第一部分 第二章 2.4 第一课时 等比数列

合集下载

高中数学第二章数列2.4等比数列第1课时等比数列的概念与通项公式同步aa高一数学

高中数学第二章数列2.4等比数列第1课时等比数列的概念与通项公式同步aa高一数学

(2)a1=qan-n 1=5642-51=5,故 a1=5. (3)a3=a1·q2,即 8=2q2, 所以 q2=4,所以 q=±2. 当 q=2 时,an=a1qn-1=2·2n-1=2n, 当 q=-2 时,an=a1qn-1=2(-2)n-1=(-1)n-12n, 所以数列{an}的公比为 2 或-2, 对应的通项公式分别为 an=2n 或 an=(-1)n-12n.
所以 a1=q-42q4=12-42124=96. 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7=a1q4·a1q6=a21q10=962·1210=9. 所以 G=±3. 即 a5,a7 的等比中项为±3.
归纳升华 等比中项的三点认识
1.当 a,b 同号时,a,b 的等比中项有两个;当 a, b 异号时,没有等比中项.
2.在一个等比数列中,从第二项起,每一项(有穷数 列的末项除外)都是它的前一项与后一项的等比中项.
3.“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),要特别注意限定的条件,否则是不等价的.可 以用它来判断或证明三个数成等比数列,同时还要注意到 “a,G,b 成等比数列”与“G=± ab”是不等价的.
又 an=1,所以 3212n-1=1, 即 26-n=20,所以 n=6. 法二 因为 a3+a6=q(a2+a5), 所以 q=12. 由 a1q+a1q4=18,知 a1=32. 由 an=a1qn-1=1,知 n=6.
归纳升华 1.在已知 a1 和 q 的前提下,利用公式 an=a1qn-1 可 求出等比数列中任意一项. 2.在通项公式中知道 a1、q、n、an 四个量中的任意 三个,可求得另一个量.
[变式训练] (1)已知-1,x,-4 成等比数列,则 x

新人教A版高中数学【必修5】 第二章 2.4等比数列(一)课时作业练习含答案解析

新人教A版高中数学【必修5】 第二章 2.4等比数列(一)课时作业练习含答案解析

§2.4 等比数列(一) 课时目标1.理解等比数列的定义,能够利用定义判断一个数列是否为等比数列.2.掌握等比数列的通项公式并能简单应用.3.掌握等比中项的定义,能够应用等比中项的定义解决有关问题.1.如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0).2.等比数列的通项公式:a n =a 1q n -1. 3.等比中项的定义如果a 、G 、b 成等比数列,那么G 叫做a 与b 的等比中项,且G =±ab .一、选择题1.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .81答案 B解析 由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27.2.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于( )A .64B .81C .128D .243答案 A解析 ∵{a n }为等比数列,∴a 2+a 3a 1+a 2=q =2. 又a 1+a 2=3,∴a 1=1.故a 7=1·26=64.3.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( ) A .1+ 2 B .1- 2C .3+2 2D .3-2 2答案 C解析 设等比数列{a n }的公比为q ,∵a 1,12a 3,2a 2成等差数列,∴a 3=a 1+2a 2,∴a 1q 2=a 1+2a 1q ,∴q 2-2q -1=0,∴q =1± 2.∵a n >0,∴q >0,q =1+ 2.∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2. 4.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-9答案 B解析 ∵b 2=(-1)×(-9)=9且b 与首项-1同号,∴b =-3,且a ,c 必同号.∴ac =b 2=9.5.一个数分别加上20,50,100后得到的三个数成等比数列,其公比为( )A.53B.43C.32D.12答案 A解析 设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25,∴这三个数45,75,125,公比q 为7545=53.6.若正项等比数列{a n }的公比q ≠1,且a 3,a 5,a 6成等差数列,则a 3+a 5a 4+a 6等于() A.5-12 B.5+12C.12 D .不确定答案 A解析 a 3+a 6=2a 5,∴a 1q 2+a 1q 5=2a 1q 4,∴q 3-2q 2+1=0,∴(q -1)(q 2-q -1)=0 (q ≠1),∴q 2-q -1=0,∴q =5+12 (q =1-52<0舍)∴a 3+a 5a 4+a 6=1q =5-12.二、填空题7.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n =________. 答案 4·(32)n -1解析 由已知(a +1)2=(a -1)(a +4),得a =5,则a 1=4,q =64=32,∴a n =4·(32)n -1.8.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则 a 6+a 7=________.答案 18解析 由题意得a 4=12,a 5=32,∴q =a 5a 4=3. ∴a 6+a 7=(a 4+a 5)q 2=(12+32)×32=18.9.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________. 答案 5解析 设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5. 10.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________. 答案 5-12解析 设三边为a ,aq ,aq 2 (q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12.较小锐角记为θ,则sin θ=1q 2=5-12.三、解答题11.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q ,a 4=a 3q =2q ,∴2q +2q =203.解得q 1=13,q 2=3. 当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n .当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3.综上,当q =13时,a n =2×33-n ;当q =3时,a n =2×3n -3. 12.已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *).(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.(1)解 由S 1=13(a 1-1),得a 1=13(a 1-1),∴a 1=-12.又S 2=13(a 2-1),即a 1+a 2=13(a 2-1),得a 2=14.(2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12,又a 2a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列. 能力提升13.设{a n }是公比为q 的等比数列,|q |>1,令b n =a n +1(n =1,2,…),若数列{b n }有连续四项在集合{-53,-23,19,37,82}中,则6q =________.答案 -9解析 由题意知等比数列{a n }有连续四项在集合{-54,-24,18,36,81}中,由等比数列的定义知,四项是两个正数、两个负数,故-24,36,-54,81,符合题意,则q =-32,∴6q =-9.14.已知数列{a n }满足a 1=1,a n +1=2a n +1,(1)求证:数列{a n +1}是等比数列;(2)求a n 的表达式.(1)证明 ∵a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2. ∴{a n +1}是等比数列,公比为2,首项为2.(2)解 由(1)知{a n +1}是等比数列.公比为2,首项a 1+1=2.∴a n+1=(a1+1)·2n-1=2n. ∴a n=2n-1.。

2.4 第1课时等比数列的概念与通项公式

2.4 第1课时等比数列的概念与通项公式

第二章 2.4 第一课时1.若等比数列的首项为4,末项为128,公比为2,则这个数列的项数为( )A .4B .8C .6D .32解析:由等比数列的通项公式得,128=4×2n -1,2n -1=32,所以n =6.答案:C2.在等比数列{a n }中,a 4=4,则a 2·a 6等于( )A .4B .8C .16D .32 解析:由于a 24=a 2·a 6,所以a 2·a 6=16. 答案:C3.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A .32fB .322fC .1225fD .1227f解析:由题知,这十三个单音的频率构成首项为f ,公比为122的等比数列,则第八个单音的频率为(122)7f =1227f .故选D .答案:D 4.在等比数列{a n }中,已知a 1a 3a 11=8,那么a 2a 8=________.解析:∵a 1a 3a 11=(a 1q 4)3=8,∴a 1q 4=2.∴a 2a 8=a 1q ·a 1q 7=(a 1q 4)2=4.答案:45.已知{a n }为等比数列,且a 5=8,a 7=2,该数列的各项都为正数,求a n . 解:∵a 5=a 1·q 4=8,a 7=a 1·q 6=2,∴q 2=28=14,q =±12. 而a n 各项都为正数,∴q =12,a 1=8⎝⎛⎭⎫124=128. ∴a n =a 1·q n -1=128×⎝⎛⎭⎫12n -1=28-n .。

