第四章 稳恒电流的磁场

合集下载

4真空中的稳恒磁场

4真空中的稳恒磁场

X
0 I ′I F′ 0 I ′I F ′ = I ′l ′B = l ′; = 2π r l ′ 2π r 解:
同向相吸; 同向相吸 反向相斥. 反向相斥 也可认为: 也可认为 I ′在 I 处 产生… 产生…
[例3] 求两根平行载流直导线间单位长度上的相互作用力 例 求两根平行载流直导线间单位长度上的相互作用力.
r 再次利用场强叠加原理 求出整个电流场分布 利用场强叠加原理, ④再次利用场强叠加原理,求出整个电流场分布 B = 整个电流
P

I
r Bi 。
3 2
I
1 2. 应用举例
[例1] 求圆电流在轴线上任一点产生的磁感应强度 例 求圆电流在轴线上任一点产生的磁感应强度. v 解: ①设场点 建坐标 取微元 Idl 设场点,建坐标 取微元: 建坐标,取微元
Bv
S
n
S
θ
Φ m = BS
Φm = BS⊥ = v v BS cosθ = B S
B
v v v v n v dφ = B ds B ds
v v Φ m = ∫∫S B ds
S
三.磁场力公式 磁场力公式
v 方向: v v v θv q⊕ f = 0 B v f = qvB Idl dF = Idl B v 方向: ⊙ 方向: ⊙ v v v v v v f洛 = qv × B dF安 = Idl × B
m
M=0
的特殊方向
(二)磁感应线 二 磁感应线 磁感应线(magnetic line of force) 1.规定 规定 v (1)场线上各点的切向就是该点的B 方向 场线上各点的切向就是该点的 方向;
v 磁力线; 磁力线 B 线
描述磁场的几何方法 人为地虚拟方法 切向描述矢量场的方向 疏密描述矢量场的强弱 磁场是“无源” 磁场是“无源”有旋场 场的唯一性和有限性所决定

稳恒磁场知识点复习

稳恒磁场知识点复习

解: RA mAvA 1 2 1 : 2 TA mA 1mB
(2)
例2: 如图所示,在均匀磁场中,半径为R的薄圆盘以角速
度绕中心轴转动,圆盘电荷面密度为。求它的磁矩、
所受的磁力矩以及磁矩的势能。
解:取半径为r的环状面元,圆盘转动时, 它相当于一个载流圆环,其电流:
计,电流I均匀分布,与铜片共面到近边距离为b 的一点 P的磁感应强度 B 的大小为________。
解:
dB 0dI 0 Idr 2r 2ar
dI I dr a
Ia dr
bB
rP
B dB 0I ab dr 0I ln a b
2a b r 2a b
(6)
例5: 如图, 一扇形薄片, 半径为R, 张角
5. 均匀磁场中载流线圈受到的力矩: 6. 均匀磁场中载流线圈的磁矩势能:
M
pm
B
Wm pm B
7. 带电粒子在磁场中的运动
回转半径: R mv qB
回转周期: T 2m
qB
例1: A、B为两个电量相同的带电粒子,它们的质量之比 mA:mB=1/4,都垂直于磁场方向射入一均匀磁场而作圆 周运动。A粒子的速率是B粒子速率的两倍。设RA,RB 分别为A粒子与B粒子的轨道半径;TA、TB分别为它们 各自的周期。则RA∶RB=? TA∶TB=?
F dF 0I1I2 dl 2d
例3:一弯曲的载流导线在同一平面内,形状如图(O点
是半径为R1和R2的两个半圆弧的共同圆心,电流自无穷 远来到无穷远去),则O点磁感应强度
的大小是______________。
解: B 0I 0I 0I 4R1 4R2 4R2
I
R1
O
R2

稳恒磁场

稳恒磁场

磁场 磁感应强度 基本磁现象1、通有电流的导线周围,小磁针会发生偏转。

2、磁铁附近的载流导线及载流线圈会受到力的作用。

3、载流导线之间或载流线圈之间有相互作用力。

4、电子射线束在磁场中路径发生偏转。

一切磁现象的根源是电流。

任何物质的分子中都存在有圆形电流,称为分子电流.分子电流相当于一个基元磁铁。

当物体不显示磁性时,各分子电流作无规则的排列, 它们对外界所产生的磁效应互相抵消。

在外磁场的作用下,与分子电流相当的基元磁铁将趋向于沿外磁场方向取向,从而使整个物体对外显示磁性。

磁感应强度磁现象中,电流与电流之间,电流与磁铁之间以及磁铁与磁铁之间的相互作用是通过一种叫磁场的特殊物质来传递的。

磁场对外的重要表现:1、磁场对进入场中的运动电荷或载流导体有磁力的作用;2、载流导体在磁场中移动时,磁场的作用力将对载流导体作功,表明磁场具有能量。

引入磁感应强度矢量B 来描述磁场的强弱和方向。

试验线圈(线度必须小,其引入不影响原有磁场的性质)的面积为 S ∆,线圈中电流为0I ,则定义试验线圈的磁矩为 n S I P m ∆0= 磁矩是矢量,其方向与线圈的法线方向一致,n 表示沿法线方向的单位矢量,法线与电流流向成右螺旋系。

