NE555时基集成电路实验
集成555定时器实验报告
集成555定时器实验报告集成555定时器实验报告引言:集成555定时器是一种常见的集成电路,具有广泛的应用领域。
本实验旨在通过实际操作,深入了解555定时器的原理和特性,并通过实验结果验证其性能。
一、实验目的本实验的目的是掌握集成555定时器的工作原理和使用方法,通过实际操作验证其功能和性能。
二、实验器材和原理1. 实验器材:- 集成555定时器芯片- 电源- 电阻、电容等元件- 示波器- 万用表2. 原理简介:集成555定时器是一种多功能定时器,内部由比较器、触发器、控制逻辑和输出驱动等部分组成。
它可以实现单稳态、多谐振荡和脉冲宽度调制等功能。
其中,单稳态和多谐振荡是本实验的重点。
三、实验步骤1. 单稳态实验:- 连接电路:将555定时器芯片、电阻和电容等元件按照实验电路图连接起来。
- 施加电源:将电源接入电路,保证电压稳定。
- 测量电压:使用万用表测量电路中各个节点的电压,记录下来。
- 观察输出:使用示波器观察555定时器的输出波形,记录下来。
- 调整参数:根据实验要求,逐步调整电阻和电容的数值,观察输出波形的变化。
- 总结结果:根据实验结果,总结单稳态实验的特点和应用。
2. 多谐振荡实验:- 连接电路:将555定时器芯片、电阻和电容等元件按照实验电路图连接起来。
- 施加电源:将电源接入电路,保证电压稳定。
- 测量电压:使用万用表测量电路中各个节点的电压,记录下来。
- 观察输出:使用示波器观察555定时器的输出波形,记录下来。
- 调整参数:根据实验要求,逐步调整电阻和电容的数值,观察输出波形的变化。
- 总结结果:根据实验结果,总结多谐振荡实验的特点和应用。
四、实验结果与分析1. 单稳态实验结果:- 记录了不同电阻和电容数值下的输出波形。
- 分析了电阻和电容对输出波形的影响。
- 总结了单稳态实验的特点和应用。
2. 多谐振荡实验结果:- 记录了不同电阻和电容数值下的输出波形。
- 分析了电阻和电容对输出波形的影响。
555时基电路及其应用实验报告
555时基电路及其应用实验报告一、导言555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过对555时基电路的实验搭建和应用实验,探索其工作原理和应用特点。
二、实验设备和材料1. 555时基电路芯片2. 电阻、电容和电感元件3. 电源、示波器和信号发生器等实验仪器4. 连接线等实验辅助材料三、实验步骤1. 555时基电路搭建实验根据555时基电路的原理图,将实验设备和材料连接起来。
按照标准的接线顺序,将电源、电阻、电容和555芯片等元件逐一连接。
注意检查接线是否正确,以确保电路能够正常工作。
2. 555时基电路测试接下来,将示波器连接到555芯片的输出引脚上,调节示波器的参数,观察波形的变化。
通过改变电阻和电容的数值,可以调节输出波形的频率和占空比。
记录下不同参数下的波形特征,并进行分析和比较。
3. 555时基电路应用实验在实验中,可以将555时基电路应用于脉冲发生器、定时器、频率计等实际电子电路中。
通过改变电路的连接方式和参数设置,可以实现不同的应用功能。
例如,可以将555时基电路连接到脉冲发生器电路中,生成稳定的脉冲信号;也可以将555时基电路作为定时器,控制电路的工作时间。
四、实验结果与分析1. 555时基电路工作特点通过实验观察,我们发现555时基电路可以产生稳定的方波信号。
在输入电压为5V的情况下,根据电路参数的不同设置,可以得到不同频率和占空比的输出波形。
通过改变电阻和电容的数值,可以调节频率的范围。
而通过改变电路的连接方式,如添加电感元件,可以实现更丰富的波形变化。
2. 555时基电路的应用实验结果通过将555时基电路应用于脉冲发生器和定时器电路中,我们成功实现了不同功能的电路设计。
脉冲发生器可以产生稳定的脉冲信号,其频率和占空比可以通过调节电路参数来控制。
定时器电路可以在预设的时间段内控制其他电路的工作状态。
五、实验结论通过本次实验,我们了解了555时基电路的工作原理和应用特点。
NE555时基集成电路
NE555时基集成电路预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制NE555时基集成电路在实际应用中,除了单一品种的电路外,还可组合出很多不同电路,如:多个单稳、多个双稳,双稳和无稳的组合等。
这样一来,电路变的更加复杂。
为了便于我们分析和识别电路,更好的理解555电路,这里我们按555电路的结构特点进行分类和归纳,把555电路分为3大类、8种、共18个单元电路。
每个电路除画出它的标准图形,指出他们的结构特点或识别方法外,还给出了计算公式和他们的用途。
下面将分别介绍这三类电路。
图:555内部原理图一、单稳类电路555的单稳工作方式,它可分为3种。
见图示第一种(图一)是人工启动单稳,又因为定时电阻定时电阻位置不同分为2个不同的单元,并分别以 1.1.1和 1.1.2为代号。
