栅栏(图中的虚线)围一个矩形场地ABCD ,中间用栅栏隔成同样三块.若要围成的矩形面积为60平方米,则AB 的长为 米.三.解答题(每题10分,共50分) 16.解下列方程: (1)x 2+4x ﹣5=0(2)(x﹣3)2=2(3﹣x)17.人们常常在室内摆放一些绿色植物,这样做不仅增加了温馨舒适度,还有助于提高室内空气的质量.前年某小区为更好地提高住户的居住感受,为已入住的住户购置A、B两个品种的绿色植物共900盆.其中,A品种每盆20元,B品种每盆30元(1)已知该小区前年购置这900盆绿色植物共花费23000元,请分别求出已购置的A、B 品种的数量;(2)今年该小区决定再次为已入住的住户购置绿色植物C、D两个新品种.已知C品种今年每盆的价格比A品种前年的价格优惠a%,D品种今年每盆的价格比B品种前年的价格优惠a%.由于小区入住率的提高,今年需要购置C品种的数量比A品种前年购置的数量增加了a%,购置D品种的数量比B品种前年购置的数量增加了a%,于是今年的总花费比前年增加了a%.求a的值.18.先阅读下面的内容,再解决问题.对于形如x2+2xa+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式,但对于二次三项式x2+2xa﹣3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2xa ﹣3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,整个式子的值不变.于是有x2+2xa﹣3a2=(x2+2xa+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为”配方法”.利用”配方法”,解决下列问题:(1)分解因式a2﹣8a+15;(2)若;①当a,b,m满足条件:2a×4b=8m时,直接写出m的值为;②若△ABC的三边长是a、b、c,且c为奇数,求△ABC的周长.19.某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.20.滨江某旅行社为吸引市民组团去旅游,推出了如下收费标准:(1)若某单位员工正好有25人,应支付给旅行社旅游费用多少元?(2)某单位组织员工去凤凰古城旅游,共支付给该旅行社旅游费用27000元,请问该单位这次共有多少员工去凤凰古城旅游?参考答案一.选择题1.解:一元二次方程有:3x2+x=20,x2=1,共2个,故选:B.2.解:由题意可知:△=(m+1)2﹣4m2=﹣3m2+2m+1,由题意可知:m2=1,∴m=±1,当m=1时,△=﹣3+2+1=0,当m=﹣1时,△=﹣3﹣2+1=﹣4<0,不满足题意,故选:C.3.解:∵△=32﹣4×(﹣1)=13>0,∴方程有两个不相等的实数根.故选:B.4.解:把x=0代入方程x2﹣x+a2﹣1=0得:a2﹣1=0,∴a=±1.故选:C.5.解:由题意可知:a、b是方程x2﹣4x+1=0的两个不同的实数根,∴由根与系数的关系可知:ab=1,a+b=4,∴a2+1=4a,b2+1=4b,∴原式=+===1,故选:B.6.解:N﹣M=(m2﹣3m)﹣(m﹣4)=m2﹣3m﹣m+4=m2﹣4m+4=(m﹣2)2≥0,∴N﹣M≥0,即M≤N,故选:C.7.解:∵AB⊥BE,BD⊥BC,∴∠ABE=∠DBC=90°,在Rt△ABE中,a2+b2=c2,∵DE=BE=a,∴∠EBD=∠EDB,∵∠EBD+∠EBC=90°,∠EDB+∠C=90°,∴∠EBC=∠C,∴CE=BE=a,∴AC=AE+CE=c+a,∵AD+AC=c﹣a+c+a=2c,AD×AC=(c﹣a)(c+a)=c2﹣a2=b2,∴以AD和AC的长为根的一元二次方程可为x2﹣2cx+b2=0.故选:A.8.解:依题意,得:40×30﹣2x2﹣2x•(x+)=950,整理,得:x2+20x﹣125=0,解得:x1=5,x2=﹣25(不合题意,舍去).故选:D.9.解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.10.解:设AB=xm,则BC=(28﹣x)m,依题意,得:x(28﹣x)=192,解得:x1=12,x2=16.∵P处有一棵树与墙CD、AD的距离分别是15m和6m,∴x2=16不合题意,舍去,∴x=12.故选:C.二.填空题(共5小题)11.解:∵2(n≠0)是关于x的一元二次方程x2+mx+2n=0的一个根,∴4+2m+2n=0,∴n+m=﹣2,故答案为:﹣2.12.解:把x=2代入方程得4﹣4m+3m=0,解得m=4,则原方程为x2﹣8x+12=0,解得x1=2,x2=6,因为这个方程的两个根恰好是等腰△ABC的两条边长,所以△ABC的腰为6,底边为2,则△ABC的周长为6+6+2=14.故答案为14.13.解:∵m,n是方程x2+x﹣1=0的两个实数根,∴mn=﹣1.故答案为:﹣1.14.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.15.解:∵与墙头垂直的边AD长为x米,四边形ABCD是矩形,∴BC=MN=PQ=x米,∴AB=32﹣AD﹣MN﹣PQ﹣BC=32﹣4x(米),根据题意得:x(32﹣4x)=60,解得:x=3或x=5,当x=3时,AB=32﹣4x=20>18(舍去);当x=5时,AB=32﹣4x=12(米),∴AB的长为12米.故答案为:12.三.解答题(共5小题)16.解:(1)∵x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x=﹣5或x=1;(2)∵)(x﹣3)2+2(x﹣3)=0,∴(x﹣3)(x﹣1)=0,则x﹣3=0或x﹣1=0,解得x=3或x=1.17.解:(1)设前年已购置的A、B品种的数量分别为x盆和y盆,由题意得:解得:答:前年已购置的A品种400盆,B品种500盆.