稳恒电流的磁场(上)
第三章 静电场和稳恒磁场1
y
r′
q′
r
q x
( x, y , z ) x = 0 = 0
(1)
ε
z
q
2
O v n 1 2 ε
q
4πε ( x a ) + y 2 + z 2 4πε r 由对称性:a, 0, 0 ) , q ( a, 0, 0 ) , q′ = q : (
r = 3ε 0 E 0 c o s θ
r=a
由真空中电偶极矩 v 在真空中产生的电势
P
v v P r = 4π ε 0 r 3
P P cos θ = 4π ε 0 r 2
v P = 4π ε 0 E 0 a 3
例2.
P75
解:电势是球对称,则 b1 1 = a1 + (R > R3 ) R b2 2 = a2 + ( R 2 > R > R1 ) R 条件:
v δ (x) = 0
v
∫ δ ( x )dV = 1
v x≠0 v x = 0 ∈V
v v x δ x x′ 表示 ( ) v 与 x = 0 的 δ 函数定义相较,则有
v v δ ( x x′) = 0
v v
v 处于 x′点上的单位点电荷密度用函数
∫ δ ( x x′)dV = 1
v v x ≠ x′ v x′ ∈V
1) 2 3) σ ∴
R = R1
R3
2
R2 R1 1
= 1
R→ ∞
= 0, 2 ) 2 ,σ
R = R3 2
R = R2
= 1
R = R3
1
= ε0
1 R
= ε0
2 R
大学物理稳恒磁场
B2
0
r
r2 R2
I
rR
I
0I rR p r
B20R I2r rR
rp
B 0I rR 2r
B
无限长圆柱导体电流外面的磁场与电流
都集中在轴上的直线电流的磁场相同
.
R
r
无限长通电柱面
B2r 0 rR
0I rR p r I
B0 rR
rp
B 0I rR 2r
B
思考:有人说:“环路不环绕
电流时,环路上磁场必处处为
o
( D ) 20I R
B
( E ) 20I 8R
.
[A]
5.如图所示,电流由长直导线 1 经 a 点流 入电阻均匀分布的正方形线框,再由 b 点 流出,经长直导线 2 返回电源(导线 1、2 的延长线均通过 o 点)。设载流导线 1、2 和正方形线框在框中心o 点产生的磁感应 强度分别用 B1、B2、B3 表示,则 o 点的感 应强度大小
单位长度的电流)到处均匀。大小为 j
解:视为无限多平行
长直电流的场。 B
p
分析场点p的对称性
B
因为电流平面是无限大,故与电流平面等距离的 各点B的大小相等。在该平面两侧的磁场方向相反。
.
作一安培回路如图: bc和 da两边被电流平 面等分。ab和cd 与电 流平面平行,则有
L B d lB 2 lojl
(A )BR2B r. (B)BRBr. (C )2BRB r. (D )BR4Br.
.
[B]
4.两半径为R的相同导体细圆环,互相垂直放 置,且两接触点A、B连线为环的直径,现有 电流1沿AB连线方向由A端流入,再由 B端流 出,则环中心处的磁感应强度大小为:
第八章 恒定电流的磁场(一)
一. 选择题: [ D ]1. 载流的圆形线圈(半径a 1 )与正方形线圈(边长a 2 )通有相同电流I .若两个线圈的中心O 1 、O 2处的磁感强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 (A) 1∶1 (B)π2∶1 (C)π2∶4 (D)π2∶8[B ]2.有一无限长通电流的扁平铜片,宽度为a ,厚度不计,电流I 在铜片上均匀分布,在铜片外与铜片共面,离铜片右边缘为b 处的P 点(如图)的磁感强度B的大小为(A) )(20b a I+πμ. (B) b b a a I +πln 20μ.(C) b b a b I +πln 20μ. (D) )2(0b a I +πμ.[ D ]3. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A) I 0μ. (B) I 031μ.(C) 4/0I μ. (D) 3/20I μ.提示[ B ] 4. 图中,六根无限长导线互相绝缘,通过电流均为I ,区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最大?(A) Ⅰ区域. (B) Ⅱ区域.(C) Ⅲ区域.(D) Ⅳ区域.(E) 最大不止一个.提示:加原理判断磁场和磁感应强度的叠根据无限长直导线产生[ C ]5. 在半径为R 的长直金属圆柱体内部挖去一个半径为r 的长直圆柱体,两柱体轴线平行,其间距为a ,如图.今在此导体上通以电流I ,电流在截面上均匀分布,则空心部分轴线上O ′点的磁感强度的大小为(A) 2202R a a I ⋅πμ (B) 22202R r a a I -⋅πμ (C) 22202r R a a I -⋅πμ (D) )(222220ar R a a I -πμ 二. 填空题1.在匀强磁场B 中,取一半径为R 的圆,圆面的法线n与B成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S B d Φ221R B π-提示:2. 一长直载流导线,沿空间直角坐标Oy 轴放置,电流沿y 正向.在原点O 处取一电流元l I d ,则该电流元在(a ,0,0)点处的磁感强度的大小为 204aI d lπμ 方向为Z轴负方向提示:ⅠⅡⅢⅣ aRr O O ′I任意曲面3. 一个密绕的细长螺线管,每厘米长度上绕有10匝细导线,螺线管的横截面积为10cm 2.当在螺线管中通入10 A 的电流时,它的横截面上的磁通量为)(1046W b -⨯π. (真空磁导率μ0 =4π×10-7 T ·m/A)提示:为S 1L21提示:根据安培环路定理5. 一质点带有电荷q =8.0×10-10 C ,以速度v =3.0×105 m ·s -1在半径为R =6.00×10-3 m 的圆周上,作匀速圆周运动.该带电质点在轨道中心所产生的磁感强度B =__6.67×10-7(T ),该带电质点轨道运动的磁矩p m =_7.2×10-7(Am 2)___.(μ0 =4π×10-7 H ·m -1)提示:6. 如图所示,在宽度为d 的导体薄片上有电流I 沿此导体长度方向流过,电流在导体宽度方向均匀分布.导体外在导体中线附近处P 点的磁感强度B的大小为dI20μ提示7. 在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量Φ = 2ln 20a Iπμ提示:俯视图三.计算题1.将通有电流I 的导线在同一平面内弯成如图所示的形状,求D 点的磁感强度B的大小.解:其中3/4圆环在D 处的场 )8/(301a I B μ=AB 段在D 处的磁感应强度 )221()]4/([02⋅=b I B πμ BC 段在D 处的磁感应强度 )221()]4/([03⋅=b I B πμ1B 2B 3B方向相同,故D 点处总的磁感应强度为)223(40321ba I B B B B +=++=ππμ 2..已知半径为R 的载流圆线圈与边长为a 的载流正方形线圈的磁矩之比为2∶1,且载流圆线圈在中心O 处产生的磁感应强度为B 0,求在正方形线圈中心O '处的磁感强度的大小.解:设圆线圈磁矩为1m P 方线圈磁矩为2m P 则211R I P m π= 222a I P m = 由已知条件得: )2/(2122a I R I π=正方形一边在其中心产生的磁感应强度为 )2/(201a I B πμ=正方形各边在其中心产生的磁感应强度大小相等,方向相同,因此中心/O 处的总的磁感应强度的大小为3120200/222aI R a I Bμπμ== 由 RI B 2100μ=得 012μRB I =所以 03/0)/2(B a R B =3. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.解: 圆线圈的总电荷 λπR q 2= ,转动时等效的电流为λωωπλπR R T q I ===/22, 代入环形电流在轴线上产生磁场的公式得2/32230)(2y R R B B y +==ωλμ 方向沿y 轴正向。
大学物理第二十章题解
20-2.如图所示,将一条无限长直导线在某处弯成半径为 R 的半圆形,已知导线中的 电流为 I ,求圆心处的磁感应强度 B .