他们输入端的形式,也就是电路的结构特点是:“RT-6.2-CT”和“CT-6.2-RT”。
第二种(图2)是脉冲启动型单稳,也可以分为2个不同的单元。
他们的输入特点都是“RT-7.6-CT”,都是从2端输入。
1.2.1电路的2端不带任何元件,具有最简单的形式;1.2.2电路则带有一个RC微分电路。
第三种(图3)是压控振荡器。
单稳型压控振荡器电路有很多,都比较复杂。
为简单起见,我们只把它分为2个不同单元。
不带任何辅助器件的电路为1.3.1;使用晶体管、运算放大器等辅助器件的电路为1.3.2。
二、双稳类电路这里我们对555双稳电路工作方式进行总结、归纳。
555双稳电路可分为2种。
第一种(见图1)是触发电路,有双端输入(2.1.1)和单端输入(2.1.2)两个单元。
单端比较器(2.1.2)可以是6端固定,2端输入;也可是2端固定,6端输入。
第二种(见图2)是施密特触发电路,有最简单形式的(2.2.1)和输入端电阻调整偏置或在控制端(5)加控制电压VCT以改变阈值电压的(2.2.2)共两个单元电路。
《数字电路》555时基电路实验
《数字电路》555时基电路实验一、实验目的1、掌握555时基电路的结构和工作原理,学会对此芯片的正确使用。
2、学会分析和测试用555时基电路构成的多谐振荡器、单稳态触发器、R-S触发器等三种典型电路。
二、实验原理实验所用的555时基电路芯片为NE556,同一芯片上集成了二个各自独立的555时基电路,各管脚的功能简述如下(参见图12-1和图12-2):,输出端OUT端呈低电平,DIS端导通。
TH:高电平触发端,当TH端电压大于2/3VCCTR:低电平触发端,当TR端电平小于1/3V CC时,输出端OUT端呈高电平,DIS端开断。
DIS:放电端,其导通或关断,可为外接的RC回路提供放电或充电的通路。
R:复位端,R=0时,OUT端输出低电平,DIS端导通。
该端不用时接高电平。
VC:控制电压端,VC接不同的电压值可改变TH、TR的触发电平值,其外接电压值,该端不用时,一般应在该端与地之间接一个电容。
范围是0~VCCOUT:输出端。
电路的输出带有缓冲器,因而有较强的带负载能力,可直接推动TTL、CMOS电路中的各种电路和蜂鸣器等。
:电源端。
电源电压范围较宽,TTL型为+5V~+16V,CMOS型为+3~+18V,本实验 VCC= +5V。
所用电压VCC芯片的功能如表12-1所示,管脚如图12-1所示,功能简图如图12-2所示。
表12-1图12-1 时基电路芯NE556管脚图图12-2 时基电路功能简图图12-3 测试接线图图12-4 多谐振荡电路555时基电路的应用十分广泛,在波形产生、变换、测量仪表、控制设备等方面经常用到。
采用555时基电路构成的多谐振荡器、单稳态触发器和R-S触发器的电路分别见图12-4、图12-6和图12-7。
由555时基电路构成的多谐振荡器的工作原理是:利用电容充放电过程中电容电压的变化来改变加在高低电平触发端的电平的变化,使555时基电路内RS触发器的状态置“1”、置“0”,从而在输出端获得矩形波。
ne555实验报告
ne555实验报告NE555实验报告NE555是一种常用的集成电路,被广泛应用于定时器、脉冲发生器和脉冲宽度调制等电路中。
在本次实验中,我们将对NE555进行实验,以探究其工作原理和性能特点。
实验目的:1. 了解NE555的内部结构和工作原理;2. 掌握NE555的基本应用电路;3. 通过实验验证NE555的性能特点。
实验原理:NE555是一种集成电路,内部包含比较器、RS触发器、电压比较器和输出级驱动器等功能模块。
NE555的工作原理主要是通过外部电路控制电压比较器和RS 触发器的状态,从而实现定时和脉冲发生的功能。
实验材料:1. NE555集成电路芯片;2. 电阻、电容、开关等元器件;3. 示波器、数字万用表等测量仪器。
实验步骤:1. 搭建NE555的基本应用电路,如单稳态触发器、多谐振荡器等;2. 调节外部电路参数,观察NE555的输出波形和频率等性能指标;3. 使用示波器和数字万用表等测量仪器对NE555的工作状态进行实时监测。
实验结果:通过实验我们发现,NE555在不同的外部电路条件下,可以实现不同的定时和脉冲发生功能。
其输出波形可以是方波、三角波等不同形式,频率和占空比也可以通过外部电路调节。
NE555具有稳定的性能特点,适用于各种定时和脉冲发生的应用场景。
结论:NE555作为一种常用的集成电路,在电子电路设计中具有重要的应用价值。
通过本次实验,我们对NE555的工作原理和性能特点有了更深入的了解,为今后的电子电路设计和应用奠定了基础。
通过本次实验,我们对NE555的工作原理和性能特点有了更深入的了解,为今后的电子电路设计和应用奠定了基础。
NE555的应用范围非常广泛,可以用于定时器、脉冲发生器和脉冲宽度调制等电路中。
希望本次实验能够对大家有所帮助。
555时基电路实验报告
555时基电路实验报告555时基电路实验报告引言:555时基电路是一种常用的集成电路,广泛应用于各种电子设备中。
本实验旨在通过实际操作,深入了解555时基电路的工作原理和应用。