(2)由题意得:20(1﹣a%)×400(1+a%)+30(1﹣a%)×500(1+a%)=23000(1+a%)设a%=t则20(1﹣t)×400(1+)+30(1﹣t)×500(1+t)=23000(1+t)化简得:﹣10t2+3t=0∴t(﹣10t+3)=0∴t1=0(舍),t2=∴a%=∴a=30答:a的值为30.18.解:(1)a2﹣8a+15=a2﹣8a+16﹣1=(a﹣4)2﹣12=(a﹣3)(a﹣5)(2)∵;∴(a2﹣14a+49)+(b2﹣8b+16)+|m﹣c|=0∴(a﹣7)2+(b﹣4)2+|m﹣c|=0∴a﹣7=0,b﹣4=0∴a=7,b=4∵2a×4b=8m∴27×44=8m∴27×28=23m时∴215=23m∴15=3m∴m=5;故答案为:5.②由①知,a=7,b=4,∵△ABC的三边长是a,b,c,∴3<c<11,又∵c边的长为奇数,∴c=5,7,9,当a=7,b=4,c=5时,△ABC的周长是:7+4+5=16,当a=7,b=4,c=7时,△ABC的周长是:7+4+7=18,当a=7,b=4,c=9时,△ABC的周长是:7+4+9=20.19.解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.20.解:(1)1000×25=25000(元).答:应支付给旅行社旅游费用25000元.(2)设该单位这次共有x名员工去凤凰古城旅游,∵27000÷1000=27>25,27000÷700=38不为整数,∴25<x<25+=40.依题意,得:[1000﹣20(x﹣25)]x=27000,整理,得:x2﹣75x+1350=0,解得:x1=30,x2=45(不合题意,舍去).答:该单位这次共有30名员工去凤凰古城旅游.。
人教 版 九年级上册数学 第21章 一元二次方程 单元测试卷
第21章 一元二次方程 单元测试卷一.选择题(共10小题)1.下列方程中,属于一元二次方程的是( )A .3x y +=B .2(3)x x x +=C .2(1)3(3)x x +=-D .235x x-= 2.一元二次方程22310x x -+=的二次项系数是2,则一次项系数是( ) A .1B .3-C .3D .1-3.将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21B .4-,11C .4,21D .8-,694.方程2(5)6(5)x x x -=-的根是( ) A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =5.若1x =-是关于x 的一元二次方程210ax bx +-=的一个根,则202022a b +-的值为( )A .2018B .2020C .2022D .20246.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ) A .0个B .1个C .2个D .1个或2个7.某班同学毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x 名同学,根据题意,列出方程为( ) A .(1)1260x x +=B .2(1)1260x x +=C .(1)12602x x -=⨯D .(1)1260x x -=8.小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,3b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根C .有一个根是1x =-D .有两个相等的实数根9.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x ,可列得方程为( ) A .5(1 1.5)7.8x x ++= B .5(1 1.5)7.8x x +⨯=C .7.8(1)(1 1.5)5x x --=D .5(1)(1 1.5)7.8x x ++=10.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( ) A .(40)(60010)10000x x +-= B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=二.填空题(共8小题)11.已知关于x 的一元二次方程23280x x --=的常数项是 . 12.已知:方程||7(9)810a a x x -+++=是一元二次方程,则a 的值为 . 13.用配方法解方程2220x x +-=,配方后得到方程为 . 14.一元二次方程220x x -=的两根分别为 .15.已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= . 16.已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c = .17.一个三角形的两边长分别为2和3,第三边长是方程210210x x -+=的根,则三角形的周长为 .18.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为 米.三.解答题(共7小题) 19.解方程:2(1)55x x +=+. 20.解方程: (1)2230x x +-= (2)(5)50x x x +++=21.已知关于x 的一元二次方程2()2()0(x m x m m -+-=为常数). (1)求证:不论m 为何值,该方程总有两个不相等的实数根. (2)若该方程有一个根为4,求m 的值.22.已知一元二次方程2710x x +-=的两个实数根为α,β. 求值(1)αβ+和αβ. (2)22αβ+. (3)(1)(1)αβ--.23.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m ,墙对面有一个2m宽的门,另三边用竹篱笆围成,篱笆总长33m,围成长方形的养鸡场除门之外四周不能有空隙.