解 根据毕-萨定律,两直线段导线的电流在 O 点产生的磁感应强度 B 0 ,半圆环形 导线的电流在 O 点产生的磁感应强度 B 1 0I .由叠加原理,圆心
2 2R O 处的磁感应强度
B 1 0I 1 0I 1 0I 0I 2 ,方向垂直纸面向里.
2 2 R 2 2 R 2 2R 4 R
*20-4.如图所示,电流 I 均匀地流过宽为 2a 的无限长平面导体薄板 . P 点到薄板的 垂足 O 点正好在板的中线上,设距离 PO x ,求证 P 点的磁感应强度 B 的大小为
B 0 I arctan a
2a
解 把薄板等分成无限多条宽为 dy 的细长条,
每根细长条的电流 dI I dy ,可视为线电流;无 2a
限长载流薄板可看成由无限多条无限长载流直导线构
成.
y
处的细长条在
P
x
点产生的磁感应强度为
强度为 dB ,二者叠加为沿 Oy 方向的 dB .所以 P 点的磁感应强度 B 沿 Oy 方向, B 的大
解 在1 4 圆周的圆弧 aAb 上,单位长度弧长的线圈匝数为
N 2N 2 R 4 R
在如图 处, d 角对应弧长 dl 内通过的电流
第二十章 稳恒电流的磁场
20-1.如图所示,将一条无限长载流直导线在某处折成直角, P 点在折线的延长线上, 到折线的距离为 a .(1)设导线所载电流为 I ,求 P 点的 B .(2)当 I 20A , a 0.05m ,求 B .
解
(1)根据毕-萨定律, AB 段直导线电流在 P 点产生的磁场 B 0 ; BC 段是
第十三章 稳恒电流的磁场
v Idl
L
r
ˆ r
v r v v µ Idl ×r B = ∫ dB= ∫ 3 L L4 π r
四、毕—萨定律应用 萨定律应用 r 1.载流直导线产生的B r r Idl 在P点产生dB,
X I
⊗ B 统一变量: x, α , r三个变量 统一变量: sinα = cos β
2 v Idl α v 方向:垂直版面向里 L r µ Idl sin α dB = 2 x Z 4π r β1 β µ Idxsinα B= ∫ o 2 a L 4 π r
I
θ
R
•
µ0I θ B= 2R 2 π
例:如图,电流I经过半无限长导线Ⅰ,半圆导线(半径为 R)Ⅱ,半无限长导线Ⅲ,求圆心O点的磁感应强度 B 。
微观本质: 微观本质:
1) 电流是电荷运动的结果;
2) 磁铁是环形电流的定向排列——安培分子 电流假说。
s
应用程序
N
v 二、磁感应强度 (B)
与描述电场类似, 与描述电场类似,运动电荷在磁场中受力的性质引入一 个磁感应强度。 个磁感应强度。
r r 运动电荷在磁场中受力最大: 运动电荷在磁场中受力最大:v ⊥ B
ZnCl2 NH3Cl
依靠某种与静电力完全不 同的力——非静电力。提 非静电力。 同的力 非静电力 供非静电力的装置称为电 源。
四、欧姆定律的微分形式
v j
n λ e γ 令: = v 2m v
2
v E
∆ s u∆ t
v u
γ 称为电导率
令:
v v j =γE
1
γ
= ρ称为电阻率
欧姆定律的微分形式
r n
dSn
v j
稳恒电流的磁场(上)只是分享
稳恒磁场中用运动试探电荷在磁场中的受力研究 磁场。
2020/6/27
12
(1)对运动试验电荷的要求:
①要求此运动电荷产生的磁场应该充分小,小到 它不能影响我们所研究的原来的磁场。
②此电荷的线度应该充分小,小到某一时刻所处 的位置就是一个几何点,故应该要求它还是一个 点电荷。
2020/6/27
22
(4)毕奥-萨伐尔定律的物理意义
表明一切磁现象的根源是电流(运动电荷)产生 的磁场。反映了载流导线上任一电流元在空间任 一点处产生磁感应强度在大小和方向上的关系。 由此定律原则上可以解决任何载流导体在起周围 空间产生的磁场分布。
2020/6/27
13
(2)实验结果:
运动电荷在磁场中受到力的作用,受力大小与 下列因素有关:
①运动速度的大小
②磁场 B
③
V
和B的取向有关
Fm B
q
v
2020/6/27
14
实验发现带电粒子在磁场 中沿某一特定直线方向运 动时不受力,此直线方向 与电荷无关。
q不受力时的运动方向(或 反方向),即为该点B的 方向,其具体指向可由q
dB4π0IRdl2 si n450
毕奥-萨伐尔定律
2020/6/27
21
(2)一段电流源 的磁感应强度
B LdB = L4 u0 Id rl2rˆ
(3)库仑定律与毕奥-萨伐尔定律的异同
①两个定律在各自的领域地位相当,在形式上都是平 方反比律;
②适用对象不同,一个是电性质,一个是磁性质。
③库仑定律可以直接由试验验证,而B-S law 只能间 接验证。
2020/6/27
稳恒电流的磁场
将线圈置于磁场中,当磁场发生变化时,线圈中产生感应电流,并 受到磁场的作用力而发生旋转,实现电磁驱动。