(附图)线圈受到磁场作用的力矩(称为磁力矩)使试验线圈转到一定的位置而稳定平衡。

此时,线圈所受的磁力矩为零,此时线圈正法线所指的方向,定义为线圈所在处的磁场方向。

如果转动试验线圈,只要线圈稍偏离平衡位置,线圈所受磁力矩就不为零。

当试验线圈从平衡位置转过090时,线圈所受磁力矩为最大。

在磁场中给定点处,比值m P M max 仅与试验线圈所在位置有关,即只与试验线圈所在处的磁场性质有关。

规定磁感应强度矢量B 大小为m P M B max =磁场中某点处磁感应强度的方向与该点处试验线圈在稳定平衡位置时的法线方向相同;磁感应强度的量值等于具有单位磁矩的试验线圈所受到的最大磁力矩。

单位:磁感应强度的国际单位为特斯拉,简称特。

电磁学电子教案(1)

电磁学电子教案(1)

4.1.1 磁的基本现象
一下,则螺线管原来受吸引的一端变为受排斥,原来受排斥的一端变为受吸引。这表明:螺 线管本身就象一条磁棒那样,一端相当于N极,另一端相当于S极。螺线管的极性和电流 方向的关系,可用图4-8所示的右手法则来描述:用右手握住螺线管,弯屈的四指沿电流回 绕方向,将拇指伸直,这时拇指便指向螺线管的N极。
指 南器具。指南针是我国古代的伟大发明电之磁学一电,子对教世案(界1) 文明的发展有重大的影响。十一世纪
4.1.1 磁的基本现象
十二世纪初我国已有关于指南针用于航海的明确记录。 现在知道,人们最早发现的天然磁铁矿矿石的化学成分是四氧化三铁( F e 3O)。4 近代
制造人工磁铁是把铁磁物质放在通有电流的线圈中去磁化,使之变成暂时或永久的磁铁。 为了进一步了解磁现象,下面我们较详细地分析一下磁铁的性质。如果将条形磁铁
成夹角 2 ,则
dF12 sin2
(4.3)
这表明:当d l 2与 平面垂直时, 2 0 ,电流元1对它无作用,当d l 2在 平面内时,2 2 , 作用力最大。
将式(4.1)、(4.2)、(4.3)归纳起来,则有
或写成等式
dF12I1I2dl1dl2rs12 i2n1sin2 dF12kI1I2dl1dl2rs12 i2n1sin2
下面一个实验表明,一个载流线圈的行为很象一块磁铁。如图4-7所示,将一个螺线 管通过一对浸在小水银杯A、B中的支点悬挂起来,这样,我们既可通过支柱将电流通入螺 线管,螺线管又可在水平面内自由偏转。接通电流后,用一根磁棒的某个极分别去接近螺 线管的两端。我们会发现,螺线管一端电磁受学到电吸子教引案,另(1)一端受到排斥。如果把磁棒的极性调
以上例题表明,由式(4.6)确定的电流元之间的相互作用力不一定满足牛顿第三定律。 但是在实际中不存在狐立的稳恒电流元,它们总是闭合回路的一部分。可以证明:若将 式(4.6)沿闭合回路积分,得到的合成作用力总是与反作用力相等、方向相反的。

《稳恒电流的磁场》选择题解答与分析

《稳恒电流的磁场》选择题解答与分析
答案:(B) 参考解答:
由毕奥-萨伐尔定律 d B 0 I d l r /(4r 3 ) ,知答案(B)正确。
a d
b I dl
c
选择(A)给出下面的分析:
dq ˆ r 4 0 r 2 0 I d l r 电流元磁场公式: d B 4r 3
点电荷电场公式: d E
比较 d B d B x iˆ d B y ˆ j, d B x

0 I d ly 4r 3
0 I d l
4 ( x y
2 2 3 z2 ) 2
y.
对于所有错误选择,给出下面的资料:
0 I d l r 毕奥-萨伐尔定律: d B ,涉及矢量的叉乘,其基本运算公式: 4r 3 ˆ ˆ ˆa ˆ ˆ ˆ 设: a a1i 2 j a 3 k , b b1i b2 j b3k
对所有错误的选择,进入下一题: 1.1 在阴极射线管的上方放置一根载流直导线,导线平行于射 线管轴线,电流方向如图所示,阴极射线向什么方向偏转?当 电流 I 反向后,结果又将如何?
I
参考解答: 电流产生的磁场在射线管内是指向纸面内的,由 F ev B 知,阴极射线(即电 子束)将向下偏转.当电流反方向时,阴极射线将向上偏转. 进入下一题:
3. 关于磁感应强度方向的定义,以下说法,正确的是 (A) 能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. (B) 不能把磁场作用于运动电荷的力的方向,定义为磁感应强度的方向. 答案:(B) 参考解答: 因为磁力的方向还随电荷运动速度方向而不同,因而在磁场中同一点运动电荷受 力的方向是不确定的.
6
B
3. 如图,一条任意形状的载流导线位于均匀磁场中,试证明 导线 a 到 b 之间的一段上所受的安培力等于载同一电流的直 导线 ab 所受的安培力. 参考解答: 证:由安培定律