(1)要围成养鸡场的面积为2150m,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到2200m?请说明理由.24.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?25.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.参考答案一.选择题(共10小题)1.下列方程中,属于一元二次方程的是( )A .3x y +=B .2(3)x x x +=C .2(1)3(3)x x +=-D .235x x-= 解:A 、3x y +=,是二元一次方程;B 、2(3)x x x +=, 223x x x +=,30x =,是一元一次方程;C 、2(1)3(3)x x +=-是一元二次方程;D 、不是整式方程,不是一元二次方程;故选:C .2.一元二次方程22310x x -+=的二次项系数是2,则一次项系数是( ) A .1B .3-C .3D .1-解:一元二次方程22310x x -+=的二次项系数是2, ∴一次项系数是3-,故选:B .3.将一元二次方程2850x x --=化成2()(x a b a +=,b 为常数)的形式,则a ,b 的值分别是( ) A .4-,21 B .4-,11 C .4,21 D .8-,69解:2850x x --=,285x x ∴-=,则2816516x x -+=+,即2(4)21x -=, 4a ∴=-,21b =,故选:A .4.方程2(5)6(5)x x x -=-的根是( ) A .5x =B .5x =-C .15x =-,23x =D .15x =,23x =解:2(5)6(5)0x x x ---=, (5)(26)0x x ∴--=,则50x -=或260x -=, 解得5x =或3x =, 故选:D .5.若1x =-是关于x 的一元二次方程210ax bx +-=的一个根,则202022a b +-的值为( )A .2018B .2020C .2022D .2024解:把1x =-代入210ax bx +-=得:10a b --=, 1a b ∴-=,20202220202()202022022a b a b ∴+-=+-=+=.故选:C .6.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ) A .0个B .1个C .2个D .1个或2个解:直线y x a =+不经过第二象限,0a ∴,当0a =时,关于x 的方程2210ax x ++=是一次方程,解为12x =-,当0a <时,关于x 的方程2210ax x ++=是二次方程, △2240a =->,∴方程有两个不相等的实数根.故选:D .7.某班同学毕业时,都将自己的照片向本班其他同学送一张留念,全班一共送了1260张,如果全班有x 名同学,根据题意,列出方程为( ) A .(1)1260x x += B .2(1)1260x x += C .(1)12602x x -=⨯ D .(1)1260x x -=解:全班有x 名同学, ∴每名同学要送出(1)x -张;又是互送照片,∴总共送的张数应该是(1)1260x x -=.故选:D .8.小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,3b =,解出其中一个根是1x =-.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根C .有一个根是1x =-D .有两个相等的实数根解:小刚在解关于x 的方程20(0)ax bx c a ++=≠时,只抄对了1a =,3b =,解出其中一个根是1x =-,2(1)30c ∴--+=,解得:2c =, 故原方程中4c =,则24941470b ac -=-⨯⨯=-<, 则原方程的根的情况是不存在实数根. 故选:A .9.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x ,可列得方程为( ) A .5(1 1.5)7.8x x ++= B .5(1 1.5)7.8x x +⨯=C .7.8(1)(1 1.5)5x x --=D .5(1)(1 1.5)7.8x x ++=解:设第1周到第2周的订单增长率为x ,根据题意得: 5(1)(1 1.5)7.8x x ++=,故选:D .10.某商场台灯销售的利润为每台40元,平均每月能售出600个.这种台灯的售价每上涨1元,其销售量就将减少10个,为了实现平均每月10000元的销售利润,台灯的售价是多少?若设每个台灯涨价x 元,则可列方程为( ) A .(40)(60010)10000x x +-= B .(40)(60010)10000x x ++=C .[60010(40)]10000x x --=D .[60010(40)]10000x x +-=解:售价上涨x 元后,该商场平均每月可售出(60010)x -个台灯, 依题意,得:(40)(60010)10000x x +-=, 故选:A .二.填空题(共8小题)11.已知关于x 的一元二次方程23280x x --=的常数项是 8- . 解:关于x 的一元二次方程23280x x --=的常数项是8-,故答案为:8-.12.已知:方程||7(9)810a a x x -+++=是一元二次方程,则a 的值为 9 . 解:由题意可知:||72a -=, 9a ∴=±, 90a +≠, 9a ∴=,故答案为:9.13.用配方法解方程2220x x +-=,配方后得到方程为 21()416x += .解:2220x x +-=, 222x x +=, 2112x x +=,222111()1()244x x ++=+, 2117()416x +=, 故答案为:2117()416x +=.14.一元二次方程220x x -=的两根分别为 10x =,22x = . 