霍尔效应实验
将导体置于磁场中,当电流通过导体时,在导体两侧产生电势差, 这种现象称为霍尔效应,可用于测量磁场强度。
电磁感应现象实验
法拉第实验
通过在导线线圈中切割磁感线,发现导线中产生 感应电流,即电磁感应现象。
稳恒电流的磁场
https://
REPORTING
• 磁场和电流的关系 • 稳恒电流产生的磁场 • 磁场对稳恒电流的作用 • 稳恒电流的磁场应用 • 实验与观察
目录
PART 01
磁场和电流的关系
REPORTING
WENKU DESIGN
安培环路定律
安培环路定律是描述磁场和电流之间关系的物理定律,它指出磁场和电流之间的 关系是线性的,即磁场是由电流产生的,并且电流的存在会导致周围空间中磁场 的形成。
电流在磁场中的受力分析
02
根据左手定则,可以判断电流在磁场中受到的力的方向。
电磁感应
03
当导线在磁场中做切割磁感线运动时,导线中会产生感应电动
势,从而产生感应电流。
PART 03
磁场对稳恒电流的作用
REPORTING
WENKU DESIGN
洛伦兹力
定义
洛伦兹力是指带电粒子在磁场中 所受到的力,其大小与带电粒子 的电荷量、速度和磁感应强度有
磁场对电流的作用力
磁场对电流的作用力是指电流在磁场中受到的力,这个力的 大小和方向取决于电流和磁场的相互位置和方向。
磁场对电流的作用力遵循安培定律,其数学表达式为: F=IBLsinθ,其中F表示作用力,I表示电流,B表示磁场强度,L 表示导线长度,θ表示电流和磁场方向的夹角。
稳恒磁场一章习题解答
稳恒磁场一章习题解答习题9—1 无限长载流空心圆柱导体的内外半径分别为a 、b ,电流在导体截面上均匀分布,则空间各处的B的大小与场点到圆柱中心轴线的距离r 的关系定性地如图所示。
正确的图是:[ ]解:根据安培环路定理,容易求得无限长载流空心圆柱导体的内外的磁感应强度分布为rIa b r a r I B 2)(2)(0022220 )()()(b r b r a a r 所以,应该选择答案(B)。
习题9—2 如图,一个电量为+q 、质量为m 的质点,以速度v沿X 轴射入磁感应强度为B 的均匀磁场中,磁场方向垂直纸面向里,其范围从x =0延伸到无限远,如果质点在x =0和y =0处进入磁场,则它将以速度v从磁场中某一点出来,这点坐标是x =0和[ ]。
(A) qBm y v。
(B) qB m y v2 。
(C) qB m y v 2。
(D) qBm y v。
解:依右手螺旋法则,带电质点进入磁场后将在x >0和y >0区间以匀速v 经一个半圆周而从磁场出来,其圆周运动的半径为qBm R vr BO a b (A) (B) B a b r O B r O a b (C) B Or a b(D) 习题9―1图习题9―2图因此,它从磁场出来点的坐标为x =0和qBm y v2 ,故应选择答案(B)。
习题9—3 通有电流I 的无限长直导线弯成如图三种形状,则P ,Q ,O 各点磁感应强度的大小B P ,B Q ,B O 间的关系为[ ]。
(A) O Q P B B B 。
(B) O P Q B B B 。
(C) P O Q B B B 。
(D) P Q O B B B说明:本题得通过计算才能选出正确答案。
对P 点,其磁感应强度的大小 aI B P 20 对Q 点,其磁感应强度的大小 )221(2180cos 45cos 4135cos 0cos 4000a I a I a I B Q对O 点,其磁感应强度的大小 )21(2424000a I a I aIB O 显然有P Q O B B B ,所以选择答案(D)。
稳恒电流的磁场总结汇总
1.SI J ds =⎰⎰2. 毕奥-萨伐尔定律:34Idl r dB rμπ⨯=034LI r B dl rμπ⨯=⎰3. 有限长载流导线的磁感应强度()()021021sin sin 4cos cos 4 I B z Izμθθπμββπ=-=- !!!zP 1无限长载流导线的磁感应强度 02IB zμπ=!!!4. 载流线圈在轴线上任意一点的磁感应强度()2032222IRB Rzμ=+ !!!圆心处的磁感应强度02IB Rμ=!!!5. 有限长螺线管内部任意一点的磁感应强度()021cos cos 2nIB μθθ=-无限长直螺线管内的磁感应强度 0B n I μ=!!!6. 运动电荷的磁场034q v rB rμπ⨯= 7. 磁偶极子与磁矩磁偶极子:载流线圈(任意形状)。
磁矩:m IS ISn ==其中S Sn = ,n 为面元S 的法线方向单位矢量,与I 的环绕方向成右手螺旋关系。
8. 稳恒磁场的高斯定理 0SB d s =⎰⎰9. 稳恒磁场的安培环路定理0iiLB d l Iμ=∑⎰ 两项注意:(1)虽然B的环量仅与L内的电流有关,但B本身却取决于L 内、外的所有电流。