大学物理稳恒磁场

大学物理稳恒磁场

B2
0
r
r2 R2
I
rR
I
0I rR p r
B20R I2r rR
rp
B 0I rR 2r
B
无限长圆柱导体电流外面的磁场与电流
都集中在轴上的直线电流的磁场相同
.
R
r
无限长通电柱面
B2r 0 rR
0I rR p r I
B0 rR
rp
B 0I rR 2r
B
思考:有人说:“环路不环绕
电流时,环路上磁场必处处为
o
( D ) 20I R
B
( E ) 20I 8R
.
[A]
5.如图所示,电流由长直导线 1 经 a 点流 入电阻均匀分布的正方形线框,再由 b 点 流出,经长直导线 2 返回电源(导线 1、2 的延长线均通过 o 点)。设载流导线 1、2 和正方形线框在框中心o 点产生的磁感应 强度分别用 B1、B2、B3 表示,则 o 点的感 应强度大小
单位长度的电流)到处均匀。大小为 j
解:视为无限多平行
长直电流的场。 B
p
分析场点p的对称性
B
因为电流平面是无限大,故与电流平面等距离的 各点B的大小相等。在该平面两侧的磁场方向相反。
.
作一安培回路如图: bc和 da两边被电流平 面等分。ab和cd 与电 流平面平行,则有
L B d lB 2 lojl
(A )BR2B r. (B)BRBr. (C )2BRB r. (D )BR4Br.
.
[B]
4.两半径为R的相同导体细圆环,互相垂直放 置,且两接触点A、B连线为环的直径,现有 电流1沿AB连线方向由A端流入,再由 B端流 出,则环中心处的磁感应强度大小为:

稳恒磁场

稳恒磁场

安培定律
一、安培力
安培力:电流元在磁场中受到的磁力. 安培力:电流元在磁场中受到的磁力. 一个自由电子受的洛仑兹力为: 一个自由电子受的洛仑兹力为
f 洛 = qv × B = −ev × B
电流元所受磁力: 电流元所受磁力
方向: 方向:×
v
dl
B
I
设截面积为S,单位体积电子数为 设截面积为 单位体积电子数为n 单位体积电子数为
1 2 m = NISn = NI πR n 2
方向:与 B 成600夹角. 夹角. 方向: (2)此时线圈所受力矩的大小为: )此时线圈所受力矩的大小为:
)60
0
B
3 2 πR M = mB sin60 = NIB 4 方向: m× B 方向: ×
0
n
即垂直于 B向上,从上往下俯视,线圈是逆时针转动。 向上,从上往下俯视,线圈是逆时针转动。
1T = 1N ⋅ S ⋅ m−1 ⋅ C−1
磁通量
一、磁力(感)线 磁力( 直线电流的磁力线
磁场的高斯定理
圆电流的磁力线
通电螺线管的磁力线
I
I
I
I
通量(通过一定面积的磁力线数目) 二、磁通量(通过一定面积的磁力线数目)
v v dΦ = B ⋅ dS
v v Φ = ∫s B ⋅ dS
单位
1Wb= 1T ⋅ m
I
该式对任意形状的线圈都适用. 该式对任意形状的线圈都适用.
例1如图,求圆心O点的 B . 如图,求圆心 点的 I O
• × R
B=
µ0 I
4R
I
O• •
R
B=
µ0 I
8R
R
• •O

物理学稳恒磁场课件

物理学稳恒磁场课件

B内ab 由安培环路定理
0
N l
abI
n N l
b B内a
c d
B 0nI
均匀场
由安培环路定理可解一些典型的场
无限长载流直导线
密绕螺绕环
匝数
B 0I 2 r
Ir
B 0 NI 2 r
无限大均匀载流平面
B 0 j
2
(面)电流的(线)密度
场点距中心
的距离 r
电流密度
I
Idl
B dF
安培指出 任意电流元受力为
dF Idl B
安培力公式
整个电流受力 F Idl B
l
例1 在均匀磁场中放置一半径为R的半圆形导线, 电流强度为I,导线两端连线与磁感强度方向夹角 =30°,求此段圆弧电流受的磁力。
解:在电流上 任
ab 2R
取电流元 Id l
(b)
洛 仑兹力是相对论不变式 B 磁感强度
(Magnetic Induction)
或称磁通密度 (magnetic flux density) 单位:特斯拉(T)
§3 磁力线 磁通量 磁场的高斯定理
一.磁力线
1. 典型电流的磁力线
2. 磁力线的性质
无头无
与电流
与电流成右
尾 闭 套连
手螺旋关系
合二曲. 线磁通量
IS
(体)电流的(面)密度
如图 电流强度为I的电流通过截面S
若均匀通过 电流密度为 J I S
(面)电流的(线)密度
I
如图 电流强度为I的电流通过截线 l
l
若均匀通过 则
j I l
§6 磁力及其应用
一 1..洛带仑电兹粒力子在磁f场m 中受qv力