解:220x x -=,(2)0x x ∴-=, 0x ∴=或20x -=,解得10x =,22x =.15.已知m 、n 是方程210x x +-=的根,则式子22m m n mn ++-= 1 . 解:m 是方程210x x +-=的根, 210m m ∴+-=,即21m m +=, 221m m n mn m n mn ∴++-=+-+, m 、n 是方程210x x +-=的根,21m m ∴+=,1m n +=-,1mn =-,222()1111m m n mn m m m n mn ∴++-=+++-=-+=.故答案为:1.16.已知关于x 的一元二次方程2250x x c -+=有两个相等的实数根,则c =8. 解:根据题意得△2(5)420c =--⨯⨯=,解得258c =.817.一个三角形的两边长分别为2和3,第三边长是方程210210x x-+=的根,则三角形的周长为8.解:210210x x-+=,(3)(7)0x x--=,30x-=或70x-=,所以13x=,27x=,2357+=<,∴三角形第三边长为3,∴三角形的周长为2338++=.故答案为8.18.准备在一块长为30米,宽为24米的长方形花圃内修建四条宽度相等,且与各边垂直的小路,(如图所示)四条小路围成的中间部分恰好是一个正方形,且边长是小路宽度的4倍,若四条小路所占面积为80平方米,则小路的宽度为54米.解:设小路的宽度为x米,则小正方形的边长为4x米,依题意得:(304244)80x x x+++=整理得:2427400x x+-=解得18x=-(舍去),25 4x=.4三.解答题(共7小题)19.解方程:2(1)55x x +=+.解:2(1)5(1)x x +=+,2(1)5(1)0x x ∴+-+=,则(1)(4)0x x +-=,10x ∴+=或40x -=,14x ∴=,21x =-.20.解方程:(1)2230x x +-=(2)(5)50x x x +++=解:(1)2230x x +-=,(3)(1)0x x ∴+-=,则30x +=或10x -=,解得13x =-,21x =;(2)(5)50x x x +++=,(1)(5)0x x ∴++=,则10x +=或50x +=,解得11x =-,25x =-.21.已知关于x 的一元二次方程2()2()0(x m x m m -+-=为常数).(1)求证:不论m 为何值,该方程总有两个不相等的实数根.(2)若该方程有一个根为4,求m 的值.【解答】(1)证明:2()2()0x m x m -+-=,原方程可化为22(22)20x m x m m --+-=,1a =,(22)b m =--,22c m m =-,∴△2224[(22)]4(2)40b ac m m m =-=----=>,∴不论m 为何值,该方程总有两个不相等的实数根.(2)解:将4x =代入原方程,得:2(4)2(4)0m m -+-=,即210240m m -+=, 解得:14m =,26m =.故m 的值为4或6.22.已知一元二次方程2710x x +-=的两个实数根为α,β.求值(1)αβ+和αβ.(2)22αβ+.(3)(1)(1)αβ--.解:(1)一元二次方程2710x x +-=的两个实数根为α,β,7αβ∴+=-,1αβ=-;(2)222()249251αβαβαβ+=+-=+=;(3)(1)(1)()11717αβαβαβ--=-++=-++=.23.如图,某农户准备建一个长方形养鸡场,养鸡场的一边靠墙,若墙长为18m ,墙对面有一个2m 宽的门,另三边用竹篱笆围成,篱笆总长33m ,围成长方形的养鸡场除门之外四周不能有空隙.(1)要围成养鸡场的面积为2150m ,则养鸡场的长和宽各为多少?(2)围成养鸡场的面积能否达到2200m ?请说明理由.解:(1)设养鸡场的宽为xm ,根据题意得:(3322)150x x -+=,解得:110x =,27.5x =,当110x =时,33221518x -+=<,当27.5x =时33222018x -+=>,(舍去),则养鸡场的宽是10m ,长为15m .(2)设养鸡场的宽为xm ,根据题意得:(3322)200x x -+=,整理得:22352000x x -+=,△2(35)42200122516003750=--⨯⨯=-=-<,因为方程没有实数根,所以围成养鸡场的面积不能达到2200m .24.“早黑宝”葡萄品种是我省农科院研制的优质新品种,在我省被广泛种植,邓州市某葡萄种植基地2017年种植“早黑宝”100亩,到2019年“卓黑宝”的种植面积达到196亩.(1)求该基地这两年“早黑宝”种植面积的平均增长率;(2)市场调查发现,当“早黑宝”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出50千克,为了推广宣传,基地决定降价促销,同时减少库存,已知该基地“早黑宝”的平均成本价为12元/千克,若使销售“早黑宝”每天获利1750元,则售价应降低多少元?【解答】(1)设该基地这两年“早黑宝”种植面积的平均增长率为x ,根据题意得 2100(1)196x +=解得10.440%x ==,2 2.4x =-(不合题意,舍去)答:该基地这两年“早黑宝”种植面积的平均增长率为40%.(2)设售价应降低y 元,则每天可售出(20050)y +千克根据题意,得(2012)(20050)1750y y --+=整理得,2430y y -+=,解得11y =,23y =要减少库存11y ∴=不合题意,舍去,3y ∴=答:售价应降低3元.25.某超市销售一种饮料,平均每天可售出100箱,每箱利润12元,为了扩大销售,增加利润,超市准备适当降价.据测算,每箱每降价1元,平均每天可多售出20箱.(1)若每箱降价3元,每天销售该饮料可获利多少元?(2)若要使每天销售该饮料获利1400元,则每箱应降价多少元?(3)能否使每天销售该饮料获利达到1500元?若能,请求出每箱应降价多少元;若不能,请说明理由.解:设每箱饮料降价x元,商场日销售量(10020)x+箱,每箱饮料盈利(12)x-元;(1)依题意得:(123)(100203)1440-+⨯=(元)答:每箱降价3元,每天销售该饮料可获利1440元;(2)要使每天销售饮料获利1400元,依据题意列方程得,(12)(10020)1400x x-+=,整理得27100x x-+=,解得12x=,25x=;为了多销售,增加利润,5x∴=,答:每箱应降价5元,可使每天销售饮料获利1400元.(3)不能,理由如下:要使每天销售饮料获利1500元,依据题意列方程得,(12)(10020)1500x x-+=,整理得27150-+=,x x因为△4960110=-=-<,所以该方程无实数根,即不能使每天销售该饮料获利达到1500元.。