一、实验目的本实验的主要目的是掌握555时基电路的基本原理和使用方法,通过实验验证其工作性能,并了解其在各种电子设备中的应用。
二、实验器材和材料1. 555时基电路集成电路芯片2. 电源3. 电阻、电容等元器件4. 示波器5. 连接线等实验器材三、实验步骤1. 按照电路图连接电路,将555时基电路芯片与其他元器件连接好。
2. 接通电源,调节电源电压,使其满足555时基电路的工作要求。
3. 使用示波器观察555时基电路的输出波形,并记录相关数据。
4. 调节电阻、电容等元器件的数值,观察555时基电路的输出波形的变化,并记录相关数据。
5. 分析实验结果,总结555时基电路的特点和应用。
四、实验结果与分析通过实验观察和数据记录,我们得到了不同电阻、电容数值下555时基电路的输出波形。
根据实验结果,我们可以得出以下结论:1. 555时基电路的输出波形可以通过调节电阻和电容的数值来控制。
2. 当电阻或电容数值增大时,输出波形的周期变长,频率变低;反之,周期变短,频率变高。
3. 555时基电路的输出波形可以是方波、正弦波等不同形式,具有较高的稳定性和可调性。
4. 555时基电路可以广泛应用于脉冲发生器、定时器、频率计等各种电子设备中。
五、实验总结通过本次实验,我们深入了解了555时基电路的工作原理和应用。
通过实际操作,我们掌握了调节电阻和电容数值来控制555时基电路输出波形的方法。
我们还了解到555时基电路具有较高的稳定性和可调性,适用于各种电子设备中的时序控制和频率调节。
通过实验,我们对于电路的原理和实际应用有了更深入的理解。
六、实验中的问题与改进在实验过程中,我们遇到了一些问题,例如电路连接错误、示波器读数不准确等。
这些问题在实验中及时得到了解决,但在以后的实验中,我们需要更加仔细地检查电路连接,确保实验结果的准确性。
555时基电路 实验报告
555时基电路实验报告555时基电路实验报告引言:555时基电路是一种非常常见和实用的电子元件,广泛应用于各种电子设备和电路中。
本实验旨在通过实际操作和观察,深入了解555时基电路的工作原理和应用。
一、实验目的:1. 了解555时基电路的基本原理;2. 掌握555时基电路的实际应用;3. 学会使用实验仪器和测量工具。
二、实验器材和仪器:1. 555时基电路芯片;2. 电源;3. 示波器;4. 电阻、电容等元件。
三、实验步骤:1. 连接电路:按照实验指导书上的电路图,将555时基电路芯片、电源、电阻和电容等元件连接起来。
2. 调整参数:根据实验指导书上的要求,调整电阻和电容的数值,以改变电路的工作频率和占空比。
3. 运行实验:打开电源,观察555时基电路的输出波形,并使用示波器进行实时监测和测量。
4. 记录数据:记录不同参数下的电路输出波形、频率和占空比等数据。
四、实验结果和分析:通过实验,我们观察到555时基电路在不同参数设置下的工作情况。
当电阻和电容的数值变化时,电路的频率和占空比也会相应改变。
我们可以通过调整这些参数,实现对555时基电路的频率和占空比的控制。
进一步分析发现,555时基电路的输出波形可以是方波、正弦波或者其他形态的波形,具体取决于电路的参数设置和连接方式。
通过改变电路的设计和元件的选择,我们可以根据实际需求,实现不同形态的波形输出。
此外,我们还发现555时基电路具有较高的稳定性和精度。
在实验过程中,我们可以通过示波器对电路输出进行实时监测和测量,从而验证电路的稳定性和准确性。
五、实验总结:通过本次实验,我们深入了解了555时基电路的工作原理和应用。
我们学会了使用实验仪器和测量工具,掌握了调整电路参数和观察波形的方法。
555时基电路作为一种常见的电子元件,具有广泛的应用前景。
它可以用于脉冲发生器、频率计、计时器等各种电子设备中。
同时,555时基电路还可以与其他电子元件和模块结合使用,实现更复杂的电路功能。
555集成时基电路实验
=
2 3
VCC
,
U
TR
< VTR
= 1VCC ,则 RS 3
触发器
置位, Q = 1, Q = 0 ,输出端(OUT)为高电平,放电开关 T 截止不导通。
5、最后的一种状态要特别加以注意,当 RD = 1 时,若UTH
> VTH
=
2 VCC , 3
U TR
< VTR
=
1VCC ,则 3
RS
触发器违背了约束条件,其输出即不是“0”,也不
二、实验内容和目的
本实验的内容是用 555 时基集成电路制作一些典型和常用的实际电路,目的 是了解和掌握 555 时基电路的基本电路结构,工作原理,同时对所学电路知识进 行复习和巩固。实验中重点要求复习《模拟电路》课程中学习过的“非正弦波发 生器”的工作原理,然后对比 555 时基集成电路构成的无稳态多谐振荡器的工作 原理,以加深对所学知识的理解。另外,了解一些 555 电路的扩展运用知识。
Copyright © Fishpan 2006. All rights reserved.
3
Any unauthorized copying and distribution are forbidden.