(2) 当i I 的流动方向与L 的环绕方向成右手螺旋关系时,0i I >,反之0i I <。
10. 无限长载流圆柱体020()2()2Irr R R B Ir R rμπμπ⎧<⎪⎪=⎨⎪>⎪⎩11. 无限大载流平面的磁感应强度大小:02B μα=(其中α为面电流线密度);方向:右手螺线关系。
12. 安培定律-磁场对载流体的作用dF Idl B =⨯13. 在一均匀外磁场中,如果一任意形状的有限平面曲线电流的平面垂直于外磁场,那么平面电流所受到的安培力的大小与由起点到终点连接而成的直线电流所受到的安培力一样,方向垂直于从起点到终点的连线。
推论:处于均匀外磁场中的任意平面闭合载流回路,所受到的安培力=0,但要受到一力矩的作用L m B =⨯处于非均匀外磁场中的闭合载流线圈受到的安培力≠0。
第十一章 稳恒磁场-PPT精品
3
由离子或自由电子(带电粒子)的定向运动而引起的 电流称为传导电流。
解:圆中心处的磁场可视为许多半径不等的圆电流磁场的
叠加。设半径为r的圆形电流,圆形电流为dI,则在中
心的
dB 0dI
2r
方向:垂直盘面向外
R
o
r
dI dq 2rdrrdr
dr
2 2
R
Bd
B R0d I0 Rd r0R
0
02r 2 0
若螺线管为无限长,则有β1=π,β2 =0 方向沿OX轴正向
B 0n I
若点P位于半无限长载流螺线管一端β1=π/2,β2=0
或β1=π/2,β2=π
B
1 2
0nI
长直螺线管内轴线上磁感应强度 分布:中部的磁场可看成均匀
29
§11-5 磁通量、磁场的高斯定理
一、磁感线 1.定义:用来描述磁场分布的一系列曲线。
是位置的函数。磁场力的方向永远垂直 于上述特殊方向与速度组成的平面。
13
磁感应强度的定义
大小
B F max qv
其方向磁场力为零时电荷的运动方向,且磁场力与 速度和磁场强度满足右手螺旋定则。所以,磁场
力又可写为 F qvB
单位:特斯拉 T 1T=1N·A1·m-1
高斯 G 1G=10-4T
r2R2x2R2cs2c
稳恒磁场1
所有电流元产生的 dB 同向。 0 Idl sin B 4 L r2
方向:
统一积分变量:r a / sin
dl ad / sin2
l a cot
0 I B 4a
2
1
sind
I
θ2
0 I B (cos 1 cos 2 ) 4a
Idl
dB
X dB合
0 IR 0 IR B dl 2R 3 L 3 4r 4r
Idl
R I O x
r θ
dB
dB //
dB θ
B
0 IR
2
2 2 3/ 2
2( R x )
P
(2)若不是完整的圆电流,是张 角为α (rad)的弧电流,则 α O 方向? 0 I 在圆心O处: BO R 2 R 2 3、密绕载流直螺线管轴线 R 上的磁场
(书p93. 14.2)
R
密绕→将每匝线圈看作一个 圆形线圈。 N匝 (推导见书p72-73,自学)
结论:轴线上磁场方向与电流绕向满足右螺关系。 (1)对无限长(l >>R)密绕载流直螺线管轴线上 一点: B 0 nI n N —单位长度的匝数
l
(2)对半无限长密绕载流直螺线管端口中心处:
2 dr 2 dr dr I T 2 /
dr 2 2 dm IS r r dr 其磁矩大小为 l/2 l/2 2 q q l 总磁矩大小为 m dm r 2 dr r 2 dr
0
0
l
24
作业:
14.3、14.4(p94)
稳恒磁场课件
?
j
?
q ?dN dS? dt
?
nqvd
vd dt
dS?
I
?? j ? nqvd
金属导体内:
q ? 0,
q ? 0,
?? j ? ? nevd
??
?j 与 v?d 同向
v j 与
反向
d
二、电源 电动势
导体内形成持续电流的条件: 载流子、电势差
非静电力 Fk
A+
+q + ++
Fk
电源——提供非静电场力的装置,或称电泵。
第 12 章 稳恒磁场
第 12 章 稳恒磁场
§12.1 电流与电源 §12.2 磁力 磁场 磁感应强度 §12.3 毕奥—萨伐尔定律 §12.4 磁高斯定理 安培环路定理 §12.5 磁场对载流导线的作用 §12.6 带电粒子的运动 霍尔效应
§12-1 电流与电源
电荷在导体和半导体内有规则的定向运动所形成的电流称传导电流.
电动势
??
Ek
为非静电场场强
? Ek ?
? Fk
q
+
?
定义: 电动势 ? 等于将单位正电荷从电源负极沿内电路移到正极过程中非静电 场力做的功。
?? ?
? ? ? ? Ek ?dl (内电路)
??
? ? ? l Ek ?dl
标量, 方向
三、稳恒电路中的稳恒电场 稳恒电场——由并非静止、只是空间分布保持恒定的电荷产生的电场。
? F
? B
y
q ? ? q ??F ? ?? F ?
P ??
规定: F // q v ? B
x
v
?