第21章《一元二次方程》人教版九年级数学上册单元检测A+B+C卷.(含答案)
《一元二次方程》单元检测A卷满分:100分时间:100分钟班级:______姓名:_______得分:______一.选择题(每题3分,共30分)1.下列方程中,是一元二次方程的是()A.ax2+2x=1 B.C.3(x+2)2=3x2﹣4x+1 D.2.用配方法解下列方程时,配方有错误的是()A.x2﹣6x+4=0化为(x﹣3)2=5B.2m2+m﹣1=0化为(m+)2=C.3y2﹣4y﹣2=0化为(y﹣)2=D.2t2﹣3t﹣2=0化为(t﹣)2=3.关于x的一元二次方程(m+3)x2+x+m2﹣9=0有一个根为0,则m的值应为()A.3 B.﹣3 C.3或﹣3 D.94.下列方程中,无实数根的方程是()A.x2+1=0 B.x2+x=0 C.x2+x﹣1=0 D.x2=05.某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x,根据题意可列方程为()A.81(1﹣x)2=100 B.100(1+x)2=81C.81(1+x)2=100 D.100(1﹣x)2=816.关于x的方程a(x+m)2+b=0的解是x1=﹣2,x2=1(a,m,b均为常数,a≠0),则方程a(x+m+3)2+b=0的解是()A.﹣1或﹣4 B.﹣2或1 C.1或3 D.﹣5或﹣2 7.三角形的两边长分别为3和4,第三边长是方程x2﹣13x+40=0的根,则该三角形的周长是()A.12 B.13 C.15 D.12或158.若关于x的一元二次方程x2+x﹣m=0有实数根,则m的取值范围是()A.m≥B.m≥﹣C.m≤D.m≤﹣9.为宣传“扫黑除恶”专项行动,社区准备制作一幅宣传版面,喷绘时为了美观,要在矩形图案四周外围增加一圈等宽的白边,已知图案的长为2米,宽为1米,图案面积占整幅宣传版面面积的90%,若设白边的宽为x米,则根据题意可列出方程()A.90%×(2+x)(1+x)=2×1 B.90%×(2+2x)(1+2x)=2×1C.90%×(2﹣2x)(1﹣2x)=2×1 D.(2+2x)(1+2x)=2×1×90%10.已知关于x的一元二次方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,则关于x的一元二次方程m(x﹣h+3)2=k的解是()A.x1=2,x2=3 B.x1=2,x2=5 C.x1=1,x2=0 D.x1=﹣1,x2=2二.填空题(每题4分,共20分)11.已知5是关于x的一元二次方程x2=p的一个根,则另一根是.12.已知关于x的方程(k﹣2)x2﹣3x+1=0有两个不相等的实数根,则k的取值范围是.13.已知(x2+3x)2+5(x2+3x)+6=0,则x2+3x值为.14.某地区开展“垃圾分类”知识科普,第一个月接受培训的人员为10万人次,到了第四个月接受培训的人员达到了13.31万人次,假设这4个月中每个月接受培训的人次增长率均为x,则根据条件可列方程.15.方程2x2+4x﹣3=0的两根为x1,x2,则+=.三.解答题(共50分)16.计算:(1)3x(x﹣1)=2﹣2x;(2)3x2﹣7x+4=017.已知关于x的一元二次方程x2﹣(2a+2)x+2a+1=0.(1)求证:不论a取何实数,该方程都有两个实数根:(2)若该方程两个根x1,x2满足x12﹣x22=0,求a的值18.小明在解方程x2﹣5x=1时出现了错误,解答过程如下:∵a=1,b=﹣5,c=1,(第一步)∴b2﹣4ac=(﹣5)2﹣4×1×1=21(第二步)∴x=(第三步)∴x1=,x2=(第四步)(1)小明解答过程是从第步开始出错的,其错误原因是.(2)写出此题正确的解答过程.19.为响应国家全民阅读的号召,望月湖区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本).该阅览室在2017年图书借阅总量是7500本,2019年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2017年至2019年的年平均增长率;(2)已知2019年该社区居民借阅图书人数有1350人,预计2020年达到1440人,如果2019至2020年图书借阅总量的增长率不低于2017至2019年的年平均增长率,那么2020年的人均借阅量比2019年增长a%,a的值至少是多少?20.某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.(1)设每件童装降价x元时,每天可销售件,每件盈利元;(用x的代数式表示)(2)每件童装降价多少元时,平均每天赢利1200元.参考答案一.选择题1.解:A、a有可能为0,不符合题意;B、为分式方程,不符合题意;C、化简后为一元一次方程,不符合题意;D、未知数的最高次数是2,二次项系数不为0,是一元二次方程,符合题意;故选:D.2.解:A、x2﹣6x+4=0化为(x﹣3)2=5,配方正确;B、2m2+m﹣1=0化为(m+)2=,配方正确;C、3y2﹣4y﹣2=0化为(y﹣)2=,配方正确;D、2t2﹣3t﹣2=0化为(t﹣)2=,配方错误.故选:D.3.