第二章2.4第1课时等比数列的概念及通项公式

第二章2.4第1课时等比数列的概念及通项公式

2. 4等比数列第1课时等比数列的概念及通项公式1•通过实例,理解等比数列的概念并学会简单应用. 2•掌握等比中项的概念并会应用. 3•掌握等比数列的通项公式并了解其推导过程.预冃案*自建迸习j 研读• M •営试新知提炼1.等比数列的定义(1) 从第2项起条件(2) 每一项与它的前一项的比等于同一个常数结论这个数列就叫做等比数列有关概念这个常数叫做等比数列的公比,通常用字母q(q M 0)表示2•等比数列的通项公式门―1a n = aq 1.3. 等比中项若a、G、b成等比数列,称G为a, b的等比中项且G= ± ab.■自我尝试‘1•判断(正确的打“V”,错误的打“x”)(1) 数列1,—1, 1, - 1,…是等比数列.()(2) 若一个数列从第2项起每一项与前一项的比为常数,则该数列为等比数列. ()⑶等比数列的首项不能为零,但公比可以为零. ()(4) 常数列一定为等比数列.()(5) 任何两个数都有等比中项. ()答案:(1)2 (2) x⑶x ⑷x ⑸x2.等比数列{a n} 中, a1 = 2, q = 3,贝U a n 等于()A. 6B. 3x 2n—13. 4与9的等比中项为()A . 6B . - 6=1,C . 2 x 3n —1 D . 6n答案:CA . 6B . - 6=1,C . i6D . 36 答案:C 11 14. 等比数列一10-而,一而0,…的公比为 -------------------- . 1 答案:105. ______________________________________________ 在等比数列{a n }中,已知a n = 4n 3,贝V a 1 = _____________________________________________ , q = ________1答案:1 4探究案讲练互普探究点一等比数列的通项公式H 在等比数列{a n }中, (1) a 4 = 2, a 7= 8,求 a n .(2) a 2 + a 5= 18, a 3+ a 6= 9, a n = 1,求 n. a 4= ag 3,[解](1)因为6 a 7= a 1q , a 1q 3= 2,① 所以a 1q 6= 8,②②3, 由①,得43= 4,从而q = - 4,而a 1q 3= 2,n — 1又a n = 1,所以32 x 即 26-n = 20,故 n = 6.方祛归纳于是a 1 = q 3=M2' 2n -5所以 a n = a 1q n -1 = 2 3a 2 + a 5= a 〔q + a 1q 4 = 18, ①⑵因为25② 1由①,得q =P 从而a 1 = 32.等比数列通项公式的求法a i 和q 是等比数列的基本量,只要求出这两个基本量,问题便迎刃而解.关于 a i 和q的求法通常有以下两种方法:⑴根据已知条件,建立关于a i , q 的方程组,求出a i , q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出 q 后,再求a i ,最后求a n ,这种方法带有一定的技巧性,能简化运算.”i.在等比数列{a n }中,(1) 已知 a i = 3, q = — 2,求 a 6; (2) 已知 a 3= 20, a 6 = i60,求 a n ; …9i 2十(3) 已知 a i = 8〉a n = 3, q = 3,求 n.解:⑴由等比数列的通项公式,得a 6= 3 X (— 2)6— i = — 96.⑵设等比数列的公比为 q ,a i q 2= 20,由已知可得a i q 5= i60,q= 2,解得a i = 5.所以 a n = a i q n — i = 5X 2n — i . ⑶由 a n = a i q n —i ,3,得 n = 4.探究点二等比数列的判定■- 在数列{a n }中,若a n >0,且a n +i = 2a n + 3(n € N *).证明:数列{a n + 3}是等比数列.[证明]法一:因为a n >0, 所以 a n + 3>0.i 9得 3=8 Xn — i又因为a n+1= 2a n+ 3,a n +1 + 3 2a n+ 3+ 3 2 (a n + 3)所以= = =2.a n + 3 a n+ 3 a n + 3所以数列{ a n+ 3}是首项为a i + 3,公比为2的等比数列. 法二:因为a n>0, 所以a n+ 3>0.又因为a n+1= 2a n+ 3,所以a n+ 2= 4a n+ 9.所以(a n+ 2+ 3)(a n + 3) = (4a n+ 12)(a n+ 3)=(2a n+ 6)2=(a n+1+ 3)2.即a n+ 3, a n +1 + 3, a n+2+ 3 成等比数列,所以数列{a n+ 3}是等比数列.Rm貝*本例的条件不变,若a1 = 2,求数列{a n}的通项公式.解:由数列{a n + 3}是等比数列,当a1= 2 时,a1 + 3 = 5,所以数列{a n+ 3}是首项为5,公比q= 2的等比数列,所以a n+ 3 = 5 x 2n-1,即a n= 5 x —1—3.方注归期等比数列的三种判定方法(1)定义法探究点三等比中项及其应用方祛归抽已知等比数列中的相邻三项 a n — 1 , a n , a n + 1,则a n 是a n — 1与a n + 1的等比中项, a n -1 a n +1,运用等比中项解决问题,会大大减少运算过程,同时等比中项常起到桥梁作用, 要认真感悟和领会."!" '||[3.(1)如果一1, a , b , c,— 9 成等比数列,那么()a n + 1—=q(q 为常数且q z 0)等价于{a n }是等比数列. a n (2)等比中项法a n +1 = a n a n + 2(n € N *且a n 丸)等价于{a n }是等比数列. (3)通项公式法a n = a 1q n —1(a 1^0且q z 0)等价于{a n }是等比数列.1”2.已知数列{a n }是首项为2,公差为一1的等差数列,令b n = 1,求证数列{b n }是等比数列,并求其通项公式.解:由已知得,a n = 2+ (n — 1)x (— 1) = 3— n ,1 3-( n + 1)b n + 1 2 故 = ~b n 1 3—n23 — ( n + 1) — 3+ n所以数列{ b n }是等比数列. 因为b 1= 114,所以 b n =X 2n —1 = 2n ― 3[解]由题意知 3 b 2, b ,243, c 这五个数成等比数列,求 32a ,b ,c 的值.23b2= — 2243 X—亦 3ab = — 2 27 27所以b = ±8•当b =—时,2 10243 3 初/曰bc =—五=—2 ,解得 c =3 6 =2 ,2,解得2 a =3 ;27 2同理,当 b =— "8■时,a =— 3, 3 c =—2综上所述,a , b , c 的值分别为2 27 3, 8 ,2 — 27 3, —8,A . b = 3, ac = 9 B. b =— 3, ac = 9 C. b = 3, ac =— 9 D. b =— 3, ac =— 9⑵已知等比数列{a n }的前三项依次为 a — 1, a +1, a + 4,贝U a n = _________解析:(1)因为 b 2= (— 1)x (— 9) = 9, 且b 与首项—1同号, 所以b =— 3,且a , c 必同号. 所以 ac = b 2= 9.⑵由已知可得(a + 1)2= (a — 1)(a + 4), 解得 a = 5,所以 a 1= 4, a 2= 6,所以a n = 4 x 31. 等比数列定义的再认识(1)每一项与它的前一项的比是同一个常数, 是具有任意性的,但须注意是从“第2项”⑵从“第2项”起,每一项与它的前一项的比是同一个常数,强调的是“同一个”.(3)对于公比q ,要注意它是每一项与它前一项的比,次序不能颠倒,q 不为零.⑷各项不为零的常数列既是等差数列,又是等比数列. 2. 等比数列的通项公式(1)已知首项a 1和公比q ,可以确定一个等比数列.⑵在公式a n = a 1q n 1中有a n , a 1, q , n 四个量,已知其中任意三个量,可以求得第四个量.⑶等比数列{a n }的通项公式的推导所以a 2a 12'答案:(1)B3 n — 1(2)4 x 3起.法一:(迭代法) 根据等比数列的定义,有2n — 2 n —1a n = a n -i q = a n — 2q 2=^= a 2q 2= a i q 1 法二:(累乘法) 根据等比数列的定义,可以得到把以上n -1个等式左右两边分别相乘,得 a 2 a 3 a 4 a i a 2 a 3即 an = q n —1, a i 所以 a n = a 1q n -1.3. 