《实用电子电路》课程实验讲义
因此 555 电路的输出端口(OUT)的状态从逻辑上讲,应该是和 RS 触发器的 Q 端完全等效的。
5.放电电路。
晶体管 T 和一只电阻就构成了放电回路,其中晶体管 T 的作用就是“开关”, 它必须工作在“饱和区”和“截止区”之间。晶体管的基极连接在 RS 触发器的 Q 端,当 555 电路输出为低电平时(相当于 RS 触发器的 0 状态),Q = 0 ,Q = 1, 晶体管饱和导通,其集电极和发射极之间可以看成为短路;当 555 电路输出为高 电平时(相当于 RS 触发器的 1 状态),Q = 1,Q = 0 ,晶体管处于截止区,其 集电极和发射极之间可以看成为开路。在实际电路中,DIS 端(晶体管 T 的集电 极)通常是和外部电容相连接,为外接电容提供一个快速放电的通路,故晶体管 T 又称为“放电开关”。
ne555实验报告
ne555实验报告NE555实验报告引言:NE555是一款经典的集成电路,被广泛应用于定时器、脉冲发生器、频率分频器等电子电路中。
本实验旨在通过实际操作NE555电路,深入了解其工作原理和特性。
一、实验目的本实验的主要目的有以下几点:1. 掌握NE555的引脚功能及工作原理;2. 理解NE555作为定时器的基本应用;3. 学会使用NE555构建简单的脉冲发生器。
二、实验原理NE555是一款8脚的集成电路,主要由比较器、RS触发器、RS锁存器和输出级组成。
通过对电路的引脚连接和外部元件的选择,可以实现不同的功能。
三、实验器材1. NE555芯片;2. 电阻、电容、二极管等元件;3. 电源、示波器、万用表等实验设备。
四、实验步骤1. 搭建基本的NE555定时器电路。
将NE555芯片插入实验板上,根据原理图连接电阻、电容和电源等元件。
2. 调节电源电压。
根据NE555的工作电压范围,选择适当的电源电压,并通过万用表测量电压值。
3. 测试NE555的工作频率。
将示波器连接到NE555的输出引脚上,调节电阻和电容的值,观察示波器上的波形变化,并记录下不同参数下的频率值。
4. 构建脉冲发生器。
在基本的NE555定时器电路的基础上,添加电阻、电容和二极管等元件,实现脉冲发生器的功能。
通过示波器观察输出的脉冲波形,并记录下不同参数下的频率、占空比等数值。
五、实验结果与分析通过实验,我们得到了NE555在不同参数下的工作频率和脉冲波形。
根据实验数据,我们可以分析NE555的特性和性能。
首先,NE555的工作频率与电阻和电容的值有关。
当电阻值较大或电容值较小时,工作频率较低;反之,工作频率较高。
这是因为NE555的内部电路通过电阻和电容的充放电过程来实现定时功能。
其次,NE555作为脉冲发生器时,其输出波形的频率和占空比也与电阻和电容的值密切相关。
通过调节电阻和电容的数值,可以实现不同频率和占空比的脉冲波形。
六、实验总结本实验通过实际操作NE555电路,深入了解了其工作原理和特性。
NE555实验
V 1N4148 F1 F2 F3 F4
C1 47μ
C2 4700 R3 360K 9013 C3 220μ
9V
M
9012 R2 1M
SP
CD4011
红外耳机
10mA *R3 470 C2 4.7μ LM386 9013 R1 470 C1 1μ 9013 R4 3.3K C3 10μ C6 100μ C45 100μ *R2 39K CK C1 10μ 4.5V R2 R1 100K
Vo=0时为稳态;Vo=1时为暂态。 Vo=1时为稳态;Vo=0时为暂态。 公式:T=1.1RT*CT 公式:T=1.1RT*CT 公式:T=1.1RT*CT 用途:定时、延时。 用途:定时、延时。 用途:定时、延时、消抖动、 分(倍)频、脉冲输出等。
特点:RT-7-6-CT,2端输入, 外脉冲启动或人工启动。
5V 5V
5V
A
R1
B
VD1
R2
8 2
4
R4
R3
3 T
IC
6 1 5
C1
C2
I
1
5V
继电器
3
2
5V
R1 R2
8 2 4
K
R3
3 T
IC
6 1 5
~220V
VD1
C1
C2
声控开关
R9 R1 20K R1 200K(1M) R2 10K C1 10μ 2 3 8
LM358 2-1
9V
R6
10K 8 1N4148 6 LM358
无稳态电路
1.直接反馈型:振荡电阻直接连接输出端。 Vcc
R1
Vcc 7 8 4
电子技术与技能实训19 555时基电路与多谐振荡器的功能测试
(三)多谐振荡器的特点 1.多谐振荡器是产生矩形脉冲的自激振荡电路,无需外加输入信号。只 要接通电源,多谐振荡器就会自动产生矩形脉冲。(注意:图中UC并非外 加的输入信号) 2.多谐振荡器无稳态,只有两个暂稳态,如【图19-4】所示。
8
知识链接
二、555时基电路的应用:多谐振荡器
3
知识链接
一、555时基电路
(二)555时基电路引脚功能、引脚排列
4
知识链接
一、555时基电路
(三)电路功能
5
知识链接
二、555时基电路的应用:多谐振荡器
(一)电路结构及波形图
6
知识链接
二、555时基电路的应用:多谐振荡器
(二)多谐振荡器的工作过程 电源未接通,C两端电压UC为0。电源接通时,R1、R2和C组成电容充电电
一、通过识读电路图、观察元件型号、外形等,掌握主要元件的极性及参数 二、会简述555时基电路的工作原理,明确555的功能和引脚排列 三、会画多谐振荡器电路原理图,会对多谐振荡器进行原理分析,理解矩形波产生的 过程,会计算矩形波的周期 四、会根据元件清单检查元器件数量,会用万用表检测各元器件质量 五、会根据需要对元器件进行镀锡、成型等预处理 六、能正确识读整机电路原理图、印制电路板图,明确各元器件的安装位置及极性 七、能根据原理图及电路板装配图对元器件进行安装及焊接 八、会对电路进行通电测试及故障检修 九、完成电路调试记录表