湖南大学物理(2)第14,15章课后习题参考答案
第14章 稳恒电流的磁场 一、选择题1(B),2(D),3(D),4(B),5(B),6(D),7(B),8(C),9(D),10(A) 二、填空题(1). 最大磁力矩,磁矩 ; (2). πR 2c ; (3). )4/(0a I μ; (4).RIπ40μ ;(5). μ0i ,沿轴线方向朝右. ; (6). )2/(210R rI πμ, 0 ; (7). 4 ; (8). )/(lB mg ; (9). aIB ; (10). 正,负.三 计算题1.一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.解:在圆柱体内部与导体中心轴线相距为r 处的磁感强度的大小,由安培环路定 律可得:)(220R r r RIB ≤π=μ因而,穿过导体内画斜线部分平面的磁通Φ1为⎰⎰⋅==S B S B d d 1 Φr r R I Rd 2020⎰π=μπ=40Iμ 在圆形导体外,与导体中心轴线相距r 处的磁感强度大小为 )(20R r rIB >π=μ因而,穿过导体外画斜线部分平面的磁通Φ2为⎰⋅=S B d 2Φr r I R Rd 220⎰π=μ2ln 20π=Iμ穿过整个矩形平面的磁通量 21ΦΦΦ+=π=40I μ2ln 20π+Iμ1 m2. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求.(1) 芯子中的B 值和芯子截面的磁通量. (2) 在r< R 1和r > R 2处的B 值.解:(1) 在环内作半径为r 的圆形回路, 由安培环路定理得NI r B μ=π⋅2, )2/(r NI B π=μ 在r 处取微小截面d S = b d r , 通过此小截面的磁通量r b rNIS B d 2d d π==μΦ穿过截面的磁通量⎰=SS B dΦr b rNId 2π=μ12ln2R R NIbπ=μ (2) 同样在环外( r < R 1 和r > R 2 )作圆形回路, 由于0=∑iI02=π⋅r B ∴ B = 03. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)解:在距离导线中心轴线为x 与x x d +处,作一个单位长窄条, 其面积为 x S d 1d ⋅=.窄条处的磁感强度 202RIxB r π=μμ所以通过d S 的磁通量为 x RIxS B r d 2d d 20π==μμΦ通过1m 长的一段S 平面的磁通量为⎰π=Rr x RIx20d 2μμΦ60104-=π=Ir μμ Wb4. 计算如图所示的平面载流线圈在P 点产生的磁感强度,设线圈中的电流强度为I .解:如图,CD 、AF 在P 点产生的 B = 0x2EF D E BC AB B B B B B+++= )sin (sin 4120ββμ-π=aIB AB , 方向⊗其中 2/1)2/(sin 2==a a β,0sin 1=β∴ a I B AB π=240μ, 同理, a IB BC π=240μ,方向⊗.同样)28/(0a I B B EF D E π==μ,方向⊙.∴ aI B π=2420μaIπ-240μaIπ=820μ 方向⊗.5. 如图所示线框,铜线横截面积S = 2.0 mm 2,其中OA 和DO '两段保持水平不动,ABCD 段是边长为a 的正方形的三边,它可绕OO '轴无摩擦转动.整个导线放在匀强磁场B 中,B 的方向竖直向上.已知铜的密度ρ = 8.9×103 kg/m 3,当铜线中的电流I =10 A 时,导线处于平衡状态,AB 段和CD 段与竖直方向的夹角α =15°.求磁感强度B的大小.解:在平衡的情况下,必须满足线框的重力矩与线框所受的磁力矩平衡(对OO '轴而言).重力矩 αραρsin sin 2121gSa a a gS a M +⋅= αρsin 22g Sa =磁力矩 ααcos )21sin(222B Ia BIa M =-π=平衡时 21M M =所以 αρsin 22g Sa αcos 2B Ia = 31035.9/tg 2-⨯≈=I g S B αρ T6. 如图两共轴线圈,半径分别为R 1、R 2,电流为I 1、I 2.电流的方向相反,求轴线上相距中点O 为x 处的P 点的磁感强度. 解:取x 轴向右,那么有 2/322112101])([2x b R I R B ++=μ 沿x 轴正方向 2/322222202])([2x b R I R B -+=μ 沿x 轴负方向21B B B -=[2μ=2/32211210])([x b R I R ++μ]])([2/32222220x b R I R -+-μ若B > 0,则B 方向为沿x 轴正方向.若B < 0,则B的方向为沿x 轴负方向.P7. 如图所示.一块半导体样品的体积为a ×b ×c .沿c 方向有电流I ,沿厚度a 边方向加有均匀外磁场B (B 的方向和样品中电流密度方向垂直).实验得出的数据为 a =0.10 cm 、b =0.35 cm 、c =1.0 cm 、I =1.0 mA 、B =3.0×10-1 T ,沿b 边两侧的电势差U =6.65 mV ,上表面电势高.(1) 问这半导体是p 型(正电荷导电)还是n 型(负电荷导电)?(2) 求载流子浓度n 0 (即单位体积内参加导电的带电粒子数).解:(1) 根椐洛伦兹力公式:若为正电荷导电,则正电荷堆积在上表面,霍耳电场的方向由上指向下,故上表面电势高,可知是p 型半导体。
(完整版)电磁学(梁灿彬)第五章稳恒电流的磁场
§1 基本磁现象概述 (summary of basic magnetic phenomenon)
一、磁的基本现象
对磁现象的认识很早 最早发现的磁现象:天然磁石吸铁, 我国远在春秋战国时期(公元前六、七世 纪)的古书中已有记载
电磁学讲义
Electromagnetism Teaching materials
CH5 稳恒电流的磁场
2010级物理学专业
前言(Preface)