解:一元二次方程(m+3)x2+x+m2﹣9=0得,m2﹣9=0,解之得,m=﹣3或3,∵m+3≠0,即m≠﹣3,∴m=3故选:A.4.解:A、∵△=﹣4×1=﹣4<0,∴方程无实数根;B、△=12>0,有两个不相等实数根;C、△=12﹣4×1×(﹣1)=5>0,有两个不相等实数根;D、△=0,有两个相等实数根.故选:A.5.解:由题意可列方程是:100×(1﹣x)2=81.故选:D.6.解:∵方程a(x+m)2+b=0的解是x1=﹣2,x2=1,∴二次函数y=a(x+m)2+b与x轴的交点的横坐标为﹣2和1,把二次函数y=a(x+m)2+b的图象向左平移3个单位得到y=a(x+m+3)2+b,∴二次函数y=a(x+m+3)2+b与x轴的交点的横坐标为﹣5和﹣2,∴方程a(x+m+3)2+b=0的解为﹣5和﹣2.故选:D.7.解:解方程x2﹣13x+40=0可得x=5或x=8,当第三边为5时,则三角形的三边长为3、4、5,满足三角形三边关系,其周长为12,当第三边为8时,则三角形的三边长为3、4、8,不满足三角形三边关系,舍去,∴该三角形的周长为12,故选:A.8.解:∵关于x的一元二次方程x2+x﹣m=0有实数根,∴△=12﹣4×1×(﹣m)=1+4m≥0,解得:m≥﹣,故选:B.9.解:设白边的宽为x米,则整幅宣传版面的长为(2+2x)米、宽为(1+2x)米,根据题意得:90%(2+2x)(1+2x)=2×1.故选:B.10.解:∵方程m(x﹣h)2﹣k=0(m、h,k均为常数且m≠0)的解是x1=2,x2=5,∴对于关于(x+3)的一元二次方程m[(x+3)﹣h]2=k的解为2和5,即x+3=2或x+3=5,即x1=﹣1,x2=2,∴关于x的一元二次方程m(x﹣h+3)2=k的解是x1=﹣1,x2=2.故选:D.二.填空题(共5小题)11.解:∵关于x的一元二次方程x2=p的两个根是互为相反数的,∴另一个根为﹣5,故答案为:﹣5.12.解:根据题意得k﹣2≠0且△=(﹣3)2﹣4(k﹣2)>0解得k<且k≠2.故答案为k<且k≠2.13.解:设x2+3x=t,则原方程变形为t2+5t+6=0,(t+2)(t+3)=0,所以t1=﹣2,t2=﹣3,当t=﹣2时,x2+3x=﹣2,此方程有实数解;当t=﹣3时,x2+3x=﹣3,此方程没有实数解;所以x2+3x=﹣2.故答案为﹣2.14.解:假设这4个月中每个月接受培训的人次增长率均为x,则第二个月接受培训的人员为10(1+x)万人次;第三个月接受培训的人员为10(1+x)2万人次;第四个月接受培训的人员为10(1+x)3万人次;故可列方程10(1+x)3=13.31.故答案是:10(1+x)3=13.31.15.解:由题意可知:x1+x2=﹣2,x1x2=,∴原式====,故答案为:三.解答题(共5小题)16.解:(1)∵3x(x﹣1)=﹣2(x﹣1),∴3x(x﹣1)+2(x﹣1)=0,则(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,解得:x1=1,x2=﹣;(2)∵3x2﹣7x+4=0,∴(3x﹣4)(x﹣1)=0,则3x﹣4=0或x﹣1=0,解得:x1=1,x2=.17.解:(1)证明:(1)△=(2a+2)2﹣4×(2a+1)=4a2,∵a2≥0,∴4a2≥0,∴不论a取任何实数,该方程都有两个实数根;(2)x2﹣(2a+2)x+2a+1=0,(x﹣2a﹣1)(x﹣1)=0,x1=2a+1,x2=1,∵x12﹣x22=0,∴(2a+1)2﹣12=0,解得:a=0或a=﹣1.18.解:(1)故答案为:一,原方程没有化成一般形式;(2)∵a=1,b=﹣5,c=﹣1,∴b2﹣4ac=(﹣5)2﹣4×1×(﹣1)=29.∴x=19.解:(1)设该社区的图书借阅总量从2017年至2019年的年平均增长率为x,依题意,得:7500(1+x)2=10800,解得:x1=0.2=20%,x1=﹣2.2(舍去).答:该社区的图书借阅总量从2017年至2019年的年平均增长率为20%.(2)依题意,得:×(1+a%)×1440≥10800×(1+20%),解得:a≥12.5.答:a的值至少是12.5.20.解:(1)设每件童装降价x元时,每天可销售20+2x件,每件盈利40﹣x元,故答案为:(20+2x),(40﹣x);(2)根据题意,得:(20+2x)(40﹣x)=1200解得:x1=20,x2=10,∵扩大销售量,增加利润,∴x=20答:每件童装降价20元,平均每天赢利1200元.《一元二次方程》单元检测C卷满分:100分时间:100分钟班级:______姓名:_______得分:______一.选择题(每题3分,共30分)1.下列方程中,是一元二次方程是()A.2x+3y=4 B.x2=0 C.x2﹣2x+1>0 D.=x+22.关于x的方程(x+1)2﹣m=0(其中m≥0)的解为()A.x=﹣1+m B.x=﹣1+C.x=﹣1±m D.x=﹣13.若关于x的一元二次方程(m﹣1)x2+5x+(m﹣1)(m﹣3)=0的常数项为0,则m的值等于()A.1 B.3 C.1或3 D.04.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A.6 B.7 C.8 D.95.已知三角形的每条边都是方程x2﹣6x+8=0的根,则该三角形的周长不可能是为()A.6 B.10 C.8 D.126.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2 B.(x﹣1)2=4 C.(x+1)2=2 D.(x+1)2=4 7.生命一号公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500+2500(1+x)+2500(1+x)2=9100C.2500(1+x%)2=9100D.2500(1+x)+2500(1+x)2=91008.要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.B.C.x(x﹣1)=28 D.x(x+1)=289.