等比中项的理解(1) 当a , b 同号时,a , b 的等比中项有两个;当 a , b 异号时,没有等比中项.(2) 在一个等比数列中, 从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后 一项的等比中项.(3) “a , G , b 成等比数列”等价于“ G 2= ab ”(a , b 均不为0),可以用它来判断或证明 三数是否成等比数列.当堂检测 ♦1•数列{a n }的通项公式是a n = 5x 3n ,则此数列是( )A •公比为3的等比数列B •公比为5的等比数列C .首项为5的等比数列D .公差为3的等差数列 解析:选A.因为a n = 5x 3n , 所以 a n -1= 5x 3n -1(n 》2), 所以当n > 2时,—匹=3.a n - 1由等比数列的定义知,{a n }是公比为3的等比数列. 2.在首项a 1= 1,公比q = 2的等比数列{a n }中,当a n = 64时,序号n 等于()a 2 ar q , a 3 a 4 ar q ,aT q ,a na n -1q ,a n a n -1n -1A. 4B. 5C. 6解析:选 D.因为a n= a i q—1,所以 1 x 2n-1= 64,即1= 26,得 n— 1 = 6,解得n = 7.3. (2015高考广东卷)若三个正数a, b, c成等比数列,其中a = 5+ 2丁6, c= 5—2.6,则b= ________ .解析:因为a, b, c成等比数列,所以b2= a c= (5 + 2 '6) (5 — 2 .:6)= 1.又b>0,所以b= 1.答案:14•求下列各等比数列的通项公式:(1) a1 = —2, a3= —8;(2) a1 = 5,且2a n+1 = —3a n.解:(1)因为a3= a1q2,所以q2= 4,所以q= ±2.当q = 2 时,a n= (—2) x 2n—1= —2n;当q = — 2 时,a n= ( —2)x (—2)n—1= (—2)n.a n+1 3(2)因为q= "a^ =—2,又a1 = 5,3 n—1 所以a n= 5 x — 2.应用案巩固提升丄[A 基础达标]1. 若{a n}为等比数列,且2a4= a6 —a5,则公比是()A. 0 B . 1 或一2D . —1或一2解析:选 C.由已知得2a1q3= a1q5—ag4,得2= q2—q,所以q=—1或q = 2.2. 在等比数列{a n}中,a n>0,且a i+ a2= 1, a3+ a4= 9,贝U a4+ a5 的值为()A. 16B. 27C. 36D. 81解析:选 B.由a3+ a4= q2(a1 + a2)= 9,所以q2= 9,又a n>0,所以q= 3.a4+ a5= q(a3 +a4)= 3X 9 = 27.3. 彳,是等比数列4,2, 4, 2 2,…的()A .第10项B .第11项C.第12项 D .第13项解析:选B.由题意可知q=痣二乎,令¥= 4返x普,所以土= 32=扌210,故n— 1 = 10,即n= 11.4. 在数列{a n}中,a1= 1,点(a n, a n+1)在直线y= 2x上,贝U a4的值为()A . 7B . 8C. 9D. 16解析:选B.因为点(a n, a n+1)在直线y= 2x上,所以a n+1= 2a n.因为a1= 1丰0,所以a n丸,所以{a n}是首项为1,公比为2的等比数列,所以a4= 1 x 23= 8.5. 一个数分别加上20, 50, 100后得到的三个数成等比数列,其公比为()5 4A・3 %3 1CQ DQ解析:选A.设这个数为x,则(50+ x)2= (20 + x) (100 + x).解得x= 25,所以这三个数为45, 75, 125,75 5公比q为45= 36.右一1, 2, a, b成等比数列,则a + b=解析:根据题意有=身=b,解得a=—4, b= 8,—1 2 a所以a+ b= (-4) + 8 = 4.答案:47•下面各数列一定是等比数列的是(填序号).①一1, —2, —4, —8;② 1 , 2, 3, 4;1111③x, x, x, x;④a,評評尹解析:根据等比数列的定义,①④是等比数列,②不是等比数列,③中x可能为0,故③不一定是等比数列.答案:①④1 r,&在等比数列{a n}中,若a4= 27, q= —3,贝卩a6= ,a n =1解析:因为a4= a1q3= a1 —3 = 27,所以a1= —36,所以a6= a1q5= —36x=36x 3 = 3,n- 11a n=—36X—1= (—1)n37—n答案:3 (—1)n37 —n16 a3=—4,且公比为正数.9.已知数列{a n}为等比数列,首项a1=—9,(1)写出此等比数列的通项公式a n;⑵—20丁是否为{a n}中的项?若是,是第几项?若不是,请说明理由.解:(1)设公比为q(q>0),由a3= a i q2,得一4 =—£q2,3解得q=3,16 3 n—1所以a n=—— X 2 .n —1人16、/ 3 1 81⑵令—-X 2 = —204= —7,3 n—1819 3 6得2 =乎X 16= 3,解得n = 7.1故—204是{a n}中的第7项.10.已知数列{a n}的前n项和为S n,对一切正整数n,点(n, S n)都在函数f(x)= 2x+ 2—4的图象上.求证:数列{a n}是等比数列.证明:由题意得S n = 2n+ 2—4,4, n=1,S1, n = 1, 所以a n=S n—S n—1, n》22n+ 1, n》2.又a i= 4 也符合a n= zZln G N*, n》2),所以a n= 2n+ 1(n € N ),a n +1 2n+ 2因为百=产=2,所以数列{a n}是等比数列.[B 能力提升]1. 已知数列{a n},下列选项正确的是()A .若a2= 4n, n € N*,则{a n}为等比数列B. 若a n a n+2= a n+1, n € N*,则{a n}为等比数列C. 若a m a n= 2m n, m, n €N*,则{a n}为等比数列D .若a n a n+ 3= a n+ 1a n+ 2, n€ N*,则{ a n}为等比数列解析:选C•由a2= 4n知|a n| = 2n,则数列{a n}不一定是等比数列;对于 B , D选项,满足条件的数列中可以存在为零的项,所以数列{a n}不一定是等比数列;对于C选项,由a m a na n + 1=2m+n知,a m a n+ 1= 2m+ n+ S两式相除得石 =2(n € N ),故数列{a n}是等比数列.故选C.12. ___________________________________________________________________ 已知等比数列{a n}中,a i= 1,且a i, 2玄3, 2a2成等比数列,则a n = _____________________ 解析:设等比数列{a n}的公比为q,贝U a2= q, a3 = q2.1因为a i, §a3, 2a2成等比数列,1所以4q4= 2q,解得q= 2,所以an= 2n—I答案:2n_13. 已知数列{a n}的前n项和S n= 2a n + 1.(1)求证:{a n}是等比数列,并求出其通项公式;⑵设b n= a n+ 1+ 2a n,求证:数列{b n}是等比数列.解:(1)因为S= 2a n+ 1,所以S n+1= 2a n+1+ 1,S n + 1 —S n = a n+ 1 = (2a n + 1 + 1) —(2a n+ 1) = 2a n+ 1 —2a n,所以a n+ 1 = 2a n①,由已知及①式可知a n M O.a n+1所以由丁 = 2,知{a n}是等比数列.a n由a1= S1= 2a1 + 1,得a1=—1,所以a n = —2n—1.⑵证明:由(1)知,a n= —2n—1,所以b n= a n+1+ 2a n=—2n—2X 2n—1=—2X 2n=—2n +1= —4X 2n —1.所以数列{b n}是等比数列.4. (选做题)已知等比数列{a n}中,a1 = 1,公比为q,且b n= a n+1—a n.(1)判断数列{b n}是否为等比数列?说明理由;⑵求数列{b n}的通项公式.解:⑴因为等比数列{a n}中,a i= 1, 公比为q,所以a n = 1 x q n—1= q n一1, 若q = 1 ,贝y a n=1 , b n = a n+ 1 —a n= 0,所以数列{b n}是各项均为0的常数列,不是等比数列.若q丰1,由于b n+ 1a n+2—a n+1 q n+1—q nb n - =a n+1—a n = q n—q n-1q n(q —1)=q,q n —1(q —1)所以数列{ b n}是首项为b1= a2—a1= q —1,公比为q的等比数列.⑵由(1)可知,当q = 1时,b n= 0;当q 工 1 时,b n= (q —1)q n—1。