555时基电路
555时基电路实验说明:555定时电路是模拟—数字混合式集成电路。
555定时电路分为双极型和CMOS两种,其结构和原理基本相同。
从结构上看,555定时电路由2个比较器、1个基本RS触发器、1个反相缓冲器、1个三极管管和3个5kΩ电阻组成分压器组成,因此命名555定时电路。
NE556为双时基电路,管脚图如下:四、实验内容及步骤1.利用NE556构成多谐振荡器按原理图接线,用双踪示波器观察输出波形2.利用NE556构成单稳态触发器电路按原理图接线,用双踪示波器观察输出波形制作的D类放大器时基集成电路NE555应用老铎D类放大器具有体积小、效率高的特点。
这里介绍一个用555电路制作的简易D类放大器。
它是利用555电路构成一个可控的多谐振荡器,音频信号输入到控制端得到调宽脉冲信号(如图),基本能满足一般的听音要求。
制作的D类放大器时基集成电路NE555应用,输出的音质和L 、C3有很大关系。
我们知道D类放大器具有体积小、效率高的特点。
这里介绍一个用555电路制作的简易D类放大器。
它是利用555电路构成一个可控的多谐振荡器,音频信号输入到控制端得到调宽脉冲信号(如图),基本能满足一般的听音要求。
由IC 555和R1、R2、C1等组成100KHz可控多谐振荡器,占空比为50%,控制端5脚输入音频信号,3脚便得到脉宽与输入信号幅值成正比的脉冲信号,经L、C3接调、滤波后推动扬声器。
时基集成电路555并不是一种通用型的集成电路,但它却可以组成上百种实用的电路,可谓变化无穷,故深受人们的欢迎。
555时基电路具有以下几个特点:(1)555时基电路,是一种将模拟电路和数字电路巧妙结合在一起的电路;(2)555时基电路可以采用4.5~15V的单独电源,也可以和其它的运算放大器和TTL电路共用电源;(3)一个单独的555时基电路,可以提供近15分钟的较准确的定时时间;(4)555时基电路具有一定的输出功率,最大输出电流达200mA,可直接驱动继电器、小电动机、指示灯及喇叭等负载。
555定时器时基电路的实验
555定时器时基电路的实验一、实验目的1、熟悉555时基电路逻辑功能的测试方法。
2、熟悉555时基电路的工作原理及其应用。
二、实验仪器及设备1、数字逻辑实验箱DSB-3 1台2、万用表1只3、双踪示波器XJ4328/XJ4318 1台4、元器件:NE555 1块1.2K电位器1只电阻、电容、导线若干三、实验线路四、实验内容1、555时基电路逻辑功能测试(1)按图12-1接线,将R端接实验箱的逻辑电平开关,输出端OUT和放电管输出端DIS分别接LED 电平显示,检查无误后,方可进行测试。
(注:放电管导通时灯灭,放电管截止时灯亮)(2)按表12-1进行测试,改变R W 1和R W 2的阻值,观察状态是否改变。
(3)按表12-2测试,将结果记录下来,用万用表测出TH和TR端的转换电压,为3.3V 和1.7V,与理论值2/3 Vcc和1/3Vcc比较,是一致的。
(注:表中某步骤若状态未转换,转换电压一栏填X)2、555时基电路的应用用555时基电路设计一个多谐振荡器,频率为1KHZ。
用示波器观察得到的矩形波。
五、实验结果分析(回答问题)总结555时基电路的逻辑功能:有两个触发端,分别为高触发置0和低触发置1,触发电平分别为2/3 Vcc 和1/3Vcc,可利用触发端来实现相应的0、1状态。
回答思考题1、555时基电路的端分别采用高触发、低触发、低电平有效的触发方式。
2、555时基电路中,CO端为基准电压控制端,当悬空时,触发电平分别为2/3 Vcc和1/3Vcc;当接固定电平时,触发电平分别为Vco和1/2Vco。
3、若电路图12-1中电源电压采用+12V,则表12-2中数据相同,转换电压变为:4V 和8V。
此时输出OUT的高、低电平为10V、0.3V。
555 时基电路及其应用实验报告 -回复
555 时基电路及其应用实验报告 -回复一、实验目的本次实验的主要目的是学习和掌握555时基电路的特性和应用。
在实验中,我们将学习如何设计各种555电路,并且对其进行实验验证,以进一步了解555时基电路的工作原理和应用特性。
二、实验原理555时基电路是一种非常常见的集成电路,由于其具有稳定、多功能和低成本等特点,因此被广泛应用于各种电子产品中。
在555时基电路中,有三个主要引脚,分别为GND、Vcc和OUT。
其中GND是地线,Vcc 是电源正极,而OUT则是输出端。
555时基电路包含两个比较器和一个RS锁存器,它的工作原理主要是通过内部RC振荡电路和比较器的比较作用,使输出产生周期性的正弦波形信号或方波信号。
RC振荡电路是由一个电容和一个电阻构成的,通过调整电容和电阻的大小,可以控制555时基电路的振荡频率。
而比较器则用于判断输出信号的状态,一般来说,当正弦波形信号的振幅大于参考电压时,输出为高电平,反之则为低电平。
RS锁存器则用于控制555时基电路输出的状态,当RS锁存器的S端输入高电平时,输出为高电平,当R端输入高电平时,输出为低电平。
而如果S和R端都输入高电平,输出则会变成不确定状态。
基于以上原理,我们可以设计出各种不同类型的555电路,包括定时器、频率计、脉冲发生器、电压控制振荡器、触发调制器等等,具体实验方法和设计流程如下。
三、实验方法1. 实验材料和设备(1)555芯片一个(2)0.1μF电容两个(3)2.2μF电容一个(4)10kΩ电阻一个(5)100kΩ电阻一个(6)10kΩ变阻器一个(7)LED灯一个(8)开关一个(9)220V AC电源一个(10)电源线和测试线若干(11)面包板一个2. 实验步骤实验1. 单稳态触发器电路实验(1)将555芯片插入面包板,将其Vcc脚位连接到电源正极,将GND脚位连接到地线。