稳恒电流的磁场

稳恒电流的磁场
电磁驱动实验
将线圈置于磁场中,当磁场发生变化时,线圈中产生感应电流,并 受到磁场的作用力而发生旋转,实现电磁驱动。
霍尔效应实验
将导体置于磁场中,当电流通过导体时,在导体两侧产生电势差, 这种现象称为霍尔效应,可用于测量磁场强度。
电磁感应现象实验
法拉第实验
通过在导线线圈中切割磁感线,发现导线中产生 感应电流,即电磁感应现象。
稳恒电流的磁场
https://
REPORTING
• 磁场和电流的关系 • 稳恒电流产生的磁场 • 磁场对稳恒电流的作用 • 稳恒电流的磁场应用 • 实验与观察
目录
PART 01
磁场和电流的关系
REPORTING
WENKU DESIGN
安培环路定律
安培环路定律是描述磁场和电流之间关系的物理定律,它指出磁场和电流之间的 关系是线性的,即磁场是由电流产生的,并且电流的存在会导致周围空间中磁场 的形成。
电流在磁场中的受力分析
02
根据左手定则,可以判断电流在磁场中受到的力的方向。
电磁感应
03
当导线在磁场中做切割磁感线运动时,导线中会产生感应电动
势,从而产生感应电流。
PART 03
磁场对稳恒电流的作用
REPORTING
WENKU DESIGN
洛伦兹力
定义
洛伦兹力是指带电粒子在磁场中 所受到的力,其大小与带电粒子 的电荷量、速度和磁感应强度有
磁场对电流的作用力
磁场对电流的作用力是指电流在磁场中受到的力,这个力的 大小和方向取决于电流和磁场的相互位置和方向。
磁场对电流的作用力遵循安培定律,其数学表达式为: F=IBLsinθ,其中F表示作用力,I表示电流,B表示磁场强度,L 表示导线长度,θ表示电流和磁场方向的夹角。

大学物理 恒定电流稳恒磁场知识点总结

大学物理 恒定电流稳恒磁场知识点总结

大学物理 恒定电流稳恒磁场知识点总结1. 电流强度和电流密度 电流强度:单位时间内通过导体截面的电荷量 (电流强度是标量,可正可负);电流密度:电流密度是矢量,其方向决定于该点的场强E 的方向(正电荷流动的方向),其大小等于通过该点并垂直于电流的单位截面的电流强度dQ I dt =, dIj e dS= , S I j dS =⎰⎰ 2. 电流的连续性方程和恒定电流条件 电流的连续性方程:流出闭合曲面的电流等于单位时间闭合曲面内电量增量的负值(其实质是电荷守恒定律)dqj dS dt=-⎰⎰ , ( j tρ∂∇=-∂ ); 恒定电流条件: 0j dS =⎰⎰ , ( 0j ∇= ) 3. 欧姆定律及其微分形式: UI R=, j E σ=, ,焦耳定律及其微分形式: 2Q A I Rt == 2p E σ= 4. 电动势的定义:单位正电荷沿闭合电路运行一周非静电力所作的功AK dl q ε+-==⎰ , K dl ε=⎰5. 磁感应强度:是描述磁场的物理量,是矢量,其大小为0sin FB q v θ=,式中F 是运动电荷0q 所受洛伦兹力,其方向由 0F q v B =⨯决定 磁感应线:为了形象地表示磁场在空间的分布,引入一族曲线,曲线的切向表示磁场的方向,密度是磁感应强度的大小;磁通量:sB dS φ=⎰⎰ (可形象地看成是穿过曲面磁感应线的条数)6.毕奥一萨伐尔定律: 034Idl r dB r μπ⨯=34L Idl rB r μπ⨯=⎰7.磁场的高斯定理和安培环路定理磁场的高斯定理: 0SB dS =⎰⎰、 ( 0B ∇= ) (表明磁场是无源场)安培环路定理:0i LiB dl I μ=∑⎰、LSB dl j dS =⎰⎰⎰ 、(0B j μ∇⨯=)(安培环路定理表明磁场是有旋场)8.安培定律: dF Idl B =⨯ 、L F Idl B =⨯⎰磁场对载流线圈的作用: M m B =⨯ (m 是载流线圈的磁矩m IS =)9.洛伦兹力:运动电荷所受磁场的作用力称为洛伦兹力f qv B =⨯带电粒子在匀强磁场中的运动:运动电荷在匀强磁场中作螺旋运动,运动半径为mv R qB⊥=、周期为 2m T qB π= 、螺距为 2mv h v T qB π==霍尔效应 : 12HIBV V K h-= 式中H K 称为霍尔系数,可正可负,为正时表明正电荷导电,为负时表明负电荷导电 1H K nq=10.磁化强度 磁场强度 磁化电流 磁介质中的安培环路定理mM τ∑=∆ 、 LL M dl I =∑⎰,内、n i M e =⨯, 0BH M μ=- 、m M H χ= 、 00m r B H H μχμμμ==(1+)H=、 0i LiH dl I =∑⎰、LSH dl j dS =⎰⎰⎰。