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

高中数学 第二章 数列 2.4.1 等比数列的概念及通项公式练习 新人教A版必修5-新人教A版高一必

第1课时等比数列的概念及通项公式课后篇巩固探究A组1.若a,b,c成等差数列,则一定()A.是等差数列B.是等比数列C.既是等差数列也是等比数列D.既不是等差数列也不是等比数列解析因为a,b,c成等差数列,所以2b=a+c,于是,所以一定是等比数列.答案B2.在等比数列{a n}中,a2 017=-8a2 014,则公比q等于()A.2B.-2C.±2D.解析由a2 017=-8a2 014,得a1q2 016=-8a1q2 013,所以q3=-8,故q=-2.答案B3.在等比数列{a n}中,a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为()A.16B.27C.36D.81解析由a2=1-a1,a4=9-a3,得a1+a2=1,a4+a3=9.设公比为q,则q2==9.因为a n>0,所以q=3,于是a4+a5=(a1+a2)q3=27.答案B4.已知等差数列{a n}的公差为2,若a1,a3,a4成等比数列,则a2=()A.-4B.-6C.-8D.-10解析∵a4=a1+6,a3=a1+4,a1,a3,a4成等比数列,∴=a1·a4,即(a1+4)2=a1·(a1+6),解得a1=-8,∴a2=a1+2=-6.故选B.答案B5.已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=()A.2n-1B.C.D.解析由S n=2a n+1,得S n=2(S n+1-S n),即2S n+1=3S n,.又S1=a1=1,所以S n=,故选B.答案B6.已知等比数列{a n},a3=3,a10=384,则该数列的通项a n=.解析设公比为q.∵=q7==27,∴q=2.∴a n=a3q n-3=3·2n-3.答案3·2n-37.在数列{a n}中,已知a1=3,且对任意正整数n都有2a n+1-a n=0,则a n=.解析由2a n+1-a n=0,得,所以数列{a n}是等比数列,公比为.因为a1=3,所以a n=3·.答案3·8.在等比数列{a n}中,若a1=,q=2,则a4与a8的等比中项是.解析依题意,得a6=a1q5=×25=4,而a4与a8的等比中项是±a6,故a4与a8的等比中项是±4.答案±49.导学号04994040已知数列{a n}是等差数列,且a2=3,a4+3a5=56.若log2b n=a n.(1)求证:数列{b n}是等比数列;(2)求数列{b n}的通项公式.(1)证明由log2b n=a n,得b n=.因为数列{a n}是等差数列,不妨设公差为d,则=2d,2d是与n无关的常数,所以数列{b n}是等比数列.(2)解由已知,得解得于是b1=2-1=,公比q=2d=24=16,所以数列{b n}的通项公式b n=·16n-1.10.已知数列{a n}满足a1=,且a n+1=a n+(n∈N*).(1)求证:是等比数列;(2)求数列{a n}的通项公式.(1)证明∵a n+1=a n+,∴a n+1-a n+.∴.∴是首项为,公比为的等比数列.(2)解∵a n-,∴a n=.B组1.若a,b,c成等差数列,而a+1,b,c和a,b,c+2都分别成等比数列,则b的值为()A.16B.15C.14D.12解析依题意,得解得答案D2.在等比数列{a n}中,a1=1,公比|q|≠1.若a m=a1a2a3a4a5,则m等于()A.9B.10C.11D.12解析∵a m=a1a2a3a4a5=q·q2·q3·q4=q10=1×q10,∴m=11.答案C3.已知等比数列{a n},各项都是正数,且a1,a3,2a2成等差数列,则=()A.3+2B.1-C.1+D.3-2解析由a1,a3,2a2成等差数列,得a3=a1+2a2.在等比数列{a n}中,有a1q2=a1+2a1q,即q2=1+2q,得q=1+或1-(舍去),所以=q2=(1+)2=3+2.答案A4.已知-7,a1,a2,-1四个实数成等差数列,-4,b1,b2,b3,-1五个实数成等比数列,则=. 解析由题意,得a2-a1==2,=(-4)×(-1)=4.又b2是等比数列中的第3项,所以b2与第1项同号,即b2=-2,所以=-1.答案-15.已知一个等比数列的各项均为正数,且它的任何一项都等于它的后面两项的和,则它的公比q=.解析依题意,得a n=a n+1+a n+2,所以a n=a n q+a n q2.因为a n>0,所以q2+q-1=0,解得q=(q=舍去).答案6.若数列a1,,…,,…是首项为1,公比为-的等比数列,则a5=.解析由题意,得=(-)n-1(n≥2),所以=-=(-)2,=(-)3,=(-)4,将上面的四个式子两边分别相乘,得=(-)1+2+3+4=32.又a1=1,所以a5=32.答案327.已知数列{a n}满足S n=4a n-1(n∈N*),求证:数列{a n}是等比数列,并求出其通项公式.解依题意,得当n≥2时,S n-1=4a n-1-1,所以a n=S n-S n-1=(4a n-1)-(4a n-1-1),即3a n=4a n-1,所以,故数列{a n}是公比为的等比数列.因为S1=4a1-1,即a1=4a1-1,所以a1=,故数列{a n}的通项公式是a n=.8.导学号04994041已知数列{a n}的前n项和S n=2a n+1,(1)求证:{a n}是等比数列,并求出其通项公式;(2)设b n=a n+1+2a n,求证:数列{b n}是等比数列.证明(1)∵S n=2a n+1,∴S n+1=2a n+1+1,S n+1-S n=a n+1=(2a n+1+1)-(2a n+1)=2a n+1-2a n,∴a n+1=2a n.由已知及上式可知a n≠0.∴由=2知{a n}是等比数列.由a1=S1=2a1+1,得a1=-1,∴a n=-2n-1.(2)由(1)知,a n=-2n-1,∴b n=a n+1+2a n=-2n-2×2n-1=-2×2n=-2n+1=-4×2n-1.∴数列{b n}是等比数列.。