(2)将2.2μF电容连接到555芯片的第6脚和GND之间。
(3)将一个10kΩ电阻连接到555芯片的第6脚和第7脚之间。
器件实验报告八—555集成定时器及其应用
555集成定时器及其应用实验报告一、实验内容与目的1.单稳态触发器功能的测试,对于不同的外界元件参数,测定输出信号幅度和暂稳时间。
2.多谐振荡器功能的测试与验证,给定一个外界元件,测量输出波形的频率、占空比,并且计算理论值,算出频率的相对误差。
实验仪器:自制硬件基础电路实验箱,双踪示波器,数字万用表,集成定时器NE555 2片;电阻100kΩ、10kΩ各2只;51kΩ、5.1kΩ、4.7kΩ各1只;电容30μF、10μF、0.1μF、2200pF各1只;电位器100kΩ1只;元器件:LM555。
二、实验预习内容:本实验旨在了解555定时器的内部结构和工作原理:单稳态触发器、多谐振荡器的工作原理。
实验资料:(1)构成单稳态触发器电路如下图所示,接通电源→电容C充电(至2/3Vcc)→RS触发器置0→Vo =0,T导通,C放电,此时电路处于稳定状态。
当2加入VI<1/3Vcc时,RS触发器置1,输出Vo=1,使T 截止。
电容C开始充电,按指数规律上升,当电容C 充电到2/3Vcc时,A1翻转,使输出Vo=0。
此时T又重新导通,C很快放电,暂稳态结束,恢复稳态,为下一个触发脉冲的到来作好准备。
其中输出Vo脉冲的持续时间tw=1.1RC,一般取R=1kΩ--10MΩ,C>1000PF,只要满足VI的重复周期大于tp0 ,电路即可工作,实现较精确的定时。
(2) 多谐振荡器电路如下图所示,电路无稳态,仅存在两个暂稳态,亦不需外加触发信号,即可产生振荡(振荡过程自行分析)。
电容C在1/3Vcc--2/3Vcc之间充电和放电,输出信号的振荡参数为:周期T=0.7 C(R1+2R2)频率f=1/T=1.44/(R1+2R2)C,占空比D=( R1+R2 )/( R1+2R2)。
555电路要求R1与R2 均应大于或等于1kΩ ,使R1+R2 应小于或等于3.3MΩ。
三、实验过程与数据分析1.单稳态触发器逻辑功能的测试。
物理学实验报告 ——555时基电路及其应用
XXXXXX实验报告学院:专业:班级:成绩:姓名:学号:组别:组员:实验地点:实验日期:指导教师签名:实验八项目名称:555时基电路及其应用一、实验目的1、熟悉555型集成时基电路结构、工作原理及其特点2、掌握555型集成时基电路的基本应用二、实验设备1、数字电路实验箱2、数字示波器3、信号发生器4、 555×2 2CK13×2 电位器、电阻、电容若干三、实验内容及步骤1、多谐振荡器按图8-3接线,用双踪示波器观测vc 与vo的波形,并简要画出vc与vo的波形,测定频率。
(信号周期理论计算公式:T=tw1+tw2, tw1=0.7(R1+R2)C, tw2=0.7R2C)表8-2 多谐振荡器实验数据Vs黄色 Vo蓝色2、施密特触发器按图8-6接线,输入信号由信号发生器提供,预先调好vS的频率为1KHz,接通电源,逐渐加大vS 的幅度,观测输出波形,简要画出vS和v o的波形,依照图8-7,测绘电压传输特性。
四、实验总结分析、总结555集成芯片实验结果:T=tw1+tw2, tw1=0.7(R1+R2)C, tw2=0.7R2C已知555电路要求R1 与R2 均应大于或等于1KΩ,但R1+R2应小于或等于3.3MΩ本实验中,R1及R2均取5.1KΩ,C为0.1u。
由已知数据可以演算出理论值即信号周期为107.1 us,高电平持续时间为71.4 us,低电平持续时间为35.7 us。
通过软件仿真可得相关测量数据。
即即信号周期为106.756 us,高电平持续时间为71.212 us,低电平持续时间为36.102 us。
555定时器主要是与电阻、电容构成充放电电路,并由两个比较器来检测电容器上的电压,以确定输出电平的高低和放电开关管的通断。
这就很方便地构成从微秒到数十分钟的延时电路,可方便地构成单稳态触发器,多谐振荡器,施密特触发器等脉冲产生或波形变换电路。
555时基集成电路的实验与制作技巧
555触摸定时开关集成电路IC1是一片555定时电路,在这里接成单稳态电路。
平时由于触摸片P端无感应电压,电容C1通过555第7脚放电完毕,第3脚输出为低电平,继电器KS释放,电灯不亮。
当需要开灯时,用手触碰一下金属片P,人体感应的杂波信号电压由C2加至555的触发端,使555的输出由低变成高电平,继电器KS吸合,电灯点亮。
同时,555第7脚内部截止,电源便通过R1给C1充电,这就是定时的开始。
当电容C1上电压上升至电源电压的2/3时,555第7脚道通使C1放电,使第3脚输出由高电平变回到低电平,继电器释放,电灯熄灭,定时结束。
定时长短由R1、C1决定:T1=1.1R1*C1。
按图中所标数值,定时时间约为4分钟。
D1可选用1N4148或1N4001。
单电源变双电源电路附图电路中,时基电路555接成无稳态电路,3脚输出频率为20KHz、占空比为1:1的方波。
3脚为高电平时,C4被充电;低电平时,C3被充电。
由于VD1、VD2的存在,C3、C4在电路中只充电不放电,充电最大值为EC,将B端接地,在A、C两端就得到+/-EC的双电源。
本电路输出电流超过50mA。
简易催眠器时基电路555构成一个极低频振荡器,输出一个个短的脉冲,使扬声器发出类似雨滴的声音(见附图)。
扬声器采用2英寸、8欧姆小型动圈式。
雨滴声的速度可以通过100K电位器来调节到合适的程度。
如果在电源端增加一简单的定时开关,则可以在使用者进入梦乡后及时切断电源。
直流电机调速控制电路这是一个占空比可调的脉冲振荡器。
电机M是用它的输出脉冲驱动的,脉冲占空比越大,电机电驱电流就越小,转速减慢;脉冲占空比越小,电机电驱电流就越大,转速加快。