一、本章的基本内容及研究思路
静止电荷的周围存在着电场 运动电荷周围,不仅有电场,而且还有磁场。 不随时间变化的磁场称为稳恒磁场,有时也 称为“静磁场”。 稳恒电流激发的磁场就是一种稳恒磁场。 运动的电荷(或电流)要产生磁场,磁场又 会对其他的运动电荷(或电流)有作用力。 本章就是从这两个方面来研究磁场的。
大量实验证明,电现象和磁现象存在相互联系。 我们知道,电的作用是“近距”的,磁极或电 流之间的相互作用也是这样的,不过它通过另 外一种场—磁场来传递的。
用磁场的观点,可以把上述关于磁铁和磁铁, 磁铁和电流,以及电流和电流之间相互作用的各 个实验统一起来,概括成这样一个图示:
磁铁 电流
磁场
磁铁 电流
安培认为,任何物质的分子都存在环形电流, 称为分子电流,分子电流产生的磁场在轴线上的 方向可以用右手定则来判断,每一个分子电流相 当于一个小磁体。当物质中的分子电流排列得毫 无规则时,他们的磁场互相抵消,整个物体不显 磁性,但是,在一定条件下,这些分子电流比较 有规则的定向排列起来,他们的磁场互相加强, 整个物体就会显示出磁性。
安培的分子电流的想法基本上是正确的,近 代物理学证实,分子电流是由原子中的各个电子 自旋和电子的轨道运动合成的结果。
第10章 稳恒磁场概述
第十章 稳恒磁场问题10-1 你能说出一些有关电流元d I l 激发磁场d B 与电荷元d q 激发电场d E 有何异同吗?解 电流元激发的磁场与电荷元激发的电场是两个基元场. 由毕奥—萨伐尔定律定律得电流元d I l 激发的磁场为 0r2d d 4I rμ⨯=πl e B由电荷元电场强度公式得电荷元d q 激发的电场为20d d 4qr ε=πE相同点: 这两个场的大小都与场点到“元”(电流元、电荷元)的距离平方成反比; 这两个场都是矢量场,满足叠加原理.相异点: 电荷元产生的电场呈球对称,其方向与r 的方向相同或相反;电流元产生的磁场不具有球对称性,其方向垂直于d l 与r 组成的平面,遵从右手螺旋法则. 另外,d E 的大小与电荷元的电量d q 成正比,而d B 的大小不仅与d I l 的大小成正比,还与其方向有关.10-2 在球面上铅直和水平的两个圆中通以相等的电流,电流流向如图所示.问球心O 处磁感强度的方向是怎样?解 由右手螺旋法则可知,铅直的圆中电流在O 处产生的磁场方向垂直于铅直面向里;水平圆中电流在O 处产生的磁场方向垂直于水平面向下;并且这两个圆产生的磁感应强度大小相等。
所以球心处总的磁感应强度斜向里,与竖直向上方向的夹角为135.10-3 电流分布如图所示,图中有三个环路1、2和3. 磁感强度沿其中每一个环路的线积分各为多少?解 由安培环路定理0i id lI μ⋅=∑⎰B l 可知环路1 101d l I μ⋅=⎰B l 环路2 202d l I μ⋅=⎰B l 环路3()3012d 2l I I μ⋅=-⎰B lOII10-4 “无限长”载流直导线的磁感强度02IB dμ=π可从毕奥-萨伐尔定律求得.你能否用安培环路定律来求得呢? 如果可以,需要作哪些假设条件呢?解 “无限长”载流直导线周围的磁场分布呈轴对称,距离导线相等处的场点磁感强度大小相等. 取以直导线为中轴线、半径为d 的同心圆为积分路径,积分方向与直导线中电流方向遵从右手螺旋定则. 由安培环路定律可得2ld B d I μ=π=⎰B l ⋅02IB dμ=π在此解法中需要场点距直导线的距离d 为有限.10-5 如图所示,在一个圆形电流的平面内取一个同心的圆形闭合回路,并使这两个圆同轴,且互相平行.由于此闭合回路内不包含电流,所以把安培环路定理用于上述闭合回路可得d 0l⋅=⎰B l由此结果能否说在闭合回路上各点的磁感强度为零?解 不能,d 0l⋅=⎰B l 不仅与磁感强度的大小有关,还与磁感强度与积分路径的夹角θ有关. 当90θ=时,d 0l⋅=⎰B l 也成立.10-6 如图所示,设在水平面内有许多根长直载流导线彼此紧挨着排成一行,每根导线中的电流相同. 你能求出邻近平面中部A 、B 两点的磁感强度吗?A 、B 两点附近的磁场可看作均匀磁场吗?解 由于导线数目甚多,且电流分布均匀,相当于一个无限大带电平面. 由对称性可知,在平面中部附近各点的磁感强度大小相等. 设各导线中的电流为I ,单位长度的导线数目为n . 如图所示,取长为L 的矩形回路abcd ,回路内所包含的电流为nIL ,且使ab 、cd 边与磁场平行,bc 、da 边与磁场垂直,所以由安培环路定律可知0d d d labcdnIL μ=+=⎰⎰⎰B l B l B l ⋅⋅⋅012B nI μ=可见当导线电流、导线分布密度一定时,在平面中部附近的场强可以视为均匀磁场.O I10-7 如果一个电子在通过空间某一区域时,电子运动的路径不发生偏转,我们能否说这个区域没有磁场?解 由洛仑兹力e =-⨯F v B 可知,电子进入磁场是否受力偏转与电子进入磁场时的速度方向有关,若电子进入磁场时初始速度方向与磁场方向平行,即sin 00vB ⨯==v B此时虽然磁感强度不为零,但电子运动路径不会发生偏转.10-8 方程q =⨯F v B 中的三个矢量,哪些矢量始终是正交的?哪些矢量之间可以有任意角度?解 由右手螺旋法则可知 q =⨯F v B 中 ,力F 与粒子速度v ,F 与磁感强度B 始终正交,v 与B 可以有任意角度.10-9 气泡室是借助于小气泡显示在室内通过的带电粒子径迹的装置,如图是气泡室中所摄照片的描绘图,磁感强度B 的方向垂直平面向外,在照片的点P 处有两条曲线,试判断哪一条径迹是电子形成的?哪一条是正电子形成的?解 由q =⨯F v B 可知向右偏离的径迹是正电子形成的, 向左下偏离的径迹是电子形成的.10-10 在磁场中,若穿过某一闭合曲面的磁通量为零,那么,穿过另一非闭合曲面的磁通量是否也为零呢?解 不一定. 磁场为有旋无源场,由磁场中的高斯定理可知,穿过任一闭合曲面的磁通量必为零,即d 0SΦ=⋅=⎰B S ;而穿过一非闭和曲面的磁通量不一定为零,例如处于均匀磁场中的半球面S ,磁感强度的方向与半球面中轴线平行,则穿过此半球面的磁通量为2d 2SR B Φ=⋅=π⎰B S .10-11 安培定律d d I =⨯F l B 中的三个矢量,哪两个矢量始终是哪些矢量始终是正交的?