高中数学2.4第一课时等比数列课件新人教A版必修5

高中数学2.4第一课时等比数列课件新人教A版必修5
[解] 依题意 an=2+(n-1)×(-1)=3-n, 于是 bn=123-n.而bbn-n 1=121234- -nn=12-1=2. ∴数列{bn}是首项为14,公比为 2 的等比数列,通项公 式为 bn=2n-3.
等比中项
[例 3] 设等差数列{an}的公差 d 不为 0,a1=9d,若 ak 是 a1
等比中项 [提出问题] 问题:观察“知识点一”中的三个数列,每个数列中任 意连续三项间有何关系? 提示:中间一项的平方等于它前一项与后一项之积.
等比数列的通项公式
[提出问题] 问题:若数列{an}为等比数列,公比为 q,则 a2=a1q,a3 =a2q=a1q2,a4=a3q=a1q3,a5=a4q=a1q4,…,由此你可以 得出什么结论呢? 提示:an=a1qn-1.
与 a2k 的等比中项,则 k 等于
A.2
B.4
ቤተ መጻሕፍቲ ባይዱ
()
C.6
D.8
[解析] ∵an=(n+8)d, 又∵a2k=a1·a2k, ∴[(k+8)d]2=9d·(2k+8)d,
解得 k=-2(舍去),k=4.
[答案] B
4.求解等比中项中的误区
[典例] 等比数列{an}(an>0)满足 a1-a5=90,a2-a4=36, 求 a5,a7 的等比中项.
等比数列的通项公式
[例 1] 在等比数列{an}中: (1)a4=2,a7=8,求 an; (2)a2+a5=18,a3+a6=9,an=1,求 n.
等比数列的判断与证明
[例 2] 已知数列{an}是首项为 2,公差为-1 的等差数列, 令 bn=12an,求证数列{bn}是等比数列,并求其通项公式.
2.4
等比数列
第一课时 等 比 数 列

高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教

高中数学 第二章 数列 2.4 等比数列(第1课时)等比数列的概念及通项公式巩固提升(含解析)新人教

第1课时 等比数列的概念及通项公式[学生用书P105(单独成册)][A 基础达标]1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36D .18解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33a 1=54. 2.在等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项为( )A .±4 B.4 C .±14D .14解析:选A.由题意得(±a 6)2=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6=±4.3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9D .b =-3,ac =-9解析:选B.因为b 是-1,-9的等比中项,所以b 2=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2=ac ,即ac =9.4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )A. 2B.4 C .2D .12解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 23=a 1a 7,设{a n }的公差为d ,则d ≠0,所以(a 1+2d )2=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d=2.5.若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则{a n }的通项公式a n =( ) A .22n -1B.2nC .22n +1D .22n -3解析:选A.由a 2n +1-3a n +1a n -4a 2n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,所以a n +1-4a n =0,a n +1a n=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4n -1=22n -1.故选A.6.下面四个数列:①1,1,2,4,8,16,32,64;②在数列{a n }中,已知a 2a 1=2,a 3a 2=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,a n +1a n=q (q ≠0),其中n ∈N *. 其中一定是等比数列的有________.解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *,有a n +1a n=q (q ≠0),那么{a n }是等比数列.答案:④7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4=8,所以⎩⎪⎨⎪⎧-1+3d =8,-1·q 3=8,所以⎩⎪⎨⎪⎧d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=22=1.答案:18.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为54,则a 1=________.解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,所以a 21q 5=2a 1q 2,化简得a 1q 3=2=a 4. 因为a 4与a 6的等差中项为54,所以a 4+a 6=2×54,所以a 4(1+q 2)=52.所以q 2=14,解得q =±12.则a 1×⎝ ⎛⎭⎪⎫±18=2,解得a 1=±16. 答案:±169.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =12,求n .解:(1)因为a 5=a 1q 4=a 3q 2,所以q 2=a 5a 3=14.所以q =±12.当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫12n -3=28-n ;当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3=32×⎝ ⎛⎭⎪⎫-12n -3.所以a n =28-n或a n =32×⎝ ⎛⎭⎪⎫-12n -3.(2)当a n =12时,即28-n=12或32×⎝ ⎛⎭⎪⎫-12n -3=12,解得n =9.10.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.解:设数列{a n }的公比为q . 因为a 25=a 10,2(a n +a n -2)=5a n -1,所以⎩⎪⎨⎪⎧a 21·q 8=a 1·q 9①2(q 2+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,又数列{a n }为递增数列,所以a 1=q =2,所以a n =2n.[B 能力提升]11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n-1 B.2n -1-1C .2n -1D .2(n -1)解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2n -1=2n ,所以a n =2n-1.12.已知等比数列{a n }的各项均为正数,公比q ≠1,ka 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18D .21解析:选D.ka 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k=a 1q k -12=a 1q 10,因为a 1>0,q ≠1,所以k -12=10,所以k =21,故选D.13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则b n b n -1=2a n 2a n -1=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.(2)由已知,得⎩⎪⎨⎪⎧a 1+d =3,a 1+3d +3(a 1+4d )=56,解得⎩⎪⎨⎪⎧a 1=-1,d =4,于是b 1=2-1=12,公比q =2d =24=16,所以数列{b n }的通项公式b n =12·16n -1=24n -5.14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *). (1)求a 1,a 2;(2)求数列{a n }的通项公式.解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-12.又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=14.(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-12,所以数列{a n }是首项为-12,公比为-12的等比数列,所以a n =⎝ ⎛⎭⎪⎫-12×⎝ ⎛⎭⎪⎫-12n -1=⎝ ⎛⎭⎪⎫-12n.。

等比数列的概念(教案)

等比数列的概念(教案)

§2.4 等比数列第1课时等比数列的概念与通项公式一、教学内容《等比数列》是普通高中课程标准试验教科书《数学》必修5第二章《数列》第四节,内容较多,设置了两个课时,第1课时为等比数列的概念及通项公式.等比数列在我们的学习和生活中有着广泛的实际应用,例如:物理、化学、生物等均有涉及,通过该内容的学习,能够培养学生的多种数学能力。