因此调节电位器RP的数值可以调整电机的速度。
如电极电驱电流不大于200mA时,可用CB555直接驱动;如电流大于200mA,应增加驱动级和功放级。
图中VD3是续流二极管。
在功放管截止期间为电驱电流提供通路,既保证电驱电流的连续性,又防止电驱线圈的自感反电动势损坏功放管。
实验九 555时基电路及其应用
实验九 555时基电路及其应用一、实验目的1.熟悉555型集成时基电路结构、工作原理及其特点。
2.掌握555型集成时基电路的基本应用。
二、实验原理集成时基电路又称为集成定时器或555电路,是一种数字、模拟混合型的中规模集成电路,应用十分广泛。
外加电阻、电容等元件可以构成多谐振荡器,单稳电路,施密特触发器等。
它是一种产生时间延迟和多种脉冲信号的电路,由于内部电压标准使用了三个5K 电阻,故取名555电路。
其电路类型有双极型和CMOS 型两大类,二者的结构与工作原理类似。
几乎所有的双极型产品型号最后的三位数码都是555或5567所有的CMOS 产品型号最后四位数码都是7555或7556,二者的逻辑功能和引脚排列完全相同,易于互换。
555和7555是单定时器。
556和7556是双定时器。
双极型的电源电压DD U =+5V~+15V,输出的最大电流可达200mA,CMOS 型的电源电压为十3V~+18V,能直接驱动小型电机、继电器和低阻抗扬声器。
1.555定时器的工作原理555定时器原理图及引线排列如图1所示。
其功能见表1。
定时器内部由比较器、分压电路、RS 触发器及放电三极管等组成。
分压电路由三个5K 的电阻构成,分别给1A 和2A 提供参考电平2/3DD U 和1/3DD U 。
1A 和2A 的输出端控制RS 触发器状态和放电管开关状态。
当输入信号自6脚输入大于2/3DD U 时,触发器复位,3脚输出为低电平,放电管T 导通;当输入信号自2脚输入并低于1/3DD U 时,触发器置位,3脚输出高电平,放电管截止。
4脚是复位端,当4脚接入低电平时,则o U =0;正常工作时4接为高电平。
5脚为控制端,平时输入2/3DD U 作为比较器的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制。
如果不在5脚外加电压通常接0.01μF 电容到地,起滤波作用,以消除外来的干扰,确保参考电平的稳定。
数电实验 555时基电路及设计
2.7 555时基电路及设计1.实验目的(1)掌握555时基电路的结构和工作原理,学会对此芯片的正确使用。
(2)学会分析和测试用555时基电路构成的多谐振荡,单稳态触发器两种典型电路。
2.实验仪器设备(1)数字电路实验箱。
(2)数字万用表。
(3)双踪示波器。
(4)NE555定时器 1片二极管1N4148 2个电位器1K、10K、100K 各一只电阻510Ω、1K、2K、5K1、6K2、10K、12K、15K、20K、51K、100K 各一只电容 3300PF、6800PF、0.01uF、O.01uF、0.1uF、1uF、10uF、47uf、100uF 各一只3.预习(1)复习NE555芯片的结构和工作原理。
(2)复习NE555芯片结构图和管脚图。
(3)复习实验所用的相关原理。
(4)按要求设计实验中的各电路。
4.实验原理(1)555时基电路(集成定时器电路)。
所有内部参考电压使用了3个5kΩ的电阻分压,都称为555集成定时器。
555电路是一种数字和模拟混合型的中规模集成电路,它能产生时间延迟和多种脉冲信号,应用十分广泛。
(2)555定时器的结构图及原理。
555定时器含有3个分压电阻和两个高、低电平电压比较器C1、C2,一个基本RS触发器,一个放电开关管T。
高电平比较器C1的同相输入端参考电平为2VCC/3,低电平比较器C2的反相输入端的参考电平为VCC/3,C1与C2的输出端控制基本RS触发器状态和放电管开关状态。
当输入信号自6管脚输入并超过参考电平2VCC/3时,触发器置0,定时器的输出端3管脚输出低电平,同时放电开关管导通;当输入信号自2管脚输入并低于VCC/3时,触发器置1,定时器的3管脚输出高电平,同时放电开关管截止。
复位端为零是电路被复位,平时复位端开路。
VC是外接控制电压输入端(5管脚),当VC外接一个输入电压时,则改变比较器的参考电压(UT+=UVC, UT-=UVC/2);不接外加电压时,通常接一个0.01µF的电容器到地,起滤波作用,以消除外来干扰,确保参考电平的稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NE555时基集成电路实验
2012年04月01日11:41 来源:本站整理作者:灰色天空我要评论(0)
1.常用电子元器件简介
(1)名称·电路符号·文字符号
(2)555时基集成电路
555时基集成电路是数字集成电路,是由21个晶体三极管、4个晶体二极管和16个电阻组成的定时器,有分压器、比较器、触发器和放电器等功能的电路。
它具有成本低、易使用、适应面广、驱动电流大和一定的负载能力。
在电子制作中只需经过简单调试,就可以做成多种实用的各种小电路,远远优于三极管电路。
555时基电路国内外的型号很多,如国外产品有:NE555、LM555、A555和CA555等;国内型号有5GI555、SL555和FX555等。
它们的内部结构和管脚序号都相同,因此,可以直接互相代换。
但要注意,并不是所有的带555数字的集成块都是时基集成电路,如MMV555、AD555和AHD555等都不是时基集成电路。
常见的555时基集成电路为塑料双列直插式封装(见图5-36),正面印有555字样,左下角为脚①,管脚号按逆时针方向排列。
(图5-36)