哪些矢量之间可以有任意角度?解 由右手螺旋法则可知d d I =⨯F l B 中, 安培力d F 与d I l 、安培力d F 与磁感强度B 始终是正交的, d I l 与B 之间可以有任意角度.10-12 如图,把一载流线圈放入一永久磁铁的磁场中,在磁场的作用下线圈将发生转动.(1)图(a )中的线圈怎样转动?(2)图(b )中的线圈由上往下看是顺时针在转动,问磁铁哪一边是N 极,哪一边是S 极?(3)图(c )中的线圈由上往下看是反时针在转动,问线圈中电流的流向怎样?解 (1) 图(a )中的线圈由上往下看是反时针转动. (2)图(b )中左边磁铁是N 极,右边磁铁是S 极. (3)图(c )中线圈电流是顺时针.10-13 如均匀磁场的方向铅直向下,一矩形导线回路的平面与水平面一致,试问这个回路上的电流沿哪个方向流动时,它才处于稳定平衡状态?解 载流回路在磁场中会受到磁场的作用. 要矩形导线回路处于平衡状态,则要求整个导线回路所受合力及磁力矩都为零. 由于回路为矩形,无论电流流向如何,它所受合外力均为零. 同时要使回路所受磁力矩也为零,由n IS =⨯M e B 可知,载流线圈的n e 方向必须与磁感强度的方向相同,回路所受的磁力矩才为零,即电流方向与磁感强度方向应遵从右手螺旋定则.10-14 如图所示,有两个圆电流A 和B 平行放置,这两个圆电流间是吸引还是排斥?解 圆电流A 产生的磁场与B 产生的磁场方向相反, 它们之间相互排斥.10-15 若在上题两圆电流A 和B 之间放置一平行的圆电流C (如图),这个圆电流如何运动?解 由各圆电流产生的磁场方向可知,圆电流A和C 相互吸引, 圆电流C 与B 相互排斥,所以圆电流C 向A 移动.INSIS N(a)(b)(c)A1I 2I 3I BC1I 2I AB习题10-1 如图所示,两根长直导线互相平行的放置,导线内电流大小相等均为10A I =,方向相同,求图中M 、N 两点的磁感强度B 的大小和方向(图中00.020m r =).解 由无限长带电直导线在距离其r 处的磁感强度大小为02IB rμ=π可知,两导线在M 点产生的磁感强度大小相等为12002M M IB B r μ==π由右手螺旋法则可知它们的方向相反,由磁场的叠加可得M 点的磁感强度0M B =同理N 点的磁感强度为120000()cos()4N N N II B B B r r π=+=+4π4π 4001.010T Ir μ-==⨯2π其方向沿水平向左.10-2 已知地球北极地磁场磁感强度B 的大小为56.010T -⨯. 如图所示,如设想此地磁场是由地球赤道上一圆电流所激发, 此电流有多大? 流向如何?解 设赤道圆电流为I ,地球半径为66.3710m R =⨯。
普通物理学课件:9稳恒磁场(毕沙定律)
p•
dBx
X
结论
大小:B2(0 IR2R2 x2
)3
2
方向: 右手螺旋法则
B
0 IR2
2(R2 x2 )3
2
1.
x R
B?
B
IR2 0
Pm 0
2x3 2x3
B
2. x 0 B ?
载流圆环 圆心角 2
I
B 0I
2R
载流圆弧
圆心角
B
I
B 0 I • 0 I 2R 2 4R
8R
R
•O I
B 0I 0I 4R 2R
•
2 3 I
•R
O
B 0I 0I (1 3 )
6R R
2
例4、两平行载流直导线
求 两线中点 BA
过图中矩形的磁通量
解:I1、I2在A点的磁场
I1
B1
B2
0 I1 2 d 2
A•
I2
l
BA
B 2B
A
1
方向 •
r1
r2 d r3
如图取微元
dm B • dS Bldr
B 0I1 0I2 2r 2 (d r )
B
•
I2
I1
l
r dr
方向 •
r1
r2 d r3
m
dm
r1 r1
r2
[
0 I1 2r
0I2 2 (d
]ldr r)
0 I1l ln r1 r2 0 I2l ln d r1
2
r1
2
d r1 r2
大小
dB
0 4
Idl r2
方向
Idl r0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19
1.电流元
在一根载流直线上任意取一线元,叫做电流元; I
I d l 矢量
大小:该线元的长度乘以I
方向:该点直线上电流的方向 电流元与点电荷的区别 (1)点电荷可以独立存在 (2)电流元不能单独存在
I dl
r
P
2018/5/30
稳恒电流只存在于闭合回路中
20
2、毕奥-萨伐尔定律
静电荷
运动电荷
稳恒电流
静电场
电场
磁场
稳恒磁场
学习方法: 类比法
2018/5/30
1
稳恒磁场
磁场:是物质的一种形式 稳恒磁场:又称为静磁场,指磁感应强度不随时间 变化的磁场,但在空间不同位置可以有不同的值。 稳恒磁场是由恒定电流(或者说恒定运动的电荷)产 生的磁场;变速运动的电荷要产生变化的电磁场。
2018/5/30 23
(4)毕奥-萨伐尔定律的物理意义
表明一切磁现象的根源是电流(运动电荷)产生 的磁场。反映了载流导线上任一电流元在空间任 一点处产生磁感应强度在大小和方向上的关系。 由此定律原则上可以解决任何载流导体在起周围 空间产生的磁场分布。
2018/5/30
24
(5)毕奥-萨伐尔定律的应用:
安培分子电流假说:组成磁铁的最小单元就是环形 电流。若这样一些分子环流定向地排列起来,在宏 观上就会显示出N、S极
I
2018/5/30
n
N
S
10
原子是带正电的原子核和绕核旋转的负电子组成。 电子不仅绕核旋转,还有自旋。原子、分子等微观 粒子内电子的这些运动形成了“分子环流”这便是 物质磁性的基本来源。 电荷的运动是一切磁现象的根源。
2018/5/30
0 IR 2 32 35 2( R 2 x 2 )
结论: 大小: B 2( R 2 x 2 )3 2 方向: 右手螺旋法则
0 IR
2
Idl
I
O
Y
R
r0
d B dB
pdB
x
X
1. x R B ?