第四章磁场对载流导体的作用-4

第四章磁场对载流导体的作用-4
L L
Idl
dF
Idl
dF
B
B
长为l,电流I,磁感应强度为B的 均匀磁场,电流方向与B夹角为θ
F IB sin dl IBl sin
0
23
l
洛仑兹力与安培力的关系
电子数密度为n,漂移速度u dl内总电子数为N=nSdl, eu B 每个电子受洛仑兹力f N 个电子所受合力总和是安培力 吗? 洛伦兹力f 作用在金属内的电子上 安培力 作用在导体金属上
电流
q dq dI lim neudS cos neu dS t 0 t dt
q (utS cos )ne
j电流
密度

N个电子所受合力总和大小
N=nSl I
dF f euBN (eunS)Bl IBl
传递机制可以有多种,但最终达到稳恒
'
F2 和 F '2 大小相等,方向相反,形成 a(b)
力偶
31
F2

' F 2 d(c)
B
n
F1
a
d
F2
I

' b F1
c
' F2 B
a(b)
n
F2

' F 2 d(c)
B
n
l1 ' l1 M F2 cos F 2 cos BIl1l2 cos BIS cos BIS sin 2 2
7
① 式中K 称作霍耳系数.
② 式中d为导体块顺着磁场方向的厚度。 实验表明:△U与导体块的宽度b无关。
B.霍耳系数的微观解释

电磁学赵凯华_第三版_第四章_稳恒磁场

电磁学赵凯华_第三版_第四章_稳恒磁场
奥斯汀发现电流磁效应的半年后,就基本建立了电流磁场的知 识体系。电学、磁学合并成为一个新的学科:电磁学。
1.1不同的磁作用形式
(1) 磁铁 磁铁
物质成分
天然磁铁:Fe3O4
人工磁铁: 铷铁硼合金 钴镆合金等
最新进展:日本采用纳米技术 制备强磁性氮化铁
中性区 磁极
磁铁分区
条形磁铁的两端磁性强,称作磁极,中部磁性弱,称作中性 区
础--重视实验研究;
(电流3的)本质我是运国动的科电荷学源头创新的困境思考。
电流方向变化、磁针转动方向也
运动的电荷产生磁场
变化
磁与电的关系
问题 电流对磁铁有作用,磁铁对电流是否有作用?
实验
N 极向内
结论
和磁铁一样,载流导线不仅具有磁性,也受 磁作用力
I=0
I
(3)电流 电流(应该存在作用力)
实验
结论
环向电流
产生磁场的源应该相同
安培分子 环流假说
条形磁铁 环向电流
1822安培提出:组成磁铁的最小单元(磁分子)就是环形电流,这些分子环流定向排列, 在宏观上就会显示出N、S极。
图示 N
等效宏观表面电流 S
磁铁内部分子电流相互抵消
为什么是假说?
安培提出了分子环流,但在安培时代,还没有建立 物质的分子、原子模型。因此,安培的模型为假说。
0 4
2dI1看ld2 产l1作生试探电流元,磁
I1dl1 rˆ12 r122
I2dl2 dB
(2) I产d生l 的说明dB
dB
0
4
Idl rˆ r2
dE
1
4 0
dq r2