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是()A.2秒钟B.3秒钟C.4秒钟D.5秒钟10.受非洲猪瘟及其他因素影响,2019年9月份猪肉价格两次大幅度上涨,瘦肉价格由原来23元/千克,连续两次上涨x%后,售价上升到60元/千克,则下列方程中正确的是()A.23(1﹣x%)2=60 B.23(1+x%)2=60C.23(1+x2%)=60 D.23(1+2x%)=60二.填空题(每题4分,共20分)11.如果关于x的一元二次方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.12.平行四边形ABCD的周长为32,两邻边a,b恰好是一元二次方程x2+8kx+63=0的两个根,那么k=.13.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场),一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军,为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜场.14.已知方程x2﹣10x+24=0的两个根为等腰三角形(非等边)边长,则等腰三角形的周长为.15.一个正方体物体沿斜坡向下滑动,其截面如图所示.正方形DEFH的边长为2米,坡角∠A=30°,∠B=90°,BC=6米.当正方形DEFH运动到什么位置,即当AE=米时,有DC2=AE2+BC2.三.解答题(共50分)16.解方程(1)x(x﹣2)﹣x+2=0;(2)x2﹣16=6x.17.已知关于x的一元二次方程x2+6x+(2m+1)=0有实数根.(1)求m的取值范围;(2)如果方程的两个实数根为x1,x2,且2x1x2﹣x1﹣x2≥8,求m的取值范围.18.关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0有两个实数根,若方程的两个实数根都是正整数,求整数m的值.19.某网店专门销售某种品牌的工艺品,成本为30元/件,每天销售y(件)与销售单价x (元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天工艺品的销售量不低于240件,销售单价应定在什么范围?(3)如果在(2)的条件下,网店每天销售的利润为3750元,求该种工艺品销售单价是多少元?20.学了一元二次方程的根与系数的关系后,小亮兴奋地说:“若设一元二次方程ax2+bx+c =0的两个根为x1,x2,由根与系数的关系有x1+x2=﹣,x1x2=,由此就能快速求出,x12+x22,…的值了.比如设x1,x2是方程x2+2x+3=0的两个根,则x1+x2=﹣2,x1x2=3,得.(1)小亮的说法对吗?简要说明理由;(2)写一个你最喜欢的一元二次方程,并求出两根的平方和;(3)已知2﹣是关于x的方程x2﹣4x+c=0的一个根,求方程的另一个根与c的值.参考答案一.选择题1.解:A、含有两个未知数,不是一元二次方程;B、符合一元二次方程的定义,是一元二次方程;C、含有不等号,不是一元二次方程;D、含有分式,不是一元二次方程.故选:B.2.解:移项,得(x+1)2=m,开方,得x+1=±,解得x=﹣1±.故选:D.3.解:根据题意,知,,解方程得:m=3.故选:B.4.解:设参加此次比赛的球队数为x队,根据题意得:x(x﹣1)=36,化简,得x2﹣x﹣72=0,解得x1=9,x2=﹣8(舍去),∴参加此次比赛的球队数是9队.故选:D.5.解:解方程x2﹣6x+8=0可得x=2或x=4,当三角形为等边三角形时,则其三边为2、2、2或4、4、4两种情况,则其周长为6或12,当三角形为等腰三角形时,若底为2,则三角形三边长为2、4、4,满足三角形三边关系,其周长为10,若底为4,则三角形三边长为4、2、2,不满足三角形三边关系,舍去,综上可知三角形的周长为6或10或12,∴不可能是8,故选:C.6.解:∵x2+2x﹣3=0∴x2+2x=3∴x2+2x+1=1+3∴(x+1)2=4故选:D.7.解:设该公司5、6两月的营业额的月平均增长率为x,依题意,得:2500+2500(1+x)+2500(1+x)2=9100.故选:B.8.解:设比赛组织者应邀请x个队参赛,依题意,得:x(x﹣1)=28.故选:A.9.解:设动点P,Q运动t秒后,能使△PBQ的面积为15cm2,则BP为(8﹣t)cm,BQ为2tcm,由三角形的面积计算公式列方程得,×(8﹣t)×2t=15,解得t1=3,t2=5(当t=5时,BQ=10,不合题意,舍去).∴动点P,Q运动3秒时,能使△PBQ的面积为15cm2.故选:B.10.解:当猪肉第一次提价x%时,其售价为23+23x%=23(1+x%);当猪肉第二次提价x%后,其售价为23(1+x%)+23(1+x%)x%=23(1+x%)2.∴23(1+x%)2=60.故选:B.二.填空题(共5小题)11.解:根据题意得△=(﹣3)2﹣4k=0,解得k=.故答案为.12.解:∵平行四边形ABCD的周长为32,∴a+b=32÷2=16,而a,b恰好是一元二次方程x2+8kx+63=0的两个根,∴a+b=﹣8k,∴﹣8k=16,∴k=﹣2.故填空答案:﹣2.13.解:设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:x(x+1)=66,整理,得:x2+x﹣132=0,解得:x1=11,x2=﹣12(不合题意,舍去).故答案为:11.14.解:∵x2﹣10x+24=0,∴(x﹣4)(x﹣6)=0,∴x1=4,x2=6,∴等腰三角形的三边长为6、6,4或4,4,6,∴等腰三角形周长为16或14.故答案为:16或14.15.