B
0 IR 2
2 x3
运动电荷
电流
2018/5/30
磁场
磁场
运动电荷
电流
11
2、磁场的性质:
(1)磁场对进入场中的运动电荷或载流导体有磁 力作用
(2)载流导体在磁场中移动时,磁力将对载流导 体作功,表明磁场具有能量。
2018/5/30
12
3、磁场的描述
设计实验确定空间一点的磁感应强度 思路:用类比的方法 静电场中用试验点电荷在电场中的受力研究电场; 稳恒磁场中用运动试探电荷在磁场中的受力研究 磁场。
22
(2)一段电流源的磁感应强度
ˆ u0 Idl r B d B= 2 L L 4 r
(3)库仑定律与毕奥-萨伐尔定律的异同
①两个定律在各自的领域地位相当,在形式上都是平 方反比律; ②适用对象不同,一个是电性质,一个是磁性质。 ③库仑定律可以直接由试验验证,而B-S law 只能间 接验证。
(1)电流元的磁感应强度:
Idl
dB
r
0 I d l r ˆ dB 2 4 r
dB
I
Idl
0 4 107 NA2 真空磁导率
r : 指Idl 到待求场点的矢径
P*
r
0 Idl sin 大小:dB 4 r2 方向:右手螺旋法则
③ V 和 B 的取向有关
Fm
q
B
v
2018/5/30
15
实验发现带电粒子在磁场 中沿某一特定直线方向运 动时不受力,此直线方向 与电荷无关。 q不受力时的运动方向(或 反方向),即为该点B的 方向,其具体指向可由q 在其它方向运动时的 和 Fm的方向根据洛仑兹力 式来确定。
3
一、基本磁现象
1、中国在磁学方面的贡献:
最早发现磁现象:磁石吸引铁屑 春秋战国《吕氏春秋》记载:磁石召铁 东汉王充《论衡》描述:司南 勺最早的指南器具 十一世纪沈括发明指南针,发 现地磁偏角,比欧洲的哥伦布 早四百年 十二世纪已有关于指南针用于航海的记载
2018/5/30 4
2、早期的磁现象包括:
4、通电线能使小磁针偏转; 5、磁体的磁场能给通电线以力的作用; 6、通电导线之间有力的作用; 7、磁体的磁场能给通电线圈以力矩作用; 8、通电线圈之间有力的作用; 9、天然磁体能使电子束偏转。
2018/5/30
表现为: 相互吸引 排斥 偏转等
9
二、磁场
电流(或磁铁) 磁场 电流(或磁铁)
1、磁铁和电流是否在本质上是一致的?
21
2018/5/30
例 判断下列各点磁感强度的方向和大小.
1 8
×
2
×3
7
Idl
R
6
×
4
0 Idl r dB 3 4π r
2018/5/30
5
1、5点 :dB 0 0 Idl 3、7点 :dB 4 π R2 2、 4、 6、 8 点 : 0 Idl 0 dB sin 45 4 π R2 毕奥-萨伐尔定律
载流子总数 dN nSdl
26
0 qv ˆ r B 2 4 r
若q 0, B与v r 同向
若q 0, B与v r 反向
r
B
r
q
B
q
2018/5/30
v
v
27
例题:利用电荷运动产生磁场的观点求 B
2018/5/30
m
en
S
2. x 0 B ?
载流圆环 B
圆心角 2
0 I
2R
B
0 IR B 2 2 32 2( R x )
2
I
载流圆弧
圆心角
B
I
0 I B 2 R 2 4R
2018/5/30
O
a a
2 1
dB
P
X
30
Y
2 0 1 4a
I sin d
I
2
0 I (cos 1 cos 2 ) 4a
dl
1 r0
r
0 I B (cos 1 cos 2 ) 4a
l
O
a a
2 1
dB
P
X
电流的磁效应 I
I B r
丹麦物理学家 奥斯特 接通电源时,放在边上的 磁针轻轻抖动了一下,电 流反向时磁针的偏转也反 向……电流的磁效应 2018/5/30
F F
I
8
磁现象: 1、天然磁体周围有磁场; 2、通电导线周围有磁场; 3、电子束周围有磁场。
表现为: 使小磁针偏转
2018/5/30
2
运 动 电 荷 间 的 相 互 作 用
磁 场
磁感应 强度
磁场的高 斯定理 毕-萨定律 安培环路 定理 带电粒子在磁 场中的运动
磁场的 基本性 质
洛仑兹力 稳 恒 磁 场
霍耳效应 磁力的功
安培定律
磁力和磁力矩
顺磁质、抗磁质 和铁磁质的磁化
2018/5/30
磁场强度
介质中的安培 环路定理
(电流元在空间产生的磁场)
任一个带电体 研究思路: Q dQ dE E d E 静电场: 点电荷模型
(微 元 分 析 法 ) 任一载流体 静磁场: 电流元模型
任意载流回路可设想为是由无限多个首尾相接的 电流元构成,
研究思路: I Idl dB B dB 2018/5/30
1、氢原子中电子绕核作圆周运动
v 0.2 106 ms 1
已知
r 0.53 10 m 求: 轨道中心处 B
0 qv r0 解: B 4 r2
10
r
v
又 v r0
2018/5/30
0 ev B 13T 2 4 r
方向:
29
X
P
0 Idl sin B dB 2 4 r
统一积分变量
Y
I
2
dl
1 r0
l actg( ) actg
r
dl a csc d
2
l
2
r a sin
0 I sindl 0 sin ad B I sin 2 2 4 4 a r sin2
q
v
I S 其中
I qnvS
dl
电荷 密度 速率 截面积
ˆ) 0 qv sin( v , r dB B 2 dN 4 r 0 qv ˆ r 运动电荷产生的磁场 B 2 4 r v , r 的方向垂直于 组成的平面。 B 2018/5/30
0 I B 4a
B?
B
I
B0
33
0
2018/5/30
dB 0
2.圆型电流轴线上的磁场
已知:
R、I,求轴线上P点的磁感应强度。
建立坐标系OXY
任取电流元 Idl
大小
方向 Idl r0
2018/5/30
0 Idl dB 4 r 2
Idl
I
O
Y
R
r0
A、由毕奥-萨伐尔定律推出运动电荷的磁场表达式
按经典电子理论,导体中电流是大量带电粒子的定向运动,电流 激发磁场,实质是运动电荷在其周围空间激发磁场。