dB特 性:
dB

大学物理电磁感应练习题

大学物理电磁感应练习题

第四章恒定电流的磁场一、 选择题1、 均匀磁场的磁感应强度B垂直于半径为R 的圆面,今以圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为()A 、B R22π B 、B R 2π C 、0 D 、无法确定答案:B2、 有一个圆形回路,及一个正方形回路,圆直径和正方形的边长相等,二者载有大小相等的电流,它们各自中心产生的磁感强度的大小之比B 1/B 2为()A 、0.90B 、1.00C 、1.11D 、1.22答案:C3、 在磁感强度为B 的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为α,则通过半球面S 的磁通量为() A 、B r 2π B 、B r 22πC 、απsin 2B r -D 、απcos 2B r -答案:D 4、 四条皆垂直于纸面的载流细长直导线,每条中的电流强度皆为I ,这四条线被纸面截得的断面, 如图所示,它们组成了边长为2a 的正方形的四个角顶,每条导线中的电流流向亦如图所示,则 在图中正方形中心点O 的磁感应强度的大小为()A 、I aU Bπ02=B 、I a U B π220=C 、B=0D 、I aU B π0=答案:C 5、 边长为L 的一个导体方框上通有电流I ,则此框中心的磁感应强度( )A 、与L 无关B 、正比于L 2C 、与L 成正比D 、与L 成反比E 、与I 2有关答案:D 6、 如图所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点,若ca,bd 都沿环的径向, 则在环形分路的环心处的磁感应强度()A 、方向垂直环形分路所在平面且指向纸内B 、方向垂直环形分路所在平面且指向纸外C 、方向在环形分路所在平面内,且指向bD 、零答案:D 7、 在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流I 的大小相等, 其方向如图所示,问哪些区域中某些点的磁感应强度B 可能为零?()A 、仅在象限ⅠB 、仅在象限ⅡC 、仅在象限Ⅰ、ⅣD 、仅在象限Ⅱ 、 Ⅳ 答案:D 8、 在真空中有一根半径为R 的半圆形细导线,流过的电流为I ,则圆心处的磁感应强度为() A 、R I πμ40 B 、R I πμ20 C 、0 D 、RI40μ 答案:D9、 电流由长直导线1沿半径径向a 点流入电阻均匀分布的圆环,再由b 点沿切向从圆流出,经长导线2返回电源,(如图),已知直导线上电流强度为I ,圆环的半 径为R ,且a,b 与圆心O 三点在同一直线上,设直线电流1、2及圆环电流分别在O 点产生的磁感应强度为1B,2B 及3B 。

第四章习题 稳恒电流的磁场

第四章习题  稳恒电流的磁场

第四章习题稳恒电流的磁场第四章稳恒电流的磁场一、判断题1、在安培定律的表达式中,若r21?0,则aF21??。

2、真空中两个电流元之间的相互作用力满足牛顿第三定律。

意一点都不受力,则该空间不存在磁场。

4、对于横截面为正方形的长螺线管,其内部的磁感应强度仍可用?0nI 表示。

5、安培环路定理反映了磁场的有旋性。

?3、设想用一电流元作为检测磁场的工具,若沿某一方向,给定的电流元I0dl放在空间任?6、对于长度为L的载流导线来说,可以直接用安培定理求得空间各点的B。

7、当霍耳系数不同的导体中通以相同的电流,并处在相同的磁场中,导体受到的安培力是相同的。

8、载流导体静止在磁场中于在磁场运动所受到的安培力是相同的。

9、安培环路定理中的磁感应强度只是由闭合环路内的电流激发的。

10、在没有电流的空间区域里,如果磁感应线是一些平行直线,则该空间区域里的磁场一定均匀。

??CB?dl??0I二、选择题1、把一电流元依次放置在无限长的栽流直导线附近的两点A和B,如果A点和B点到导线的距离相等,电流元所受到的磁力大小(A)一定相等(B)一定不相等(C)不一定相等(D)A、B、C都不正确2、半径为R的圆电流在其环绕的圆内产生的磁场分布是:(A)均匀的(B)中心处比边缘处强(C)边缘处比中心处强(D)距中心1/2处最强。

3、在均匀磁场中放置两个面积相等而且通有相同电流的线圈,一个是三角形,另一个是矩形,则两者所受到的(A)磁力相等,最大磁力矩相等(B)磁力不相等,最大磁力矩相等(C)磁力相等,最大磁力矩不相等(D)磁力不相等,最大磁力矩不相等4、一长方形的通电闭合导线回路,电流强度为I,其四条边分别为ab、bc、cd、da如图所示,设B1、B2、B3及B4分别是以上各边中电流单独产生的磁场的磁感应强度,下列各式中正确的是:(A)?(B)?C1B1?dl??0IB1?dl?0C2(C)?B1?B1?dl?0(D)?C1??c?B?B12?B3?B4?dl??0I??I和I设电流IB21单独产生的磁场为1,电流I2单独产生的磁5、两个载流回路,电流分别为1?场为B2,下列各式中正确的是:(A)?C2B1?dl??0?I1?I2??(B)(C)C1B2?dl??0I212 ??B?B??dlC1??0?I1?I2?(D)6、半径为R的均匀导体球壳,内部沿球的直线方向有一载流直导线,电线I从A流向B后,再沿球面返回A点,如图所示下述说法中正确的是:??B?B??dlC212??0?I1?I2??(A)在AB线上的磁感应强度B?0 ?(B)球外的磁感应强度B?0 ?(C)只是在AB线上球内的部分感应强度B?0 ?(D)只是在球心上的感应强度B?07、如图所示,在载流螺线管的外面环绕闭合路径一周积分(A)0(B)?0nI ?LB?dl等于?0nI(C)2 (D)?0I LI8、一电量为q的点电荷在均匀磁场中运动,下列说法正确的是(A)只要速度大小相同,所受的洛伦兹力就相同。