解:如图,连接CD,设AE=x米,∵坡角∠A=30°,∠B=90°,BC=6米,∴AC=12米,∴EC=(12﹣x)米,∵正方形DEFH的边长为2米,即DE=2米,∴DC2=DE2+EC2=4+(12﹣x)2,AE2+BC2=x2+36,∵DC2=AE2+BC2,∴4+(12﹣x)2=x2+36,解得:x=米.故答案为:.三.解答题(共5小题)16.解:(1)x(x﹣2)﹣x+2=0,x(x﹣2)﹣(x﹣2)=0,(x﹣2)(x﹣1)=0,x﹣2=0,x﹣1=0,x1=2,x2=1;(2)x2﹣16=6x,x2﹣6x﹣16=0,(x﹣8)(x+2)=0,x﹣8=0,x+2=0,x1=8,x2=﹣2.17.解:(1)∵方程有实数根,∴△=36﹣4(2m+1)=36﹣8m﹣4=32﹣8m≥0,解得:m≤4.故m的取值范围是m≤4;(2)∵x1,x2是方程x2+6x+(2m+1)=0的两个实数根,∴x1+x2=﹣6,x1•x2=2m+1,∵2x1x2﹣x1﹣x2≥8,∴2(2m+1)+6≥8,解得m≥0,由(1)可得m≤4,∴m的取值范围是0≤m≤4.18.解:(m﹣1)x2﹣2mx+m+1=0,[(m﹣1)x﹣(m+1)](x﹣1)=0,x1=,x2=1,∵此方程的两个实数根都是正整数,由>0解得m<﹣1或m>1,∴m=2或m=3.19.解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(40,300),(55,150)代入y=kx+b,得:,解得:,∴y与x之间的函数关系式为y=﹣10x+700.(2)当y≥240时,﹣10x+700≥240,解得:x≤46,∵成本为30元/件,∴30<x≤46.答:销售单价应大于30元/件,小于等于46元/件.(3)依题意,得:(x﹣30)(﹣10x+700)=3750,整理,得:x2﹣100x+2475=0,解得:x1=45,x2=55.∵30<x≤46,∴x=45.答:该种工艺品销售单价是45元/件.20.解:(1)小亮的说法不对若有一根为震,就无法计算的值了,因为零作除数无意义.(2)所喜欢的一元二次方程x2﹣5x﹣6=0,设方程的两个根分别是为x1,x2,∴x1+x2=5,x1x2=﹣6,又∵,代入得:=52﹣2×(﹣6)=37;(3)把x=2﹣代入方程得(2﹣)2﹣4(2﹣)+c=0,解得c=1,则x1+x2=4,则.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程单元练习
一、选择:
1.下列方程是关于x 的一元二次方程的是( );
A 、02=++c bx ax
B 、2112=+x x
C 、)1)(1(22-+=+x x x x
D )1(2)1(32+=+x x
2.、把方程(2x-1)(3x+2)= x 2 +2化成一般形式后,二次项的系数和常数项分别是:
A 、5 、-4
B 、5 、1
C 、5、 4
D 、1、 -4
3、方程(m²-1)x²+m x -5=0是关于x 的一元二次方程,则m 满足的条件是 ( )
A m≠1
B m≠0
C ∣m ∣≠1
D m=±1
4、关于x 的一元二次方程x²-2x+2k=0有实数根,则k 的取值范围是 ( )
A k< 21
B k≤ 21
C k> 21
D k≥ 2
1 5、已知关于x 的方程x²-mx+2m-1=0的两个实数根的平方和为7,那么m 的值是( )
A . 5
B -1
C 5或-1
D -5或1
6、王刚同学在解关于x 的方程x²-3x+c=0时,误将-3x 看作+3x ,结果解得x 1=1 x 2=-4,则原方程的解为( )
(A ) x 1=-1 x 2=-4 (B )x 1=1 x 2=4
(C )x 1=-1 x 2=4 (D )x 1=2 x 2=3
7、某饲料厂一月份生产饲料500吨,三月份生产饲料720吨,若二、三月份每月平均增长的百分率为x ,则有( )
A 500(1+x2)=720
B 500(1+x)2=720
C 500(1+2x)=720
D 720(1+x)2=500
8、已知m 是方程x 2-x-1=0的一个根,则代数式m 2-m 的值等于( )
A 、 -1
B 、0
C 、1
D 、2
二、填空题:
9、若关于x 的方程2x 2-3x+c = 0的一个根是1,则另一个根是 .
10、一元二次方程 x 2-3x- 2 = 0的解是 .
11、如果(2a+2b+1)(2a+2b-1)=63,那么a+b 的值是 .
12、关于x 一元二次方程2x(kx-4)-x2+6=0没有实数根,则k 的最小整数值是______。
13、已知方程x 2+3x+1=0的两个根为α、β,则α+β的值为 .
14.写出一个以-1,2为根的二元二次方程:______________。
15.已知1x ,2x 是方程2630x x ++=的两实数根,则2112
x x x x +的值为______ 16、某钢铁厂的钢产量,今年第一季度平均每月增长率为20%,若3月份钢产量为7200吨,则1月份的钢产量为______吨。
三、解方程:
1. 02522=-+)
(x 直接开平方法 2. 0542=-+x x (配方法)
3 x 2 -5x+6=0 (因式分解法) 4. 03722=+-x x (公式法)
四、解答题:
1、已知关于x的方程x²-2(m+1)x+m2=0
(1)当m取什么值时,一元二次方程没有实数根?
(2)对m选取一个合适的非零整数,使原方程有两个实数根,并求这两个实数根的差的平方。
2、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存
......,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2 100元,每件衬衫应降价多少元?
3、某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.
4、已知关于x的方程式x2=(2m+2)x-(m2+4m-3)中的m为不小于0的整数,并且它的两实根的符号相反,求m的值,并解方程.。