而且它在教材中起着承前启后的作用,一方面,等比数列是一种特殊的数列,与等差数列既有区别,也有联系,另一方面,它又对进一步学习数列及其应用等内容作准备,且等比数列又是高考的考点之一。

所以本节内容比较重要,地位较突出.二、教学目标1.知识与技能:①通过学习,能说出等比数列的概念,并会使用符号语言表示;②初步掌握等比数列的通项公式及其推导过程和方法;③运用等比数列的通项公式解决一些简单的有关问题.2.过程与方法:通过慨念、公式和例题的教学,渗透类比思想、方程思想、函数思想以及从特殊到—般等数学思想,培养学生观察、比较、概括、归纳等数学能力及思想方法,增强应用意识.3.情感、态度与价值观:通过对等比数列概念的归纳,培养学生科学严谨的思维习惯以及合作探究的精神,体会类比思想.三、教学重难点1.重点:等比数列、等比中项的概念的形成,通项公式的推导及运用.2.难点:等比数列通项公式推导方法的获取.四、学情分析高一学生已经初步形成了自己的学习习惯,好奇心强,有着自主的探究能力和思考辨别能力.但通过考试成绩的分析可以看出,学生基础薄弱,知识的引入及理解都应多加强调,在教学中,需要多设计问题,化难为易,循序渐进,以问题串为载体引导学生分析问题,解决问题.五、教法与学法教法:1.直观演示法:利用多媒体课件直观的展示数列,便于学生观察,发现数列特征.2.活动探究法:引导学生通过创设生活情境获取知识,以学生为主体,使学生的独立探索性得到充分的发挥,培养学生的自学能力、思维能力、活动组织能力.3.集体讨论法:针对学生提出的问题,组织学生进行集体和分组讨论,促使学生在学习中解决问题,培养学生的团结协作的精神.学法:等差数列的概念及通项公式启发我们,使用类比的方法,学习等比数列的概念,通项公式的两种推导方法.六、教学用具多媒体,三角板,彩色粉笔,电子笔七、授课类型新授课八、教学过程(一)课前复习1.等差数列的概念2.通项公式.(二)新授课1.课堂探究1课本48页4个实例.①细胞分裂个数构成的数列②“一尺之锤,日取其半,万世不竭”,将“一尺之锤”看成单位“1”,得到的数列③计算机每轮感染的数量构成的数列④银行存款中,每一年的本利和得到的数列思考:类比等差数列的定义,这4个数列项与项之间都有什么共同特征?试将共同特征用语言叙述出来,并用符号表示.【师生活动】教师引导学生从生活中的实例出发,借助等差数列的概念进行类比推理.【设计意图】以学生熟悉的等差数列的概念为背景,通过思考,引导学生进行分析,使学生形成“等比数列是后一项与前一项的比是同一常数的数列”的感知,从而流畅自然的引出等比数列的概念.2.等比数列的概念一般地,如果一个数列从第..2.项起..,每一项与它的前一项的比.等于同一常数....,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,用字母q )0(≠q 来表示.用数学符号表示为:}{n a 是等比数列⇔),2,0(1+-∈≥≠=N n n q q a a n n 且 【师生活动】在上一个环节的基础上,教师引导学生给出等比数列的概念.【设计意图】流畅的引出等比数列的概念,使学生理解等比数列.3.对概念的再认识(1)公比是否能等于0? 等比数列中有为0的项吗?(2)公比为1的数列是什么数列?(3)既是等差数列又是等比数列的数列存在吗?(4)公比q>0的等比数列有什么特征?公比q<0的等比数列有什么特征?【师生活动】教师引导学生,观察等比数列中的各项的要求.【设计意图】使学生很自然的对等差、等比数列的异同点进行初步认知. 例1.判断下列数列是否为等比数列?若是,找出公比;若不是,请说明理由.① 1, 4, 16, 32.② 0, 2, 4, 6, 8.③ 1,-10,100,-1000,10000.④ 81, 27, 9, 3, 1.⑤ a a a a a ,,,,【师生活动】学生根据等比数列的概念进行判断.【设计意图】1.让学生体会等比数列中公比可正可负,可以大于1,也可以小于1.2.让学生体会等比数列中不能出现0.3.体会非零常数列既是等差数列,又是等比数列.4.课堂探究2 等比数列的通项公式)(11+-∈=N n q a a n n方法:累乘法【师生活动】教师引导学生回顾等差数列的通项公式推导过程,引导学生类比推导等比数列的通项公式.【设计意图】培养学生小组合作,类比推理的学习能力.5.对通项公式的再认识① 等比数列通项公式11-=n n q a a 中,是公比的...1-n 次方... ② 写出通项公式需已知的量是首项..与公比..,它们均不为...0.【师生活动】教师引导学生从等比数列的定义,通项公式的形式,推导过程,对通项公式进行再认识.【设计意图】熟练掌握等比数列的通项公式以及常用变形式.(三)练习导学案上的练习题九、课堂小结1.等比数列的概念2.等比数列的通项公式及推导方法 11-=n n q a a3.本节课所运用的数学思想方法十、课后作业练习册2.4.1等比数列的概念和通项公式十一、板书设计十二、教学反思(附页)。

高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5

高中数学第二章数列2.4.1等比数列的概念及通项公式人教A版必修5

2.等比中项 如果在 a 与 b 中间插入一个数 G,使 a,G,b 成等比数列,那么 G 叫做 a 与 b 的等比中项,这三个数满足关系式 ab=G2.
思考 1 若 G2=ab,则 a,G,b 一定成等比数列吗?
提示:不一定.因为若 G=0,则 a,b 中至少有一个为 0,使 G2=ab,根据等比 数列的定义,a,G,b 不成等比数列.当 a,G,b 全不为零时,若 G2=ab,则 a,G,b 成
探究四
探究二 等比中项的应用
若 a,G,b 成等比数列,则 G 叫做 a 与 b 的等比中项,此时 G=± ������������. 注意:(1)在 a,b 同号时,a,b 的等比中项有两个,异号时,没有等比中项. (2)在一个等比数列中,从第 2 项起,每一项(有穷数列的末项除外)都是 它的前一项与后一项的等比中项. (3)“a,G,b 成等比数列”等价于“G2=ab”(a,b 均不为 0),可以用它来判断 或证明三个数成等比数列. 同时还要注意到“a,G,b 成等比数列”与“G= ������������”不是等价的.
探究一
探究二
探究三
探究四
解:(1)∵a1=-1,an=3an-1-2n+3,∴a2=3a1-2×2+3=-4,a3=3a2-2×3+3=-15.
下面证明{an-n}是等比数列:
������������+1-(n + ������������-n
1)
=
3������������-2(n
+ 1) + ������������-n
是等比数列. (3)通项公式法:若数列{an}的通项公式为 an=a1qn-1(a1≠0,q≠0),则数列

高中数学课件:第二章-2.4《-等比数列-第一课时-等比数列的概念及通项公》式优秀课件(公开课)