稳恒电流

稳恒电流

四、欧姆定律的失效问题
主要表现是j与E或者说I与U的比例关系遭到破坏,而 代之以非线性关系。下面就几种重要的情况进行讨论。
(1)电场很强时,例如在金属中E > 103—104 V·m1时,
则 F ,a , u ,此时 u ~ v ,故计算 时
不能忽略 u ,于是,便有 (E) ,从而j与E的关系
金属
具有电阻和金属发热的原因。
在电场力和碰撞力的共同作用下,自由电子的总体运 动为一逆着外电场方向的漂移运析电子的漂移速度。假设经碰撞后电子对原 来的运动方向完全丧失“记忆”,即沿各个方向等概
率散射,其宏观定向速度u0 = 0。此后,电子在电场力
作用下定向加速,直到下一次碰撞为止。
△S
■ 按电流的定义,在导体
中如果有 k 种带电粒子,
其中第i种带电粒子的电量、数密度、平均速度分别为
qi , ni , ui , 则有:
k
k
I qiniui S eiui S
i1
i1
I j S
k
k
j eiui qiniui
i1
§4.1 稳恒条件
一、 电流强度和电流密度 二、 电流的物理图像 三、 电流连续方程 四、 稳恒条件
一、 电流强度和电流密度
■ 中学里接触到直流电路的时候,曾引入电流强度:
I q . t
(4.1.1)
电流强度的单位为库仑/秒,称为安[培],符号为A。
■ 用电流强度描述导体中电荷的宏观流动性质似乎 太“粗糙”。(1)不能描述电流沿截面的分布情况; (2)不能描述电流的方向,即正电荷移动的方向。
(1) 恒定电场与电流之间的依赖关系满足一定的实验 规律,该规律反映了导体的导电性质;

稳恒磁场--安培环路定理

稳恒磁场--安培环路定理

—静电场是有源场
电场线不闭合

B dS 0 —磁场是无源场 磁感应线闭合 S
再比较

静电场中: E dl 0 —静电场是保守场 l

?
磁场中: B dl 0 —磁场是? l
B
dl
§5 安培环路定理及应用
一、定理表述
在磁感强度为
B
的恒定磁场中
解:(1)分析对称性; 选圆形积分回路

B dl l

B
dl
l
B2πr
μ0 NI
B μ0 NI 2πr
当 R2 R1 R1
R2
R1 r
B

μ0
N L
I

μ0nI
载流细螺绕环内部的磁场近似均匀,外部的磁场为零。
( 2)若截面为矩形,尺寸如图所示,
I
B 0N I源自μ0 pm 2πr 3 B
μ0 pm 2πr 3
例3. 求载流直导线的磁场
解 取 Id l :
dB

μ0 4π
Idl sinθ r2
I θ2
B
dB μ0
L

Idl sinθ L r2
B μ0I θ2 sinθdθ 4 π a θ1
B

μ0 I 4πa
(cos
θ1
R 2 Indx R2 x2 3/2
B
dB 0nI
2
x2 x1
R2dx μ0nI ( R2 x2 3/2 2
x2 R2 x22
x1 ) R2 x12
B

0nI
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2x3
m NISen
B
0m
2 π x3
I S enm
B
0m
2 π x3
en
说明:
1. m 的方向与载流线圈的 单位正法矢 en的方向相同。
m
en
I S
2. 对任意形状的平面载流线圈都适用。
例 载流直螺线管内部的磁场.
如图所示,有一长为l ,半径为R的载 流密绕直螺线管,螺线管的总匝数为N, 通有电流I. 设把螺线管放在真空中,求管 内轴线上一点处的磁感应强度.
dB
0

Idl r2
I
dBx
0

I
cosdl
r2
dBx
0

I
cosdl
r2
B 0I 4π
cosdl
l r2
Idl
R
πR
dl
0
o I
x
*p x
B
0IR2
(2 x2 R2)32
讨 论
(1)若线圈有 N 匝
B
N
(2 x2
0 IR2
R
) 2
3 2
(2)x 0 B 0I
R
1
x1 O* 2
x2 x
×× ××× × ×× ××× ×× ×
讨论
B
0nI
2
cos2
cos1
(1)P点位于管内轴线中点 1 π 2
cos 1 cos 2
cos 2
l/2
l / 22 R2
R
1
* P
2
x
×× ××× × ×× ××× ×× ×
B
0nI
cos2
0nI
2
l l 2 / 4 R2 1/2
R
P
*
×× ××× × ×× ××× ×× ×
解 螺线管可看成圆形电流的组合
由圆形电流磁场公式
B
0 IR 2
2(x2 R2 )3/ 2
dB 0 2
R2 Indx R2 x2 3/2
n N l
R
P
O* x
x
×× ××× × ×× ××× ×× ×
dx
x Rcot
dx R csc2 d
•磁场对磁体、运动电荷或载流导线有磁场力的 作用;
•载流导线在磁场中运动时,磁场力要作功—— 磁场具有能量。
2. 磁感应强度 实验:运动电荷在磁场中的受力情况 •磁场力F:与q、v大小及方向有关,且⊥速度方向
•沿某一特定方向运动时,不受磁场力作用(B的方向) •沿垂直于该特定方向运动时,所受的磁场力最大
第四章 稳恒电流的磁场
§1 磁场 磁感应强度 §2 毕奥-萨伐尔定律 §3 磁通量 磁场的高斯定理 §4 安培环路定理 §5 磁场对运动电荷的作用 §6 磁场对电流的作用
§1 磁场 磁感应强度
1.1 磁现象 公元前600年,古希腊人就发现了磁石吸铁现象; 11世纪初,我国首先将指南针应用于海上航行。
B Bxi By j Bzk
2.2 毕奥-萨伐尔定律应用举例
例 载流长直导线的磁场.
z
D 2
dz r
z
I
x o r0
C 1
dB
*P y