555时基集成电路各管脚的作用:脚①是公共地端为负极;脚②为低触发端TR,低于1/3电源电压以下时即导通;脚③是输出端V,电流可达2000mA;脚④是强制复位端MR,不用可与电源正极相连或悬空;脚⑤是用来调节比较器的基准电压,简称控制端VC,不用时可悬空,或通过0.01μF电容器接地;脚⑥为高触发端TH,也称阈值端,高于2/3电源电压发上时即截止;脚⑦是放电端DIS;脚⑧是电源正极VC。
555时基集成电路的主要参数为(以NE555为例)电源电压4.5~16V。
输出驱动电流为200毫安。
作定时器使用时,定时精度为1%。
作振荡使用时,输出的脉冲的最高频率可达500千赫。
使用时,驱动电流若大于上述电流时,在脚③输出端加装扩展电流的电路,如加一三极管放大。
(3)音乐片集成电路
它同模仿动物叫声和人语言集成电路都是模拟集成电路,采用软包装,即将硅芯片用黑的环氧树脂封装在一块小的印刷电路板上。
由于集成电路内不宜制作电感、电容及可调电阻等元器件,为了发挥它的作用,必须外接一些元器件。
注意:集成电路片在焊接时不能带电操作,只有焊接后,检查无误,才能接通电源。
2.555时基集成电路基础电路实验
为了便于利用较少的元器件,而达到基本学会555时基集成电路的制作和应用能力,我们筛选了以下元器件供大家实验参考(以下电路图5-37中不再标出数值)。
R1是光敏电阻、R2=10K、R3=2K、R4=200Ω、R5=200Ω、Rp是150K、RT是热敏电阻、IC1是NE555、IC2是焊有三极管和电阻的音乐片、红绿发光管VD1和VD2各一个、SB是按键开关、C1=0.01μF、C2=0.04μF、C3=10μF、C4=47μF、C5=100μF(C3、C4和C5为电解电容器,耐压应当大于6V)、GB=6V、喇叭为8Ω。
(1)触摸电路
这是555时基集成电路的一个特长,具有电路翻转功能,称为双稳工作方式。
图5-38是最典型的双稳电路。
图中“开”和“关”是两个金属片(铁片或铜片),当手触摸“开”金属片时,人体感应到的脉冲信号就输入到②脚,此时③脚输出高电位,发光二极管发亮。
当手摸一下“关”金属片,电路进行翻转,此时③脚输出低电位,发光二极管灭。
图5-37
应注意:发光二极管的两个管脚有正负极之分,焊接(连接)时不能搞错。
当电路没有接金属片实验时,手应沾一点水或用手拿钥匙去接触管脚增大电感量。
NE555时基集成电路实验(2)
2012年04月01日11:41 来源:本站整理作者:灰色天空我要评论(0)
(2)延时电路
延时电路有两种,一种是延时关电路,如楼道灯就是这种电路;另一种是延时开电路,这种电路也叫定时电路。
图5-38是555时基集成电路构成的延时关电路。
当按动按键开关SB时(按下后手即离开),使C4放电,触发脚③输出高电位,发光二极管亮,定时开始。
当C放电结束通过R 充电,电压从零上升到555电源电压的2/3时,脚③输出低电位,发光二极管自动熄灭,定时结束。
图5-38
实验中先将可调电阻的动片接触点拧到中间位置(约75K左右),实验时增大或减少电阻值可以发现发光二极管亮的时间随之增长或减少。
拆下C4,换C3和C5会发现电容量越大发光二极管亮的时间也越长。
这就是说延时的长短由RP和C数值决定,电阻值越大、电容值越大,延时时间越长。
在科技制作中可根据需要更换电阻和电容,以达到延时目的。
(3)闪光电路
图5-39中555时基集成电路由输入端R3、RP和C4组成一个振荡电路,脚③输出的电平不断高低翻转,当脚③输出低电位时,VD1导通发光,VD2灭;当脚③输出低电位时,VD1灭,VD2导通发光。
这样红绿发光二极管交替发光闪烁。
图5-39
实验时先将可调电阻动片的接触点拧到中间位置,然后再将电阻值增大或者减少,这时发光二极管交替发光的时间也随之增大或者减少,但并不十分明显。
如果分别用C5和C3去替换C4,交替发光时间的长短就十分明显了。
其振荡频率(即每秒发光二极管的闪烁次数)只要改变RP的阻值和C的电容量,就能实现。
(4)音响电路
只要把闪光电路中输出端接扬声器(喇叭),如图5-40所示,就成为一个音响器。
图5-40
实验时先将可调电阻拧到中间位置,然后慢慢将电阻值增大减少,音调也随之改变。
如果用C2替换C1会发现音调变低。
在电子制作中调整电阻阻值或更换电容量达到自己需要的音调。
(5)光控电路
图5-41中光敏电阻和电阻组成一个简单的分压器,脚②和脚⑥接在分压点上。
当光照较大时,光敏电阻呈低电阻,因此,分压点的电位较高,当脚⑥电位在2/3电源电压以上时,555时基集成电路内部的上比较器处于复位状态,输出端脚③为低电平,无电流通过。
当无光或光弱时,光敏电阻呈高电阻,分压点为低电位,当脚②电位在1/3电源以下时,555时基集成电路内部的下比较器处于置位状态(导通),脚③输出高电平,使发光二极管VD1发光。
图5-41
实验时先将可调电阻的动片接触点拧到中间位置,电路连接好后,用黑色塑料笔帽(不能用金属笔帽)或其他不透光的物品套在光敏电阻上,这时发光二极管亮(如果不亮调整可调
阻值,使发光二极管亮)。
如果要在某一特定暗度(不是全黑)下使发光二极管亮,应在所需的暗度下慢慢减少可调电阻阻值,使发光二极管发光,而遇到比这个暗度稍亮的情况后,发光二极管不发光即可,这往往需要反复调整几次才行。
NE555时基集成电路实验(3)
2012年04月01日11:41 来源:本站整理作者:灰色天空我要评论(0)
(6)温度控制电路
图5-42电路中使用热敏电阻器作为头,插入所要控制的物体中去,当温度升高时,热敏电阻阻值减少,利用这个特点通过电路控制所需的温度。
图5-42
电路连接好后,实验时先将热敏电阻器放入热水中,可调电阻值由大向小慢慢调整,使发光二极管刚好发光,当热敏电阻从热水取出,发光二极管立即灭,表示水温超过这个温度时,发光二极管发光提示,不到这个温度不发光。