高中数学课件:第二章-2.4《-等比数列-第一课时-等比数列的概念及通项公》式优秀课件(公开课)
课前预习·巧设计
第 二 章 数 列
第一 课时
2.4
等比 数列
等比 数列 的概 念及 通项 公式
名 师 课 堂 · 一 点 通
创 新 演 练 · 大 冲 关
考点一 考点二 考点三
N0.1 课堂强化 N0.2 课下检测
返回
返回
返回
[读教材·填要点] 1.等比数列的概念 如果一个数列从第 2 项起,每一项与它的前一项的比 等于 同一常数 ,那么这个数列就叫做等比数列,这个常 数叫做等比数列的 公比 ,通常用字母q表示(设这四个数依次为:q,a,aq,aq2, ① ②
4 2 10 a · q = 2 根据题目条件可得 a+aq=4
1 解得 q=-2 或-2,
返回
当 q=-2 时,a=-4, 所求四个数依次为 2,-4,8,-16, 1 当 q=-2时,a=8, 所求四个数依次为:-16,8,-4,2, 综上这四个数依次为 2,-4,8,-16 或-16,8,-4,2.
返回
解:设公比为q,
2 a1+a1q+a1q =168, 由题意得 4 a1q-a1q =42, 2 a11+q+q =168, ∴ 3 a1q1-q =42,
① ②
返回
1 ②÷ ①得q(1-q)=4, 1 42 解得q=2,∴a1= =96. q1-q3 设G是a5与a7的等比中项, 则G
提示:不能.等比数列的任何一项均不能为0.
返回
[研一题] [例1] =8,求an. 已知等比数列{an},若a1+a2+a3=7,a1a2a3
返回
[自主解答]
2 法一:∵a1a3=a2 ,
a1+a3=5 3 ∴a1a2a3=a2=8,∴a2=2.从而 a1a3=4

高中数学 2.4等比数列(第1课时)课件 新人教A版必修5

高中数学 2.4等比数列(第1课时)课件 新人教A版必修5

当q 1
3
时,a19,an精 品9(1 3)n133n
8
例2: 某种放射性物质不断变化为其他物质,每 过1年剩留的这种物质是原来的80%,则这种物质 的半衰期为多少年(半衰期指放射性物质质量衰变 为原来的一半所需要的时间。附:lg20.3
解:设这种物质的原始质量为1,经过n年后,剩 余量为 a n ,由题意可以知道,数列{ a n } 为一等比 数列。其中,a10.8,q0.8,则
时,a1精1品3,6an13 6(2 3)n71
10 变式1:在等比数列 { a n } 中,a3 1,a2 a4 3 求通项公式。
解:由题意得
a1
q
2
1
a1 q
a1q 3
10 3
a1q a1q3 10
a1q2
3
1 q 2 10 q3
3q210q30
q 3或q 1 3
当 q 3 时,a19 1,an9 13n13n3
等比数列(一)
精品
1
【问题导学】
1、课本提到的以下几个例子:
① 1,2,4,8,…;② 1、1、1、1、 248
③ 1、 2、 0220、 230
它们的共同特征是 :从第2项起,每一项与其前一 项的比是同一个常数.
2、等比数列的定义:从::第2项起,每一项与其前一 项的比是同一个常数的数列,称为等比数列,
an 0.8n
设 an0.8n0.5, 两边取对数得 nlg0.8lg0.5
nlg0.5lg20.33 lg0.8 lg81 0.91
答:这种物质的半衰期大约为3年。
变式2、《必修5》P52 2 精品
9
课堂小结:
ቤተ መጻሕፍቲ ባይዱ

高中数学第二章数列2.4等比数列第1课时等比数列(一)aa高二数学

高中数学第二章数列2.4等比数列第1课时等比数列(一)aa高二数学

② ∴①得
q=12,从而
a1=32.
∴an=a1qn-1=32×12n-1=26-n.
12/9/2021
第三十页,共三十二页。
12/9/2021
第三十一页,共三十二页。
内容 总结 (nèiróng)
2.4 等比数列。1.理解等比数列的定义,能用定义判定一个数列是否为等比数列.。难
点:等比数列的通项公式的应用.。A.21
12/9/2021
第十二页,共三十二页。
∴a1=q-42q4=12-42124=96. 若 G 是 a5,a7 的等比中项,则应有 G2=a5·a7=a1q4·a1q6=a21q10=962·1210=9, ∴a5,a7 的等比中项是±3.
12/9/2021
第十三页,共三十二页。
【方法规律】本题(běntí)要注意同号的两个数的等比中项有 两个,它们互为相反数,而异号的两个数没有等比中项.
12/9/2021
第十四页,共三十二页。
等差数列{an}的公差(gōngchā)不为零,首项a1=1,a2是a1
和a5的等比中项,则数列{an}的前10项之和是( )
A.90
B.100
C.145
D.190
【答案】B
【解析】设公差为 d,由题意得 a22=a1·a5,∵a1=1,∴(1 +d)2=1+4d,∴d2-2d=0,∵d≠0.∴d=2,∴S10=10×1+ 10× 2 9×2=100.故选 B.
B.42。C.63 D.84。C.145
No D.190。【分析】求{an}的通项公式可考虑构造(gòuzào)辅助数列的方法.。3.在
12/9/2021
第十五页,共三十二页。
等比数列(děnɡ bǐ shùliè)的判定
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)每一项与它的前一项的比是同一个常数,强调
的是“同一个”. 返回
(4)对于公比q,要注意它是每一项与它前一项的比, 次序不能颠倒. (5)各项不为零的常数数列,既是等差数列,又是等 比数列. 2.对等比中项的理解 (1)G是a与b的等比中项,则a与b的符号相同,符号 相反的两个实数不存在等比中项. G=±,即等比中项有两个,且互为相反数. (2)当G2=ab时,G不一定是a与b的等比中项.例如 02=5×0,但0,0,5不是等比数列.
返回
等比数列{an}的首项为a1,公比为q(q≠0),则通项 公式为:an= a1qn-1 .
返回
1.对等比数列定义的理解
(1)公比q≠0,这是必然的,也就是说,不存在公比
q=0的等比数列,还可以理解为在等比数列中,不存在 数值为0的项. (2)每一项与它的前一项的比是同一个常数,是具 有任意性的,但须注意是从“第2项”起.
=2an+1”,其他条件不变,试判断数列{an+1}是
否为等比数列.
返回
解:∵an+1=2an+1,∴an+1+1=2(an+1). 由 a1=1,知 a1+1≠0,从而 an+1≠0. an+1+1 ∴ =2(n∈N*). an+1 所以数列{an+1}是以 2 为公比的等比数列.
返回
返回
[例2] 在等比数列{an}中, (1)a4=2,a7=8,求an; (2)a2+a5=18,a3+a6=9,an=1,求n. [思路点拨] 解答本题可将条件转化为关于基本元素a1
倍,且共有64个格子,各个格子里的麦粒数依次是
1,2,22,23,…,263,
返回
(3)某人年初投资10 000元,如果年收益率是5%,那
么按照复利,5年内各年末的本利和依次为
10 000×1.05,10 000×1.052,…,10 000×1.055, 问题:以上数列有何共同特征? 提示:每一个数列从第2项起,每一项与它前一项的 比值都等于同一个常数.
返回
3.若等比数列的前三项分别为5,-15,45,则第5项
是 A.405 C.135 B.-405 D.-135 ( )
解析:∵a5=a1q4,而a1=5,q==-3,∴a5=405. 答案:A
返回
4. 一个各项均为正数的等比数列, 每一项都等于它后面两 项的和,则公比 q= 3 A. 2 5-1 C. 2 3 5 B. 2 5+1 D. 2 ( )
-3
或 an=(-1)n 1·n 3. 3