dB
0

Idz sin
r2
dB
方向均沿
x 轴的负方向
B
dB
0

CD
Idz sin
r2
B
dB
0

CD
Idz sin
r2
z r0 cot , r r0 / sin
若 l R
B 0nI
R
1
* P
2
x
×× ××× × ×× ××× ×× ×
或由
B
0nI
2
cos2
c os 1
对于无限长的螺线管 1 π,2 0
故 B 0nI 与轴线上点的位置无关
R
1
* P
2
x
×× ××× × ×× ××× ×× ×
(2)半无限长螺线管的端点处
r
Idl
方向:右手螺旋法则
P
v dB
0
4
v Idl
evr
r2
0
4
v Idl
rv
r3
Idl
O
dB
P
r
Idl
L
P
dB
dB
Idl
例 判断下列各点磁感强度的方向和大小.
1
8
2
×
7
Idl × 3
R
6
×
4
dB
5
0

Idl
r
r3
1、5点 :dB 0
3、7点
:dB
0 Idl
4π R2
2、4、6、8 点 :
S极: 磁体指向地球南极的一端 N极: 磁体指向地球北极的一端
同极相斥,异极相吸
安培分子电流假说
磁现象的本质是电荷的运动 磁极不能单独存在
➢电与磁
电流
磁体
I
电流
I1
电流
F
F
I2
磁体
电流
I N F
S
1.2 磁场 磁感应强度 1. 磁场
载流导线

载流导线
运动电荷
运动电荷
磁体

磁体
•在运动电荷、电流、磁体周围空间存在着磁场
z
dz r0d / sin2
D 2
dz r
z
I
x o r0
C 1
dB
*P y
B 0I 2 sin d
4 π r0 1
0I
4 π r0
(cos1
cos2 )
B 的方向沿 x 轴负方向
B
0I
4 π r0
(cos
1
cos 2 )
无限长载流长直导线
z
D 2
1 0 2 π
B 0I
2 π r0
B
dB 0nI
2
x2 R2dx x1 R2 x2 3/ 2
R2 x2 R2 / sin2 R2 csc2
R
1
x1 O* 2
x2 x
×× ××× × ×× ××× ×× ×
B 0nI 2 R3csc2d
2 1 R3 csc3 d
0nI 2 sin d 2 1
I
xo
C 1
B
×
P
y
半无限长载流长直导线
1
π 2
2 π
BP
0I
4πr
B 0I 4 r
B 0I r
B 0 B 4 20I 20I 4 r r
例 圆形载流导线轴线上的磁场.
解 分析点P处磁场方向得:B Bx dBcos
Idl
cos R r
R
o
r
dB
r2 R2 x2
x
*p x
Fmax /qv 与q、v无关
磁感应强度
B Fmax qv
r F
qvr
r B
F
B
q
v
单位:特斯拉、高斯 1T=104G 方向:右手螺旋
§2 毕奥-萨伐尔定律
2.1 毕奥-萨伐尔定律
(电流元在空间产生的磁场)
毕-萨定律:
dB
0

Idl sin
r2
0 4107 N A2
(真空磁导率)
dB
dB
0 Idl
4π R2
sin
450
毕奥-萨伐尔定律
磁感应强度矢量叠加原理
对任意载有稳恒电流的导体或导体回路,其在场
点P产生的磁感应强度
B
dB
0
Idl
er
4π r2
注意:此式为矢量积分
在直角坐标系中:
dB dBxi dBy j dBzk
Bx dBx , By dBy , Bz dBz
2R
R
o
r
x
B
*p
x
(3)x B
R
0IR2
2x3

I
B 0IS
2 π x3
(1)
R
B0
x
Io
推 (2)
I
R
广

(3) I
R ×o
B0
0I
2R
B0
0I
4R
B0
0I
8R
(4)
(5) I
d *A
R1
R2
*o
BA
0I
4πd
B0
0I
4R2
0I
4R1
0I
4 π R1
三 磁偶极矩
m ISen
B
0 IR 2
相关文档
最新文档