返回
1 4 法二:∵a6=a2· ,∴-27=-3· .∴q4=81. q q
4
∴q=± 3. 据 an=a2· q
n-2
1 n-2 1 - ,有 an=-3· 或 an=-3· 3 (-3)n 2.
∴an=-3n-3 或 an=(-1)n-1·n-3. 3
返回
解析:依题意 a1=a2+a3,∴a1=a1q+a1q2.∵a1≠0, -1+ 5 -1- 5 ∴q +q-1=0,∴q= 或 q= (舍去 Nhomakorabea. 2 2
2
答案:C
返回
1 5.已知等比数列{an}中,a2=-3,a6=-27.求数列{an}的通 项公式.
返回
解:法一:设等比数列{an}的公比为 q. 1 1 1 a1q=- , a1=- , a1= , 3 9 9 由已知得 解得 或 a1q5=-27, q=3, q=-3. 1 n-1 1 ∴{an}的通项公式是 an=-9· 或 an=9· 3 (-3)n-1, 即 an=-3n
G b 提示:由等比数列的定义可得 a =G,所以 G2=ab.
返回
如果在 a 与 b 中间插入一个数 G,使 a,G,b 成
等比数列
,那么 G 叫做 a,b 的等比中项,这三
个数满足关系式 G=± ab.
返回
返回
问题:若数列{an}为等比数列,公比为q,则: a2=a1q,a3=a2q=a1q2,a4=a3q=a1q3,a5=a4q= a1q4,…,由此你可以得出什么结论呢? 提示:an=a1qn-1.
返回
1.在数列{an}中,a1=2,且对任意自然数n,3an+1-an =0,则an=__________.
an+1 1 1 解析: 由题设 a =3, ∴数列{an}是等比数列, 公比为3, n
1n-1 ∴an=2· . 3
1n-1 答案:2· 3
返回
2.本例题条件中“an+2an-1+3=0(n≥2)”改为“an+1
返回
3.等比数列的通项公式 (1)已知首项a1和公比q,可以确定一个等比数列. (2)在公式an=a1qn-1中,有an,a1,q,n四个量, 已知其中任意三个量,可以求得第四个量.
返回
第一课时
等比数列
返回
返回
返回
[例1]
设数列{an}满足a1=1,an+2an-1+3=0(n≥2),
试判断数列{an+1}是否是等比数列,并指出该数列的首项. [思路点拨] 首先分清该数列的通项是什么,然后根据
返回
定义 一般地,如果一个数列从第 2 项起,
表达式
每一项与它的前一项的比等 于 同一个常数 ,那么这个数列叫做等
比数列,这个常数叫做等比数列的 公比 0 通常用字母q表示(q≠ )
an+1 an =q
(q为常数,q≠0) ,
返回
返回
问题:若在a与b之间插入一个数G,使a,G,b成等比 数列,则G与a,b有何关系?
与q的方程组,求出a1和q,再表示其他量.
返回
[精解详析]
a q3=2 1 所以 6 a1q =8
a =a q3, 4 1 (1)法一:因为 a7=a1q6,
① ②
② 3 3 由 得 q =4,从而 q= 4,而 a1q3=2, ①
2 n 5 2 1 -1 于是 a1= 3= ,所以 an=a1qn =2 3 . q 2
1 n- 1 所以 32×(2) =1, 即 26 n=20,所以 n=6. 1 法二:因为 a3+a6=q(a2+a5),所以 q=2. 由 a1q+a1q4=18,知 a1=32. 由 an=a1qn-1=1,知 n=6.

返回
[一点通]
等比数列基本量的求法
a1和q是等比数列的基本量,只要求出这两个基本量, 其他量便可求出来,法一是常规解法,先求a1,q,再求an, 法二是运用通项公式及方程思想建立方程组求a1和q,这也 是常见的方法.
1n 即第 n 次操作后酒精的浓度是(1-a) . 1 1 当 a=2 时,由 an=(2)n<10,解得 n≥4. 故至少应操作 4 次后才能使酒精浓度小于 10%.
返回
1.等比数列的证明(判断) 等比数列的证明(判断)常有三种方法,即定义法、等比 an+1 中项法和通项法.解答题通常都用定义法,即 a =q(常数). n 这里必须注意两点:①n≥1;②q 为与 n 无关的常数.只 有满足了这两点才能说明此数列为等比数列.
返回
法二:因为 a7=a4q3,所以 q3=4.
2 n 5 3 n-4 所以 an=a4qn-4=2· 4) =2 3 . (
a2+a5=a1q+a1q4=18 (2)法一:因为 a3+a6=a1q2+a1q5=9
③ ④
④ 1 由 得 q=2,从而 a1=32,又 an=1 ③
返回
返回
解析:由题意可得每3分钟病毒占的内存容量构成 一个等比数列,令病毒占据64 MB时自身复制了n 次,即2×2n=64×210=216,解得n=15,从而复制
的时间为15×3=45分钟.
答案:45
返回
7.从盛满a(a>1)升纯酒精的容器里倒了1升然后添满水摇 匀,再倒出1升混合溶液后又用水添满摇匀,如此继续 下去,问:第n次操作后溶液的浓度是多少?当a=2时, 至少应倒几次后才能使酒精的浓度低于10%?
等比数列的定义进行判断.
返回
[精解详析] ∵an+2an-1+3=0(n≥2), an+1 ∴an+1=-2(an-1+1),即 =-2. an-1+1 ∴数列{an+1}是以-2 为公比的等比数列. 其首项为 a1+1=2.
返回
[一点通]
判定数列是等比数列常用的方法
an+1 an (1)定义法: a =q(常数)或 =q(常数)(n≥2)⇔{an} an-1 n 为等比数列. (2)等比中项法 a2 +1=an·n+2(an≠0,n∈N*)⇔{an}为等 a n 比数列. (3)通项法:an=a1qn-1(其中 a1、q 为非零常数, n∈N*)⇔{an}为等比数列.
返回
2.等比数列的通项公式
除了公式an=a1·n-1外,公式an=amqn-m也可以称 q
为通项公式,要根据题目的特点灵活选用公式,使问题
的解答快捷、准确.
返回
点击下图进入
返回
返回
[精解详析] 设从 2011 年 1 月开始,第 n 个月该厂的 生产总值是 an 万元,则 an+1=an+anm%, an+1 ∴ a =1+m%. n ∴数列{an}是首项 a1=a, 公比 q=1+m%的等比数列. ∴an=a(1+m%)n-1. (8 分) (4 分)
∴2012 年 8 月底该厂的生产总值为 a20=a(1+m%)
返回
1 解:设开始的浓度为 1,操作一次后溶液浓度 a1=1-a,设 操作 n 次后溶液的浓度为 an, 1 则操作 n+1 次后溶液的浓度为 an+1=an(1-a).从而建立了 递推关系.
返回
1 1 ∴{an}是以 a1=1-a为首项,公比为 q=1-a的等比数列. ∴an=a1q
n-1
1n =(1-a) ,
20-1
=a(1+m%)19(万元).
相关文档
最新文档